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1. Introduction

The purpose of this paper is to generalize Theorems 1.1 and 1.2 below to general
simply connected compact Lie groups.

Throughout the paper K̇ is a simply connected compact Lie group, Ġ is
the complexification, and LfinK̇ (LfinĠ) denotes the group consisting of functions
S1 → K̇ (Ġ, respectively) having finite Fourier series, relative to some matrix
representation, with pointwise multiplication. For example, for ζ ∈ C and n ∈ Z,
the function

S1 → SU(2) : z → a(ζ)

(

1 ζz−n

−ζ̄zn 1

)

,

where a(ζ) = (1 + |ζ |2)−1/2 , is in LfinSU(2). Also, if f(z) =
∑

fnz
n , then

f ∗(z) =
∑

f̄nz−n . Thus if f ∈ H0(∆), then f ∗ ∈ H0(∆∗), where ∆ is the
open unit disk, ∆∗ is the open unit disk at ∞ , and H0(U) denotes the space of
holomorphic functions in a domain U .

The following two theorems are from [3].

Theorem 1.1. Suppose that k1 ∈ LfinSU(2). The following are equivalent:

(I.1) k1 is of the form

k1(z) =

(

a(z) b(z)
−b∗(z) a∗(z)

)

, z ∈ S1,

where a and b are polynomials in z , and a(0) > 0.
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(I.2) k1 has a factorization of the form

k1(z) = a(ηn)

(

1 −η̄nzn

ηnz−n 1

)

· · ·a(η0)

(

1 −η̄0

η0 1

)

,

for some ηj ∈ C.

(I.3) k1 has triangular factorization of the form

(

1 0
∑n

j=0 ȳjz
−j 1

)(

a1 0
0 a−1

1

) (

α1(z) β1(z)
γ1(z) δ1(z)

)

,

where a1 > 0 and the third factor is a polynomial in z which is unipotent
upper triangular at z = 0.

Similarly, the following are equivalent:

(II.1) k2 is of the form

k2(z) =

(

d∗(z) −c∗(z)
c(z) d(z)

)

, z ∈ S1,

where c and d are polynomials in z , c(0) = 0, and d(0) > 0.

(II.2) k2 has a factorization of the form

k2(z) = a(ζn)

(

1 ζnz
−n

−ζ̄nz
n 1

)

· · ·a(ζ1)

(

1 ζ1z
−1

−ζ̄1z 1

)

,

for some ζj ∈ C.

(II.3) k2 has triangular factorization of the form

(

1
∑n

j=1 x̄jz
−j

0 1

) (

a2 0
0 a−1

2

) (

α2(z) β2(z)
γ2(z) δ2(z)

)

,

where a2 > 0 and the third factor is a polynomial in z which is unipotent
upper triangular at z = 0.

For either C∞ loops, or for higher rank groups, there are additional com-
plications. For higher rank groups: in (I.1) and (II.1) one has to consider multiple
fundamental representations (for SU(2) there is just the defining representation);
in (I.2) and (II.2) the factors correspond to a choice of a reduced sequence of
simple reflections in the affine Weyl group of K̇ (for SU(2) there is essentially
one possibility); and in (I.3) and (II.3) the first factor is a more general unipotent
matrix (for SU(2) the corresponding Lie algebra is abelian).

Theorem 1.2. (a) If {ηi} and {ζj} are rapidly decreasing sequences of complex
numbers, then the limits

k1(z) = lim
n→∞

a(ηn)

(

1 −η̄nzn

ηnz
−n 1

)

· · ·a(η0)

(

1 −η̄0

η0 1

)
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and

k2(z) = lim
n→∞

a(ζn)

(

1 ζnz
−n

−ζ̄nz
n 1

)

· · ·a(ζ1)

(

1 ζ1z
−1

−ζ̄1z 1

)

,

exist in C∞(S1, SU(2)).

(b) Suppose g ∈ C∞(S1, SU(2)). The following are equivalent:

(i) g has a C∞ triangular factorization g = lmau, i.e.

l =

(

l11 l12
l21 l22

)

∈ H0(∆∗, SL(2, C)), l(∞) =

(

1 0
l21(∞) 1

)

,

m =

(

m0 0
0 m−1

0

)

, m0 ∈ S1, a(g) =

(

a0 0
0 a−1

0

)

, a0 > 0,

u =

(

u11 u12

u21 u22

)

∈ H0(∆, SL(2, C)), u(0) =

(

1 u12(0)
0 1

)

,

where l and u have C∞ boundary values.

(ii) g has a factorization of the form

g(z) = k1(z)∗
(

eχ 0
0 e−χ

)

k2(z),

where χ ∈ C∞(S1, iR), and k1 and k2 are as in (a).

The form of the generalization of (b) to higher rank groups is evident.

The plan of the paper is the following. In Section 2 we establish notation. In
Section 3 we define and prove the existence of (affine periodic) reduced sequences
of Weyl reflections, which are relevant to higher rank generalizations of Theorem
1.1. In Sections 4 and 5 we formulate and prove higher rank generalizations of
Theorems 1.1 and 1.2, respectively. In the last section we present some examples.

In this paper our main focus is on smooth loops. It is of great interest
to generalize these factorizations to other function spaces, and to understand
how decay properties of the parameters correspond to regularity properties of the
corresponding loops. However, even in the SU(2) case, the critical cases are only
partially understood (see [3], especially Section 4).

2. Notation and Background

2.1. Finite Dimensional Algebras and Groups.

k̇ = Lie(K̇), ġ = k̇C , and ġ → ġ : x → −x∗ is the anticomplex involution
fixing k̇ . To simplify the exposition, we assume that k̇ is simple. Fix a triangular
decomposition

ġ = ṅ− ⊕ ḣ ⊕ ṅ+ (1)

such that ṫ = k̇∩ ḣ is maximal abelian in k̇ ; this implies (ṅ+)∗ = ṅ− . We introduce
the following standard notations: {α̇j : 1 ≤ j ≤ r} is the set of simple positive
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roots, {ḣj} is the set of simple coroots, {Λ̇j} is the set of fundamental dominant
weights, θ̇ is the highest root, Ẇ is the Weyl group, and 〈·, ·〉 is the unique
invariant symmetric bilinear form such that (for the dual form) 〈θ̇, θ̇〉 = 2. For
each simple root γ , fix a root homomorphism iγ : sl(2, C) → ġ (we denote the
corresponding group homomorphism by the same symbol), and let

fγ = iγ(

(

0 0
1 0

)

), eγ = iγ(

(

0 1
0 0

)

), and rγ = iγ(

(

0 i
i 0

)

) ∈ Ṫ = exp(ṫ);

rγ is a representative for the simple reflection rγ ∈ Ẇ corresponding to γ (we
will adhere to the convention that representatives for Weyl group elements will be
denoted by bold letters).

