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Abstract. This paper is a continuation of our work [PS2] in which we prove
some general results about simple (g, k)-modules with bounded k -multiplicities
(or bounded simple (g, k)-modules). In the absence of a classification of bounded
simple (g, k)-modules in general, it is important to understand some special cases
as best as possible. Here we consider the case k = sl(2). It turns out that in
order for an infinite-dimensional bounded simple (g, sl(2))-module to exist, g
must have rank 2, and, up to conjugation, there are five possible embeddings
sl(2) → g which yield infinite-dimensional bounded simple (g, sl(2))-modules.

Our main result is a detailed description of the bounded simple (g, sl(2))-
modules in all five cases. When g ' sl(2) ⊕ sl(2) we reproduce in modern
terms some classical results from the 1940’s. When g ' sl(3) and sl(2) is a
principal subalgebra, bounded simple (sl(3), sl(2))-modules are Harish-Chandra
modules and our result singles out all Harish-Chandra modules with bounded
sl(2)-multiplicities. A case where the result is entirely new is the case of a
principal sl(2)-subalgebra of g = sp(4).
Mathematics Subject Classification 2000: Primary 17B10, Secondary 22E46.
Key Words and Phrases: Harish-Chandra modules, bounded sl(2)-multiplicities,
sl(2)-characters.

1. Introduction

The classification of simple Harish-Chandra modules is a celebrated result and
there is an extensive literature on the general topic of Harish-Chandra modules,
see for instance [KV] and the references therein. Algebraically, Harish-Chandra
modules are (g, k)-modules for a symmetric subalgebra k of a semisimple Lie
algebra g , and in the last decade an intense exploration of more general (g, k)-
modules for not necessarily symmetric subalgebras k has begun, [PS1],[PSZ], [PZ1],
[PZ2], [PZ3]. A most notable result in this direction is the classification of simple
(g, k)-modules of finite type and a generic minimal k-type carried out in [PZ2].
Nevertheless, the classification problem for (g, k)-modules of finite type with an
arbitrary minimal k-type is still open even when rkg = 2 and rkk = 1.

In the recent paper [PS2] we concentrated on the interesting subclass of
bounded (g, k)-modules (the definition see in Section 1 below) and proved some
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general results regarding the existence of such modules. In particular, we estab-
lished sufficient and necessary conditions on a reductive in g subalgebra k for the
existence of a simple infinite-dimensional bounded (g, k)-module. If k ' sl(2), sim-
ple (g, sl(2))-modules of finite type exist for any simple g , see for instance [PSZ]
or [PZ3]. It turns out however, that bounded (g, sl(2))-modules are very special
and exist only for rkg = 2. The classification of such modules is rather intriguing
as they are the ”smallest”, and thus highly non-generic, (g, sl(2))-modules.

This classification is carried out in the present paper. We show first that,
up to conjugation, there are precisely five possibilities for embedding sl(2) into a
Lie algebra of g of rank 2 so that bounded infinite-dimensional (g, sl(2))-modules
exist: sl(2) as the diagonal subalgebra of sl(2)⊕sl(2), sl(2) as a root subalgebra or
a principal sl(2) subalgebra of sl(3), and sl(2) as a root subalgebra corresponding
to a short root or as a principal subalgebra of sp(4).

We then give a classification and a detailed description (we compute charac-
ters and minimal sl(2)-types) of all bounded (g, sl(2))-modules. In the case when
g ' sl(2)⊕ sl(2) our results are just a modern reproduction of classical results, in
all other cases they are new. The most interesting new case is that of a principal
sl(2)-subalgebra of sp(4).

Acknowledgement. This paper has been written in close contact with
Gregg Zuckerman who has supported us on several occasions with valuable advice.
David Vogan, Jr. has also generously shared his knowledge of Harish-Chandra
modules with us. We thank T. Milev for reading the manuscript carefully and
checking some of the calculations. Finally, we acknowledge the hospitality and
support of the Max Planck Institute for Mathematics in Bonn.

2. General definitions and preliminary results

The ground field is C .

Let g be a semisimple (finite-dimensional) Lie algebra and k ⊂ g be a
reductive in g subalgebra. U(· ) stands for enveloping algebra, U = U(g) and ZU

is the center of U . A (g, k)-module M is a g-module M on which k acts locally
finitely, i.e. dimU(k)·m <∞ , ∀m ∈ M . A (g, k)-module M has finite type over
k if the Jordan–Hölder multiplicity of any fixed simple finite-dimensional k-module
V (such a V is called a k-type) in arbitrary finite-dimensional k-submodules of
M is bounded. A (g, k)-module is bounded if the above multiplicities are bounded
by a constant not depending on the k-type V . A reductive in g subalgebra k ⊂ g

is bounded if there exists an infinite-dimensional simple bounded (g, k)-module
M . A bounded subalgebra k ⊂ g is strictly bounded if there is a simple bounded
(g, k)-module M on which no simple ideal of g acts locally finitely. The following
necessary conditions on a subalgebra k to be bounded, or strictly bounded, are
proved in [PS2] (Theorem 4.1 and Corollary 4.6).

Theorem 2.1. Let k be a bounded reductive subalgebra of a semisimple Lie
algebra g = ⊕igi (gi being the simple ideals of g).

a) If M is a simple bounded (g, k)-module and the algebra of k-invariants
gk

i0
is not abelian for some i0 , then M ' Mi0 ⊗ Mi0 , where Mi0 is a simple
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finite-dimensional gk
i0

-module and Mi0 is a simple bounded (⊕i6=i0gi, (⊕i6=i0gi)
⋂

k)-
module.

b) If rg is the half-dimension of a nilpotent orbit of minimal positive di-
mension in g, then

rg ≤ bk, (1)

where bk is the dimension of a Borel subalgebra of g.

c) If k is strictly bounded, then∑
i

rgi
≤ bk.

In [PS2] we also established the following sufficient condition for a reductive
in g subalgebra k ⊂ g to be bounded. Recall that a finite-dimensional module W
over an algebraic group H is spherical if a Borel subgroup BH has an open orbit
in W .

Theorem 2.2. Let K ⊂ G ⊂ GL(V ) be a chain of reductive algebraic groups,
and let V ′ ⊂ V be a 1-dimensional space whose stabilizers in G and K are
parabolic subgroups P ⊂ G and Q ⊂ K . Then, if (V ′)∗ ⊗ (g · V ′/k · V ′) is a
spherical module over a reductive part Q0 of Q, k is a bounded subalgebra of g.

3. Bounded subalgebras of a rank-2 Lie Algebra

Our main interest in this paper are infinite-dimensional bounded (g, k)-modules for
k ' sl(2). Theorem 2.1 implies that if k ' sl(2) is a strictly bounded subalgebra
of g = ⊕igi , then

∑
i rgi

≤ 2. This is easily seen to imply rkg = 2. Therefore, in
the rest of the paper we restrict ourselves to the case when rkg = 2. The following
theorem classifies more generally all reductive in g bounded subalgebras k ⊂ g

under the assumption that rkg = 2.

Theorem 3.1. Let g be a semisimple Lie algebra of rank 2 and k ⊂ g be a
reductive in g bounded subalgebra. The following is a complete list of such pairs
up to conjugation by inner automorphisms.

(1) g ' sl(2) ⊕ sl(2): k ' gl(2) is a direct sum of a simple ideal and a Cartan
subalgebra of the other simple ideal, k ' sl(2) is a diagonal subalgebra, or k

is any non-trivial toral subalgebra;

(2) g ' sl(3): k is a root subalgebra isomorphic to sl(2) or gl(2), k is a principal
sl(2)-subalgebra, or k is a Cartan subalgebra;

(3) g ' sp(4): k ' sl(2) ⊕ sl(2) is the subalgebra generated by the long roots,
k ' gl(2) is any root subalgebra, k ' sl(2) is a root subalgebra corresponding
to a short root, k is a principal sl(2)-subalgebra, or k is a Cartan subalgebra;

(4) g ' G2 : k is any subalgebra containing a Cartan subalgebra, in this case
k ' sl(3), k ' sl(2)⊕ sl(2), or k ' gl(2).
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Proof. The inequality (1) implies that a 1-dimensional toral subalgebra is
not bounded in all cases but (1). In (1) any 1-dimensional toral subalgebra t is
bounded as the outer tensor product of a Verma module over a suitable ideal of
g with the trivial module of the complementary ideal of g is always bounded as a
(g, t)-module.

Similarly, (1) implies that a Cartan subalgebra is not bounded in G2 . In
all other cases it is well known to be bounded, see for instance [F].

If k ' sl(2) then k is not bounded in G2 again by (1), and if k is an ideal of
g = sl(2)⊕ sl(2), it is not bounded by Theorem 2.1 a). Furthermore, if k ' sl(2) is
a root subalgebra of g = sp(4) corresponding to a long root, then k is not bounded
by Theorem 2.1 a). For the remaining five possible embeddings of sl(2) into a Lie
algebra of rank 2, the image k is always a bounded subalgebra. This follows for
instance from the explicit description of bounded (g, k)-modules which we present
in Sections 4-7 of this paper.

For any embedding of gl(2) into a Lie algebra g of rank 2, g � G2 ,
any generalized Verma module, corresponding to a parabolic subalgebra p which
contains the image k of gl(2), is a bounded (g, k)-module.

Consider next the case k ' sl(2)⊕ sl(2) ⊂ g for g = sp(4) or G2 . Here the
pair (g, k) is symmetric. In [V1] and [V2] ladder (g, k)-modules are constructed.
Fix a Borel subalgebra bk ⊂ k . By definition, a ladder module M has the k

decomposition M =
⊕

n∈Z≥0
Vµ+nβ , where µ is some integral bk -dominant weight

and β is the bk -highest weight of g/k . Clearly, a ladder module is multiplicity-free
and hence bounded. Moreover, it remains bounded with respect to any gl(2)-
subalgebra of k . Hence any image of gl(2) in sp(4) or G2 is bounded.

The only remaining case is g = G2, k ' sl(3). To show that k is bounded we
use Theorem 2.2 with V being the 7-dimensional G2 -module. Then as a k-module
V is isomorphic to Vω1 ⊕ V ∗

ω1
⊕ C . One can fix a Borel subalgebra b ⊂ g so that

there exists a b-stable one-dimensional subspace V ′ ⊂ V ∗
ω1

. Then Q0 ' GL(2)
and

(V ′)∗ ⊗ (g · V ′/k · V ′) ' Λ2(E)⊗ (E∗ ⊕ C)

where E is the standard GL(2)-module. It is easy to check that it is a spherical
Q0 -module.

In the rest of this paper g will be of rank 2, and k will be isomorphic to
sl(2). By Vk we denote the k + 1−dimensional k-module, and we write c(M) for
the k-character of any (g, k)-module M of finite type over k :

c(M) :=
∑
k≥0

(dimMk)zk,

where Mk = Homk(Vk,M). By definition, c(M) is a formal power series in z .
The minimal k-type of M is Vt where t ∈ Z≥0 is minimal with M t 6= 0. A
(g, k)-module of finite type M is

even (respectively, odd) if M t = 0 for all t ∈ 1 + 2Z (resp., t ∈ 2Z).

Let C((z)) be the algebra of Laurent series and C((z))′ be the span of
vectors in C((z)) of the form zj + z−j−2 for j ∈ Z (C((z))′ is not a subalgebra).
Note that C((z))′ is a complement to the subspace C[[z]] of C((z)). In what



Penkov and Serganova 585

follows we denote by π the projection onto the second summand in the direct sum
C((z)) = C((z))′ ⊕ C[[z]] , and we set zp ⊗ zq :=

∑
0≤k≤q z

p+q−2k for p ≥ q and
zp ⊗ zq := zq ⊗ zp for p < q .

