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Abstract. Let P be a compact, 8-dimensional projective plane and ∆ a
connected closed subgroup of AutP . If ∆ is semi-simple or has a normal torus
subgroup, and if dim∆ > 13, then P is a Hughes plane.
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Topological projective planes P = (P,L) with a compact point space P of
finite (covering) dimension d> 0 have been treated systematically in the book
Compact Projective Planes [14]. Such planes exist only for d= 2` with ` | 8, see
[14] (54.11). Each line L ∈ L is homotopy equivalent to a sphere S` ; in all known
examples, L is in in fact homeomorphic to S` . The cases `≤ 2 are understood
quite well, cp. [14] Chapters 3 and 7.

The classical models in the two other cases are the planes over the (real)
quaternions and octonions. Their automorphism groups are Lie groups of dimen-
sion 35 or 78, respectively. In general, the automorphism group Σ = AutP (of
all continuous collineations), taken with the compact-open topology, is a locally
compact transformation group of P with a countable basis [14] (44.3). If P is
not classical, then dim Σ≤ 18 or 40, respectively, cp. [14] (24.28) and (87.7). It
is the aim of the classification program to determine all pairs (P ,∆), where ∆ is
a connected closed subgroup of AutP and dim ∆ is sufficiently close to the up-
per bound. For 8-dimensional planes and dim ∆≥ 17, it has been proved in [12]
that P is a Hughes plane or a translation plane (up to duality). All these planes
have been described explicitly by Hähl [3], cp. [14] (82.25). In his dissertation,
Boekholt [2] also determined large classes of planes admitting a 16-dimensional
group which does not fix exactly one incident point-line pair. On the other hand,
all 16-dimensional planes with a group ∆ of dimension at least 35 are known,
except in the case where ∆ fixes exactly one point and one line, see [4] and [5]
and the references given there.

The present paper is a first step to improve the results for 8-dimensional
planes in a similar way. If dim Σ≥ 12, then any closed subgroup ∆≤Σ is a
Lie group [9]; hence ∆ is semi-simple or ∆ contains a minimal connected normal
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subgroup, either a 1-dimensional torus T or a vector subgroup. The last possibility
will be treated elsewhere. Up to duality, a group of dimension ≥ 8 fixes at most
one triangle or some points on a line and one additional line, see[14] (83.17). For
each of the possible configurations of fixed elements, we establish upper bounds for
the dimensions of semi-simple groups or groups containig a normal (hence central)
torus subgroup. In many cases the structure of groups of maximal dimension can
be determined. The next goal is to describe the corresponding planes by group
theoretical means as it has been done in the cases mentioned above.

Among several other results and a few new characterizations of the Hughes
planes and of the classical plane, the following theorems will be obtained:

Theorem S. If ∆ is semi-simple, then dim ∆≤ 10 with the following except-
ions :

(a) ∆ has no fixed element and P is a Hughes plane.
(b) ∆ leaves a real subplane E invariant and ∆ induces on E the full collineation

group; one factor of ∆ is isomorphic to SO3R .
(c) ∆ fixes a flag and ∆ is a product of the universal covering groups of

PSU3(C, 1) and SL2R, the second factor consists of translations .
(d) ∆ fixes a non-incident point-line pair, and dim ∆≤ 12 or

∆∼= U2(H, r) · SU2C .

The Hughes planes are described in [14] §86, they include the classical
quaternion plane.

Theorem T. Assume that T (= SO2R)∼= Θ / ∆ and that P is not a Hughes
plane.

(a) If ∆ has no fixed element, then dim ∆≤ 9.
(b) If ∆ fixes exactly on element, then dim ∆≤ 13.
(c) If ∆ fixes a unique line W and at least one point on W , then dim ∆≤ 11.
(d) ∆ fixes a non-incident point-line pair, then dim ∆≤ 12.

Notation. The set of all fixed points and fixed lines of a subset Γ⊆∆ will be
denoted by FΓ . As customary, ∆[c,A] denotes the subgroup of all axial collineations
in ∆ with axis A and center c . If B is a 4-dimensional subplane of P , then
each point of P is incident with a line of B , and B is called a Baer subplane
(B<•P), see [13] . An element γ ∈ ∆ is called straight , if each point orbit of the
cyclic group 〈γ〉 is contained in some line; by a result of Baer γ is then an axial
collineation or Fγ<•P , in the latter case γ is said to be planar , γ is then also
called a Baer collineation. A one-parameter group Π is said to be straight, if each
of its elements is straight; this implies that each orbit of Π is contained in some
line. If Π is not straight, then Π is also referred to as being crooked. If a point set
S contains a quadrangle, then 〈S〉 is the smallest closed subplane containing S .
A homeomorphism of two spaces is indicated by X ≈Y , homotopy equivalence by
X 'Y .

∆1 denotes the connected component of the topological group ∆ and ∆′

the commutator subgroup. As customary, Cs∆Γ or just Cs Γ is the centralizer of
Γ in ∆ ; the center Cs ∆ is usually denoted by Z . We write

∆ : Γ = dim ∆/Γ = dim ∆− dim Γ.
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Note that dimx∆ = ∆ : ∆x by the dimension formula [14] (96.10). If MΓ =M ,
then Γ|M is the group induced by Γ on M . A Levi complement of the radical

√
∆

is a maximal semi-simple subgroup of ∆ .

Stiffness refers to results on (the size of) groups acting trivially on some
proper subplane. We collect the facts to be used from [1], [10] , and [14] § 83 in
the next theorem:

Stiffness. Let Λ be a connected closed subgroup of ∆, and assume that the fixed
elements of Λ form a (non-degenerate) subplane E . Then dim Λ≤ 4. Moreover :

(i) If E is connected, or if Λ is compact, then dim Λ≤ 3.
(ii) If E ≤B<•P , then E is connected and Λ is compact ;

BΛ =B implies dim Λ≤ 1.
(iii) If Λ is compact and not commutative, then Λ∼= SO3R.

The following result will be needed repeatedly:

Richardson’s theorem (†). A compact, connected, effective transformation
group Φ on S4 with an orbit of dimension >1 is equivalent to a subgroup of SO5R
in its linear action. The only possibility besides the obvious ones is given by the
irreducible representation of SO3R on R5 , see [14] (96.34).

Remark. If ∆ fixes a line W , and if ∆ has an open orbit on W , or if ∆
contains a Baer involution (in particular, if ∆ has torus subgroup of dimension
>2), then W ≈S4 and Richardson’s theorem applies to compact subgroups of ∆ ,
cf. [14] (53.2 and 10) and (55.34b).

Observation. If a group Φ∼= SO3R fixes a line W , then each involution in Φ
is planar. Either Φ has no fixed point on W or FΦ is a 2-dimensional subplane.

Proof. All involutions in Φ are conjugate, hence they are all planar, or Φ
contains reflections α, β, γ=αβ , and exactly one of these has axis W , see [14]
(55.32 ii). In the latter case Φ|W = 1l because Φ is simple, a contradiction. The
second assertion is an immediate consequence of (†).

1. Existence of fixed elements

Theorem 1.1. If dim ∆≥ 11, then ∆ fixes a point or a line, or ∆ is a Lie
group.

Proof. Assume that ∆ fixes neither a point nor a line and that ∆ is not a Lie
group. Then dim ∆ = 11 and ∆ has arbitrarily small compact central subgroups
N of dimension 0 such that ∆/N is a Lie group, see [14] (93.8). Each ζ ∈ N r {1l}
has a fixed point a by [14] (55.19), and a∆ is contained in a smallest closed
proper subplane F = 〈a∆〉 (because ζ|F = 1l). Consider the group ∆|F = ∆/Λ
induced by ∆ on F . If F<• P is a Baer subplane, then dim Λ≤ 1 by Stiffness,
and ∆ : Λ> 8. As ∆ has no fixed element, ∆|F is semi-simple ([14] (71.4)) and
then ∆|F ∼= PSL3C by [14] (71.8). From [14] (86.34) it follows that P is a
Hughes plane, and ∆ would be a Lie group contrary to the assumption. Hence
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F is 2-dimensional, ∆ : Λ = 8, ∆|F ∼= SL3R is simple, dim Λ = 3, and N≤Λ .
According to [14] (94.27), the group ∆ contains a covering group Ψ of SL3R . In
fact Ψ ∼= ∆|F : otherwise Ψ ∩Λ is generated by a Baer involution β , and Stiffness
shows that Λ1 is compact. As ∆ is connected, we have ∆ = ΨΛ1 . By Stiffness Λ1 is
commutative or Λ1∼= SO3R . In the second case, ∆ would be a Lie group. Hence Λ1

