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Abstract. In 1902, D. Hilbert presented a foundation of classical plane ge-
ometries based on three topological axioms concerning a group G of homeomor-
phisms of the real plane. The third of these axioms required essentially that
the action of G on the plane be 2-closed, thus ensuring a kind of compatibility
between the topological and the geometrical (in Klein’s spirit) structures of the
plane. In the present paper we show that the 2-closed actions on noncompact,
connected, locally connected and locally compact spaces are essentially restric-
tions in dense (eventually not strict) subgroups of groups acting properly on the
considered spaces. Generalizing Hilbert’s setting, we define the notion of a “q -
closed geometry” on non-compact and orientable 2-manifolds of finite genus, we
determine the manifolds admitting such geometries and we describe the q -closed
geometries on them; among which are the classical ones on the plane1.
Mathematics Subject Classification 2000: Primary: 37B05, 54H15; Secondary:
51H05.
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1. Introduction

Shortly after his celebrated classical foundation of geometries in Euclid’s spirit,
D. Hilbert published, in 1902, another foundation by transformation groups ([10,
Anhang IV]). Among the three purely topological axioms of Hilbert (cf. [10, pp.
181-185], and Remark 5.1 below), “Axiom III” postulates a kind of compatibility
between the usual topological structure of the plane and its geometrical structure in
the framework of Kleinian Geometries, and leads to the class of “q -closed” actions,
namely those satisfying this Axiom (cf. Definition 1.1). Numerous references
to Hilbert’s paper of 1902 in the years following its publication exhibited the
significance of this paper for the evolution of the modern theory of topological
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transformation groups, and the role of “Axiom III” concerning proper actions (cf.
[15]).

The purpose of this paper is to characterize the q -closed actions on non compact,
connected, locally compact, and locally connected spaces (cf. Theorem 1.2 and
Corollary 1.3), and to indicate the applicability of the corresponding results in
the topological characterization (in the spirit of Hilbert’s 5th problem) of the full
groups of symmetries of geometrical structures (cf. 7). So, throughout this paper,
X denotes a space as above, while the space of the continuous selfmappings and the
group of homeomorphisms of the space X will be denoted by C(X,X) and H(X),
respectively, both equipped with the topology of the point-wise convergence, in
accordance to Hilbert’s framework.

Definition 1.1. A group G < H(X) or its action on X is called q -closed
for q ∈ N (the set of natural numbers), if the following condition is satisfied: If
xk

i → yk for k = 1, . . . , q and there exist gi ∈ G with gix
k
i → zk , then there is a

g ∈ G such that gyk = zk .

The term “q -closed” action was first introduced in [7, p. 420]. Hilbert’s “Axiom
III” postulated the “3-closedness” of the action of the founding group. In [6, Cor.
2, p. 17] it is shown that 2-closedness suffices.

As remarked in [6, Th. 12], for the axiomatic framework and the special cases
considered there, G is closed in H(X). By an example due to H. Abels (cf.
Example 4.1), it is shown that, in our more general framework, “Axiom III” alone
does not guarantee the closedness of G in H(X). So, the following main result of
the paper cannot be improved.

Theorem 1.2. Let X be a non compact, connected, locally compact, and locally
connected space and G a subgroup of H(X) endowed with the topology of the point-
wise convergence. Then

(a) If G is 2-closed, then Ḡ, the closure of G in C(X, X), is also a 2-closed
subgroup of H(X).

(b) G is closed in H(X) and 2-closed if and only if it acts properly on X , in
which case it is q -closed for any q ∈ N .

(c) If G is q -closed for q ≥ 2, then a subgroup H of G is q -closed if and only if
H̄ = H · (

⋂q
k=1H̄xk

) holds for every x1, . . . , xq ∈ Xq (e.g., if H is closed in G).

This theorem indicates that the restriction to 1- and 2-closed actions (G, X) covers
the essential part of the corresponding theory. These actions fit in the following
diagram:
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Here (1) means “each orbit G(x) is a closed subspace of X ” (cf. Proposition 3.1),
(2) “Ḡ = G · (

⋂q
i=1 Ḡxi

) holds for every (x1, . . . , xq) ∈ Xq ” (cf. Theorem 1.2(c)),
(3) “G is closed in H(X)” (cf. Theorem 1.2(b)), (4) “G is locally compact”, and
(5) “holds for metrizable spaces”.