Lemma 3.2.

(a) For any f(z) ∈ C((z)) and any j ∈ Z, π(f(z)(zj + z−j)) = π(π(f(z)(zj +
z−j))).

(b) For any (k, k)-module M of finite type over k

c(M ⊗ Vi) = π(c(M)
∑

0≤k≤i

zi−2k),

for all i ∈ N.

Proof.

(a) It suffices to check that for any ψ(z) ∈ C((z))′ , ψ(z)(zj + z−j) ∈ C((z))′ ,
and this is obvious.

(b) It suffices to check that, for any s ∈ Z≥0

π(zs ⊗ (
∑

0≤k≤i

zi−2k)) =
∑

0≤k≤ |i−s|
2

zs+i−2k,

which is also obvious.

Finally, by Γk we denote the functor of k-finite vectors:

Γk : g−mod ; (g, k)−mod,

M 7→ {m ∈M | dim(U(k) ·m) <∞}.

4. Classification and k-characters of simple
(sl(2) ⊕ sl(2), sl(2))-modules

Theorem 3.1 singles out the cases when k ' sl(2) is a bounded subalgebra of a
rank-2 Lie algebra. The simplest case is when g = sl(2) ⊕ sl(2) and k ⊂ g is the
diagonal subalgebra. Here all simple (g, k)-modules are bounded and are more-
over multiplicity-free. This follows, for instance, from the algebraic subquotient
theorem, see [Dix], Ch. 9. These (g, k)-modules are historically among the first
examples of (g, k)-modules studied. They have been classified already in 1947 by
Gelfand and Naimark [GN] and by Bargmann [B], and have been constructed also
by Harish-Chandra around the same time, [HC]. A fundamental more modern and
much more general reference is the article [BG], where however this explicit exam-
ple is not written in detail. In the present section we give a quick self-contained
description of all simple (g, k)-modules based on the approach of [BG].
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Lemma 4.1. Let Ω1,Ω2 ∈ U(g) be the Casimir elements of the two sl(2)-direct
summands of g, and Ω ∈ U(k) ⊂ U(g) = U be the Casimir element of k. Then
Ω1,Ω2 and Ω generate U(g)k .

Proof. Straightforward computation. A more general result is proved by F.
Knop in [Kn1].

Corollary 4.2. Every simple (g, k)-module is multiplicity-free.

Denote by χ(a, b) the central character of the Verma g-module with highest
weight (a1, b1), where the notation (c, d) is shorthand for the weight cωleft+dωright ,
ωleft (respectively, ωright ) being the fundamental weight of the first (respectively,
second) direct summand of g .

Lemma 4.3. If Vn is the minimal k-type of a simple infinite-dimensional (g, k)-
module M , then

c(M) = zn + zn+2 + zn+4 + . . . . (2)

Proof. To prove (2) it suffices to show that Vn , Vn+2 , Vn+4 , etc. are precisely
all k-types of M . The absence of other k-types follows from the fact that as a
k-module g is isomorphic to V2 ⊕ V2 , hence when acting by g on Vn+2i one can
only obtain k-constituents of (V2⊕V2)⊗Vn+2i , i.e. Vn+2(i−1) , Vn+2i and Vn+2(i+1) .
To show that for each i > 0 Vn+2i is a k-constituent of M , note that if Vn+2i were
not a constituent of M , then when acting by g on Vn+2(i−t) for t ≥ 1 one would
not be able to obtain a constituent of the from Vn+2(i+r) for r ≥ 1. Hence M
would turn being finite-dimensional, a contradiction.

Lemma 4.4. Let M be a simple (g, k)-module with minimal k-type V0 . Then
the central character of M equals χ(a, a) for some a ∈ C.

Proof. Since g ' k⊕ k , the g-module U ⊗U(k) V0 is isomorphic to U(k). The
latter is endowed with a U ' U(k)⊗U(k)-module structure via left multiplication
by elements of U(k)⊗1 and right multiplication by elements of 1⊗U(k). Moreover,
the actions of Ω1 and Ω2 coincide on U(k). Since M is a quotient of the g-module
U(k), the actions of Ω1 and Ω2 coincide on M , hence the Lemma.

Lemma 4.5. Let M be a simple (g, k)-module. Then the central character of
M equals χ(a, a+ n) for some a ∈ C and some n ∈ Z. Moreover, the parity of n
equals the parity of k where Vk is the minimal k-type of M .

Proof. Let χ(α, β) be a central character of M and consider the g-module
M ⊗ (V0 � Vk), where the g = k⊕ k-module V0 � Vk is endowed with a g-module
structure via the isomorphism g ' k ⊕ k . Then Homk(V0,M ⊗ (V0 � Vk)) 6= 0,
hence a simple subquotient of M ⊗ (V0 � Vk) has central character χ(a, a) for
some a . On the other hand, the central characters of all simple subquotients of
M ⊗ (V0 � Vk) are of the form χ(α, β − n) for n running over the set of weights
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of Vk . Therefore α = a , β − n = a , i.e. the Lemma follows.

Lemma 4.6. For any central character χ, up to isomorphism there is at most
one infinite dimensional simple (g, k)-module with this central character.

Proof. Let M ′,M ′′ be two simple (g, k)-modules with central character χ .
Then, by Lemma 4.3, for some m Homk(Vm,M

′) = Homk(Vm,M
′′) = C . Therefore

M ′ and M ′′ are isomorphic to simple quotients of the g-module U ⊗ZUU(k) Vm ,
where ZU acts on Vm via the central character χ . The fact that U k ⊂ ZUU(k)
(Lemma 4.1) implies that Homk(Vm, U ⊗ZUU(k) Vm) = C for every m ≥ 0. Hence
U ⊗ZUU(k) Vm has a unique proper maximal submodule, and in this way also a
unique simple quotient. Therefore M ′ 'M ′′ .

In the rest of this section we only consider central characters of the form
χ(a, a − n) for n ∈ Z≥0 . If a ∈ Z , we assume in addition that a ≥ 0 and
a − n ≤ 0. By Mc denote the Verma module over k with highest weight c − 1.
Note that for a, a − n as above, HomC(Ma,Ma−n) is a g-module with central
character χ(a, a− n). Define

Wa,a−n := Γk(HomC(Ma,Ma−n)).

Theorem 4.7.

(a) Fix a ∈ C\Z<0 and n ∈ Z≥0 such that a − n ≤ 0 for integer a. The g-
module Wa,a−n is the unique (up to isomorphism) simple infinite-dimensional
(g, k)-module with central character χ(a, a− n).

(b) c(Wa,a−n) = zn + zn+2 + zn+4 + . . . .

Proof. Note that to compute the k-character of Γk(HomC(Ma,Ma−n)) it suf-
fices to compute Homk(Vm,HomC(Ma,Ma−n)) for all m ∈ Z≥0 . However,

Homk(Vm,HomC(Ma,Ma−n)) = Homk(Ma,Ma−n ⊗ V ∗
m),

and

Homk(Ma,Ma−n ⊗ V ∗
m) =

{
C for m− n ∈ 2Z≥0

0 otherwise
.

Hence

c(Wa,a−n) = zn + zn+2 + zn+4 + . . . .

The simplicity of Wa,a−n follows from the observation that if simple, Wa,a−n would
have a finite-dimensional subquotient, but there is no finite-dimensional g-module
with central character χ(a, a − n) for a ∈ C\Z or a = 0. If a ∈ Z , the
finite-dimensional g-module with central character χ(a, a − n) is isomorphic to
Va−1 � Vn−a−1 whose k-character is zn−2 + zn−4 + ...+ z|n−2a−2| , and hence it can
not be a subquotient of Wa,a−n .
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5. Classification and k-characters of simple bounded
(sl(3), sl(2))-modules

Throughout this section g = sl(3) and k ' sl(2) ⊂ g .

5.1. The root case.. In this subsection we fix a Cartan subalgebra h ⊂ g

and simple roots α1, α2 ∈ h∗ which define a Borel subalgebra b+ ⊂ g . We also
fix k to be the sl(2)-subalgebra generated by the root spaces g±α1 . There are
two parabolic subalgebras containing k and h : p+ := (h + k) ⊕ gα2 ⊕ gα1+α2 ,
p− := (h + k)⊕ g−α2 ⊕ g−α1−α2 . Note that b+ ⊂ p+ and define b− to be the Borel
subalgebra with simple roots α1,−α1 − α2 . Then b− ⊂ p− . In addition, we fix
generators hi ∈ [gαi , g−αi ] and denote by ωi , for i = 1, 2, the corresponding dual
basis of h∗ . Then ρb+ = ω1 + ω2 , ρb− = ω1 − 2ω2 .

Lemma 5.1. Let M be a simple bounded infinite-dimensional (g, k)-module.
Then g[M ] = p± .

Proof. Since h ⊂ gk ⊕ k , we have h ⊂ g[M ] . Put M0 := {m ∈M |gα1 ·m = 0}
and choose generators x and y of the respective root spaces g−α2 and gα1+α2 . A
straightforward computation shows that for any i, j ∈ Z≥0 , (xiyj) · v ∈ M0 if v
is any non-zero vector in M0 such that h1 · v = ν(h1)v for some ν ∈ (h ∩ k)∗ .
Therefore the assumption that x, y /∈ g[M ] implies that the multiplicity of Vν+i+j

is at least i+ j , which contradicts the boundedness of M . Hence g−α2 ∈ g[M ] or
gα1+α2 ∈ g[M ] , and consequently g[M ] = p± .

Let F±
a,b be the simple finite-dimensional p± -module with b± -highest weight

aω1 + bω2 . Define L±a,b as the unique simple quotient of U(g) ⊗U(p±) F
±
a,b . Then

L±a,b are bounded (g, k)-modules, and the existence of an isomorphism L±a,b ' L∓a′,b′
implies dimL±a,b <∞ .

Theorem 5.2. Let, as above, k ' sl(2) be a root subalgebra of g = sl(3).

(a) Any infinite-dimensional bounded (g, k)-module is isomorphic either to L+
a,b

for a ∈ Z≥0 , b ∈ C\Z≥0 or to L−a,b for a ∈ Z≥0 , −a− b ∈ C\Z≥0 .

(b)

c(L±a,b) = 1 + 2z + · · ·+ aza−1 + (a+ 1)(za + za+1 + . . . ) (3)

for all a ≥ 0 and for those b which do not satisfy the conditions −b ∈ Z≥2 ,
a+b ∈ Z≥−1 for L+

a,b , and respectively the conditions a+b ∈ Z≥2 , −b ∈ Z≥−1

for L−a,b .

(c) If −b ∈ Z≥2 , a+ b ∈ Z≥−1 , then

c(L+
a,b) = z−b−1+2z−b+ · · ·+(a+b+1)za−1+(a+b+2)(za+za+1+ . . . ), (4)

and if a+ b ∈ Z≥2 , −b ∈ Z≥−1 , then

c(L−a,b) = za+b−1 + 2za+b + · · ·+ (1− b)za−1 + (2− b)(za + za+1 + . . . ). (5)
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Proof. Let M be a simple infinite-dimensional bounded (g, k)-module. Then,
by Lemma 5.1, g[M ] = p± . If g[M ] = p+ , let M+ be a simple finite-dimensional
p+ -submodule of M . Then M+ ' F+

a,b for some a ∈ Z≥0 and some b ∈ C , and

there is an obvious surjection of g-modules U(g) ⊗U(p+) F
+
a,b → M . Hence M is

isomorphic to the unique simple quotient L+
a,b of U(g)⊗U(p+)F

+
a,b . However, L+

a,b is
finite-dimensional iff b ∈ Z≥0 , therefore (a) follows for the case when g[M ] = p+ .
The case g[M ] = p− is obtained by replacing b with −a− b which corresponds to
the replacement of the simple root α2 of b+ by the simple root −α1 − α2 of b− .