is commutative, and [14] (93.19) implies that Ψ acts trivially on Λ . Consequently,
the fixed elements of β form a Λ-invariant Baer plane Fβ <•P and dim Λ≤ 1
by Stiffness. This contradiction shows that Ψ ∩Λ = 1l, and then Λ is connected
since ∆ = ΨΛ is connected. Again Λ is commutative. If Ψ acts non-trivially on
Λ , then Ψ is transitive on the Lie algebra of Λ/N . Hence Λ/N has no compact
subgroup other than 1l, and Λ ∼= R3 would be a Lie group after all. Therefore,
the commutator group [Ψ,Λ] is trivial and ∆ = Ψ×Λ is a direct product. As F
is not a Baer subplane, there is some point z which is not incident with a line
of F , see [13] (3.9). In particular, zΛ is not contained in a line, E = 〈zΛ〉 is a
subplane, and Ψz acts trivially on E . If dim Ψz = 0, then zΨ is open in P , and
∆ would be a Lie group by [14] (53.2). Thus E is a proper connected subplane;
by [14] (55.1) the dimension of E is 2 or 4. The stabilizer Λz fixes each point of
the orbit zΨ . If Λz 6= 1l, then dim zΨ≤ 4 and dim Ψz ≥ 4, but Stiffness shows that
a group which fixes each point of a connected subplane has dimension at most 3.
This contradiction proves that Λz = 1l, so that Λ acts effectively on the subplane
E . Depending on dim E , either [14] (96.31) or [14] (71.2) implies that Λ is a Lie
group, and so is ∆ = Ψ×Λ .

Theorem 1.2. If ∆ is not semi-simple, then ∆ fixes a point or a line, or there
exists a ∆-invariant subplane E and ∆ induces on E a simple Lie group ∆|E . In
the latter case, the following holds: if dim ∆> 9, then P is a Hughes plane, or E
is the real projective plane, ∆|E is its full collineation group, and dim ∆≤ 11.

Proof. (a) Similar results for planes of smaller dimension can be applied to the
group ∆|E induced on a proper connected closed ∆-invariant subplane E ; without
assumption on the structure or dimenson of ∆ the following holds: either ∆ fixes
a point or a line (of E ), or ∆|E is a (center-free) simple Lie group, see [14] (71.4
and 8) and (33.1).

(b) Suppose first that the center of ∆ contains an element ζ 6= 1l. The
automorphism ζ has a fixed point a by [14] (55.19), and ζ induces the identity on
the orbit a∆ . If F∆ = ∅ , then the orbit a∆ is not contained in a line and E := 〈a∆〉
is a proper ∆-invariant subplane; moreover ∆|E 6= 1l. Step (a) shows that ∆|E is a
simple Lie group. In particular, each commutative connected group fixes a point
or a line.

(c) If ∆ is not a Lie group, then the center of ∆ contains arbitrarily small
compact subgroups N such that ∆/N is a Lie group, and (b) applies. We may
assume, therefore, that ∆ is a Lie group. Because ∆ is not semi-simple, there is
a connected, commutative, closed normal subgroup Θ 6= 1l, cf. [14] (94.26). From
the last statement in (b) it follows that Θ fixes some element, say the point a . As
before, F∆ = ∅ implies that E = 〈a∆〉 is a proper subplane, Θ|E = 1l, and ∆|E is a
simple group with trivial center by (a).
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(d) Now let dim ∆> 9, F∆ = ∅ , E∆ = E <P , and ∆|E = ∆/Λ . If dim E = 2,
then dim Λ≤ 3 by Stiffness, ∆|E ∼= PSL3R , and ∆ : Λ = 8, see [14] (38.3). In the
case E<•P it follows from Stiffness that dim Λ≤ 1, and [14] (71.8) shows that the
simple Lie group ∆/Λ has dimension at most 8, or ∆/Λ∼= PSL3C and P is a
Hughes plane by [14] (86.34).

For later use, we mention that the following has been shown in (b) and (d):

Note. Assume that dim ∆≥ 10, and that F∆ = ∅. If ∆ has a non-trivial center
Z 6= 1l, and if P is not a Hughes plane, then there exists a 2-dimensional ∆-
invariant subplane E such that ∆|E = ∆/Λ∼= Υ∼= SL3R and ∆ = Υ×Λ .

Corollary 1. If dim ∆> 9, F∆ = ∅, and if ∆ has a minimal normal subgroup
Θ∼= T, then dim ∆ = 17 and P is a Hughes plane.

Proof. By [14] (93.19), the normal torus subgroup Θ is contained in the center
of ∆ . The involution ι∈Θ is a reflection or ι is planar, see [14] (55.29). In the
first case ∆ would fix center and axis of ι . Hence Fι<• P is a ∆-invariant Baer
subplane. Put ∆|Fι = ∆/Λ . Then dim Λ≤ 1 by Stiffness. Step (a) of the previous
proof shows that ∆/Λ is a simple Lie group. In fact, ∆ : Λ≥ 9, and ∆/Λ ∼= PSL3C
according to [14] (71.8). This characterizes the Hughes planes as stated above.

Remark. Each collineation of an 8-dimensional Hughes plane is continuous .1

Corollary 2. If dim ∆> 11, and if ∆ has a normal subgroup Θ∼= Rt , then ∆
fixes a point or a line.

Proof. Assume that F∆ = ∅ . Then Theorem 1.2 implies that there is a closed
subplane E such that E∆ = E <P , ∆|E = ∆/Λ is a simple Lie group, and Θ≤Λ .
In the case E<•P it would follow from Stiffness that Λ is compact. Hence E is a
2-dimensional plane, ∆ : Λ≤ 8 and dim Λ≤ 3, a contradiction.

Corollary 3. If ∆ is semi-simple, dim ∆≥ 11, and F∆ = ∅, then P is a Hughes
plane, or ∆∼= SL3R×SO3R and ∆ leaves a real subplane D invariant. In the
latter case, each reflection of D extends to a reflection of P . This is analogous to
a well-known property of the Hughes planes .

Proof. Without the assumption F∆ = ∅ , the claim has been proved in [15]
for almost simple groups of dimension > 10; for semi-simple groups of dimension
> 13 see [11] .

(a) If ∆ has a center Z 6= 1l and if P is not a Hughes plane, the Note
above shows that there exists a ∆-invariant 2-dimensional subplane E , and that
∆ = Υ×Λ with Λ|E = 1l and Υ∼= SL3R (∼= PSL3R). Choose a point s which is not
incident with a line of E , and consider the group Γ = (∆s)

1 . A detailed analysis
of Λ and Γ will lead to a contradiction. If Λ contains an involution, then Stiffness

1 For a proof, one may use the description [11] (3.9) of the plane by a nearfield H and
show that the stabilizer of a quadrangle in the invariant complex subplane is induced by auto-
morphisms of H . Such an automorphism α maps the 1-dimensional center of H into itself.
Hence α induces a continuous automorphism on the subfield C of H , see [14] (55.22).
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implies Λ∼= SO3R , and Z would be trivial. Being semi-simple, Λ is isomorphic to
the simply connected covering group of SL2R , and Z∼= Z . Suppose that sζ = s for
some ζ ∈Z r 1l. Then E <Fζ =F Λ

ζ <•P , contradicting Stiffness. Similarly, sZ is

not contained in a line, so that 〈sZ〉 is a subplane contained in F :=FΓ .

(b) The projection % : Γ → Υ has kernel Γ ∩Λ = 1l (or 〈E ,F〉<•P , and
Λ would be compact). Therefore % is injective. It follows that the projection
π : Γ → Λ is not surjective: otherwise Γ would contain a covering group of Λ by
[14] (94.27), hence Λ would be isomorphic to a subgroup of Υ , but SL3R does not
contain a proper covering group of SL2R . Consequently, K = kerπ= Γ ∩Υ≤Cs Λ
has positive dimension. Let κ∈K r {1l} and put K=Fκ . Then F ≤K=KΛ<P ,
and Λ acts effectively on K (since sζ = s, ζ ∈Z implies ζ = 1l). Hence K is
connected, and so is F by [14] (55.4). As dim Γ = dim ∆ − dim s∆≥ 3, Stiffness
shows that F is a 2-dimensional subplane; moreover, FΛ =F and then Λ acts
effectively on F , again since sζ = s, ζ ∈Z ⇒ ζ = 1l. This is obvious, if F =K ;
if K<•P , however, then Γ is compact by Stiffness, hence SO3R∼= Γ≤Υ≤Cs Λ ,
and FΓ is Λ-invariant. Now [14] (38.3) implies that F is a proper Moulton plane.
Consequently, E ∩F is a non-incident point-line pair, cf. [14] (34.8) and (33.8).
Choose a point x∈F r E on the fixed line of Λ in F . Then dim Λx = 2 and
〈E , x〉<•P , but this contradicts Stiffness.