Introduce the lattices

ˆ̇T =
⊕

1≤i≤r

ZΛ̇i (weight lattice), and ˇ̇T =
⊕

1≤i≤r

Zḣi (coroot lattice).

These lattices and bases are in duality. Recall that the kernel of exp : ṫ → Ṫ is
2πi times the coroot lattice. Consequently there are natural identifications

ˆ̇T → Hom(Ṫ , T),

where a weight Λ̇ corresponds to the character exp(2πix) → exp(2πiΛ̇(x)), for
x ∈ ḣR , and

ˇ̇T → Hom(T, Ṫ ),

where an element h of the coroot lattice corresponds to the homomorphism T →
Ṫ : exp(2πix) → exp(2πixh), for x ∈ R. Also

ˆ̇R =
⊕

1≤i≤r

Zα̇i (root lattice), and ˇ̇R =
⊕

1≤i≤r

ZΘ̇i (coweight lattice)

where these bases are also in duality. The Θ̇i are the fundamental coweights.

The affine Weyl group is the semidirect product Ẇ ∝ ˇ̇T . For the action of
Ẇ on ḣR , a fundamental domain is the positive Weyl chamber C = {x : α̇i(x) >
0, i = 1, . . . , r} . For the natural affine action

Ẇ ∝ ˇ̇T × ḣR → ḣR (2)

a fundamental domain is the convex set

C0 = {x ∈ C : θ̇(x) < 1} (fundamental alcove)

(see Figure 1 for G2 , and page 72 of [4] for A2 ). The set of extreme points for the
closure of C0 is {0} ∪ { 1

ni
Θ̇i} , where θ̇ =

∑

niα̇i (these coefficients are compiled
in Section 1.1 of [1]).

Let hδ̇ =
∑r

i=1 Θ̇i . Then 2hδ̇ ∈ ˇ̇T . For a positive root α̇ , α̇(hδ̇) =
height(α̇).



Pickrell and Pittman-Polletta 97

Figure 1: Alcove diagram for G2
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Let Ṅ± = exp(ṅ±) and Ȧ = exp(ḣR). An element g ∈ Ṅ−Ṫ ȦṄ+ has a
unique triangular decomposition

g = l̇(g)ḋ(g)u̇(g), where ḋ = ṁȧ =

r
∏

j=1

σ̇j(g)ḣj , (3)

and σ̇i(g) = φΛ̇i
(πΛ̇i

(g)vΛ̇i
) is the fundamental matrix coefficient for the highest

weight vector corresponding to Λ̇i .

2.2. Affine Lie Algebras.

Let Lġ = C∞(S1, ġ), viewed as a Lie algebra with pointwise bracket. There
is a universal central extension

0 → Cc → L̃ġ → Lġ → 0,

where as a vector space L̃ġ = Lġ ⊕ Cc, and in these coordinates

[X + λc, Y + λ′c]L̃ġ
= [X, Y ]Lġ +

i

2π

∫

S1

〈X ∧ dY 〉c. (4)

The smooth completion of the untwisted affine Kac-Moody Lie algebra correspond-
ing to ġ is

L̂ġ = Cd ∝ L̃ġ (the semidirect sum),

where the derivation d acts by d(X + λc) = 1
i

d
dθ

X , for X ∈ Lġ, and [d, c] = 0.

The algebra generated by k̇-valued loops induces a central extension

0 → iRc → L̃k̇ → Lk̇ → 0

and a real form L̂k̇ = iRd ∝ L̃k̇ for L̂ġ.

We identify ġ with the constant loops in Lġ . Because the extension is
trivial over ġ, there are embeddings of Lie algebras

ġ → L̃ġ → L̂ġ.

There are triangular decompositions

L̃ġ = n− ⊕ h ⊕ n+ and L̂ġ = n− ⊕ (Cd + h) ⊕ n+, (5)

where h = ḣ + Cc and n± is the smooth completion of ṅ± + ġ(z±1C[z±1]),
respectively. The simple roots for (L̂finġ, Cd + h) are {αj : 0 ≤ j ≤ r} , where

α0 = d∗ − θ̇, αj = α̇j , j > 0,

d∗(d) = 1, d∗(c) = 0, d∗(ḣ) = 0, and the α̇j are extended to Cd + h by requiring
α̇j(c) = α̇j(d) = 0. The simple coroots are {hj : 0 ≤ j ≤ rkġ} , where

h0 = c − ḣθ̇, hj = ḣj, j > 0.

For i > 0, the root homomorphism iαi
is iα̇i

followed by the inclusion ġ ⊂ L̃ġ .
For i = 0

iα0(

(

0 0
1 0

)

) = eθ̇z
−1, iα0(

(

0 1
0 0

)

) = fθ̇z, (6)
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where {fθ̇, ḣθ̇, eθ̇} satisfy the sl(2, C)-commutation relations, and eθ̇ is a highest
root vector for ġ . The fundamental dominant integral functionals on h are Λj ,
j = 0, . . . , r .

Also set t = iRc ⊕ ṫ and a = hR = Rc ⊕ ḣR .

2.3. Loop Groups and Extensions.

Let Π : L̃Ġ → LĠ (Π : L̃K̇ → LK̇ ) denote the universal central C∗ (T)
extension of the smooth loop group LĠ (LK̇ , respectively), as in [4]. Let N±

denote the subgroups corresponding to n± . Since the restriction of Π to N± is an
isomorphism, we will always identify N± with its image, e.g. l ∈ N+ is identified
with a smooth loop having a holomorphic extension to ∆ satisfying l(0) ∈ Ṅ+ .
Also set T = exp(t) and A = exp(a).