Statements (b) and (c) follow from a non-difficult reducibility analysis for
the induced module U(g) ⊗U(p±) F

±
a,b . Note first of all that chk(U(g) ⊗U(p±) F

±
a,b)

is always given by the right-hand side of (3). Indeed as k-modules g/p± and F±
a,b

are isomorphic respectively to V1 and Va , therefore

c(U(g)⊗U(p±) F
±
a,b) = c(S·(V1)⊗ Va).

A straightforward computation shows that c(S·(V1)⊗ Va) is nothing but the right
hand side of (3).

We claim now that U(g)⊗U(p±)F
±
a,b is irreducible precisely when b does not

satisfy the respective conditions stated in (b). Consider first the case of p+ . Then
U(g)⊗U(p+) F

+
a,b is irreducible if and only if there exists w ∈ W\Wk such that

(w((a+ 1)ω1 + (b+ 1)ω2)− (ω1 + ω2))(h1) ∈ Z≥0 (6)

and

(w((a+ 1)ω1 + (b+ 1)ω2)− (ω1 + ω2)) = aω1 + bω2 −m1α1 −m2α2 (7)

for some m1,m2 ∈ Z≥0 . The only non b+ -dominant solution of (6) and (7)
is w = wα1+α2 and −b ∈ Z≥2, a + b ∈ Z≥−1 . Moreover, in the latter case
L+

a,b ' (U(g) ⊗U(p+) F
+
a,b)/L

+
−b−2,−a−2 , where c(L+

−b−2,−a−2) is given by the right
hand side of (3) with a replaced by −b − 2. An immediate computation shows
that c(L+

a,b) is given in this case by the right hand side of (4), therefore (b) and
(c) are proved for the case of p+ . The case of p− is obtained by interchanging the
parameter b in (4) with −a− b .

Corollary 5.3. Let g and k be as above.

(a) The minimal k-type of a simple bounded infinite-dimensional (g, k)-module
can be arbitrary. The multiplicity of the minimal k-type is always 1.

(b) The following is a complete list of multiplicity-free simple infinite-dimensional
(g, k)-modules:

– L+
0,b for b ∈ C\Z≥0 ,

– L−0,b for −b ∈ C\Z≥0,

– L+
a,b for a+ b = −1, −b ∈ Z≥2 ,

– L−a,b for b = 1, a+ b ∈ Z≥2 .
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5.2. The principal case.. Let now k be a principal sl(2)-subalgebra of g =
sl(3). The pair (g, k) is well known to be symmetric and the simple (g, k)-modules
have been studied extensively, see for instance [Fo] and [Sp]. In principle one
should be able to identify all simple bounded modules in the known classification
of simple Harish-Chandra modules. However, we propose an alternative approach
which leads directly to all bounded simple (g, k)-modules and their k-characters.
This is the first case in which the richness of the theory of bounded (generalized)
Harish-Chandra modules becomes apparent.

We keep the notations h, b+, α1, α2 from Subsection 5. By La,b we denote
the simple g-module with b+ -highest weight (a − 1)ω1 + (b − 1)ω2 , by Vp,q we
denote the simple finite-dimensional g = sl(3)-module with b+ -highest weight
pω1 + qω2 (p, q ∈ Z≥0 ), and χ(a, b) stands for the central character of La,b . By A
we denote the Weyl algebra in the indeterminates t, x, y .

We first describe the primitive ideals of all simple bounded (g, k)-modules.
Let GKdimM denote the Gelfand-Kirillov dimension of a g-module M and XM

denote the associated variety of M .

Lemma 5.4. Let M be an infinite-dimensional bounded simple (g, k)-module.
Then AnnM = AnnLa,b , where dimLa,b = ∞, a ∈ Z>0 , b ∈ Z>0 or a+ b ∈ Z>0 .

Proof. By Duflo’s Theorem AnnM = AnnLa,b for some a, b . By Theorem
4.4 in [PS2], GKdimM ≤ 2. Since GKdimM ≥ 1

2
dimXM and GKdimLa,b =

1
2
dimXM , we have GKdimLa,b ≤ 2. A straightforward computation shows that

this latter condition is equivalent to the condition on (a, b) in the statement of the
Lemma.

Let Bχ
k be the category of bounded (g, k)-modules which afford the central

character χ , see [PS2], Section 4.

Corollary 5.5. If Bχ
k is not empty, then χ = χ(u + 1 − n, n + 1) for some

n ∈ Z≥0 , where u ∈ C\Z<n−1 or u = −2.

Note that the natural embedding of gl(3) into A maps the center of gl(3)
to the line CE for E := t∂t +x∂x + y∂y , and that the adjoint action of the central
element E on A defines a Z-grading A :=

⊕
i∈ZAi . Let u ∈ C . Define the

(associative) algebra Du as the quotient of A0 by the ideal generated by E − u .
The embedding of g → A0 induces a surjective homomorphism γu : U(g) → Du .
It is not difficult to show that if u ∈ Z , Du is isomorphic to the algebra of
globally defined differential endomorphisms of the line bundle OP2(u) (P2 being
the projective space with homogeneous coordinates (x, y, z)).

Lemma 5.6. Consider Du with its adjoint g-module structure. Then

Du '
⊕
m≥0

Vmρ.

Proof. Let C = A0 ⊂ A1 ⊂ · · · ⊂ A denote the standard filtration of A . A
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direct computation shows that as a g-module Am
0 /A

m−1
0 is isomorphic to

Vm,0 ⊗ V0,m = ⊕m
k=0Vkρ.

After factorization by E− u , one obtains

(Du)m/(Du)m−1 ' Vmρ.

It is not difficult to see that the restriction of γu to U(k) is injective. Slightly
abusing notation we identify U(k) with its image in Du . We will use the following
expression for the standard basis E,H, F of k :

E = t∂x + x∂y, H = 2t∂t − 2y∂y, F = 2x∂t + 2y∂x. (8)

Lemma 5.7. The centralizer of k in Du coincides with the center of U(k) ⊂
Du .

Proof. As V k
mρ = 0 for odd m and V k

mρ = C for even m it is clear that the
centralizer of k in Du is generated by the quadratic Casimir element Ω ∈ V k

2ρ .

Corollary 5.8. Every simple (Du, k)-module is multiplicity-free. For any non-
negative m, there exists at most one (up to isomorphism) simple (Du, k)-module
M with Homk(Vm,M) 6= 0.

Proof. It is well known that if M is a simple (g, k)-module, then MV =
Homk(V,M) is a simple U(g)k -module for every k-type V , see for instance Lemma
3.3 in [PS2]. Therefore Lemma 5.7 implies the first statement. The proof of the
second statement is very similar to the proof of Lemma 4.6.

We now introduce the functors

Ind : Du −mod ↪→ A−mod

M 7→ A⊗A0 M,

Resu : A−mod ↪→ Du −mod

M 7→ Du ⊗A0 M.

Obviously, Resu ◦ Ind = idDu−mod .

Lemma 5.9.

ker γu =


AnnLu+1,1 = AnnL−u−1,u+2 = AnnL1,−u−2 for u /∈ Z
AnnL−u−1,u+2 = AnnL1,−u−2 for u ∈ Z≥−1

AnnLu+1,1 = AnnL−u−1,u+2 for u ∈ Z≤−2

.

Proof. First we prove that ker γu ⊂ AnnLa,b with a, b as in the statement.
Note that Resu(t

uC[t±1, x, y]) contains a submodule generated by tu isomorphic
to Lu+1,1 ,
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Resu(x
uC[t±1, x±1, y])/Resu(x

uC[t, x±1, y]) contains a submodule with highest vec-
tor t−1xu+1 isomorphic to L−u−1,u+2 and

Resu(y
uC[t±1, x±1, y±1])/(Resu(y

uC[t±1, x, y±1]) + Resu(y
uC[t, x±1, y±1]))

contains a submodule with highest vector t−1x−1yu+2 isomorphic to L1,−u−2 .
Hence ker γu ⊂ AnnLa,b . Next we see from Lemma 5.6 that all proper two-sided
ideals of Du have finite codimension. Thus, γu(AnnLa,b) is either 0 or has finite
codimension in Du . The latter is impossible because La,b is infinite-dimensional.
Hence ker γu = AnnLa,b .

Since the eigenvalues of adH in U(g) are all even, every simple (g, k)-module
is either odd or even.

As follows from Lemma 5.9, all simple bounded (g, k)-modules with central
character χ(u+1, u) are (Du, k)-modules. This allows us to first classify the simple
(Du, k)-modules and then use translation functors to classify the bounded simple
modules with arbitrary possible central character, see Corollary 5.5.

Note that the functor Ind maps (Du, k)-mod into (̃A, k)-mod, the latter
being defined as the full subcategory of A − mod consisting of k-locally finite
A-modules with semisimple action of E .

Lemma 5.10. For any simple (Du, k)-module M there exists a simple (̃A, k)-
module M̂ with Resu(M̂) 'M .

Proof. Let N be a maximal proper A-submodule of Ind(M). Then Resu(N) �
M as M generates Ind(M). Therefore Resu(N) = 0 and one defines M̂ as
Ind(M)/N .

Set f := x2 − 2ty , ∆ := ∂2
x − 2∂y∂t and note that f,∆ ∈ Ak . For every

fixed p ∈ C ,we put Rp := fpC[t, x, y, f−1] . Then clearly Rp is an (A, k̃)-module
and Resu(R

p) = 0 if u− 2p /∈ Z . Otherwise,

Resu(R
p) =

{
Cf u

2 ⊕ f
u−2

2 H2 ⊕ f
u−4

2 H4 ⊕ . . . for u− 2p ∈ 2Z
Cf u−1

2 H1 ⊕ f
u−3

2 H3 ⊕ f
u−5

2 H4 ⊕ . . . for u− 2p ∈ 2Z + 1,
(9)

where Hn denotes the space of homogeneous polynomials of degree n in C[t, x, y]
annihilated by ∆ (as a k-module Hn is isomorphic to V2n ).

Lemma 5.11.

(a) For u /∈ Z and for u = −1,−2, Resu(R
u
2 ) and Resu(R

u+1
2 ) are simple Du -

modules.

(b) For u ∈ 2Z≥0 , Resu(R
u+1

2 ) is a simple Du -module and there is an exact
sequence

0 → Vu,0 → Resu(R
u
2 ) → I+

u,0 → 0 (10)

for some simple Du -module I+
u,0 .

(c) For u ∈ 1 + 2Z≥0 , Resu(R
u
2 ) is a simple Du -module and there is an exact

sequence

0 → Vu,0 → Resu(R
u+1

2 ) → I−u,0 → 0

for some simple Du -module I−u,0 .
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(d) For u ∈ 2Z≤−2 , Resu(R
u
2 ) is a simple Du -module and there is an exact sequence

0 → I−u,0 → Resu(R
u+1

2 ) → V0,−3−u → 0

for some simple Du -module I−u,0 .

(e) For u ∈ 1 + 2Z≤−1 , Resu(R
u+1

2 ) is a simple Du -module and there is an exact
sequence

0 → I+
u,0 → Resu(R

u
2 ) → V0,−3−u → 0

for some simple Du -module I+
u,0 .

Proof. The isomorphism (9) yields

c(Resu(R
u
2 )) = 1 + z4 + z8 + . . . , c(Resu(R

u+1
2 )) = z2 + z6 + z10 + . . . . (11)

Thus, if Resu(R
u
2 ) (respectively Resu(R

u+1
2 )) is not simple it has a unique simple

finite-dimensional submodule or a unique simple finite-dimensional quotient. By
Lemma 5.9 the latter can happen only if u ∈ Z≥0 or u ∈ Z≤−3 . Hence (a).