(c) Therefore Z = 1l, and ∆ = Γ×Ψ is a direct product of a simple factor Γ
of minimal dimension and a semi-simple group Ψ . Consider an involution α∈ Γ . If
α is a reflection with center c , then Ψ induces the identity on the orbit cΓ 6= c , and
E = 〈cΓ〉 is a proper subplane of P (or cΓ would be contained in a common fixed line
of Γ and Ψ). Stiffness implies dim Γ≤ dim Ψ≤ 3 and dim ∆≤ 6. Consequently α
is planar ([14] (55.29)), the fixed elements of α form a Ψ-invariant Baer subplane
B :=Fα . Put Ψ|B = Ψ/Λ . The kernel satisfies dim Λ≤ 1 by Stiffness, and then Λ
is trivial as Ψ is semi-simple. If BΓ=B , then ∆|B would be simple by [14] (71.8).
Hence BΓ 6=B . Any intersection D=B ∩Bγ <B contains some point p (and some
line), see [14] (55.38) or [13] (3.24). Moreover, DΨ =D , in particular, Ψ is not
transitive on the point set of B . Acording to [14] (71.8), the group Ψ is simple,
and Ψ is isomorphic to one of the groups PSU3(C, r), SO3C , SL3R , or dim Ψ = 3.
All possible groups with dim Ψ> 3 can act only on the complex plane and only in
the standard way, cf. [14] (72.1, 3, and 4).

In the first two cases this leads to a contradiction: any orbit of a uni-
tary group has dimension at least 3; hence pΨ would contain a quadrangle,
and then it would follow that B= 〈pΨ〉=Bγ . The group SO3C∼= PSL2C has
one 2-dimensional orbit on the complex plane (a sphere given by the equation
x2 + y2 + z2 = 0), it is transitive on the remainder. Again pΨ contains a quad-
rangle2 and D is a 2-dimensional subplane. However, this projective plane is not
homeomorphic to a sphere. If Ψ∼= SL3R , then D is the real projective plane. Each
involution σ of Ψ induces a reflection on B as well as on Bγ , see [14] (55.21c).
Hence σ is a reflection of P and the point set of D consists of the centers of all
these reflections. Consequently, Γ|D = 1l and then Γ is compact by Stiffness; in
fact, Γ∼= SO3R and the product Γ×Ψ is isomorphic to the subgroup of PSL3H
which leaves the real subplane of the quaternion plane invariant.

2 e.g. (0, 1, i), (i, 0, 1), (1, i, 0), (3, 4, 5i).



Salzmann 695

(d) Each reflection of D is induced by an involution ι∈Ψ and ι is either a
reflection or a Baer involution of P . In the second case, D ∩Fι = (c, A) consists of
the center and axis of ι|D . Each involution in Γ fixes c, A and induces a reflection
on Fι , see [14] (55.21c). Therefore Γ|Fι is a group of homologies with axis A and
center c , but such a group is only 2-dimensional. Hence ι is a reflection of P .

Theorem 1.3. If ∆ fixes a unique line W and no point outside W , and
if dim ∆> 3, then ∆ is a Lie group, provided that ∆ is semi-simple or that a
maximal compact subgroup Φ of ∆ is not commutative.

Proof. There exist arbitrarily small compact central subgroups N≤Φ of di-
mension 0 such that ∆/N is a Lie group, cf. [14] (93.8).

(a) Assume first that N acts freely on P rW . Then each stabilizer ∆x with
x /∈W is a Lie group because ∆x ∩N = 1l. By [14] (51.6 and 8) and (52.12), the
one-point compactification X of P rW is homeomorphic to the quotient space
P/W , and X is a Peano continuum (i.e., a continuous image of the unit inter-
val); moreover, X is homotopy equivalent to S8 , and X has Euler characteristic
χ(X) = 2. According to a theorem of Löwen [7] , these properties suffice for ∆ to
be a Lie group.

(b) Suppose now that xζ =x for some x /∈W and some ζ ∈N r 1l. By
assumption, x∆ is not contained in a line and hence generates a subplane. Then
〈x∆〉≤Fζ <P and Fζ<•P or dimFζ = 2.

(c) Let ∆ be semi-simple and put ∆|Fζ = ∆/Λ . This group is almost simple
by [14] (33.6c) and (71.8). As ∆ fixes the line W in Fζ but no point outside W ,
it follows from [14] (38.3) and (72.1–4) that ∆ = Λ if dimFζ = 2 and ∆ : Λ≤ 3 if
Fζ<•P . Stiffness implies dim Λ≤ 3 in the first case and (because Λ is semi-simple)
dim Λ = 0 in the second case.

(d) If the maximal compact subgroup Φ of ∆ is not commutative, then Φ
has an almost simple subgoup Ω (because Φ/CsΦΦ is a product of compact simple
Lie groups, see [14] (94.29 and 31)). As WΩ =W =W ζ , either dimFζ = 2 and
Ω≤Λ , or Fζ<•P , dim Ω|Fζ = 3, and Ω acts non-trivially on W (because axial
groups of 4-dimensional planes are solvable by [14] (71.3)). In fact, Ω is transitive
on W ∩Fζ . If Ω≤Λ , each involution in Ω is planar. In any case there exists a
Baer subplane in P , and then [14] (53.10) shows that W ≈S4 . By [14] (32.21c)
and (71.2), the group ∆/Λ is a Lie group, and so is ∆/(Λ ∩N). We may assume,
therefore, that N≤Λ . A theorem of Bredon ([14] (96.24)) implies that Φ|W = Φ/K
is a Lie group, possibly the identity. It follows that also Φ/(K ∩N) is a Lie group.
The kernel K ∩N fixes each point of W and of Fζ ; hence K ∩N = 1l and ∆ is a Lie
group by [14] (93.9).

2. Groups fixing exactly one element

This section deals with the case that ∆ fixes a line W but no point on W or
outside W .

Theorem 2.1. If ∆ is semi-simple and F∆ = {W}, then dim ∆≤ 10.



696 Salzmann

Proof. (a) Suppose first that there exists a ∆-invariant subplane E and put
∆|E = ∆/Λ . In the case E<•P the line W contains a point of E , and [14] (71.8)
implies ∆ : Λ≤ 6; moreover dim Λ = 0 by Stiffness and semi-simplicity. Now let
dim E = 2. If W and E have a point in common, then [14] (33.6 and 7) and
Stiffness yield ∆ : Λ≤ 3 and dim Λ≤ 3. If W does not intersect the point set
of E , then ∆ : Λ≤ 8, and dim Λ = 0 as FΛ> E . In particular, ∆|E ∼= PSL3R or
dim ∆≤ 6. If dim E = 0, then dim ∆≤ 4 by Stiffness.

(b) In the next steps, a contradiction will be derived from the assumption
dim ∆> 10. Note that ∆ is a Lie group by Theorem 1.3. By [15] the theorem is
true for almost simple groups: this follows easily if P is a proper Hughes plane; if
P is the classical quaternion plane, then ∆ is contained in a conjugate of SL2H
and ∆ would have a fixed point (since all Levi complements in a connected Lie
group are conjugate).

(c) Consider the case that there is an element ζ 6= 1l in the center Z of ∆ .
If ζ is straight, then ζ is not an axial collineation (or else the center of ζ would
be a fixed point of ∆), Fζ <•P by Baer’s theorem, and (a) implies dim ∆≤ 6.
If ζ fixes a line L 6=W , put E = 〈L∆,W 〉 and note that ζ|E = 1l. The first part
of (a) yields again dim ∆≤ 6; the case aζ = a /∈W is analogous. Hence we may
assume that each orbit x〈ζ〉 with x /∈W generates some subplane E . Obviously,
∆x|E = 1l, and Bödi’s improvement [1] of the stiffness result [14] (83.15) shows that
dim ∆x≤ 4. The dimension formula implies ∆ : ∆x≤ 8 and thus dim ∆≤ 12.

(d) The group ∆ is then an almost direct product ΓΨ of a factor Γ of
minimal dimension and a semi-simple group Ψ 6= 1l. Put Γ := 〈Γ, ζ〉 , choose a

point a /∈W , and consider F := 〈aΓ〉 . If F <P , then a〈ζ〉 generates a connected
subplane E by (c) and [14] (55.4), ∆a|E = 1l , and Stiffness implies dim ∆a≤ 3, so
that dim ∆ = 11. If F =P , then Ψa = 1l and dim Ψ≤ 8. Either again dim ∆ = 11
or Γ and Ψ are locally isomorphic to SL2C . In the latter case, ζ would be an
involution in contradiction to step (c). Therefore dim Ψ = 8.