As in the finite dimensional case, for g̃ ∈ N− · TA · N+ ⊂ L̃Ġ, there is a
unique triangular decomposition

g̃ = l · d · u, where d = ma =
r

∏

j=0

σj(g̃)hj , (7)

and σj = σΛj
is the fundamental matrix coefficient for the highest weight vector

corresponding to Λj . If Π(g̃) = g , then because σh0
0 = σ

c−ḣ
θ̇

0 projects to σ
−ḣ

θ̇

0 ,
g = l · Π(d) · u , where

Π(d)(g) = σ0(g̃)−ḣ
θ̇

r
∏

j=1

σj(g̃)ḣj =

r
∏

j=1

(

σj(g̃)

σ0(g̃)ǎj

)ḣj

, (8)

and the ǎj are positive integers such that ḣθ̇ =
∑

ǎj ḣj (these numbers are also
compiled in Section 1.1 of [1]).

If g̃ ∈ L̃K̇ , then |σj(g̃)| depends only on g = Π(g̃). We will indicate this
by writing

|σj(g̃)| = |σj|(g) and a(g̃) = a(g), (9)

where a(g̃) is defined as in (7).

For later reference we summarize this discussion in the following way.

Lemma 2.1. For g̃ ∈ L̃K̇ and g = Π(g̃), g̃ has a triangular factorization
if and only if g has a triangular factorization. The restriction of the projection
L̃K̇ → LK̇ to elements with m(g̃) = 1 is injective.

3. Reduced Sequences in the Affine Weyl Group

The Weyl group W for (L̂ġ, Cd + h) acts by isometries of (Rd + hR, 〈·, ·〉). The
action of W on Rc is trivial. The affine plane d + ḣ is W -stable, and this action
identifies W with the affine Weyl group and its affine action (2) (see Chapter 5 of
[4]). In this realization

rα0 = ḣθ̇ ◦ rθ̇, and rαi
= rα̇i

, i > 0. (10)
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Definition 3.1. A sequence of simple reflections r1, r2, . . . in W is called re-
duced if wn = rnrn−1 · · · r1 is a reduced expression for each n.

The following is well-known:

Lemma 3.2. Given a reduced sequence of simple reflections {rj}, corresponding
to simple positive roots γj ,

(a) the positive roots which are mapped to negative roots by wn are

τj = w−1
j−1 · γj = r1 · · · rj−1 · γj, j = 1, . . . , n.

(b) wk−1τn = rk · · · rn−1γn > 0, k < n.

A reduced sequence of simple reflections determines a non-repeating se-
quence of adjacent alcoves

C0, w
−1
1 C0, . . . , w

−1
n−1C0 = r1 · · · rn−1C0, . . . , (11)

where the step from w−1
n−1C0 to w−1

n C0 is implemented by the reflection rτn
=

w−1
n−1rnwn−1 (in particular the wall between Cn−1 and Cn is fixed by rτn

). Con-
versely, given a sequence of adjacent alcoves (Cj) which is minimal in the sense
that the minimal number of steps to go from C0 to Cj is j , there is a corresponding
reduced sequence of reflections.

Definition 3.3. A reduced sequence of simple reflections {rj} is affine periodic
if, in terms of the identification of W with the affine Weyl group, (1) there exists

l such that wl ∈ ˇ̇T and (2) ws+l = ws ◦ wl , for all s. We will refer to w−1
l as the

period (l is the length of the period).

Remark 3.4. (a) The second condition is equivalent to periodicity of the asso-
ciated sequence of simple roots {γj} , i.e. γs+l = γs .

(b) In terms of the associated walk through alcoves, affine periodicity means
that the walk from step l + 1 onward is the original walk translated by w−1

l .

Theorem 3.5. (a) There exists an affine periodic reduced sequence {rj} of
simple reflections such that, in the notation of Lemma 3.2,

{τj : 1 ≤ j < ∞} = {qd∗ − α̇ : α̇ > 0, q = 1, 2, . . .}, (12)

i.e. such that the span of the corresponding root spaces is ṅ−(zC[z]). The period

can be chosen to be any point in C ∩ ˇ̇T .

(b) Given a reduced sequence as in (a), and a reduced expression for ẇ0 =
r−N · · · r0 (where ẇ0 is the longest element of Ẇ ), the sequence

r−N , . . . , r0, r1, . . .

is another reduced sequence. The corresponding set of positive roots mapped to
negative roots is

{qd∗ + α̇ : α̇ > 0, q = 0, 1, . . .},
i.e. the span of the corresponding root spaces is ṅ+(C[z]).
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Proof. Suppose that we are given a reduced sequence {rj} of simple reflections.
In terms of the corresponding sequence of adjacent alcoves (11), (12) holds if and
only if the alcoves are all contained in C , and asymptotically the alcoves are
infinitely far from the walls of C . In the case of SU(2), there is a unique such
reduced sequence; in all higher rank cases, there are infinitely many such reduced
sequences.

Now suppose that h ∈ C ∩ ˇ̇T , e.g. h = 2hδ̇ . To obtain an affine periodic
reduced sequence with period h, choose a finite reduced sequence of reflections
r1 ,. . . ,rd such that r1 · · · rdC0 = C0 + h. This is equivalent to doing a minimal
walk through alcoves, all contained in C , from C0 to its translate by h. Note that
the closure of the alcove C0 + h is contained in C . We then continue the walk
through alcoves periodically, that is, after the second set of d steps we land at the
translate of C0 by 2h and so on. This affine periodic walk has the property that
we are eventually arbitrarily deep in the interior of C , and this property implies
(12). This implies (a).

Given (a), part (b) is clear.

Remark 3.6. (a) If hδ̇ ∈
ˇ̇T , then hδ̇ is the point in C ∩ ˇ̇T with shortest Weyl

group length (and also closest to the origin in the Euclidean sense). We do not

know how to identify the point in C∩ ˇ̇T with shortest Weyl group length in general

(in the case of B2 , hδ̇ /∈ ˇ̇T and 2hδ̇ is not the point in C ∩ ˇ̇T with shortest Weyl
group length).

(b) Via the exponential map 2πi ˇ̇R/2πi ˇ̇T is isomorphic to C(K̇). Thus

exp(2πihδ̇) is always central, and hδ̇ ∈ ˇ̇T if and only if exp(2πihδ̇) = 1. This is
the case if and only if ġ is of type Al , provided 2|l , Bl , provided 4|l(l + 1), Dl ,
provided 4|l(l − 1), G2 , F4 , E6 or E8 .