Let u ∈ 2Z≥0 . Then Resu(R
u
2 ) contains Resu(C[t, x, y]) ' Vu,0 as a

finite-dimensional simple submodule, hence (10). The g-module Resu(R
u+1

2 ) has
the same central character as Resu(R

u
2 ) and, since Vn,0 is not a subquotient of

Resu(R
u+1

2 ) by (11), Resu(R
u+1

2 ) is a simple Du -module. Hence (b).

As ∆(f−
1
2 ) = 0, f−

1
2 generates a proper A-submodule M ⊂ f

1
2 C[t, x, y, f−1] .

A direct computation shows that dim Resu(M) = ∞ for any u ∈ 1 + 2Z≥−2 . Fur-
thermore, the only finite-dimensional module, whose central character coincides
with that of Du is V0,−3−u . Therefore one necessarily has

0 → I+
u,0 → Resu(R

u
2 ) → V0,−3−u → 0

where I+
u,0 := Resu(M). Resu(R

u+1
2 ) is simple by the same reason as in (b). Hence

(e).

(c) and (d) are similar to (b) and (e).

For any u ∈ C we define now I+
u,0 (respectively, I−u,0 ) as the unique simple

infinite-dimensional constituent of Resu(R
u
2 ) (resp., Resu(R

u+1
2 )).

Corollary 5.12. Every simple even infinite-dimensional (Du, k)-module is iso-
morphic to I±u,0 .

Proof. For every fixed u and any sufficiently large m ∈ 2Z≥0 (such that Vm is
not a k-type of Vu,0 or V0,−3−u for u ∈ Z), Lemma 5.11 implies Homk(Vm, I

±
u ) 6= 0.

The statement follows now from Corollary 5.8.

Lemma 5.13. If u /∈ 1
2

+ Z, then every (Du, k)-module is even.

Proof. Assume that M is an odd simple (Du, k)-module and u /∈ 1
2

+ Z . Let

M̂ be as in Lemma 5.10, Af denote the localization of A in f , M̂f = Af ⊗A M̂ .
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First, we claim that if u /∈ 1
2

+ Z , then M̂f 6= 0. Indeed, M̂f = 0 implies that

f acts locally nilpotently on M̂ . Then M0 := kerf is a k-submodule of M̂
and a straightforward calculation using (8) shows Ω|M0 = 2(E + 3)(E + 2)|M0 .

Thus Homk(Vm,M
0) 6= 0 only if 2(d + 3)(d + 2) = m2

2
+ m or equivalently

(d + 5
2
)2 = (m+1

2
)2 , where d is the eigenvalue of E on M0 . Since d ∈ u + Z ,

u /∈ 1
2

+ Z implies M0 = 0.

Our next observation is that M̂f is an odd (A, k)-module and that t does not

act locally nilpotently on M̂f . Indeed, if t acts locally nilpotently, by k-invariance
x and y act locally nilpotenly, and therefore f acts locally nilpotently. Contra-
diction. Therefore M̂f is a submodule of its localization in t , M̂f,t . Furthermore,

for some odd m there exists a non-zero vector v ∈ M̂f,t such that H · v = mv ,
E · v = 0 and E · v = uv . The expressions for E,H and E imply

∂tv =
−(u+m/2)ty +mx2/2

tf
v, ∂xv =

(u−m/2)x

f
v, ∂yv =

(m/2− u)t

f
v.

Thus, every vector in M̂f,t can be obtained from v by applying elements of

C[t±1, x, y, f−1] , i.e. M̂f,t = C[t±1, x, y, f−1]v . It is not difficult to see that

v = t
m
2 f

2u−m
4 satisfies the above relations. The Af,t -module C[t±1, x, y, f−1]v

is simple and free over C[t±1, x, y, f−1] . Hence M̂f,t ' C[t±1, x, y, f−1]v and it

is obvious that M̂f,t has no non-zero k-finite vectors. As we pointed out above,

M̂f ⊂ M̂f,t . Therefore M̂f = 0.

We now turn to odd simple (Du, k)-modules.

Lemma 5.14. Let u ∈ 1
2
+ Z. Up to isomorphism, there exists exactly one odd

simple (Du, k)-module Ju,0 . Moreover,

c(Ju,0) =

{
z2−2u + z6−2u + z10−2u + . . . for u < 0
z4+2u + z8+2u + z12+2u + . . . for u > 0

. (12)

Proof. Let P ⊂ G = SL(3) be the maximal parabolic subgroup whose Lie
algebra p equals b⊕ g−α1 , K ⊂ G be the algebraic subgroup with Lie algebra k ,
and Z be the closed K -orbit on G/P ' P2 . Then Z ' P1 and the embedding
i : Z → P2 is a Veronese embedding of degree 2. It is not difficult to verify that the
relative tangent bundle TP of the projection p : G/B → G/P is a OG/B -submodule

of the twisted sheaf of differential operators D (u+1)ω1+ω2

G/B (the definition of D ζ
G/B see

in [PS2], Section 5). Furthermore, the direct image p∗(D
(u+1)ω1+ω2

G/B /IP ), where IP

is the left ideal in D (u+1)ω1+ω2

G/B generated by TP , is a well-defined twisted sheaf of

differential operators on G/P . We denote this sheaf by D (u+1)ω1+ω2

G/P .

Our next observation is that, similarly to the equivalence of categories
iF discussed in Section 5 of [PS2], Kashiwara’s theorem yields an equivalence
of categories

iuF : OZ(2u)⊗OG/P
DG/P ⊗OG/P

OZ(−2u) − mod → (D (u+1)ω1+ω2

G/P − mod )Z ,
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where (D (u+1)ω1+ω2

G/P − mod )Z denotes the full subcategory of D (u+1)ω1+ω2

G/P - mod

supported on Z , and OZ(2u) is the line bundle on Z with Chern class 2u .
Therefore we can put

Ju,0 := Γ(P2, iuFOZ(2u)).

It is clear that Ju,0 is a (g, k)-module, and furthermore, using the facts that N '
OZ(4) and that iuFOZ(2u) has a filtration with successive quotients
OZ(2u + 4(i + 1)), one easily verifies that c(Ju,0) is given by the right-hand
side of (12). Since there are no finite-dimensional modules with central character
χ(u+ 1, 1) for u ∈ 1

2
+ Z , Ju,0 is a simple g-module.

It remains to prove that every simple odd (Du, k)-module is isomorphic to
Ju,0 for some u ∈ 1

2
+ Z . Let M be a simple odd (Du, k)-module and M̂ be

a simple (A, k̃)-module such that Resu(M̂) = M . Then by the proof of Lemma
5.14 M̂f = 0. For every bk -highest vector v ∈ Resu(M̂) there exists k such that
fk · v = 0. Let v have weight m . Then by the relation (d + 5

2
)2 = (m+1

2
)2 from

the proof of Lemma 5.14, m+1
2

= ±(u + 2k + 5
2
), as Efk · v = (2k + u)fk · v .

Without loss of generality we may assume that m is very large and then m+1
2

=
(u+ 2k + 5

2
). Therefore Homk(Vm,M) 6= 0 implies m = 2u+ 4k + 4. Hence if M

and M ′ are two odd (Du, k)-modules one can find m such that Homk(Vm,M) 6= 0,
Homk(Vm,M

′) 6= 0. But then M 'M ′ by Corollary 5.8.

Let M be some A-module with semisimple E-action. Consider the U(g)-
modules M (n) := M ⊗ Sn(span{x, y, t}) for n ∈ Z≥0 , together with the linear
operators

d̄ : M (n) → M (n−1)

d̄ = t⊗ ∂t + x⊗ ∂x + y ⊗ ∂y

δ̄ : M (n) → M (n+1)

δ̄ = ∂t ⊗ t+ ∂x ⊗ x+ ∂y ⊗ y.

It is straightforward to check that d̄ , E⊗ 1− 1⊗E and δ̄ form a standard sl(2)-
triple. Let Ress(M

(k)) be the eigenspace of the operator E⊗ 1 + 1⊗ E in M (k) .
Then obviously d̄ and δ̄ induce operators

d : Ress(M
(n)) → Ress(M

(n−1))

δ : Ress(M
(n−1)) → Ress(M

(n)),

and elementary sl(2) representation theory implies that if s /∈ Z , s < n − 1 or
s ≥ 2n , then d is surjective, δ is injective, and

Ress(M
(n)) = kerd⊕ imδ. (13)

For any (Du, k)-module M choose a simple (A, k̃)-module M̂ such that Resu(M̂) =
M (in fact M̂ is unique).

Let T n(M) := Resu+n(M̂ (n)) ∩ kerd . If u 6= −1, 0, . . . , n− 1, (13) implies

c(T n(M)) = c(Resu+n(M̂ (n)))− c(Resu+n(M̂ (n−1))). (14)



596 Penkov and Serganova

Lemma 5.15. Let M be a bounded simple (Du, k)-module. Assume that u 6=
−1, 0, . . . , n − 1. Then T n(M) is a simple (g, k)-module with central character
χ(u+ 1− n, n+ 1).

Proof. Lemma 5.9 implies that M is a (g, k)-module with central character
χ(u+1, 1). Therefore M⊗Sn(span{x, y, t}) has constituents with central character
χ(u + 1 + n − 2k, 1 + k), k = 0, . . . , n , and imδ has constituents with central
character χ(u + 1 + n − 2k, 1 + k), k = 0, . . . , n − 1. Thus, T n(M) is a direct
summand of M ⊗ Sn(span{x, y, t}) with central character χ(u+ 1− n, n+ 1).

Our restrictions on u imply that the weights
(u+ 1)ω1 + ω2 and (u− n+ 1)ω1 + (n+ 1)ω2

belong to the same Weyl chamber and have the same stabilizer in the Weyl group.
Hence, T n is nothing but the translation functor

T
(u−n+1)ω1+(n+1)ω2

(u+1)ω1+ω2
: B

χ(u+1,1)
k → B

χ(u−n+1,n+1)
k .

Therefore T n is an equivalence of categories, in particular T n(M) is simple.

We put for u 6= −1, 0, . . . , n− 1

I±u,n := T n(I±u,0),

Ju,n := T n(Ju,0).

Theorem 5.16. Let M be a simple bounded infinite-dimensional (g, k)-module
with central character χ. Then

(a) if χ = χ(u+ 1− n, n+ 1) for u /∈ Z,

M '
{
I±u,n for u /∈ 1

2
+ Z

I±u,n, Ju,n for u ∈ 1
2

+ Z ;

(b) if χ = χ(u+ 1− n, n+ 1) for u ∈ Z≥n ,

M ' I±−n−3,u−n, I
±
u,n;

(c) if χ = χ(−1− n, n+ 1),
M ' I±−2,n;

(d) if χ = χ(0, n+ 1),
M ' (I±−2,n)τ ,

where τ stands for the outer automorphism τ(X) = −X t for any X ∈ g.

Proof. By Corollary 5.5 every simple bounded (g, k)-module has central char-
acter χ of the form χ(u + 1 − n, n + 1) for some n ∈ Z≥0 and some u ∈
{C\Z<n−1} ∪ {−2} . Moreover, T n = T

(u−n+1)ω1+(n+1)ω2

(u+1)ω1+ω2
is an equivalence of the

categories B
χ(u+1,1)
k and B

χ(u+1−n,n+1)
k . If u /∈ Z , 1

2
+ Z then B

χ(u+1,1)
k has

two non-isomorphic simple objects, and, if u ∈ 1
2

+ Z , B
χ(u+1,1)
k has three non-

isomorphic simple objects. This implies (a).
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If u ∈ Z≥0 , u ≥ n , we have
χ = χ(u+ 1− n, n+ 1) = χ((−n− 3) + 1− (u− n), (u− n) + 1),

hence in this case Bχ
k has 4 non-isomorphic simple objects: I±u,n and I±−n−3,u−n .