(e) If β is an involution in ∆ , then Fβ<•P , or ζ would fix center and
axis of β . In the case β ∈ Γ it follows from [14] (71.8) that Ψ induces on Fβ a
group SL3R or PSU3(C, 1), hence Ψ cannot fix the line W . Consequently, Γ is
isomorphic to the simply connected covering group of PSL2R . The group Ψ is
locally isomorphic to the compact group SU3C or to one of the groups SU3(C, 1)
or SL3R . The compact group cannot act on the 4-sphere W . In the second case
Ψ has a subgroup SU2C∼= Spin3R containing a unique involution β , and Csβ∆
would induce on Fβ a properly semi-simple group in contradiction to [14] (71.8).
Similarly, Ψ cannot be the simply connected covering group of SL3R . Now let
Ψ∼= SL3R . There are commuting involutions α and β in Ψ . If α would induce a
reflection on Fβ , its center would be a fixed point of ζ . Therefore E :=Fα,β is a
2-dimensional subplane. By step (c), we may assume that (the center of) Γ acts
effectively on E , and this implies that E is a proper Moulton plane, cf. [14] (38.3),
but then Γ has a fixed point a /∈ W . This contradiction shows that the center of
∆ is trivial if dim ∆> 10. Hence only the case ∆ = Γ×Ψ remains.

(f) As Γ is simple, there exists an involution α ∈ Γ . If α is a reflection with
axis A and center c , then Ψ acts trivially on the connected subplane generated by
AΓ or cΓ , and dim Γ≤ dim Ψ≤ 3. Thus, B :=Fα is a Baer subplane, and Stiffness
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implies that Ψ acts faithfully on B . If dim Ψ> 3, it follows from [14] (71.8) that
Ψ∼= SO3C or Ψ is a simple group of dimension 8. None of these groups fixes a
line of B , see [14] (72.1,3, and 4).

Theorem 2.2. If ∆ has a normal subgroup Θ∼= T and if F∆ = {W}, then
dim ∆≤ 13.

Proof. The group Θ is contained in the center of ∆ , see [14] (93.19). The
involution β ∈Θ is planar (or else β would be a reflection and its center would be a
fixed point of ∆). Put B :=Fβ<•P , and ∆|B = ∆/Λ . From Stiffness it follows that
Λ is compact and that dim Λ≤ 1. The group Θ|B contains neither a reflection nor
a Baer involution ([14] (55.21c)); hence Θ = Λ1 . If ∆ : Λ> 8, the 4-dimensional
plane B is isomorphic to the classical complex plane P2C , and ∆|B is contained
in the 12-dimensional affine group C2o GL2C , see [14] (72.8).

In each proper Hughes plane the stabilizer of an inner line (an ‘affine
Hughes group’) yields an example with dim ∆ = 13.

Addendum. If the subgroup ∆ of AutP is isomorphic to an affine Hughes
group, then P has a ∆-invariant Baer subplane B∼=P2C and ∆ fixes a unique
element of B , say a line W . Moreover, all reflections in ∆|B are induced by
reflections of P , and all translations in ∆|B extend to translations of P .

Proof. ∆ may be written in the form Θ×ΞHΨ , where Θ∼= T is the center
of ∆ , Ψ∼= SL2C is a Levi complement of ΘΞH , the commutator subgroup is
∆′ = ΞΨ , H centralizes Ψ and acts on Ξ∼= C2 by homotheties, dim ∆ = 13. A
maximal compact subgroup Φ of ∆ is isomorphic to T×U2C . Each involution of
a projective plane is straight, hence it is either a reflection or a Baer involution,
cf. [14] (55.29). The unique central involution in Ψ will be denoted by ω .

(a) As Φ contains a 3-torus, some of the involutions are planar, and the
lines of P are homeomorphic to the sphere S4 , see [14] (55.34b) and (53.10). All
possible actions of compact connected groups on S4 are known in detail (†).

(b) We will prove that FΘ =B<•P . For this purpose, consider the involu-
tion ι∈Θ , and assume first that ι is a reflection with center a and axis W . Then
Θ acts trivially on W : In fact, if dim zΘ = 1 for some z ∈W and if c∈ az , then
dim ∆c≥ 5 and ∆c induces the identity on the subplane 〈a, c, zΘ〉 in contradiction
to Bödi’s stiffness result [1].

(c) Using only the fact that W∆ =W is homeomorphic to S4 , we show that
ω is not planar: If Fω<• P , then Ψ induces on Fω a group Ψ∼= PSL2C∼= SO3C ,
and it follows by [14] (72.4) and (18.32) that Ψ acts on Fω in the standard way
without fixed element, a contradiction. Suppose now that ω has an axis L 6=W .
The kernel of the action of Ψ on L is at most 4-dimensional; hence Ψ|L∼= PSL2C ,
and Φ would induce on L a group SO2R×SO3R , but then Ψ cannot have a fixed
point on L by (†). Thus ω is a reflection with axis W .

(d) As ι 6=ω and the two involutions commute, their fixed point sets are
different by [14] (55.32). Consequently, ι is not a reflection, and Fι =B is a ∆-
invariant Baer subplane. By Stiffness, dim ∆|B≥ 12, and then Θ|B = 1l (or Θ|B
would contain a reflection or a Baer involution, and ∆|B would be too small).
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(e) Theorem 1.2 implies that ∆ fixes a (unique) element in B , up to duality
a line W , and B∼=P2C by [14] (72.8). In step (c) is has been shown that ω is
a reflection in ∆[a,W ] for some center a in B . We have a∆ = aΞ≈C2 , and Ξ
induces on B the translations with axis W . If ξ ∈Ξ , then ξω = ξ−1 and ωωξ = ξ2

is a translation of P . Finally, let α be an involution in ∆ which induces on B
a reflection with center v ∈W and axis L . Then α is conjugate to the element
given by

(
1
−1

)
∈GL2C , and the centralizer Cs∆α contains a 3-torus X . By (†),

dim X|L< 3. Hence X contains a (v, L)-reflection of P . As before, all translations
of B with axis L and center L ∩W extend to translations of P .

Remark. All 4-dimensional planes admitting an affine Hughes group have been
determined in the papers [6] and [8] .

3. Groups with two fixed elements

The case that ∆ fixes exactly one flag (= incident point-line pair) seems to be
the most difficult one and no results beyond [12] have been obtained so far; this is
similar to the situation in 16-dimensional planes, cf. [4].

If P is a proper Hughes plane and F∆ 6= ∅ , then dim ∆≤ 13; together with
[12] this shows the following:

Theorem 3.1. If dim ∆≥ 17 and if F∆ is a flag, then P is a translation plane
(up to duality).

All these translation planes have been determined explicitly by Hähl, see
[14] (82.25); only the nearfield planes in this list do not have a unique fixed flag.

Theorem 3.2. Let F∆ = (v,W ) be a flag. If ∆ is semi-simple, then dim ∆≤ 10,
or, conceivably, ∆ is a product of the simply connected covering groups Ψ of
PSU3(C, 1) and Ξ of SL2R, and Ξ consists of translations.

Proof. (a) A semi-simple subgroup of the stabilizer of a flag in the classical
plane fixes a triangle and is at most 9-dimensional. If P is a proper Hughes plane
and if the semi-simple group ∆ fixes some element of P , then ∆ is isomorphic
to a subgroup of SL2C . Stroppel’s result [15] asserts that the only 8-dimensional
compact projective planes admitting an almost simple group of dimension greater
than 10 are the Hughes planes. Hence dim ∆≤ 10 whenever ∆ is almost simple.

(b) According to Theorem 1.3, ∆ is a Lie group whenever dim ∆> 3. If
dim ∆> 8, then [14] (71.8) and (38.3) imply that 〈x∆, v,W 〉=P for each x /∈W .
Hence the center Z of ∆ acts freely on P rW . Consequently, either 〈aZ〉<P
for some point a , dim ∆a≤ 4 by Stiffness and dim ∆≤ 12, or Z≤∆[v,W ] . (If
aZ⊆L∈L , then Z would fix each point L ∩Lδ with δ ∈∆ .)

(c) Write ∆ = ΞΨ , where Ψ is an almost simple factor of maximal dimen-
sion and Ξ 6= 1l is the product of the other factors of ∆ . If dim Ψ> 3, then Ψ has
a compact subgroup Φ isomorphic to SO3R or to Spin3R . In the first case, FΦ

is a 2-dimensional subplane by the Observation above, Stiffness implies that Ξ
acts almost effectively on FΦ , and then Ξ would be solvable by [14] (33.8). Hence



Salzmann 699

Φ∼= Spin3R and Φ contains a central involution σ . If σ is planar, then Stiffness
shows that Φ|Fσ ∼= SO3R and that Ξ acts almost effectively on Fσ . This contradicts
the fact [14] (71.8) that ΦΞ|Fσ is almost simple. Therefore σ is a reflection with a
center u∈W and an axis av (or else σ would have axis W or center v , and [14]
(61.19) would imply the existence of a large commutative connected normal sub-
group). We have Ξ|uΨ = Ξ|(av)Ψ = 1l and uΨ =u∆ 6=u , (av)Ψ 6= av . Consequently,
the fixed elements of Ξa form a Ψ-invariant subplane F≤•P . In the case F 6=P
it follows from [14] (71.8) and (72.1–4) that Ψ does not fix a flag. Therefore,
F =P , Ξa = 1l and dim Ξ = 3. In particular, Ξ acts freely on avr {v} , since a
is an arbitrary point on the axis of σ .