(c) Given a point h ∈ ˇ̇T , the Weyl group length is the number of hyper-
planes associated to Weyl group reflections crossed by the straight line from the

origin to h. When hδ̇ ∈
ˇ̇T , its length is

∑

α̇>0 height(α̇).

4. Generalizations of Theorem 1.1

Throughout this section we assume that we have chosen a reduced sequence {rj} as
in Theorem 3.5, and a reduced expression ẇ0 = r−N · · · r0 (In Theorem 4.1 below,
it is not necessary to assume that the sequence is affine periodic. We will use affine
periodicity in Theorem 4.2, and it seems plausible that this use is essential). We
set

iτn
= wn−1iγn

w−1
n−1, n = 1, 2, . . .

iτ ′

−N
= iγ−N

, iτ ′

−(N−1)
= r−N iγ

−(N−1)
r−1
−N , . . . , iτ ′

0
= ẇ0iγ0ẇ

−1
0

and for n > 0
iτ ′

n
= ẇ0wn−1iγn

w−1
n−1ẇ

−1
0 .

Also for ζ ∈ C, let a(ζ) = (1 + |ζ |2)−1/2 and

k(ζ) = a(ζ)

(

1 −ζ̄
ζ 1

)

=

(

1 0
ζ 1

) (

a(ζ) 0
0 a(ζ)−1

) (

1 −ζ̄
0 1

)

∈ SU(2). (13)
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Theorem 4.1. Suppose that k̃1 ∈ L̃finK̇ and Π(k̃1) = k1 . The following are
equivalent:

(I.1) m(k̃1) = 1, and for each complex irreducible representation V (π) for
Ġ, with lowest weight vector φ ∈ V (π), π(k1)

−1(φ) is a polynomial in z (with
values in V ), and is a positive multiple of φ at z = 0.

(I.2) k̃1 has a factorization of the form

k̃1 = iτ ′

n
(k(ηn)) · · · iτ ′

−N
(k(η−N)) ∈ L̃finK̇

for some ηj ∈ C.

(I.3) k̃1 has triangular factorization of the form k̃1 = l1a1u1 where l1 ∈
Ṅ−(C[z−1]).

Moreover, in the notation of (I.2),

a1 =
n

∏

j=−N

a(ηj)
hτ ′

j .

Similarly, the following are equivalent:

(II.1) m(k̃2) = 1, and for each complex irreducible representation V (π) for
Ġ, with highest weight vector v ∈ V (π), π(k2)

−1(v) is a polynomial in z (with
values in V ), and is a positive multiple of v at z = 0.

(II.2) k̃2 has a factorization of the form

k̃2 = iτn
(k(ζn)) · · · iτ1(k(ζ1))

for some ζj ∈ C.

(II.3) k̃2 has triangular factorization of the form k̃2 = l2a2u2 , where l2 ∈
Ṅ+(z−1C[z−1]).

Also, in the notation of (II.2),

a2 =
n

∏

j=1

a(ζj)
hτj . (14)

Proof. The two sets of equivalences are proven in the same way. We consider
the second set.

The subalgebra n− ∩ w−1
n−1n

+wn−1 is spanned by the root spaces corre-
sponding to negative roots −τj , j = 1, . . . , n. Given this, the equivalence of (II.2)
and (II.3) follows from (b) of Proposition 3 of [2]. We recall the argument, for
the convenience of the reader. In the process we will also recall the proof of the
product formula for a2 .

The equation (13) implies that

iτj
(k(ζj)) = iτj

(

(

1 0
ζj 1

)

)a(ζj)
hτj iτj

(

(

1 −ζ̄j

0 1

)

)

= exp(ζjfτj
)a(ζj)

hτj w−1
j−1 exp(−ζ̄jeγj

)wj−1

is a triangular factorization.
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Let k(n) = iτn
(k(ζn)) · · · iτ1(k(ζ1)). First suppose that n = 2. Then

k(2) = exp(ζ2fτ2)a(ζ2)
hτ2r1 exp(−ζ̄2eγ2)r

−1
1 exp(ζ1fγ1)a(ζ1)

hγ1 exp(−ζ̄1eγ1) (15)

The key point is that

r1 exp(−ζ̄2eγ2)r
−1
1 exp(ζ1fγ1) = r1 exp(−ζ̄2eγ2) exp(ζ1eγ1)r

−1
1

= r1 exp(ζ1eγ1)ũr−1
1 , (for some ũ ∈ N+ ∩ r1N

+r−1
1 )

= exp(ζ1fγ1)u, (for some u ∈ N+).

Insert this calculation into (15). We then see that k(2) has a triangular factoriza-
tion, where

a(k(2)) = a(ζ1)
hτ1a(ζ2)

hτ2

and
l(k(2)) = exp(ζ2fτ2) exp(ζ1a(ζ2)

−τ1(hτ2 )fτ1) (16)

= exp(ζ2fτ2 + ζ1a(ζ2)
−τ1(hτ2 )fτ1)

(the last equality holds because a two dimensional nilpotent algebra is necessarily
commutative).

To apply induction, we assume that k(n−1) has a triangular factorization
with

l(k(n−1)) = exp(ζn−1fτn−1)l̃ ∈ N− ∩ w−1
n−1N

+wn−1 = exp(
n−1
∑

j=1

Cfτj
), (17)

for some l̃ ∈ N− ∩ w−1
n−2N

+wn−2 = exp(
∑n−2

j=1 Cfτj
), and

a(k(n−1)) =

n−1
∏

j=1

a(ζj)
hτj .

We have established this for n − 1 = 1, 2. For n ≥ 2

k(n) = exp(ζnfτn
)a(ζn)hτnw−1

n−1 exp(−ζ̄neγn
)wn−1 exp(ζn−1fτn−1)l̃a(k(n−1))u(k(n−1))

= exp(ζnfτn
)a(ζn)hτnw−1

n−1 exp(−ζ̄neγn
)ũwn−1a(k(n−1))u(k(n−1)),

where ũ = wn−1 exp(ζn−1fτn−1)l̃w
−1
n−1 ∈ wn−1N

−w−1
n−1 ∩ N+ .