This proves (b). If n = −2, Bχ
k is equivalent to B

χ(1,1)
k and has two simple objects,

I±−2,n , which proves (c). Finally if u = n− 1, the automorphism τ establishes an

equivalence between B
χ(0,n+1)
k and B

χ(−1−n,n+1)
k , hence (d).

Lemma 5.17. For a ∈ Z≥2 , define

µn(a, z) :=
za

1− z4
⊗ c(Vn,0)−

za−2

1− z4
⊗ c(Vn−1,0).

For a ∈ Z≥0 , define

κn(a, z) :=
za

1− z4
⊗ c(Vn,0)−

za+2

1− z4
⊗ c(Vn−1,0).

Then

µ2p(a, z) =
za

1− z4
+
za−2(z4 + z8 + · · ·+ z4p)

1− z2
, (15)

µ2p+1(a, z) =
za(1 + z4 + · · ·+ z4p)

1− z2
, (16)

κ2p(a, z) =
za

1− z4
+
z|a−4| + · · ·+ z|a−4p|

1− z2
, (17)

κ2p+1(a, z) =
z|a−2| + · · ·+ z|a−4p−2|

1− z2
. (18)

Proof. Since Vn,0 = Sn(V1,0), and since Sn(V1,0) is isomorphic as a k-module
to Sn(V2), we have

c(V2p,0) = 1 + z4 + · · ·+ z2p,

c(V2p+1,0) = z2 + z6 + · · ·+ z2p+2.

Recall that za ⊗ zb = π(za
∑i=b

i=0 z
b−2i) (Lemma 3.2,(b)). Therefore

za

1− z4
⊗ z2k − za−2

1− z4
⊗ z2k−2 = π


za−2(z2

i=2k∑
i=0

z2k−2i − z−2
i=2k−2∑

i=0

z2k−2i)

1− z4

 =

= π

(
za−2(z2k+2 + z2k)

1− z4

)
=
za−2+2k

1− z2
.

za

1− z4
⊗ z2k − za+2

1− z4
⊗ z2k−2 = π


za(

i=2k∑
i=0

z2k−2i − z2
i=2k−2∑

i=0

z2k−2−2i)

1− z4

 =

= π

(
za(z−2k + z2−2k)

1− z4

)
= π

(
za−2k

1− z2

)
=
z|a−2k|

1− z2
.

The above identities imply (15)-(18).
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Theorem 5.18.

(a) Let u /∈ Z, 1
2

+ Z. Then

c(I+
u,n) = κn(0, z), c(I−u,n) = µn(2, z).

(b) Let u ∈ 1
2

+ Z. Then

c(Ju,n) = κn(4 + 2u, z) for u ≥ −1
2
,

c(Ju,n) = µn(2− 2u, z) for u ≤ −3
2
.

(c) Let u ∈ 2Z≥0 . Then

c(I+
u,0) = z2u+4

1−z4 , c(I−u,0) = z2

1−z4 ,

c(I+
u,n) = κn(2u+ 4, z), c(I−u,n) = µn(2, z).

(d) Let u ∈ 1 + 2Z≥0 . Then

c(I+
u,0) = 1

1−z4 , c(I−u,0) = z2u+4

1−z4 ,

c(I+
u,n) = κn(0, z), c(I−u,n) = κn(2u+ 4, z).

(e) Let u ∈ 2Z≤−2 . Then

c(I+
u,0) = 1

1−z4 , c(I−u,0) = z−2−2u

1−z4 ,

c(I+
u,n) = κn(0, z), c(I−u,n) = µn(−2− 2u, z).

(f) Let u ∈ −1 + 2Z≤−1 . Then

c(I+
c,0) = z−2−2u

1−z4 , c(I−u,0) = z2

1−z4 ,

c(I+
u,n) = µn(−2− 2u, z), c(I−u,n) = µn(2, z).

(g)
c(I+

−2,n) = c((I+
−2,n)τ ) = κn(0, z),

c(I−−2,n) = c((I−−2,n)τ ) = µn(2, z).

Proof. Using (14) one obtains the identities

c(I±u,n) = c(I±u,0 ⊗ Vn,0)− c(I∓u+1,0 ⊗ Vn−1,0),
c(Ju,n) = c(Ju,0 ⊗ Vn,0)− c(Ju+1,0 ⊗ Vn−1,0).

(19)

The theorem is a straightforward corollary of (19). Indeed, let us prove (f). In
this case

c(I+
u,0) =

z−2u−2

1− z4
, c(I+

u−1,0) =
z−2u−4

1− z4
,

c(I+
u,n) =

z−2u−2

1− z4
⊗ c(Vn,0)−

z−2u−4

1− z4
⊗ c(Vn−1,0) = µn(−2− 2u, z);

c(I−u−1,0) =
z−2u−4

1− z4
, c(I+

u−1,0) =
1

1− z4
,

c(I−u,n) =
z2

1− z4
⊗ c(Vn,0)−

1

1− z4
⊗ c(Vn−1,0) = µn(2, z).

In all other cases the arguments are similar.
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Corollary 5.19.

(a) The minimal k-type can be any Vk but its multiplicity is always 1.

(b) For sufficiently large i ci(M) = ci+4(M) for any simple bounded (g, k)-module,
and for sufficiently large j there are the following k-multiplicities:

c4j(I
±
u,2p+1) = c4j+2(I

±
u,2p+1) = p+ 1,

c4j(I
+
u,2p) = p+ 1, c4j+2(I

+
u,2p) = p,

c4j+2(I
−
u,2p) = p+ 1, c4j(I

−
u,2p) = p,

c4j+1(Ju,2p+1) = c4j+3(Ju,2p+1) = p+ 1,

c4j+2u(Ju,2p) = p, c4j+2u+2(Ju,2p) = p+ 1.

(c) The only multiplicity-free simple infinite-dimensional (g, k)-modules are I±u,0 ,
Ju,0 , I

±
u,1 , Ju,1 , (I±−2,1)

τ .

The complete list of multiplicity-free simple (g, k)-modules has been first
found by Dj. Sijacki, see [S] and the references therein for a historic perspective
on this problem.

6. Classification of simple bounded (sp(4), sl(2))-modules

In this section we classify all simple bounded (g, k)-modules, where g = sp(4)
and k is a principal sl(2)-subalgebra or a sl(2)-subalgebra corresponding to a
short root. We fix a Cartan subalgebra h ⊂ g and write the roots of g as
{±2ε1,±2ε2,±ε1 ± ε2} . Our fixed simple roots are ε1 − ε2, 2ε2 , and ρ = 2ε1 + ε2 .
By e1 , e2 , h1 , h2 , f1 , f2 we denote the Serre generators of g associated to our
choice of simple roots, [OV]. We define two sl(2)-subalgebras of g : one with basis
e1 , h1 , f1 and one with basis e1 + 2e2 , 3h1 + 4h2, 3f1 + 2f2 . The first one is the
root subalgebra corresponding to the simple root ε1 − ε2 , and the second one is a
principal sl(2)-subalgebra. In Sections 6 and 7, we denote by k any one of these
two subalgebras, referring respectively to the root case and to the principal case
when we want to be specific. We set bk := b ∩ k , where b is the Borel subalgebra
generated by e1 , e2 , h1 , h2 . By La,b we denote the simple b-highest weight g-
module with highest weight aε1 + bε2−ρ = (a−2)ε1 +(b−1)ε2 , by Va,b we denote
the simple finite-dimensional g-module with highest weight aε1 + bε2 , and χ(a, b)
is the central character of La,b .

Lemma 6.1. Let dim La,b = ∞ and GKdimLa,b ≤ 2. Then a > |b| and
a, b ∈ 1

2
+ Z.

Proof. Let λ = aε1 + bε2 . If (λ, α) /∈ Z>0 for all positive roots α , then
La,b is a Verma module and therefore its Gelfand-Kirillov dimension equals 4.
If (λ, α̌) ∈ Z>0 for exactly one positive root, then one has the following exact
sequence

0 → Lwα(λ) →Mλ → Lλ → 0,
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where wα denotes the reflection in α . A straightforward computation shows that
in this case GKdimLλ = 3. Therefore GKdimLλ ≤ 2 implies the existence of two
positive roots α and β such that (λ, α̌), (λ, β̌) ∈ Z>0 . One can see immediately
that at least one of these roots, say α , is simple. If Nλ denotes the quotient of
Mλ by the submodule generated by a highest vector with weight wα(λ)− ρ , then
GKdimNλ = 3. The condition GKdimLλ ≤ 2 implies the reducibility of Nλ which
in turn implies (λ, γ̌) ∈ Z>0 for the positive root γ orthogonal to α . That leaves
only two possibilities for λ : λ is either regular integral or λ satisfies the conditions
of the Lemma.

It remains to eliminate the case of a regular integral non-dominant λ . By
using the translation functor we may assume without loss of generality that λ
belongs to the Weyl group orbit of ρ . That leaves four possibilities for λ : 2ε1−ε2 ,
ε1− 2ε2 , ε1 +2ε2 , −ε1 +2ε2 . Let p1 and p2 be the parabolic subalgebras obtained
from b by joining ε2 − ε1 and −2ε2 respectively. It is not difficult to verify the
existence of embeddings

L2,−1 → U(g)⊗U(p1) F
1
2,1, L1,−2 → U(g)⊗U(p1) F

1
2,−1,

L1,2 → U(g)⊗U(p2) F
2
2,1, L−1,2 → U(g)⊗U(p2) F

2
1,2,

where F 1
a,b (respectively, F 2

a,b ) is the finite dimensional p1 -module (resp., p2 -
module) with b-highest weight aε1 + bε2 − ρ . Therefore the Gelfand-Kirillov
dimension of any of the above four simple modules equals the Gelfand-Kirillov
dimension of the corresponding parabolically induced module, i.e. 3. The proof is
now complete.

Corollary 6.2. Let M be a simple bounded infinite-dimensional (g, k)-module.
Then AnnM = AnnLa,b for some a, b with a > |b|, a, b ∈ 1

2
+ Z. In particular,

χ(a, b) is the central character of M .

Proof. By Duflo’s theorem, AnnM = AnnLa,b for some a, b . It is known that
1
2
dimXLa,b

= GKdimLa,b , thus GKdimM ≥ GKdimLa,b . On the other hand,
GKdimM ≤ 2 = bk holds by Theorem 4.4 in [PS2] . Hence GKdimLa,b ≤ 2, and
Lemma 6.1 applies to La,b .

Corollary 6.3. Let a, b ∈ 1
2
+Z, a > |b|. Then B

χ(a,b)
k is equivalent to B

χ( 3
2
, 1
2
)

k .

Proof. It is well known that the categories Uχ(a,b) -mod for (a, b) as above are

translation-equivalent to the category Uχ( 3
2
, 1
2
) -mod. Since the translation functor

preserves the subcategories of bounded modules, the categories B
χ(a,b)
k and B

χ( 3
2
, 1
2
)

k

are equivalent as well.

Our next step is to describe the quotient algebra U(g)/AnnL 3
2
, 1
2
. In this

section we denote by A the Weyl algebra in two variables, i.e. the algebra of
differential operators acting in C[x, y] . We introduce a Z2 -grading, A := A0⊕A1 ,
by putting deg x = deg y = deg ∂x = deg ∂y := 1 ∈ Z2 . It is well known that there
exists a surjective algebra homomorphism

κ : U(g) → A0
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such that

κ(e1) = x∂y, κ(e2) =
y2

2
, κ(f1) = y∂x, κ(f2) = −

∂2
y

2
,

κ(h1) = x∂x − y∂y, κ(h2) = y∂y +
1

2
.