(d) If dim ∆≥ 10, then dim Ψ≥ 8. Otherwise either Ψ∼= SL2C and ∆
would contain a central reflection, or each factor of ∆ is 3-dimensional. In the
latter case, at most one factor, say Ψ , is contained in ∆[W ] . Recall from (b) that
〈aZ〉<P for some point a , or Z≤∆[v,W ] . If Z|W = 1l, then Ξ induces on W a
direct product of simple groups, and the torus rank of Ξ is at most 2 by (†).
Hence Ξ has at most 2 factors and dim Ξ≤ 6. If 〈aZ〉<P , then 〈aZΨ〉≤•P by [14]
(33.8). In the case of equality, we have Ξa = 1 and then again dim Ξ≤ 6. In the
other case, 〈aZ〉 is connected ([15] (55.4)), and Stiffness implies dim ∆a≤ 3 and
dim ∆< 12. Thus dim ∆≤ 9 if dim Ψ< 8.

(e) We have either Ξ≤∆[v,W ] or 〈aΞ〉≤•P for some point a . In the second
case, dim Ψa≤ 1 and dim Ψ< 9; note that dim Ψ 6= 9 because Ψ is almost simple.
Similarly, 〈aZ〉<P implies dim ∆≤ 12 and again dim Ψ< 9. If ZΞ|W = 1l, then
Ψ induces on W a simple group. As in step (c), the group Ψ contains a reflection
σ with center u and axis av . It follows that Ψu≤Ψav (or else σΨuσ⊆Ψ[u,W ]

has positive dimension, and Ξ would be contained in the commutative translation
group T with axis W ). The stabilizer Ψa fixes u and each point of aΞ . Therefore
Ψa,b = 1l for b∈ aur {a, u} and dim Ψa≤ 4. We conclude that dim Ψ≤ 12, and
then even dim Ψ≤ 10. The fact that Ψ contains neither a subgroup SO3R nor a
central involution excludes the possibility that Ψ is locally isomorphic to O′

5(R, r)
or to SL3R . Hence again dim Ψ = 8, and Ψ is locally isomorphic to the complex
hyperbolic motion group PSU3(C, 1).

(f) By the last part of (c), the Lie group Ξ contains neither a reflection
nor a Baer involution. Therefore, Ξ has no compact subgroup other than 1l, and
then Ξ is the universal covering group S̃L2R . Consider the group Φ introduced in
(c) and suppose that CsΨΦ contains an involution α 6=σ . Then α is necessarily
planar, av belongs to Fα , and aΞ⊆av , but the lines of Fα are only 2-dimensional.
This shows that Φ is a maximal compact subgroup of Ψ and that Ψ is simply
connected.

(g) Assume that Ξ|W 6= 1l, and recall that Ξ acts freely on avr {v} . It
follows that Ξ 6≤∆[v] , and 〈xΞ〉≤•P for some point x . If 〈xΞ〉=P , then Ψx = 1l
and xΨ is open in P , in particular, (vx)Ψ is open in the pencil Lv , and W ≈S4 .
In the case 〈xΞ〉<•P , we have again W ≈S4 , see [14] (55.6, Note). Hence Richard-
son’s Theorem applies, and the action of Φ on M =W r {u, v} is equivalent to
the standard action of Spin3R on R4 r 0. In particular, Kw = 1l or Kw = K for
each compact subgroup K of Ψ and each w∈W , since each maximal compact
subgroup of Ψ is isomorphic to Φ . We consider the action of Ξ on the orbit space
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M =M/Φ≈R . If Ξ|M = 1l, then zΦ is Ξ-invariant for z ∈M , and dim Ξz > 0, be-
cause Ξ is not transitive on zΦ≈S3 , cf. [14] (96.11 and 19). Moreover, Ξz|zΦ = 1l
since Φ≤Cs Ξ . Hence Ξz is normal in Ξ , and Ξz = Ξ because Ξ is almost simple.
This means that Ξ|W = 1l.

(h) If, on the other hand, Ξ acts non-trivially on M , a similar but more
involved argument leads to a contradiction. First, we will show that zΞ⊆ zΨ .
In fact, zΞ⊆ zΦ or 〈LΞ,W 〉=F ≤• P for z ∈L∈L , L 6=W , and ΨL|F = 1l. In
the latter case, K = (ΨL)1 is compact by Stiffness. If K 6= 1l, then the fixed point
L ∩W = z of K is the center of the involution in K , and zΞ = z is contained in zΦ .
Hence we may assume that dim ΨL = 0. Then dimLΨ = 8, LΨ is open in L by
[14] (96.11a), and zΨ is open in W . Conjugation with the elements of Ξ shows
that wΨ is open in W for each w∈ zΞ . As zΞ is connected, the assertion is true.

(i) If z= zΦ ∈M , the group Γ = Ξz has dimension at least 2. For each
γ ∈ Γ there exists a unique ϕ= γκ ∈Φ such that zγ = zϕ

−1
, and κ : Γ → Φ is

a continuous homomorphism. As Γ is not transitive on zΦ and Φ has no
2-dimensional subgroup, Γκ is not open in Φ , and we have dim Γκ≤ 1 and
0< dim Γz ≤ dim Ξz . Step (h) implies that for each ξ ∈Ξ there is some ψ ∈Ψ
such that (Ξz)

ξ = Ξzξ = Ξzψ = (Ξz)
ψ = Ξz . Hence Ξz is normal in Ξ , and then

Ξz = Ξ and zΞ = z , contrary to the assumption.

Theorem 3.3. Assume that F∆ = (a,W ) with a /∈W and that P is not iso-
morphic to the quaternion plane.

(1) If ∆ is almost simple, then dim ∆≤ 10.

(2) If ∆ is a direct product of simple (center-free) Lie groups, then dim ∆≤ 6.

(3) If ∆ is semi-simple, then dim ∆≤ 13.

(4) If ∆ is semi-simple and dim ∆ = 13, then ∆∼= SU2C ·U2(H, r), r∈{0, 1}.

Proof. Without assumption on F∆ , slightly weaker results have been obtained
in [11] .

(1) is an immediate consequence of Stroppel’s paper [15] .

(2) Let ∆ = Γ×Υ , where the factor Γ has minimal dimension. Consider an
involution α∈ Γ . If α is planar, then Υ acts faithfully on Fα and Υ is simple
by [14] (71.8). According to [14] (72.1–4), strictly simple groups of dimension
> 3 act without fixed elements on Fα . Hence dim ∆ = 6 in this case. If α is a
reflection with axis W , then Γ≤∆[a,W ] , and Γ is compact by [14] (61.2); in fact,
the Observation implies Γ∼= Spin3R , but we have assumed Γ to be center-free.
Therefore, α∈ Γ[u,av] with u, v ∈W , and vΥ = v . Consequently, vΓ =V 6= v , and
Υ fixes each point of V . Choose c∈ avr {a, v} . Then Υc induces the identity
on the subplane E = 〈a, c, V 〉 . If dim Υ≥ 6, then dim Υc> 1, and Stiffness implies
dim E = 2, but then the simple group Γ acts without fixed element on FΥc = E by
[14] (38.2). This contradiction shows that dim Υ = 3 and dim ∆ = 6.

(3) is contained in [11] (3.1–4).

(4) A semi-simple group ∆ of dimension 13 is a product of two almost
simple factors Γ and Υ where dim Γ = 3. Recall from the introduction that ∆ is
a Lie group. Part (2) of the theorem implies that ∆ has a center Z 6= 1l. We will
show that Z≤∆[a,W ] . If ζ ∈Z is not straight, there is some point c such that ∆c
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fixes a quadrangle, and dim ∆c≤ 4 by Stiffness, thus dim ∆< 13. If ζ is planar,
then ∆|Fζ ≤GL2C and dim ∆≤ 8+1. Hence each ζ is axial, center and axis are
the unique fixed elements of ∆ . Consequently, ∆ induces on W a direct product
Γ×Υ of simple groups, and Υ∼= O′

5(R, r). If r= 0, then Υ 6∼= SO5R by [14] (55.40),
and Υ∼= U2H is transitive on W ≈S4 . Because of (†), T3 does not act faithfully
on W . Therefore Γ = 1l and Γ≤∆[a,W ] . From [14] (61.2) and (55.32) it follows
that Γ is compact with a unique involution and Γ∼= Spin3R .

Now let r > 0 and suppose that Υ has a subgoup Φ∼= SO3R . By the
Observation, each involution α in Φ is planar. Hence W ≈S4 by [14] (53.2).
As Υ has torus rank 2, we have again Γ|W = 1l and Spin3R∼= Γ≤∆[a,W ] , but then
Γ cannot act on Fα . This contradiction shows that SO3R is not a subgroup of Υ .