Corollary 1.3. Let X be a non compact, locally compact, connected, and locally
connected metrizable space. The subgroup H of H(X) is q -closed for q ≥ 2
iff there exists an admissible metric d on X such that H is a subgroup of the
group, Id(X), of the d-isometries of X and H = H · (

⋂q
i=1Hxi

) holds for every
(x1, . . . , xq) ∈ Xq .

The above theorem and known results enable the determination of the non compact
and orientable 2-manifolds of finite genus admitting “q -closed geometries” (cf.
Definition 5.2, 6 and 7 below), which can be regarded as a generalization of
Hilbert’s plane geometries founded in [10, Anhang IV]. Moreover, we describe
the 2-closed geometries on the involved 2-manifolds (cf. 7), among which there are
the classical geometries on the plane founded by Hilbert. Since the definition of a
“q -closed geometry” is purely topological, the application of our results provides a
characterization of the corresponding groups of isometries in the spirit of Hilbert’s
5th problem: in Hilbert’s words the results of his paper of 1902 “provide a partial
answer” to this problem concerning the Lie groups of the isometries of the classical
geometries (cf. [15, 6]).

2. Basic notions and notation

We always consider Hausdorff spaces. We recall:

Definition 2.1. Given an action (G, X), for x ∈ X , we denote by G(x) its
orbit, and we let, as usual:

L(x) = {y ∈ X : ∃gi ∈ G with gi →∞ such that gix → y} ,

J(x) = {y ∈ X : ∃xi → x and gi ∈ G with gi →∞ such that gixi → y} .

Here wi →∞ with wi ∈ W means that the net wi does not have any limit point
in W .
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Definition 2.2. (a) The action (G, X) is D -stable if G(x) = G(x)∪J(x) holds
for every x ∈ X .

(b) The action is proper if J(x) = ∅ holds for every x ∈ X .

We remark that in equicontinuous actions J(x) = L(x) holds for every x ∈ X , and
that a group acting properly on a locally compact space X is necessarily locally
compact and closed in H(X) (cf., for instance, [16, p. 320]).

Definition 2.3. For a locally compact space Y , we shall denote by Y + the end-
point compactification of Y , that is the maximal one with totally disconnected
remainder. This compactification can be defined as the quotient space of the
Stone-Čech compactification, ßY , of Y such that the equivalence classes are the
points of Y and the (connected) components of ßY − Y .

Since the space Y + − Y of the ends of Y is totally disconnected, every end has a
neighborhood basis in Y + consisting of sets U with boundaries ∂U lying in Y .

If Y is moreover connected, every action (G, Y ) can be (continuously) extended
to an action (G, Y +) (cf. [1, 2.3]).

< will denote the topological real line or the topological group of the real numbers.

3. The 1-closed actions

Proposition 3.1. An action (G, Y ) is 1-closed if and only if it is D -stable and
its orbits are closed subsets of Y . Equivalently: if and only if the orbit space of
the action is Hausdorff.

Proof. Let the action be 1-closed. If yi → y and giyi → ȳ ∈ Y for gi ∈ G ,
there exists a g ∈ G such that ȳ = gy ∈ G(y), from which follows that J(y) ⊂
G(y), therefore that the orbits are closed subsets of Y . The converse can be proved
analogously by distinguishing the cases gi → g0 , or gi → ∞ . The last assertion
follows from the fact that an orbit space is Hausdorff if and only if J(x) ⊂ G(x)
holds for every x ∈ X .

Remark 3.2. (a) There exist D -stable actions such that their orbits are not
closed subsets of the underlying space, as the example of a minimal flow (e.g. an
irrational flow on the torus) shows; these actions are, therefore, not 1-closed.

(b) Every transitive action of a subgroup of H(X) on X is 1-closed, and there exist
transitive actions that are not 2-closed, as the following example shows: On <2

consider an <-action without fixed points and with the following face portrait: The
parallels to the y -axis through the points of the x-axis with integer coordinates are
orbits tending to infinity alternatively for positive and negative times. The strip
between two successive such orbits is filled by orbits homeomorphic to parabolas.
Because of this, the boundary orbits of a strip are contained in the J -sets of each
other. Let {rn} , with rn → ∞ , be a sequence in the acting group < and let
{xn} be a sequence in a strip with xn → x and rnxn → y , where x and y are
points of the different boundaries of a strip. It follows that rn → ∞ in H(<2),
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which implies that rn → ∞ in every closed subgroup of H(<2) containing the
rn ’s. Let G be the connected subgroup of H(<2) generated by the above <-group
and an <-group acting on <2 by translations with orbits parallel to the x-axis.
This group acts transitively on <2 (for instance, via the horizontal translations
and the vertical orbits). The action of Ḡ , the closure of G in H(<2), on <2 is
not 2-closed, because it is not proper (cf. Theorem 1.2(b)): As mentioned above,
y is contained in the J -set of x with respect to the action (Ḡ,<2). For the same
reason G , acting transitively, is 1-closed, but not 2-closed (cf. Theorem 1.2(a)).