The kernel of κ equals AnnL 3
2
, 1
2
. Furthermore, κ(k) is spanned by E := x∂y ,

F := y∂x , H := x∂x − y∂y in the root case, and respectively by E := x∂y + y2 ,
H := 3x∂x + y∂y + 2, F := 3y∂x − ∂2

y in the principal case.

The problem of describing all simple modules in B
χ( 3

2
, 1
2
)

k is equivalent to the
problem of describing all simple (A0, k)-modules, i.e. all simple locally κ(k)-finite
A0 -modules. The following lemma reduces this problem to a classification of all
simple (A, k)-modules.

Lemma 6.4. Every simple (A, k)-module M is a Z2 -graded A-module, i. e.
M = M0 ⊕ M1 where M0 and M1 are simple (A0, k)-modules. Furthermore,
M = A⊗A0 M0 , and the Z2 -grading on M is unique up to interchanging M0 with
M1 .

Proof. The element H (as defined above separately for the root case and for
the principal case) acts semisimply on M with integer eigenvalues. We define
M0 (respectively, M1 ) as the direct sum of H -eigenspaces with even (resp., odd)
eigenvalues. It is obvious that M = M0 ⊕M1 , that M0 and M1 are simple A0

modules, and that M = A ⊗A0 M0 . Since M0 and M1 are non-isomorphic as
A0 -modules, the uniqueness follows from the fact that a decomposition of M as
an A0 -module into a direct sum of two non-isomorphic A0 -modules is unique.

Remark. More generally, if k′ is a subalgebra of g′ = sp(2m) such that
the centralizer of k′ in the Weyl A′ algebra of m indeterminates is abelian,
every (A′, k′)-module is a multiplicity-free (g′, k′)-module whose primitive ideal
is a Joseph ideal. F. Knop has classified all such subalgebras k′ , [Kn2], which
makes us optimistic that this idea can eventually lead to a classification of simple
bounded (g′, k′)-modules.

Let Fou : A→ A be the automorphism defined by

Fou(x) := ∂x, Fou(y) := ∂y, Fou(∂x) := −x, Fou(∂y) := −y

If M is an A-module, we denote by MFou the twist of M by Fou.

Theorem 6.5. In the root case, any simple (A, k)-module is isomorphic to
C[x, y] or C[x, y]Fou .

Proof. Let M be a simple (A, k)-module. Then there exists 0 6= v ∈ M such
that E · v = 0, i.e. x∂y · v = 0. Hence either x or ∂y act locally nilpotently on
M .
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Assume first that ∂y acts locally nilpotently on M . Then ∂x ∈ [k, ∂y] also
acts locally nilpotenly on M . Let A+ be the abelian subalgebra in A generated
by ∂x, ∂y . One can find 0 6= w ∈M such that A+ · w = 0, and hence

M ∼= A⊗A+ C ∼= C [x, y] .

If x acts locally nilpotently on M , one considers MFou and reduces to the
previous case.

Corollary 6.6. In the root case, up to isomorphism, there are exactly four
simple (g, k)-modules with central character χ(3

2
, 1

2
). As k-modules two of these

modules are isomorphic to

V0 ⊕ V2 ⊕ V4 ⊕ . . . ,

and the other two are isomorphic to

V1 ⊕ V3 ⊕ V5 ⊕ . . . .

Theorem 6.7. In the principal case, up to isomorphism, there exist exactly two
simple (A, k)-modules and they have the following k-module decompositions:

V0 ⊕ V3 ⊕ V6 ⊕ V9 ⊕ . . . , V1 ⊕ V4 ⊕ V7 ⊕ V10 ⊕ . . . .

Proof. Note that k is a maximal subalgebra of g . Hence, every element g ∈ g\k
acts freely on a simple (A, k)-module M . In particular, x2 acts freely on M ,
and therefore x acts freely on M . Let Ax be the localization of A in x , and
Mx := Ax ⊗A M . Then M ⊂ Mx . Fix 0 6= m ∈ M with E · m = 0 and
H ·m = λm for a minimal λ ∈ Z≥0 . Since E = x∂y + y2 and H = 3x∂x + y∂y +2,
we have

∂y ·m = −y
2

x
·m, ∂x ·m =

(
y3

3x2
+
λ− 2

3x

)
·m.

Therefore, Mx = C [x, x−1, y] ·m . Set

uλ := x
λ−2

3 exp

(
−y3

3x

)
.

Then it is easy to see that Mx is isomorphic to Fλ := C [x, x−1, y]uλ and that
Fλ = Fλ+3 . Hence, Mx is isomorphic F0,F1 or F2 .

Next we calculate Γk (Fλ). Note that the space of bk -singular vectors in Fλ

is spanned by the family uλ+3k , k ∈ Z of solutions to the differential equation

E · u = x∂y(u) + y2u = 0.

If λ ∈ Z≥0 , then F λ+1 ·uλ is again a bk -highest vector of weight −λ−2. Therefore
F λ+1 · uλ = cu−λ−2 for some constant c . On the other hand, u−λ−2 ∈ Fλ iff
λ− (−λ− 2) = 2λ+ 2 ∈ 3Z or λ = 3k + 2. Hence F λ+1 · uλ = 0 for λ = 3k or
λ = 3k + 1. Thus, Γk (F0) is generated by u3k for k ≥ 0, Γk (F1) is generated by
u3k+1 for k ≥ 0, and we have the k-module decompositions

Γk (F0) ' V0 ⊕ V3 ⊕ V6 ⊕ V9 ⊕ . . . , Γk (F1) ' V1 ⊕ V4 ⊕ V7 ⊕ V10 ⊕ . . . .



Penkov and Serganova 603

Let us prove that Γk (F0) and Γk (F1) are simple A-modules. Indeed, let
N be a proper submodule of Γk(F0). If uλ ∈ N , then uλ+3k = xkuλ ∈ N for all
positive k . Choose the minimal λ such that uλ ∈ N . Then the quotient module
has a decomposition Vλ−3⊕· · ·⊕V0 , hence it is finite-dimensional. Since A has no
non-zero finite-dimensional modules, this is a contradiction. The case of Γk(F1) is
very similar. In this way we obtain that, if Mx = F0 or F1 , then M is respectively
isomorphic to Γk (F0) or Γk (F1).

Finally, we show that Γk (F2) = 0. It is sufficient to check that there is no
non-zero v ∈ F2 with F · v = 0 and

H · v = (−3k − 2) v for k ∈ Z≥0. (20)

Indeed, then v would be a solution of the differential equation

3yvx = vyy.

Since v ∈ F2 ,

v = g (x, y) exp

(
− y

3

3x

)
for some g (x, y) ∈ C [x, x−1, y] such that

3ygx = gyy − 2
y2

x
gy − 2

y

x
g.

As g (x, y) is homogeneous with respect to H , we may assume without loss of
generality that

g (x, y) =
l∑

i=0

bix
p−iy3i+s,

where s ∈ Z≥0 , p ∈ Z , bi ∈ C , b0 = 1. The equation on the highest term with
respect to x gives the condition

∂2
y (ys) = 0,

or, equivalently, s = 0, 1. But H ·g = (3p+ s+ 2) g , hence H ·v = (3p+ s+ 2) ·v .
Therefore

H · v = (3p+ 2) v or H · v = (3p+ 3) v,

and (20) does not hold.

Theorem 6.7 together with Lemma 6.4 yield the following.

Corollary 6.8. In the principal case, up to isomorphism, there are exactly four
simple (g, k)-modules with central character χ(3

2
, 1

2
). They have the following k-

module decompositions:

V0⊕V6⊕V12⊕. . . , V1⊕V7⊕V13⊕. . . , V3⊕V9⊕V15⊕. . . , V4⊕V10⊕V16⊕. . . . (21)
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7. k-characters of simple bounded (sp(4), sl(2))-modules

7.1. The root case.. In this case, the four simple modules of Corollary 6.6 are
nothing but the simple highest weight modules L 3

2
, 1
2
, L 3

2
,− 1

2
, and their respective

restricted duals L′3
2
, 1
2

, L′3
2
,− 1

2

, i.e. the simple b-lowest weight modules with lowest

weights (−3
2
,−1

2
) and (−3

2
, 1

2
). Therefore, by Corollaries 6.2, 6.3 we conclude that

all simple bounded (g, k)-modules are precisely La,b and the lowest weight modules
L′−a,−b , where a > |b| ∈ 1

2
+ Z . Since c(La,b) = c(L′−a,−b), it suffices to compute

c(La,b), for a, b as above.

The h-character of La,b is given by the formula

chhLa,b =
(xa−b − xb−a)(ya+b − y−a−b)

(x− x−1)(y − y−1)(xy − x−1y−1)(x−1y − xy−1)
, (22)

where x = e
ε1−ε2

2 , y = e
ε1+ε2

2 . We rewrite (22) as

(xa−b − xb−a)(ya−b − yb−a)

(x− x−1)(y − y−1)
y−2(1− x2y−2)−1(1− x−2y−2)−1. (23)

Next we note that

(1− x2y−2)−1(1− x−2y−2)−1 =
∞∑

k=0

y−2k(x2k + x2k−4 + · · ·+ x−2k), (24)

and use the expression

zk = xk + xk−2 + · · ·+ x−k =
xk+1 − x−(k+1)

x− x−1

to rewrite the right-hand side of (24) in the form

∞∑
k=0

y−2k(z2k − z2k−2 + · · ·+ (−1)k) =
1

1 + y2

∞∑
k=0

z2ky−2k.

Now (23) becomes

chhLa,b = za−b−1y
a+b − y−a−b

y − y−1

1

1 + y2

∞∑
k=0

z2ky−2k.

To find the k-character of La,b , we set y = 1:

c(La,b) =
a+ b

2
za−b−1 ⊗

∞∑
k=0

z2k. (25)

Thus, equation (25) implies the following result.
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Theorem 7.1.

(a) If a− b is even and a+ b is odd, then

c(La,b) =
a+ b

2
(2z + 4z3 + · · ·+ (a− b)za−b−1 + (a− b)za−b+1 + . . . ).

(b) If a− b is odd and a+ b is even, then

c(La,b) =
a+ b

2
(1 + 3z2 + 5z4 + · · ·+ (a− b)za−b−1 + (a− b)za−b+1 + . . . ).

(c) In the case (a) the minimal k-type is V1 and its multiplicity is a+ b. In the
case (b) the minimal k-type is V0 and its multiplicity is a+b

2
.

(d) For sufficiently large i,

ci(La,b) = ci+2(La+b) =
(a2 + b2)(1 + (−1)a+b−i)

4
.

(e) La,b is k-multiplicity-free if and only if a = 3
2
, hence the only simple

multiplicity-free (g, k)-modules are those with central character χ(3
2
, 1

2
), i.e.

the four g-modules from Corollary 6.8.

7.2. The principal case.. We now proceed to calculating the k-characters
of all simple bounded (g, k)-modules where g = sp(4) and k is the principal
subalgebra of g fixed in Section 6. In this case, let M0

3
2
, 1
2

and M1
3
2
, 1
2

denote

the simple bounded (g, k)-modules with central character χ(3
2
, 1

2
) and respective

k-module decompositions V0 ⊕ V6 ⊕ V12 ⊕ . . . and V1 ⊕ V7 ⊕ V13 ⊕ . . . . We set

M s
a,b := T

3
2
ε1+ 1

2
ε2

aε1+bε2
(M s

3
2
, 1
2

) for a, b ∈ 1
2

+ Z, a > |b| , s ∈ {0, 1} , and M s
a,b := 0 for

a, b ∈ 1
2

+ Z, a ≤ |b| , s ∈ {0, 1} . By Vp,q we denote the simple finite-dimensional
g = sp(4)-module with b-highest weight pε1 + qε2 (p, q ∈ Z≥0 , p ≥ q ).