Assume that zΓ 6= z for some z ∈W . Then Υz|zΓ = 1l and Γ acts on the
fixed subplane of Υc for each c∈ azr {a, z} . Stiffness implies dim Υc≤ 3 and
Υ : Υz + Υz : Υc≥ 7. Therefore zΥ is open in W or cΥz is open in az , and then
W ≈S4 by [14] (53.2). As before, Spin3R∼= Γ≤∆[a,W ] , contrary to the assumption.
If r= 1, then Υ is the simply connected covering group U2(H, 1) of O′

5(R, 1), and
(4) is true for r 6= 2.

Finally, let Υ∼= O′
5(R, 2). Then Υ contains a subgroup Φ∼= Spin3R∼= SU2C

and Υ is a covering group of Sp4R . By the Observation, we conclude that
ΦΓ∼= SO4R contains planar involutions, so that (†) may applied to the action
of ∆ on W . In particular, Φ fixes some point v ∈W . Consider the connected
component Ψ of Υv and the projection ω 7→ ω̂ of Υ onto Sp4R in its standard
action on R4 . As v∆ 6= v , we have Φ<Ψ<Υ , and Φ is a maximal compact
subgroup of Ψ (otherwise Ψ properly contains a maximal compact subgroup of
Υ , and [14] (94.34) would imply Ψ = Υ); moreover Ψ̂ is irreducible, and then
Ψ̂′ and its covering group Ψ′ are semi-simple by [14] (95.6b). The torus rank of
Ψ is 1, and Ψ′ is even almost simple. The list of representations [14] (95.10)
shows that dim Ψ′ = 6 and that Ψ′∼= Ψ̂′∼= SL2C . Now Ψ′ acts trivially on the
orbit space av/Γ , and cΨ

′
= cΓ for c∈ avr {a, v} . As Ψ≤Cs Γ , the stabilizer Ψ′

c

fixes cΓ pointwise, and Ψ′
c would be normal in Ψ′ , which is impossible.

Theorem 3.4. If ∆ has a minimal normal subgroup Θ∼= T, if F∆ = (a,W )
with a /∈W , and if dim ∆≥ 13, then the plane is classical .

Proof. The group Θ is contained in the center of ∆ , see [14] (93.19). The
involution σ ∈Θ is a reflection with center a and axis W (or else ∆ would induce
on Fσ a group of dimension at most 8).

(a) If ∆ is transitive on W , then ∆ has a subgroup Φ∼= Spin5R ; this
follows, e.g., from [14] (96.19–22) and (55.40). The connected component Γ of
Cs∆Φ consists of homologies with axis W , since Φz fixes the orbit zΓ pointwise
and each z ∈W is an isolated fixed point of Φz on W . By [14] (55.32) the reflection
σ is the only involution in Γ , hence Θ is a maximal compact subgroup of Γ . Either
Γ = Θ , or Γ is a two-ended group and Γ∼= Θ×R , see [14] (61.2). In particular,
dim Γ≤ 2. The representation of Φ on the additive group of the Lie algebra
l∆ is completely reducible, see [14] (95.3). This shows that ∆ : ΦΘ≥ 5, so that
dim ∆≥ 16. For v ∈W , the group Φv

∼= (Spin3R)2 fixes a unique second point
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u∈W , and (†) implies that Φ[u,av]
∼= Spin3R . The stiffness result [14] (83.17)

yields dim ∆u,v≤ 11< dim ∆v , and u∆v 6=u . From the action of Φv on W it
follows that u∆v is open in W . By [14] (61.19b), the elation group ∆[v,av] is
transitive, and this is true for each v ∈W ; in other words, ∆ is a group of Lenz
type III. Consequently, P is the classical quaternion plane, cf. [14] (64.18).

(b) Suppose that ∆ is doubly transitive on some orbit V⊂W of dimension
<4, and put ∆|V = ∆/K . We use the classification of doubly transitive groups as
summarized in [14] (96.16,17). If dimV = 2, then dim K≤ 5 and ∆|V is triply
transitive by Stiffness; consequently 8≤ dim ∆/K = 6, a contradiction. Hence
dimV = 3 and dim K≤ 4. If V is compact, then ∆/K∼= O′

5(R, 1), and dim ∆≤ 14.
Let Φ be a maximal compact subgroup of ∆ . As Θ<Φ , the torus rank rkΦ = 3.
Theorem (†) implies that Φ|W is equivalent to the standard action of SO4R on S4 .
In particular, Φ fixes exactly two points u, v ∈W rV and Θ≤∆[a,W ] . Moreover,
the action of Φ on W shows that u∆ is open and simply connected, and ∆u is
connected by [14] (96.9). Similarly, v∆u = v or v∆u is open. As Φ≤∆u,v and
dim Φ≥ 7, the latter is impossible, and ∆u = ∆v :=∇ has dimension at least
9. Choose z ∈V and c∈ azr {a, z} . Then the connected component Λ of ∇c
satisfies dim Λ> 1 and dimFΛ = 2. This is impossible, since Θ acts as a group of
homologies on FΛ .

(c) If ∆ is doubly transitive on z∆ =V ≈R3 or if ∆z has a 2-dimensional
orbit U ⊂V , there is again a group Λ such that FΛ is a Θ-invariant 2-dimensional
subplane, a contradiction. Cases (a)–(c) exhaust all possibilities.

4. Groups with at least two fixed points and only one fixed line

Theorem 4.1. If ∆ is semi-simple and fixes 3 collinear points, then dim ∆≤ 9,
or ∆ is an infinite covering group of O′

5(R, 2).

Proof. Let u, v, w∈W be fixed points of ∆ and assume that dim ∆≥ 10.
Then ∆ has no fixed point outside W , see [14] (83.17) or use Stiffness. By Theorem
1.3, ∆ is a Lie group.

(a) For almost simple groups, Stroppel’s result [15] implies that dim ∆ = 10
or that P is a Hughes plane. In the latter case, a semi-simple group with 3
collinear fixed points has dimension at most 6. Hence ∆/Z∼= O′

5(R, r), and Z
does not contain a planar involution by [14] (71.8). A reflection in Z would have
axis W and some center a /∈W , but then a would be a fixed point of ∆ . Therefore
a maximal compact subgroup Φ of ∆ contains SO3R , each involution in SO3R
is planar by the Observation, and (†) shows that Φ|W is equivalent to SO3R .
Consequently, dim Φ = 3, r= 2, and Z∼= Z .

(b) We may assume, therefore, that ∆ = ΓΥ , where Γ is an almost simple
factor of minimal dimension and Υ 6= 1l is semi-simple. If ∆ has trivial center,
then ∆ is a direct product of simple groups. Either ∆ acts faithfully on W ,
or one factor, say Ω , consists of collineations with axis W . In the second case,
Ω is contained in the translation group T and all elements of Ω have the same
center, see [14] (61.20) and (23.13). By [14] (55.28), only the identity in Ω has
finite order. It follows that Ω is isomorphic to the simply connected covering
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group S̃L2R , but then ∆ has an infinite center. Consequently, ∆∼= ∆|W . Now
(†) implies that a maximal compact subgroup Φ of ∆ has torus rank 2, and ∆
is a product of two simple factors of torus rank 1. Hence Υ is isomorphic to
SO3C or SL3R , and Υ has a subgroup SO3R . By the Observation, there exist
planar involutions in Υ , and (†) applies to the action on W of a maximal compact
subgroup Φ∼= SO2R×SO3R of ∆ , but then Φ would have no fixed point on W .
This proves that ∆ has a center Z 6= 1l.

(c) Z acts freely outside W . In fact, if aζ = a /∈W and 1l 6= ζ ∈Z , then ζ
induces the identity on the (Baer) subplane 〈a∆, u, v, w〉 , ∆ : ∆a≤ 4, dim ∆a,c≥ 4
for some c∈ av , and 〈a, c, u, w〉 is connected. This contradicts Stiffness. Similarly,
aΓ 6= a .

(d) Let F := 〈aΓZ, u, v, w〉=F Γ =F∆a and E := 〈aZ, u, v, w〉≤F , and note
that ∆a|E = 1l, dim ∆≤ 12, and Υa|F = 1l 6= Γ|F . In the case dimF = 2, the group
Γ|F would be solvable by [14] (33.8). If F<•P , Stiffness implies dim ∆a≤ 1 and
dim ∆< 10. Hence F =P , and Υa = 1l for each a /∈W . If dim Γ> 3, then both
Γ and Υ are locally isomorphic to SL2C , and one of the groups, say Γ , contains
a central involution α , either a reflection with axis W or a Baer involution. In
the first case, the center of α woud be a fixed point of ∆ ; in the second case, Υ
would act transitively on the 2-sphere W∩Fα . Therefore dim Γ = 3 and dim Υ = 8.
Consequently, Υ acts sharply transitively on the complement of W , and Υ would
be homeomorphic to R8 , a contradiction.