Examples 3.3. The structure of non minimal D -stable flows on non compact
and orientable 2-manifolds of finite genus, M , is described in [3], where it is shown
that manifolds of this kind admitting D -stable flows must have genus at most 1
[3, Th. 4.3]. Moreover, it is shown that M = B ∪P ∪R holds, where B is the set
of the (at most two) fixed points which are local centers (: surrounded by periodic
orbits) [3; Th. 4.4], P is the (open) set of the periodic orbits, and R is the set of
the orbits that are homeomorphic to < . Concerning a connected component, C ,
of R , it is shown that the restriction of the flow on it is a parallelizable dynamical
system [3, Prop. 3.11], and that, by contracting C to one of its orbits, we obtain
a new D -stable flow on M [3, Prop. 4.2]. If the flow is not parallelizable, a non
compact orbit tends in positive and negative time to the same end of M [3, Lemma
3.3], and the closure of a component C in M+ , the end-point compactification of
M , has a neighborhood basis consisting of invariant open sets with one or two
periodic orbits as boundary [3, Cor. 3.12].

These results indicate that the following examples, which shall be used in 6 and 7
below, exhaust the 1-closed flows on the M ’s with at least one orbit homeomorphic
to < . The following examples (1) – (4) explain, to some extent, the structure of
the “1-closed geometries” on the M ’s, which are defined by an action (G, M) with
at least one non compact orbit (cf. the proof of Corollary 6.5(b)):

(1) On M = <2 there exist three types of 1-closed flows:

(a) If B = ∅ , then P = ∅ , therefore the flow is parallelizable, by [3, Th. 3.4].
Hence, the corresponding action is proper and, by Theorem 1.2(b), it is also 2-
closed.

(b) If B consists of one point, this point is surrounded by periodic orbits that
fill up an open (subset, homeomorphic to a) halfplane, while the flow on the
other halfplane is parallelizable. Because of the periodic orbits approaching it,
the boundary orbit of the parallelizable part of the flow coincides with its J -set.
Therefore the corresponding action is not proper. This, the fact that the acting
group, < is closed in H(M) (due, for instance, to the parallelizable part of the
flow), and Theorem 1.2(b) show that the action, being not prorer, is not 2-closed.

(c) If B consists of two points, then to each fixed point corresponds, as before, a
region of periodic orbits surrounding it, the two regions are disjoint, and the flow
in the intermediate unbounded strip is parallelizable. As in (b), the corresponding
action is not 2-closed.

(2) On M = <×S1 (the plane but one point) the following types of 1-closed flows
can occur:
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(a) The parallelizable flow. As in (1)(a) above, the corresponding action is also
2-closed.

(b) If the flow is not parallelizable and has no fixed points, then its face portrait
is as follows: There exist one or two different connected components of R corre-
sponding to different ends of M ; the orbits of such a component tend positively
and negatively to the corresponding end; the flow outside R has only periodic
orbits. The corresponding action is not 2-closed.

(c) Let the flow have (at most two) fixed points. A fixed point of the flow has
an invariant neighborhood U consisting of this point and periodic orbits (cf. [3,
Lemma 3.2]). A connected component of the boundary of U in M+ consists of
an end of M and one orbit in a connected component of R , every point of which
tends positively and negatively to this end. With this modification, the possible
face portraits of the flow correspond to the face portraits in (b). The corresponding
action is not 2-closed, too.

(3) To exhaust the M ’s of genus 0, we have to consider the case M = <×S1−E ,
where E is a compact and totally disconnected subset of <× S1 (: a subspace of
the space of the ends of M ). To every e ∈ E corresponds a connected component
C of the set R , which consists of one orbit [3, Cor. 3.10], or has non empty
interior, and e is the only “point at infinity” of C [3, Cor. 3.13]. The complement
of the union of the C ’s is an invariant subset of M with periodic orbits. These
actions are also not 2-closed.