Lemma 7.2. We have

V1,0 ⊗M s
a,b 'M s

a+1,b ⊕M s
a,b+1 ⊕M s

a−1,b ⊕M s
a,b−1, (26)

and, for a 6= |b|+ 1,

V1,1 ⊗M s
a,b 'M s

a+1,b+1 ⊕M s
a,b ⊕M s

a−1,b+1 ⊕M s
a+1,b−1 ⊕M s

a−1,b−1. (27)

If a = b+ 1, b > 0, then

V1,1 ⊗M s
a,b 'M s

a+1,b+1 ⊕M s
a+1,b−1 ⊕M s

a−1,b−1, (28)

and if a = −b+ 1, b < 0, then

V1,1 ⊗M s
a,b 'M s

a+1,b+1 ⊕M s
a+1,b−1 ⊕M s

a−1,b+1. (29)
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Proof. Let us first prove (26). In what follows we use the notation of [PS2],

Section 5. Let M s
a,b := Da,|b|

G/B ⊗Uχ(a,b) M s
a,b be the localization of Ma,b on G/B .

Then as a sheaf of U -modules V1,0 ⊗ M s
a,b has a filtration of length 4 with the

following associated factors given in increasing order:

O(−ε1)⊗O M s
a,b, O(−ε2)⊗O M s

a,b, O(ε2)⊗O M s
a,b, O(ε1)⊗O M s

a,b.

Note that ZU acts via a character on any of the four associated factors, and
that these characters are pairwise distinct. Therefore, as a sheaf of U -modules,
V1,0 ⊗M s

a,b is isomorphic to the direct sum(
O(−ε1)⊗O M s

a,b

)
⊕

(
O(−ε2)⊗O M s

a,b

)
⊕

(
O(ε2)⊗O M s

a,b

)
⊕ (O(ε1)⊗M s

a,b).

Now we calculate Γ(G/B, V1,0 ⊗M s
a,b). If a = b+ 1, b > 0, then

Γ(G/B,O(−ε1)⊗O M s
a,b) = Γ(G/B,O(ε2)⊗O M s

a,b) = 0

as there are no bounded modules with these central characters. Similarly, if
a = −b+ 1, b < 0, then

Γ(G/B,O(−ε1)⊗O M s
a,b) = Γ(G/B,O(−ε2)⊗O M s

a,b) = 0.

In all other cases
Γ(G/B,O(±ε1)⊗O M s

a,b) 'M s
a±1,b,

Γ(G/B,O(±ε2)⊗O M s
a,b) 'M s

a,b±1.

Thus, (26) is established.

Consider (27). Then as a sheaf of U -modules V1,1 ⊗M s
a,b has a filtration

of length 5 with the following associated factors given in increasing order:

O(−ε1 − ε2)⊗O M s
a,b, O(ε1 − ε2)⊗O M s

a,b, M s
a,b,

O(−ε1 + ε2)⊗O M s
a,b, O(ε1 + ε2)⊗O M s

a,b.

Note that ZU acts via a character on any of the five associated factors, and that
these characters are pairwise distinct if a 6= |b|+ 1. Therefore the proof of (27) is
very similar to that of (26).

Let now a = b + 1. Then M s
a,b and O(−ε1 + ε2) ⊗O M s

a,b both afford the
central character χ(a, b). Thus, as a sheaf of U -modules, V1,1⊗M s

a,b is isomorphic
to the direct sum(

O(−ε1 − ε2)⊗O M s
a,b

)
⊕

(
O(ε1 − ε2)⊗O M s

a,b

)
⊕

(
M s

a,b

)′⊕ (30)

⊕
(
O(ε1 + ε2)⊗O M s

a,b

)
,

where for
(
M s

a,b

)′
we have an exact sequence

0 → M s
a,b →

(
M s

a,b

)′ → O(−ε1 + ε2)⊗O M s
a,b → 0.

We will show that Γ(G/B, (M s
a,b)

′) = 0. It suffices to show that the tensor product
V1,1 ⊗M s

a,b has no simple constituent with central character χ(a, b). Indeed, from
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(26), we see that V1,0 ⊗ V1,0 ⊗M s
a,b has exactly two simple constituents affording

the central character χ(a, b) and that both these constituents are isomorphic to
M s

a,b . Recall that
V1,0 ⊗ V1,0

∼= V2,0 ⊕ V1,1 ⊕ V0,0.

Clearly, V0,0 ⊗M s
a,b = M s

a,b . Furthermore, V2,0 is the adjoint representation and
therefore the very g-module structure on M s

a,b defines a non-trivial intertwining
operator V2,0⊗M s

a,b →M s
a,b . Thus, V2,0⊗M s

a,b must have a constituent isomorphic
to M s

a,b and consequently V1,1⊗M s
a,b has no simple constituent affording the central

character χ(a, b). By taking the global sections of the direct sum (30) we obtain
(28). The case a = −b+ 1, which leads to (29), is similar.

Lemma 7.3. There is the following k-module decomposition

M s
3
2
,− 1

2
' V3+s ⊕ V9+s ⊕ V15+s ⊕ . . . . (31)

Proof. By (26),
M0

3
2
, 1
2
⊗ V1,0 'M0

5
2
, 1
2
⊕M0

3
2
,− 1

2
.

As a k-module, V1,0 is isomorphic to V3 . Hence M0
3
2
, 1
2

⊗ V1,0 has a k-module

decomposition
2V3 ⊕ V5 ⊕ . . . .

Since χ(3
2
,−1

2
) = χ(3

2
, 1

2
), M0

3
2
,− 1

2

must have one of the four k-module decomposi-

tions (21), and hence (26) implies (31) for s = 0. Similarly, M1
3
2
, 1
2

⊗ V1,0 has the

k-module decomposition V2 ⊕ 2V4 ⊕ . . . , which implies (31) for s = 1.

We set now ϕs
a,b(z) := c(M s

a,b) for a, b ∈ 1
2

+ Z, a ≥ |b| , s ∈ {0, 1} and

extend the definition of ϕs
a,b(z) to arbitrary pairs a, b ∈ 1

2
+ Z by putting

ϕs
a,b(z) = −ϕs

b,a(z) = −ϕs
−b,−a(z) = ϕs

−a,−b(z). (32)

Lemma 7.4. For all a, b ∈ 1
2

+ Z and s ∈ {0, 1},

π(ϕs
a,b(z

3 + z + z−1 + z−3)) = ϕs
a−1,b + ϕs

a+1,b + ϕs
a,b+1 + ϕs

a,b−1

π(ϕs
a,b(z

4 + z2 + 1 + z−2 + z−4)) = ϕs
a+1,b+1 + ϕs

a−1,b+1 + ϕs
a+1,b−1 + ϕs

a−1,b−1 + ϕs
a,b.

(the projection π is introduced in Section 3).

Proof. Both equalities are straightforward corollaries of Lemma 7.2 and Lemma
3.2 (b) if one takes into account the isomorphisms of k-modules V1,0 ' V3 and
V1,1 ' V4 .

We define now ψs
a,b(z) ∈ C((z)) via the conditions:

(c1) ψs
a,b(z)(z

3 + z + z−1 + z−3) = ψs
a+1,b(z) + ψs

a−1,b(z) + ψs
a,b+1(z) + ψs

a,b−1(z),

(c2) ψs
a,b(z)(z

4 + z2 + 1 + z−2 + z−4) = ψs
a+1,b+1(z) + ψs

a+1,b−1(z) + ψs
a−1,b+1(z) +

ψs
a−1,b−1(z) + ψs

a,b(z),
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(c3) ψs
a,b(z) = −ψs

b,a(z) = −ψs
−b,−a(z) = ψs

−a,−b(z),

(c4) ψs
3
2
, 1
2
(z) =

zs

1− z6
, ψs

3
2
,− 1

2
(z) =

z3+s

1− z6
.

Theorem 7.5. The Laurent series ψs
a,b(z) exists and is unique, andψs

a,b(z) =

z5+s(z3a+b − za+3b − z−a−3b + z−3a−b)− z6+s(z3a−b − z−a+3b − za−3b + z−3a+b)

(1− z2)2(1− z4)(1− z6)
.

(33)

Proof. We show first that ψs
a,b(z) is unique if it exists. By (32) ψs

a,b(z) is
determined by ψs

a,b(z) for a > |b| . Assume, by induction on a , that ψs
a,b(z) is

unique for all a ≤ a0 , |b| < a . Then equation (c1) determines ψs
a0+1,b(z), and

equation (c2) determines ψs
a0+1,a0

(z) and ψs
a0+1,a0+1(z).

To prove the existence of ψs
a,b(z), it suffices to verify that the right-hand

side of (33) satisfies all conditions (c1)-(c4). This is a direct calculation, which is
simplified by the observation that both Laurent polynomials

z3a+b − za+3b − z−a−3b + z−3a−b,

z3a−b − z−a+3b − za−3b + z−3a+b

satisfy (c1),(c2) and (c3). The condition (c4) is satisfied only by the entire
expression.

Corollary 7.6.

ϕs
a,b = π(ψs

a,b).

Corollary 7.7. Any simple bounded (g, k)-module is either even or odd. More
precisely, M s

a,b is even if a+ b+ s is even, and M s
a,b is odd if a+ b+ s is odd.

In the calculations below we use binomial coefficients
(

s
k

)
, for which we

always assume
(

s
k

)
= 0 if s or k are not integers.

Lemma 7.8.
1

(1− z2)2(1− z4)(1− z6)
=

∞∑
n=0

γ(n)z2n,

where

γ(n) :=
1

144

[
119

(
n+ 3

3

)
− 179

(
n+ 2

3

)
+ 109

(
n+ 1

3

)
− 25

(
n

3

)]
+

(−1)n

16
+
β(n)

9

and

β(n) :=


0 n ≡ 1 (mod 3)
1 n ≡ 0 (mod 3)
−1 n ≡ −1 (mod 3)

.
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Proof. The statement follows from the identity 1
(1−z2)2(1−z4)(1−z6)

=

1

(1− z2)2(1− z4)(1− z6)
=

119− 179z2 + 109z4 − 25z6

144(1− z2)4
+

1

16(1 + z2)

+ 1+z2

9(1+z2+z4)
.

Corollary 7.9. Let

δs
a,b(n) = γ

(
n− (3a+ b+ 5)− s

2

)
− γ

(
n− (a+ 3b+ 5)− s

2

)
−

−γ
(
n− (−a− 3b+ 5)− s

2

)
+ γ

(
n− (−3a− b+ 5)− s

2

)
−

−γ
(
n− (3a− b+ 6)− s

2

)
+ γ

(
n− (−a+ 3b+ 6)− s

2

)
+

+γ

(
n− (a− 3b+ 6)− s

2

)
− γ

(
n− (−3a+ b+ 6)− s

2

)
.

Then
ci(M

s
a,b) = δs

a,b(i)− δs
a,b(−i− 2).

Proof. The statement follows directly from Theorem 7.5, Corollary 7.6, and
Lemma 7.8.

Corollary 7.10. For any simple bounded (g, k)-module M , ci(M) = ci+6(M)
for sufficiently large i ∈ N.