Now write exp(−ζ̄neγn
)ũ = ũ1ũ2 , relative to the decomposition

N+ =
(

N+ ∩ wn−1N
−w−1

n−1

) (

N+ ∩ wn−1N
+w−1

n−1

)

.

Let
l = a(ζn)hτnw−1

n−1ũ1wn−1a(ζn)−hτn ∈ N− ∩ w−1
n−1N

+wn−1.

Then k(n) has triangular decomposition

k(n) = (exp(ζnfτn
)l)

(

a(ζn)hτn a(k(n−1))
) (

a(k(n−1))−1ũ2a(k(n−1))u(k(n−1))
)

.
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This implies the induction step. Because of the form of (17), it is clear that
ζ1, . . . , ζn are global coordinates for N− ∩w−1

n N+wn . This establishes the equiva-
lence of (II.2) and (II.3). The induction statement also implies the product formula
(14) for a2 .

It is obvious that (II.3) implies (II.1). In fact (II.3) implies a stronger
condition. If (II.3) holds, then given a highest weight vector v as in (II.1),
corresponding to highest weight Λ̇, then

π(k−1
2 )v = π(u−1

2 a−1
2 l−1)v = a−Λ̇

2 π(u−1
2 )v, (18)

implying that π(k−1
2 )v is holomorphic in ∆ and nonvanishing at all points. How-

ever we do not need to include this nonvanishing condition in (II.1), in this finite
case.

It remains to prove that (II.1) implies (II.3). Because k̃2 is determined by
k2 , as in Lemma 2.1, it suffices to show that k2 has a triangular factorization (with
trivial Ṫ component). Hence we will slightly abuse notation and work at the level
of loops in the remainder of this proof.

To motivate the argument, suppose that k2 has triangular factorization as
in (II.3). Because u2(0) ∈ Ṅ+ , there exists a pointwise Ġ-triangular factorization
(see (3))

u2(z)−1 = l̇(u2(z)−1)ḋ(u2(z)−1)u̇(u2(z)−1) (19)

which is certainly valid in a neighborhood of z = 0; more precisely, (19) exists at
a point z ∈ C if and only if

σ̇i(u2(z)−1) 6= 0, i = 1, . . . , r.

When (19) exists (and using the fact that k2 is defined in C∗ ),

k2(z) =
(

l2(z)a2u̇(u2(z)−1)−1a−1
2

)

(

a2ḋ(u2(z)−1)−1
)

l̇(u2(z)−1)−1.

This implies

k2(z)−1 = l̇(u2(z)−1)
(

ḋ(u2(z)−1)a−1
2

)

(

a2u̇(u2(z)−1)a−1
2 l2(z)−1

)

. (20)

This is a pointwise Ġ-triangular factorization of k−1
2 , which is certainly valid in

a punctured neighborhood of z = 0. The important facts are that (1) the first
factor in (20)

l̇(k−1
2 ) = l̇(u2(z)−1) (21)

does not have a pole at z = 0; (2) for the third (upper triangular) factor in (20),
the factorization

u̇(k−1
2 )−1 = l2(z)

(

a2u̇(u2(z)−1)a−1
2

)

(22)

is a LĠ-triangular factorization of u̇(k−1
2 )−1 ∈ LṄ+ , where we view u̇(k−1

2 )−1 as
a loop by restricting to a small circle surrounding z = 0; and (3) because there
is an a priori formula for a2 in terms of k2 (see (8)), we can recover l2 and (the
pointwise triangular factorization for) u−1

2 from (20)-(22): l2 = l(u̇(k−1
2 )−1) (by

(22)), and

l̇(u2(z)−1) = l̇(k2(z)−1), ḋ(u2(z)−1) = ḋ(k2(z)−1)a2, (23)
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and u̇(u2(z)−1) = a−1
2 u(u̇(k2(z)−1))a2.

We remark that this uses the fact that k2 is defined in C∗ in an essential way.

Now suppose that (II.1) holds. In particular (II.1) implies that σ̇i(k
−1
2 )

has a removable singularity at z = 0 and is positive at z = 0, for i = 1, . . . , r .
Thus k−1

2 has a pointwise Ġ-triangular factorization as in (20), for all z in some
punctured neighborhood of z = 0.

We claim that (21) does not have at pole at z = 0. To see this, recall that
for an n × n matrix g = (gij) having an LDU factorization, the entries of the
factors can be written explicitly as ratios of determinants:

ḋ(g) = diag(σ1, σ2/σ1, σ3/σ2, . . . , σn/σn−1)

where σk is the determinant of the kth principal submatrix, σk = det((gij)1≤i,j≤k);
for i > j ,

lij = det

















g11 g12 . . . g1j

g21

.

.
gj−1,1 gj−1,j

gi,1 gij

















/σj =
〈gǫ1 ∧ . . . ∧ ǫj , ǫ1 ∧ . . . ∧ ǫj−1 ∧ ǫi〉

〈gǫ1 ∧ . . . ∧ ǫj , ǫ1 ∧ . . . ∧ ǫj〉

(24)
and for i < j ,

uij = det









g11 g12 . . . g1,i−1 g1,j

. g2,j

.
gi,1 gi,j









/σi.

Apply this to g = k−1
2 in a highest weight representation. Then (24), together

with (II.1), implies the claim.

The factorization (22) is unobstructed. Thus it exists. We can now read the
calculation backwards, as in (23), and obtain a triangular factorization for k2 as
in (II.3) (initially for the restriction to a small circle about 0; but because k2 is of
finite type, this is valid also for the standard circle). This completes the proof.

In the C∞ analogue of Theorem 4.1, it is necessary to add further hy-
potheses in (I.1) and (II.1); see (18). To reiterate, we are now assuming that the
sequence {rj} is affine periodic.

Theorem 4.2. Suppose that k̃1 ∈ L̃K̇ and Π(k̃1) = k1 . The following are
equivalent:

(I.1) m(k̃1) = 1, and for each complex irreducible representation V (π) for
Ġ, with lowest weight vector φ ∈ V (π), π(k1)

−1(φ) has holomorphic extension to
∆, is nonzero at all z ∈ ∆, and is a positive multiple of v at z = 0.

(I.2) k̃1 has a factorization of the form

k̃1 = lim
n→∞

iτ ′

n
(k(ηn)) . . . iτ ′

−N
(k(η−N)),
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for a rapidly decreasing sequence (ηj).