Theorem 4.2. If ∆ is semi-simple and F∆ = (u, v, uv), then dim ∆≤ 10.

Proof. Assume that dim ∆> 10. Then ∆ is a Lie group by Theorem 1.3.

(a) If ∆ is almost simple, Stroppel’s theorem [15] asserts that P is a Hughes
plane, and then P is even the classical quaternion plane (or dim ∆ would be at
most 6). As all Levi complements in Σu,v are conjugate, each one fixes a triangle,
and so would ∆ , contrary to the assumption.

(b) ∆ does not contain any reflection: If σ is a reflection, then σ∆σ is
contained in the group T of translations with axis W , and dim T> 0, see [14]
(23.20) or (61.20). The normal subgroup T1 is an almost simple factor of ∆
without a non-trivial compact subgroup, cf. [14] (55.28) or (61.5). Hence T1 is
isomorphic to the simply connected covering group of SL2R ; the center of T is
an infinite cyclic group, it is contained in the center of ∆ , but τσ = τ−1 for each
τ ∈T .

(c) ∆ has no subgroup Φ∼= Spin3R : such a group would contain a planar
involution β , and Φ|Fβ ∼= SO3R by Stiffness, but an action of SO3R on a 4-
dimensional plane does not fix two points, see [14] (71.10). Step (b) and [14]
(55.39b) imply that a maximal compact subgroup Φ of ∆ has no subgroup Z 3

2 .
Hence Φ is isomorphic to SO3R or Φ is contained in (SO2R)2 . In particular, ∆
has at most one factor of dimension > 3.

(d) If such a factor exists, then Φ∼= SO3R and each other factor is isomor-

phic to the simply connected covering group S̃L2R . The Observation shows that
the fixed elements of Φ form a 2-dimensional subplane E . Let Γ∼= S̃L2R be a
factor of ∆ . Because Γ|E has two fixed points, Γ|E is solvable by [14] (33.8), and
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then Γ|E = 1l. Now Stiffness implies that Γ is compact, an obvious contradiction.

(e) Hence ∆ has at least four 3-dimensional factors, at least two are simply
connected. In particular, ∆ has a center Z 6= 1l. If a factor Ξ of ∆ is contained
in a group ∆[z] , then z is a fixed point of ∆ , say z= v , and the dual of [14]
(61.20) implies that Ξ≤∆[v,W ] = Tv . As Ξ is not commutative, Tv is the full

translaton group, cf. [14] (23.13). Therefore ∆ has a factor Γ∼= S̃L2R which
acts non-trivially on each of the pencils Lu and Lv , so that B := 〈aΓ, u, v〉 is a
connected subplane for some a /∈W . As Γ is not solvable, B≤•P by [14] (33.8).
Put Υ = Cs∆Γ . Then dim Υa≥ 1, Υa|B = 1l, B<•P , and W ≈S4 . Now ∆|W has
torus rank at most 2 by (†). Because of [14] (61.20), the group Γ acts faithfully
on W . Let 〈ζ〉 be the center of Γ . Then ζ /∈∆[u] ∪∆[v] , and a may be chosen so
that E = 〈a, aζ , u, v〉≤B is a subplane. We have ∆a|E = 1l and B∆a =B . Stiffness
implies dim ∆a≤ 1 and dim ∆< 10 in contrast to our assumption.

Proposition 4.3 If ∆ has a minimal normal subgroup Θ∼= T and if ∆ fixes a
flag but only one line, then dim ∆≤ 11.

Proof. The involution σ ∈Θ is contained in the center of ∆ and σ is a reflec-
tion or σ is planar. In the first case, center and axis of σ would be fixed elements
of ∆ contrary to the assumption. Hence Fσ :=B=B∆<•P . Put d= dim ∆|B .
Stiffness implies dim ∆≤ d+ 1. If d> 8, then B is isomorphic to the complex
plane PC , see [14] (72.8), and d≤ 10, since ∆ fixes a flag in B .

5. Groups with exactly two fixed lines and at least two fixed points

Throughout this section, let ∆ fix the elements u, v, av and W=uv .

Theorem 5.1. If ∆ is semi-simple, then dim ∆≤ 10.

Proof. Note that the following arguments do not require ∆ to be a Lie group.

(a) Assume that the center Z of ∆ does not consist of homologies with axis
av . If dim ∆≥ 11 and a 6= c∈ aZ , then ∆a fixes c , and dim ∆a≤ 7 by the stiffness
result [14] (83.17). Hence dim ∆ = 11 and ∆ is a product of two almost simple
factors A and B with dim A = 3, dim B = 8. Moreover, Φ = (∆a)

′∼= SO4R by [10]
(∗∗). In particular, according to the Observation, there exist planar involutions.
(†) implies that Φ[av]

∼= Spin3R and that Φ acts faithfully on W and on au . It
follows that Φ[av] is normal in ∆ , so that A = Φ[av] and B is isomorphic to the
simply connected covering group of SL3R or locally isomorphic to SU3(C, 1). In
the first case, the involution σ ∈A is in the center of B , and Z = 〈σ〉 would act
trivially on av . In the second case, the commutator group of a maximal compact
subgroup of B is isomorphic to Spin3R ; its central involution β is a reflection with
axis av , and β coincides with the involution in A by [14] (55.32ii). However, the
action of B as hyperbolic motion group of the complex plane shows that β has a
4-dimensional set of conjugates in B . Therefore dim ∆< 11.

(b) If ∆ is almost simple, then dim ∆≤ 10 by Stroppel’s result [15] : if
dim ∆> 10, then P is not a proper Hughes plane; hence P is classical, but then
a Levi complement in Σu,v,av is only 9-dimensional.
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(c) If Z = 1l and ∆ is not simple, then dim ∆ = 6. This follows exactly as
in the proof of Theorem 3.3(2) (with the rôles of W and av interchanged).

(d) Next, let Z = ∆[av] and dim ∆≥ 10. Suppose that ∆ = ΓΥ is an almost
direct product of a factor Γ of minimal dimension and a semi-simple group Υ .
We will show that W ≈S4 , so that (†) applies. If W 6≈S4 , then each orbit of ∆
on W and on av has dimension ≤ 3 and P has no Baer subplane; in particular,
∆ has no subgroup SO3R . Choose a such that aΓ 6= a , and let w∈W r {u, v} .
Then Γ acts on F = 〈aΓ, wΓ, u〉 , and Υa,w|F = 1l. If F <P , then dimF = 2, and
Γ would be solvable by [14] (33.8). Therefore dim Υ≤ 6, and then Γ∼= Υ∼= SL2C .
The central involutions of Γ and Υ coincide by [14] (55.32). Consequently, ∆ has
a subgroup SO4R , and W ≈S4 after all. By (†), ∆|av = Γ×Υ is a direct product
of two simple groups of torus rank 1; each factor is isomorphic to either PSL2R
or to one of the groups SO3R , PSL2C , SL3R . An action of SO2R×SO3R on S4

does not have a fixed point. Hence Γ∼= Υ∼= PSL2R and dim ∆ = 6.

(e) Only one possibility remains: ZΓ = ∆[av] . Then Γ∼= Spin3R by [14]
(61.2) and the Observation. We will prove that Υ has an almost simple factor
Ψ of dimension at least 6 and then derive a contradiction from this fact. Let
c∈ avr {a, v} and w∈uvr {u, v} . Then 〈a, c, wΓ〉=P and Υa,c,w = 1l. As the
semi-simple group Υ is not doubly transitive on avr v by [14] (96.16), we have
dim cΥa,w < 4 for a suitable choice of c , and 7< dim Υ≤ 11. Either Υ is almost
simple or Υ has a 3-dimensional almost simple factor A . In the latter case, put
Υ = AΨ , where Ψ is the product of the other factors of Υ and dim Ψ≥ 6. Choose
a such that aA 6= a , and let B = ΓΨ . Then F := 〈aA, wA, u〉≤•P , Ba,w|F = 1l,
dim B = 8+1, and F<•P . In particular, W ≈S4 , and Υ|av has torus rank ≤ 2
by (†). Therefore, Ψ is almost simple and dim Ψ≥ 6. If Υ is almost simple, write
Ψ = Υ .

(f) We will show that each orbit wΓ≈S3 is Ψ-invariant. For W ≈S4 , this
follows from the fact that Ψ acts trivially on the orbit space M/Γ≈R . If W 6≈S4 ,
then dimw∆ = 3, and wΓ =w∆ by [14] (96.11a). Now Ψw|wΓ = 1l, dim Ψw≥ 2,
wΨ≤wΓ implies Ψw EΨ , and then Ψw = Ψ . This is true for each w∈M . Hence
Ψ = Ψ[W ] and Ψ has a connected proper normal subgroup consisting of translations
by [14] (61.20), a contradiction.