Proof. The given (g, k)-module M is isomorphic to M s
a,b for some a, b ∈ 1

2
+Z ,

s ∈ {0, 1} . For sufficiently large i , δs
a,b(−i − 2) = 0, hence ci(M) = δs

a,b(i). The
explicit formula for γ(i) from Lemma 7.8 implies that δs

a,b(i+ 6n) is a polynomial
in n . Since this polynomial is a bounded function, it is necessarily a constant.

For large enough values of i , Corollary 7.10 enables us to write ci(M
s
a,b),

i ∈ Z6 . Here are simple explicit expressions for ci(M
s
a,b).

Theorem 7.11. Let σa,b :=


1 if 3|2a, 3 - 2b
−1 if 3|2b, 3 - 2a
0 in all other cases

.

Then

c0+s(M
s
a,b) =

1

6
(1 + (−1)a+b)

(
a2 − b2

2
+ 2σa,b

)
,

c1+s(M
s
a,b) = c5+s(M

s
a,b) =

1

6
(1− (−1)a+b)

(
a2 − b2

2
− σa,b

)
,

c2+s(M
s
a,b) = c4+s(M

0
a,b) =

1

6
(1 + (−1)a+b)

(
a2 − b2

2
− σa,b

)
,

c3+s(M
s
a,b) =

1

6
(1− (−1)a+b)

(
a2 − b2

2
+ 2σa,b

)
.
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Proof. Let {ξī}ī∈Z6
denote the standard basis in C6 . Set

ϕs
a,b :=

∑
i∈Z6

ci(M
s
a,b)ξī

for a, b ∈ 1
2

+ Z , a ≥ |b| . Extend ϕs
a,b to all a, b ∈ 1

2
+ Z by putting

ϕs
a,b = −ϕs

b,a = −ϕs
−b,−a = ϕs

−a,−b,

and let S, T : C6 → C6 be the linear operators

S(ξi) := 2ξi+3 + ξi+1 + ξi−1, T (ξi) := 2ξi+2 + 2ξi+4.

Then ϕs
a,b satisfy the following version of conditions (c1)-(c4):

(c5) S(ϕs
a,b) = ϕs

a+1,b + ϕs
a,b+1 + ϕs

a−1,b + ϕs
a,b−1 ,

(c6) T (ϕs
a,b) = ϕs

a+1,b+1 + ϕs
a−1,b+1 + ϕs

a+1,b−1 + ϕs
a−1,b−1 ,

(c7) ϕs
a,b = −ϕs

b,a = −ϕs
−b,−a = ϕs

−a,−b ,

(c8) ϕs
3
2
, 1
2

= ξs, ϕs
3
2
,− 1

2

= ξ3+s .

Denote by ω a primitive sixth root of unity. Then {ηi :=
∑
j∈Z6

ωijξj}i∈Z6
is an

eigenbasis for S and T . Put

η0,a,b :=
(a2 − b2)

2
η0, η3,a,b := (−1)a+b (a

2 − b2)

2
η3,

η2,a,b := σa,bη2, η4,a,b := σa,bη4,

η3,a,b := (−1)a+bσa,bη3, η5,a,b := (−1)a+bσa,bη5.

Using the identity

σa,b =
ω2b + ω−2b − ω2a − ω−2a

3
,

one can easily check that ηi,a,b satisfies (c5)-(c7). The linear combination

ϕs
a,b =

1

6

∑
i∈Z6

ω−isηi,a,b

satisfies the condition (c8), hence its coefficients in the basis {ξī} equal ci
(
M s

a,b

)
.

Corollary 7.12. The following is a complete list of multiplicity-free simple
(g, k)-modules: M s

3
2
,± 1

2

, M s
5
2
,± 3

2

, M s
5
2
,± 1

2

,M s
7
2
,± 5

2

, s ∈ {0, 1}.

Proof. A straightforward computation based on Theorem 7.11 shows that

ci(M
s
a,b) ∈ {0, 1} for i ∈ Z6 iff (a, b) is one of the pairs

(
3

2
,±1

2

)
,

(
5

2
,±3

2

)
,(

5

2
,±1

2

)
, and

(
7

2
,±5

2

)
. Then, using Corollary 7.9 one verifies that all modules

M s
a,b for (a, b) as above are indeed multiplicity-free.
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Theorem 7.13.

(a) The minimal k-type of any even (respectively, odd) bounded simple (g, k)-
module M equals V0 , V2 or V4 (resp., V1 or V3 ).

(b) If M is an even (respectively, odd) simple module in Bχ(a,b) , then c0(M)

(resp., c1(M)) equals
a± b

6
+ ε or

a± b

12
+ ε (resp.,

a± b

3
+ ε or

a± b

6
+ ε)

for some ε with |ε| < 1.

Proof. (a) Note that for any bounded (g, k)-module M, ci(M) equals the
constant term of the Laurent polynomial z−i(1−z2i+2)c(M). Hence c1(M)+c3(M)
equals the constant term in the Laurent expansion of

(z−1(1− z4) + z−3(1− z8))c(M).

A straightforward calculation shows that for M = M s
a,b the latter is nothing but

the constant term of the Laurent series

z3a+b+2+s − za+3b+2+s − z−a−3b+2+s + z−3a−b+2+s − z−3a+b+3+s

(1− z2)3
+

+
za−3b+3+s + z−a+3b+3+s − z3a−b+3+s

(1− z2)3
.

Using the identity
1

(1− z2)3
=

∞∑
n=0

(
n+ 2

2

)
z2n, (34)

we obtain c1(M
s
a,b) + c3(M

s
a,b)

=: ds
a,b =

(−3a−b+2−s
2

2

)
−

(−a−3b+2−s
2

2

)
−

(
a+3b+2−s

2

2

)
+

(
3a+b+2−s

2

2

)
(35)

−
(

3a−b+1−s
2

2

)
+

(−a+3b+1−s
2

2

)
+

(
a−3b+1−s

2

2

)
−

(−3a+b+1−s
2

2

)
,

where we set
(

l
2

)
:= 0 for l /∈ Z≥0 .

This expression is a piecewise polynomial function which equals identically
zero whenever M s

a,b is even, i.e. when a + b + s is even. In fact, the right hand
side of (35) turns out to be very simple as an explicit calculation shows that, for
a+ b+ s odd,

ds
a,b =

 a+ (−1)s+1b

2
for a+ (−1)s3b ≥ 0

a+ (−1)sb for a+ (−1)s3b ≤ 0
. (36)

Since a > |b| , the right hand side of (36) is never 0, i.e. the minimal k-type of
M s

a,b is V1 or V3 whenever a+ b+ s is odd.

A similar analysis proves that the minimal k-type of M s
a,b is V0 , V2 , or V4

whenever a+ b+ s is even. Indeed, in this case

es
a,b := c0(M

s
a,b) + c2(M

s
a,b) + c4(M

s
a,b)
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equals the constant term of the Laurent series

(1− z2) + z−2(1− z6) + z−4(1− z10)c(M) .

Using the identity

(1− z2) + z−2(1− z6) + z−4(1− z10)

(1− z2)2(1− z4)(1− z6)
=

1

8z4

(
7 + 4z2 + z4

(1− z2)3
+

1

(1 + z2)

)
,

as well as the identity (34), we calculate

es
a,b = θ

(
−3a− b− 1− s

2

)
− θ

(
−a− 3b− 1− s

2

)
−

−θ
(
a+ 3b− 1− s

2

)
+ θ

(
3a+ b− 1− s

2

)
−

−θ
(

3a− b− 2− s

2

)
+ θ

(
−a+ 3b− 2− s

2

)
+

+θ

(
a− 3b− 2− s

2

)
− θ

(
−3a+ b− 2− s

2

)
,

where θ(n) :=
3

4
n2 +

3

2
n +

7

8
+

(−1)n

8
for n ∈ Z≥0 and θ(n) := 0 otherwise.

Further calculations show:

es
a,b =


3

4

(
a+ (−1)s+1b

)
+

(−1)
a+(−1)s+1b−1

2

4
for (−1)sa+ 3b ≥ 0

3

2
(a+ (−1)sb) for (−1)sa+ 3b ≤ 0

(37)

under the assumption that a + b + s is even. Since the right-hand side of (37)
never equals 0, we obtain that es

a,b 6= 0 under the same assumption. Hence the
minimal k-type of any even simple bounded (g, k)-module equals V0 , V2 , or V4 .

(b) To compute c0(M) we use the identity

1− z2

(1− z2)2(1− z4)(1− z6)
=

1

(1− z2)(1− z4)(1− z6)

=
47− 52z2 + 17z4

72(1− z2)3
+

1

8(1 + z2)
+

2− z2 − z4

9(1− z6)

which yields

c0(M
s
a,b) = γ′

(
−3a− b− 5− s

2

)
− γ′

(
−a− 3b− 5− s

2

)
−

−γ′
(
a+ 3b− 5− s

2

)
+ γ′

(
3a+ b− 5− s

2

)
−

−γ′
(

3a− b− 6− s

2

)
+ γ′

(
−a+ 3b− 6− s

2

)
+

+γ′
(
a− 3b− 6− s

2

)
− γ′

(
−3a+ b− 6− s

2

)
,
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where

γ′(n) :=
n2

12
+
n

2
+

94

144
+

(−1)n

8
+
σ′(n)

9
,

σ′(n) :=

{
−1 3 - n
2 3 | n

for n ∈ Z≥0 and γ′(n) = σ′(n) := 0 otherwise. Similarly, using the identity

z−1(1− z4)

(1− z2)2(1− z4)(1− z6)
= z−1

(
8− 7z2 + 2z4

9(1− z2)3
+

1 + z2 − 2z4

9(1− z6)

)
we obtain

c1(M
s
a,b) = γ′′

(
−3a− b− 4− s

2

)
− γ′′

(
−a− 3b− 4− s

2

)
−

−γ′′
(
a+ 3b− 4− s

2

)
+ γ′′

(
3a+ b− 4− s

2

)
−

−γ′′
(

3a− b− 5− s

2

)
+ γ′′

(
−a+ 3b− 5− s

2

)
+

+γ′′
(
a− 3b− 5− s

2

)
− γ′′

(
−3a+ b− 5− s

2

)
,

where

γ′′(n) :=
n2

6
+

5n

6
+

8

9
+
σ′′(n)

9
,

σ′′(n) :=

{
−2 n = −1(mod 3)
1 n 6= −1(mod 3)

for n ∈ Z≥0 and γ′′(n) = σ′′(n) := 0 otherwise. Using the expressions for c0(M
s
a,b)

and c1(M
s
a,b) we notice that the terms (−1)n

8
+σ′(n)

9
and σ′′(n)

9
will give a contribution

ε with |ε| < 1. Thus, a direct computation implies

c0(M
s
a,b) =

{
a+(−1)sb

6
+ ε for a+ (−1)s3b < 0

a−(−1)sb
12

+ ε for a+ (−1)s3b > 0
,

c1(M
s
a,b) =

{
a−(−1)sb

6
+ ε for a+ (−1)s3b > 0

a+(−1)sb
3

+ ε for a+ (−1)s3b < 0.

Corollary 7.14. For a±b ≥ 24, the minimal k-type of M s
a,b equals V0 (respec-

tively, V1 ) if a+ b+ s is odd (resp., even).

Corollary 7.15. A simple (g, k)-module with minimal k-type Vi for i ≥ 5 is
unbounded.

Note that all simple (g, k)-modules of finite type over k with minimal k-type
Vi for i ≥ 6 are classified in [PZ2]. In particular it is proved, [PZ2], that if M is
a (g, k)-module with minimal k-type Vi for i ≥ 6, then M is necessarily of finite
type over k and ci(M) = 1. Recently G. Zuckerman and the first named author
have shown that this holds also for i = 5, and Theorem 7.13 (b) implies that the
statement is false for i ≤ 1.
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