(I.3) k̃1 has triangular factorization of the form k̃1 = l1a1u1 where l1 ∈
H0(∆∗, Ṅ−) has smooth boundary values.

Moreover, in the notation of (I.2),

a1 =

∞
∏

j=−N

a(ηj)
hτ ′

j .

Similarly, the following are equivalent: for k̃2 ∈ L̃K̇ ,

(II.1) m(k̃2) = 1; and for each complex irreducible representation V (π) for
Ġ, with highest weight vector v ∈ V (π), π(k2)

−1(v) ∈ H0(∆; V ) has holomorphic
extension to ∆, is nonzero at all z ∈ ∆, and is a positive multiple of v at z = 0.

(II.2) k̃2 has a factorization of the form

k̃2 = lim
n→∞

iτn
(k(ζn)) . . . iτ1(k(ζ1))

for some rapidly decreasing sequence (ζj).

(II.3) k̃2 has triangular factorization of the form k̃2 = l2a2u2 , where l2 ∈
H0(∆∗,∞; Ṅ+, 1) has smooth boundary values.

Also, in the notation of (II.2),

a2 =
∞
∏

j=1

a(ζj)
hτj . (25)

Proof. The two sets of equivalences are proven in the same way. We consider
the second set.

Suppose that (II.1) holds. To show that (II.3) holds, it suffices to prove
that k2 has a triangular factorization with l2 of the prescribed form (see Lemma
2.1). By working in a fixed faithful highest weight representation for ġ, without
loss of generality, we can suppose K̇ = SU(n). For the purposes of this proof, we
will use the terminology in Section 1 of [3]. We view k2 ∈ LSU(n) as a unitary
multiplication operator on the Hilbert space H = L2(S1; Cn), and we write

Mk2 =

(

A(k2) B(k2)
C(k2) D(k2)

)

relative to the Hardy polarization H = H+ ⊕H− , where A(k2) is the compression
of Mk2 to H+ , the subspace of functions in H with holomorphic extension to
∆. To show that k2 has a Birkhoff factorization, we must show that A(k2) is
invertible (see Theorem 1.1 of [3]). An elementary argument then shows that k2

has a triangular factorization of the desired form.

Let C1, . . . , Cn denote the columns of k−1
2 . In particular (II.1) implies that

C1 has holomorphic extension to ∆ and Cn has holomorphic extension to ∆∗ (by
considering the dual representation). Now suppose that f ∈ H+ is in the kernel
of A(k2). Then

(C∗
j f)+ = 0, j = 1, . . . , n, (26)
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where (·)+ denotes orthogonal projection to H+ , and C∗
j is the (pointwise) Her-

mitian transpose. Since C∗
n has holomorphic extension to ∆, (C∗

nf)+ = C∗
nf is

identically zero on S1 . This implies that for z ∈ S1 , f(z) is a linear combination
of the n − 1 columns Cj(z), j < n. We write

f = λ1C1 + . . . + λn−1Cn−1

where the coefficients are functions on the circle (defined a.e.). Now consider the
pointwise wedge product of Cn vectors

f ∧ C1 ∧ . . . ∧ Cn−2 = ±λn−1C1 ∧ . . . ∧ Cn−1.

The vectors C1 ∧ . . . ∧ Cj extend holomorphically to ∆, and never vanish, for
any j , by (II.1) (by considering the representation Λj(Cn)). Since f also extends
holomorphically, this implies that λn−1 has holomorphic extension to ∆. Now

C∗
n−1f = λn−1C

∗
n−1Cn−1 = λn−1

by pointwise orthonormality of the columns. Since the right hand side is holomor-
phic in ∆, by (26) (for j = n − 1) λn−1 vanishes identically. This implies that in
fact f is a (pointwise) linear combination of the first n− 2 columns of k−1

2 . Con-
tinuing the argument in the obvious way (by next wedging f with C1 ∧ . . .∧Cn−3

to conclude that λn−2 must vanish), we conclude that f is zero. This implies that
ker(A(k2)) = 0. Since K̇ is simply connected, A(k2) has index zero. Hence A(k2)
is invertible. This implies (II.3).

It is obvious that (II.3) implies (II.1); see (18). Thus (II.1) and (II.3) are
equivalent.

Before showing that (II.2) is equivalent to (II.1) and (II.3), we need to
explain why the C∞ limit in (II.2) exists. We first consider the projection of the
product in LK̇ . Because k(ζj) = 1 + O(|ζj|) as ζj → 0, the condition for the
product in (II.2) to converge absolutely is that

∑

ζn converges absolutely. So k2

certainly represents a continuous loop.

We will now calculate the derivative formally. In this calculation, we let k
(n)
2

denote the product up to n, and τn = q(n)d∗ − α̇(n) (q(n) > 0, and α̇(n) > 0).
Then

k−1
2 (

∂k2

∂θ
) = Π(

∞
∑

n=1

Ad(k(n−1))−1

(

iτn
(k(ζn))−1 ∂

∂θ
iτn

(k(ζn))

)

) (27)

=

∞
∑

n=1

Ad(k(n−1))−1

(√
−1

q(n)

1 + |ζn|2
(−|ζn|2hα̇(n) − ζneα̇(n)z

−q(n) − ζ̄nfα̇(n)z
q(n))

)

.

Because we are using an affine periodic sequence of simple reflections (with period
w−1

l ∈ C ⊂ ḣR ), τl+1 = w−1
l · τ1 , τl+2 = w−1

l τ2 , and so on. In general, writing
τj = q(j)d∗ − α̇(j) as above, and using Proposition (4.9.5) of [4] to calculate the
coadjoint action,

τnl+j = w−n
l · τj = (q(j) + nα̇(j)(wl))d

∗ − α̇(j). (28)
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Because α̇(wl) > 0, for all α̇ > 0, it follows that q(n) is asymptotically n. Because
Ad(k(n−1)) is orthogonal, (27) implies that

∫

|k−1
2 (

∂k2

∂θ
)|2dθ ≤

∞
∑

n=1

q(n)2

(1 + |ζn|2)2
(|ζn|4 + |ζn|2)|hα̇(n)|2.