Theorem 5.2. Assume that ∆ has a minimal normal subgroup Θ∼= T. Then
dim ∆≤ 13; in the case of equality, ∆ is doubly transitive on avr {v}, the trans-
lation group ∆[v,W ] is transitve, its complement ∇ has a commutator subgroup
∇′∼= Spin4R, and the plane is the classical quaternion plane.

Proof. (a) Recall that Θ is contained in the center of ∆ , and assume that
dim ∆≥ 10. If 1l 6= Λ<∆ and if Λ fixes a quadrangle, then F =FΛ is Θ-invariant.
Either the involution ζ ∈Θ acts trivially on F or Θ|F 6= 1l. In the first case
F ≤Fζ =F ∆

ζ <•P , and Stiffness would imply dim ∆≤ dim ∆|Fζ + 1≤ 7. As any
action of T on R is trivial, we conclude that F<•P and dim Λ≤ 1.

(b) Choose w∈W r {u, v} and c∈ avr {a, v} , and put Ω = ∆w , ∇= ∆a ,
and Λ = (∇∩Ω)c . Then we have dim ∆≤∆ : Ω + Ω : Λ + Λ : 1l≤ 13. Suppose that
dim ∆ = 13. Then dim Ω = 9 and, similarly, dim∇= 9. Moreover, Ω acts faith-
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fully on av and Ω is doubly transitive on K:= avr {v}≈R4 . Hence the action
of Ωa on K is equivalent to the standard action of C×· SU2C .

(c) If xΘ 6=x for some x∈K , then FΩx<•P , dim Ωx≤ 1, and dim ∆≤ 9.
Consequently, Θ≤∆[u,av] . It follows that dim ∆[u,av]≤ 2: in fact, ∆[u,av] is com-
pact or two-ended, cf. [14] (61.2). The maximal compact subgroup Φ of ∆[u,av]

is isomorphic to T or to Spin3R (or Φ would contain two commuting reflections).
The second possibility is excluded by the fact that ΘEΦ .

(d) Let ∇̃ :=∇|K and note that Ωa embeds into ∇̃ . Step (c) implies that

7≤ dim ∇̃≤ 8, and from [14] (95.6b and 10) it follows that ∇̃′ is a 6-dimensional

semi-simple group; hence ∇̃′ is isomorphic to SO4R or SL2C . In the second
case, ∇′∼= SL2C would induce on W or on au the group PSL2C∼= SO3C , and
by (†) the group Θ∇′ would act without fixed points on one of these lines.
For an analogous reason, ∇′∼= Spin4R∼= (Spin3R)2 , rather than ∇′∼= SO4R . The
connected component Γ of the centralizer Cs∇∇′ induces on K the group of real
dilatations.

(e) As Θ /∇ and T3 does not act faithfully on S4 , one factor Φ1
∼= Spin3R

of ∇′ is contained in the homology group ∆[a,W ] , and then ∆[v,W ] is transitive by
[14] (61.19). The other factor Φ2

∼= Spin3R of ∇′ is contained in ∆[v,au] . In the
next steps, we will show that both groups ∆[a,W ] and ∆[v,au] are even transitive.

(f) The radical
√
∇= Γ is commutative: Note that dim∇= 9 and that ∇′Θ

is a maximal compact subgroup of ∇ . Hence
√
∇= ΘP , where P is homeomorphic

to R2 and P≤ Γ . If P is not commutative, then P is isomorphic to the connected
component L2 of the group of all affine maps of R . This will lead to a contradiction.

(g) Write T0 = avr {a, v} , T1 =W r {u, v} , and T2 = aur {a, u} . By (†),
the action of ∇′ on Tj is equivalent to the standard linear action of Spin3R
or SO4R , and the orbit space Tj/∇′ is homeomorphic to R . Assume that
P∼= L2 . Then P′≤∇[u,av] by the last part of step (d), and each orbit of the
group X :=∇′ΘP′ on T0 is a 3-sphere. Therefore dim Xc = 5 for c∈T0 , and Xc is
transitive on T1 and T2 by step (a). Hence P′ is sharply transitive on the orbit
spaces T1/∇′ and T2/∇′ , and P induces the affine group L2 on these orbit spaces.
It follows that a complement Π of P′ in P is sharply transitive on T0/∇′ and fixes
unique compact orbits z∇

′⊂T1 and x∇
′⊂T2 . Put y= (az ∩ vx)u ∩ av . There is

a sequence of elements %ν ∈Π such that the y%ν converge to a , whereas the z%ν

converge to some z ∈ z∇′
and the x%ν converge to some x∈x∇′

. Obviously, this is
impossible. Hence P∼= R2 , and assertion (f) has been proved.

(h) Consider the group Λ = (∇p)
1 , where p is not on a fixed line of ∇ . Then

F =FΛ is Θ-invariant, F<• P , and dim Λ = 1, see step (a); moreover, dim p∇ = 8
and ∇ is transitive outside the fixed triangle, so that ∇p is connected ([14] (94.4a))
and ∇p = Λ∼= SO2R . As Γ =

√
∇= ΘP≤Cs∇Λ and Γ ∩Λ≤ Γ ∩Θ∇′ ∩Λ≤Θ ∩Λ = 1l,

the group Γ leaves F invariant and acts effectively on F . The last part of (d) im-
plies that Γ[u,av] is sharply transitive on T1 ∩F . If w∈T1 ∩F , then Γ1

w
∼= R and Γw

fixes W ∩F pointwise. Because the action of the factor Φ2 of ∇′ on W is equiva-
lent to a linear action (or by Jordan’s theorem), each orbit z∇

′
, z ∈W , intersects

W ∩F . Therefore Γw induces the identity on all orbits z∇
′
, and ΓwΦ1 =∇[a,W ] is

a transitive group of homologies. Analogously, ∇[v,au] is transitive.

(i) As ∆[v,W ] is a transitive group of translations, the coordinate system
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with respect the triangle a, u, v is a Cartesian field (H,+, · ), see [14] (24.4).
Maps in ∇[v,au]×∇[a,W ] have the form (x, y) 7→ (x · c , (b · y) · c). Transitivity of
the two homology groups implies that multiplication is associative and that both
distributive laws hold: (H,+, · ) is a skew field.

6. Groups fixing a triangle

Assume that F∆ is a triangle with vertices a, u, v . Then dim ∆≤ 11; in the case
of equality ∆ is equivalent to the group {(x, y) 7→ (axc, byc) | a, b, c∈H r {0}} of
the quaternion plane, see [10] (∗∗)∗ .

Theorem 6.1. If ∆ is semi-simple or if ∆ has a normal torus subgroup, then
dim ∆≤ 9.

Proof. (a) Suppose that ∆ is semi-simple and that dim ∆ = 10. Then ∆/Z is
isomorphic to a group O′

5(R, r), and ∆ acts almost effectively on each side of the
fixed triangle. Let Φ be a maximal compact subgroup of ∆ . From [14] (96.13b)
it follows that r > 0. If r= 1, then Φ is isomorphic to SO4R or to Spin4R . By
Stiffness, each central involution σ ∈Φ is a reflection, for otherwise the kernel of
the action of Φ on Fσ would be a normal subgroup isomorphic to SO3R . The axis
of σ is one side, say uv , of the fixed triangle, and then σ is in the the kernel of
the map ∆ → ∆|uv and consequently in the center Z of ∆ , but the center of Φ
is not contained in Z . Hence r 6= 1.

If ∆/Z∼= O′
5(R, 2), we show first that ∆ is a Lie group: denote the sides of

the triangle by M0 =W r {u, v} , M1 = aur {a, u} , and M2 = avr {a, v} . Then
∆ is transitive on each space Mν , and lines are homeomorphic to S4 : Otherwise,
there is a point z , say z ∈M0 , such that dim ∆z = 7, and [10] (∗∗) would imply
Φ∼= SO4R . By [14] (53.2), each induced group ∆|Mν is a Lie group, and ∆
is isomorphic to a closed subgroup of ∆|M1×∆|M2 , so that ∆ is indeed a Lie
group. The commutator group Φ′ is isomorphic to SO3R or to Spin3R . In the
second case, the involution in Φ′ is a reflection in Z , and (†) implies that Φ|Mν

is equivalent to SO3R for some ν ∈{0, 1, 2} and that dim Φ = 3. In particular, Φ
fixes a point z ∈Mν . We have ∆'Φ'∆z , Mν 'S3 , and π3Φ∼= Z∼= π3Mν , see,
e.g., [14] (94.36). This contradicts the exact homotopy sequence

Z2
∼= π4Mν → π3∆z → π3∆ → π3Mν → π2∆z = 0 .

(b) If T∼= Θ /∆ , and if a, u, v, x is a quadrangle, then ∆ : ∆x≤ 8 and Θ acts on
B :=FΛx . Hence B<•P and dim ∆x≤ 1.
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