This is comparable to
∑

n2|ζn|2 . Thus k2 is W 1 (the L2 Sobolev space) whenever
ζ ∈ w1 (the l2 Sobolev sequence space). Higher derivatives can be similarly
calculated. This shows that if ζ ∈ wn , then k2 ∈ W n . Hence if ζ ∈ c∞ , the
Frechet space of rapidly decreasing sequences, then k2 ∈ C∞ .

Together with Lemma 2.1, this does imply that the product in (II.2) con-
verges in L̃K̇ . But to explain this further, note that

|σ0|2(k2) = aΛ0
2 =

∞
∏

j=1

(1 + |ζj|2)−Λ0(hτj
)

converges, because Λ0(hτj
) is asymptotically j . It then follows clearly from (7)

and (8) that the lifted product in (II.2) converges.

Now suppose that (II.2) holds. The map from ζ to k̃2 is continuous, with
respect to the standard Frechet topologies for rapidly decreasing sequences and
smooth functions. The product (25) is also a continuous function of ζ , and hence
is nonzero. This implies that k̃2 has a triangular factorization which is the limit
of the triangular factorizations of the finite products k̃

(n)
2 . By Theorem 4.1 and

continuity, this factorization will have the special form in (II.3). Thus (II.2) implies
(II.1) and (II.3).

Suppose that we are given k2 as in (II.1) and (II.3). Recall that l2 has
values in Ṅ+ . We can therefore write

l2 = exp(
∞

∑

j=1

x∗
jfτj

), x∗
j ∈ C. (29)

(the use of x∗ for the coefficients is consistent with our notation in the SU(2)
case, see (II.3) of Theorem 1.1).

As a temporary notation, let X denote the set of k2 as in (II.1) and (II.3);
x∗ is a global linear coordinate for this space. We consider the map

c∞ → X : ζ → k2. (30)

This map induces bijective correspondences among finite sequences ζ , k2 ∈
X ∩ LfinK̇ and finite sequences x∗ , and the maps ζ to x∗ and x∗ → ζ are
given by rational maps; however (although it seems likely) it is not known that
the limits of these rational maps actually make sense even for rapidly decreasing
sequences (see the Appendix of [3] for the SU(2) case). We will use an inverse
function argument to show that the map (30) has a global inverse (technically, to
apply the inverse function theorem, we should consider the maps of Sobolev spaces
wn → Xn , where Xn is the W n completion of X , but we will suppress this).
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Given a variation of ζ , denoted ζ ′ , we can formally calculate the derivative
of this map,

k−1
2 k′

2 =
∞

∑

n=1

Ad(k
(n−1)
2 )−1(iτn

(a(ζn)

(

1 ζ̄n

−ζn 1

)

{a(ζn)′
(

1 −ζ̄n

ζn 1

)

+ a(ζn)

(

0 −ζ̄ ′
n

ζ ′
n 0

)

}))

=

∞
∑

n=1

Ad(k
(n−1)
2 )−1(iτn

(a(ζn)−1a(ζn)′
(

1 0
0 1

)

+ a(ζn)2

(

ζ̄nζ
′
n −ζ̄ ′

n

ζ ′
n ζnζ̄

′
n

)

))

=

∞
∑

n=1

Ad(k
(n−1)
2 )−1(iτn

(a(ζn)2

(

1
2
(ζ̄nζ ′

n − ζnζ̄ ′
n) −ζ̄ ′

n

ζ ′
n −1

2
(ζ̄nζ

′
n − ζnζ̄

′
n)

)

)) (31)

As before it is clear that this is convergent, so that (30) is smooth. At ζ = 0 this
is clearly injective with closed image, so that there is a local inverse. Consider
more generally a fixed k2 ∈ X ∩ LfinK̇ , so that k

(n−1)
2 = k2 for large n. Recall

that the root spaces for the τn are independent and fill out ṅ−(zC[z]). Given a
variation such that k−1

2 k′
2 = 0, the terms in the last sum in the derivative formula

(31) must be zero for large n. But we know that the map (30) is a bijection on
finite ζ . Thus for a variation of a finite number of ζj which maps to zero, the
variation vanishes. It is clear that the image of the derivative (31) is closed. The
image is therefore the tangent space to X (because we know that finite variations
will fill out a dense subspace of the tangent space). This implies there is a local
inverse. This local inverse is determined by its values on finite x∗ , and hence there
is a uniquely determined global inverse. This shows that (II.1) and (II.3) imply
(II.2).

Finally (25) follows by continuity from (14).

5. Generalization of Theorem 1.2

Theorem 5.1. Suppose g̃ ∈ L̃K̇ and Π(g̃) = g .
(a) The following are equivalent:

(i) g̃ has a triangular factorization g̃ = lmau, where l and u have C∞ boundary
values.

(ii) g̃ has a factorization of the form

g̃ = k̃∗
1 exp(χ)k̃2,

where χ ∈ L̃ṫ, and k̃1 and k̃2 are as in Theorem 4.2.

(b) In reference to part (a),

a(g̃) = a(g) = a(k1)a(exp(χ))a(k2), Π(a(g)) = Π(a(k1))Π(a(k2)) (32)

and

a(exp(χ)) = |σ0|(exp(χ))h0

r
∏

j=1

|σ0|(exp(χ))ǎjhj . (33)
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Proof. It suffices to prove (a) with g in place of g̃ , k1 in place of k̃1 , and so
on. This will require that we use the clumsy (but correct) notation ki = liΠ(ai)ui

for the triangular decomposition of ki . We can also assume that χ ∈ Lṫ .

Suppose that we are given g as in (ii). Both k1 and k2 have triangular
factorizations. In the notation of Theorem 4.2

g = (l1Π(a1)u1)
∗ exp(χ)(l2Π(a2)u2) = u∗

1Π(a1)(l
∗
1 exp(χ)l2)Π(a2)u2.

The simple observation is that b = l∗1 exp(χ)l2 ∈ C∞(S1, Ḃ+)0 (the identity
component), and hence will have a triangular factorization. More precisely, if
we write χ = χ− + χ0 + χ+ , where χ− ∈ H0(∆∗,∞; ḣ, 0), χ0 ∈ ṫ, and χ+ ∈
H0(∆, 0; ḣ, 0), then

b = exp(χ−) (exp(−χ−)l∗1 exp(χ−) exp(χ0) exp(χ+)l2 exp(−χ+)) exp(χ+)

will have triangular factorization

= (exp(χ−)L) (m(b)a(b)) (U exp(χ+)) ,

where m(b) = exp(χ0), a(b) = 1,

L = l(exp(−χ−)l∗1 exp(χ−) exp(χ0) exp(χ+)l2 exp(−χ+)) ∈ H0(∆∗,∞; Ṅ+, 1),

and

U = u(exp(−χ−)l∗1 exp(χ−) exp(χ0) exp(χ+)l2 exp(−χ+)) ∈ H0(∆; Ṅ+).

Thus g will have a triangular factorization with

l(g) = u∗
1 exp(χ−)Π(a1)LΠ(a1)

−1, Π(m(g)) = exp(χ0), (34)

Π(a(g)) = Π(a1)Π(a2), u(g) = Π(a2)
−1UΠ(a2) exp(χ+)u2.

Thus (ii) =⇒ (i).

Conversely, suppose g = lΠ(ma)u , as in (i). At each point of the circle
there are Ṅ+ȦK̇ decompositions

l−1 = ṅ−1
1 ȧ−1

1 k̇1, u = ṅ2ȧ2k̇2.

In turn there are Birkhoff decompositions

ȧ−1
i = exp(χ∗

i + χi,0 + χi), χi ∈ H0(∆, ḣ), χi,0 ∈ ḣR

for i = 1, 2. Define
ki = exp(−χ∗

i + χi)k̇i.

Then
k1 = exp(χ1,0 + 2χ1)ṅ

−∗
1 l∗

has triangular factorization with

l(k1) = l(exp(χ1,0 + 2χ1)ṅ
−∗
1 exp(−(χ1,0 + 2χ1))) ∈ H0(∆∗,∞; Ṅ−, 1),
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Π(a(k1)) = exp(χ1,0),

and similarly
k2 = exp(2χ2 + χ2,0)ṅ

−1
2 u

has triangular factorization with

l(k2) = l(exp(2χ2 + χ2,0)ṅ
−1
2 exp(−2χ2 − χ2,0)) ∈ H0(∆∗,∞; Ṅ+, 1),

Π(a(k2)) = exp(χ2,0).

Finally, and somewhat miraculously, on the one hand k1gk−1
2 has value in

K̇ , and on the other hand

k1gk−1
2 = exp(−χ1,0 − 2χ∗

1)ṅ1Π(ma)ṅ2 exp(−χ2,0 − 2χ2), (35)

has values in Ḃ+ . Therefore k1gk−1
2 has values in Ṫ . It is also clear that (35) is

connected to the identity, and hence k1gk−1
2 ∈ (LṪ )0 . Thus (i) =⇒ (ii).

Part (b) follows from (34) and (8).

6. Examples

In the case of K̇ = SU(n), the fundamental matrix coefficient can be realized as
the determinant of the Toeplitz operator A(g) associated to a loop g ∈ LSU(n),
where the determinant is viewed as a section of a line bundle; see p. 226 of [4].
Part (b) of Theorem 5.1 implies that

|σ0|2(g) = det(A(g)∗A(g))

=

∞
∏

j=1

(1 + |ηj|2)−Λ0(hτj
) exp(−n

∑

k|χk|2)
∞
∏

i=1

(1 + |ζi|2)−Λ0(hτ ′
i
)
.

If τj = q(j)d∗ − α̇ (as in Theorem 3.5), then Λ0(hτj
) = q(j).

Suppose that n = 2. In this case there is a unique reduced sequence of
simple reflections, as in Theorem 3.5, corresponding to the periodic sequence of
simple roots α0, α1, α0, α1, . . . with period length l = 2 and period

w−1
2 = rα0rα1 = ḣθ̇ = 2hδ̇.

The corresponding sequence of positive roots τj mapped to negative roots is

d∗ − θ̇, 2d∗ − θ̇, 3d∗ − θ̇, . . .

In the notation of (29) and the previous section,

lim
n→∞

N− ∩ w−1
n N+wn = {l2 =

(

1 x∗

0 1

)

: x =
∑

j>0

xjz
j}

is abelian. x∗ is determined by its residue x∗
1 , which in turn is a power series in ζ

and ζ̄ with nonnegative coefficients; see the Appendix to [3]. For g ∈ LSU(2) as
in Theorem 5.1,

|σ0|2(g) = det(A(g)∗A(g)) =

∞
∏

i=0

(1 + |ηi|2)−i exp(−2

∞
∑

k=1

k|χk|2)
∞
∏

j=1

(1 + |ζj|2)−j
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(see (c) of Theorem 7 of [2]).

Suppose that n = 3. In this case hδ̇ is in the coroot lattice. For this choice
of period, there are two possible affine periodic reduced sequences, as in Theorem
3.5 (this is obvious from the picture on page 72 of [4]). One choice corresponds to
the periodic sequence of simple roots α0, α1, α2, α1, . . ., with period length l = 4
(the other interchanges α1 and α2 ). The sequence of positive roots mapped to
negative roots is

d∗ − θ̇, d∗ − α̇2, 2d
∗ − θ̇, d∗ − α̇1, 3d

∗ − θ̇, 2d∗ − α̇2, 4d
∗ − θ̇, 2d∗ − α̇1, . . .

In the notation of (29) and the previous section,

lim
n→∞

N−∩w−1
n N+wn =

{

l2 = exp





0 x∗
4z

−1 + x∗
8z

−2 . . . x∗
1z

−1 + x∗
3z

−2 + . . .
0 0 x∗

2z
−1 + x∗

6z
−2 + . . .

0 0 0





}

.

Unlike the SU(2) case, the expansions of the x coefficients in terms of ζ and the
factors a(ζj) involve signs. For g ∈ LSU(3) as in Theorem 5.1,

det|A(g)|2 =
∞
∏

i=1

(1 + |ηi|2)−q(i) exp(−3
∞

∑

k=1

k|χk|2)
∞
∏

j=1

(1 + |ζj|2)−q(j)

where q(j) is the sequence 1, 1, 2, 1, 3, 2, 4, 2, 5, 3, 6, 3, . . .. Also

Π(a(g̃)) = ȧḣ1
1 ȧḣ2

2

where
ȧ1 =

∏

j 6=2,6,10,...

a(ζj)
−1 and ȧ2 =

∏

j 6=4,8,12,...

a(ζj)
−1.

Other examples will appear in the second author’s dissertation.
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