(4) Finally, the face portraits of the 1-closed flows with at least one non compact
orbit on the manifolds under consideration with genus 1, namely on 2-manifolds
M with M+ the torus, can be obtained from (2)(b) and (3) by identifying the
boundary components of a bounded copy of the cylinder <× S1 . To this, remark
that here case (2)(a) is excluded, because otherwise we would have M = <× S1

[3, 3.4], and case (2)(c) is also excluded: The existence of a fixed point of the flow
implies that the underlying manifold has genus 0 [3, Th. 4.4].

4. The 2-closed actions

4.1. As we remarked before, if the three axioms in Hilbert’s foundation of the
classical geometries of the plane are satisfied, the 2-closed acting group is closed
in H(<2). However, if X is connected, locally compact and locally connected and
the action (G, X) is 2-closed without any additional requirements, then G is not
necessarily closed in H(X), as the following shows.

Example 4.1. (proposed by H. Abels): Let P be a tree with initial point p
such that p is the starting point of exactly one edge, and every other node is the
common point of exactly three edges. On P we consider the usual tree-metric.
The group of isometries I(P ) acts properly on P [16, 4.2], therefore it is compact
because of the fixed point p . Let xk

m → xk
0 and fmxk

m → yk
0 in P for fm ∈ I(P )

and k = 1, . . . , q . First we assume that none of the xk
0 is a node, and denote by

bk, ck the nodes of the edge containing xk
0 and by zk, vk those of the edge containing

yk
0 . We may assume fmbk → zk and fmck → vk . Since only constant sequences of

edges are convergent, we conclude fmbk = zk and fmck = vk , therefore fmxk
0 = yk

0 ,
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because fmxk
0 → yk

0 and the fm ’s are isometries. The case in which some of the
xk

0 are nodes can be treated likewise. So, we have proved that every subgroup of
I(P ) is q -closed for every q ∈ N . On the other hand, it is easily seen that I(P )
has infinitely many elements. Let F be a subgroup of I(P ) generated by a subset
of I(P ) with infinite countable elements. Then F has countably many elements.
Its closure F̄ in I(P ) is an infinite compact group, therefore it has the cardinality
of the continuum. Thus, F is not closed in I(P ), hence not even in H(P ).

This example shows that assertion (b) in Theorem 1.2 cannot be improved. In
order to formulate general results, it is reasonable to embed a 2-closed action
in the end-point (instead, as is usual, in the one-point) compactification of the
considered space. For the proof of our main result we shall use the following
lemmas, resemblant to [6, Th. 10] and [16, Claim in the proof of Th. 3.1].

Lemma 4.2. Let Y be a non compact, connected, locally compact and locally
connected space and (G, Y ) a 2-closed action. If yk

i → y0 in Y for k = 1, 2 and
gi ∈ G with giy

k
i → zk ∈ Y + , then z1 = z2 .

Proof. Let z1 6= z2 and U1, U2 be corresponding neighborhoods of these
points in Y + with ∂U1, ∂U2 ⊂ Y and U1 ∩ U2 = ∅ . Let {Va : a ∈ A} be a
neighborhood basis of y0 consisting of connected sets. Then, there are wk

a ∈ Va

and ga ∈ {gi : i ∈ I} such that gaw
k
a ∈ ∂Uk for k = 1, 2. Therefore wk

a → y0 ,
and we may assume gaw

k
a → wk

0 ∈ ∂Uk for k = 1, 2, because of the compactness
of the boundaries in Y + . From this and the 2-closedness follows that there must
be a g ∈ G such that gy0 = wk

0 for k = 1, 2, a contradiction.

Lemma 4.3. Let (G, Y ) be as in Lemma 4.2. Then, G is equicontinuous with
respect to the uniform structure induced on Y by the one on Y + .

Proof. We recall that the sets of the form B+ =
⋃r

m=1(U
+
m × U+

m), where
{U+

m : m = 1, . . . , r} defines an open covering of Y + , constitute a fundamental
set of entourages for the uniform structure of Y + . The corresponding sets B =⋃r

m=1(Um×Um), where Um = U+
m ∩Y , constitute a fundamental set of entourages

for the induced uniform structure of Y . If G fails to be equicontinuous, then there
should exist a y0 ∈ Y and a B such that, for every Va as in the preceding proof,
we could find a wa ∈ Va and a ga ∈ G with (gawa, gay0) /∈ B . So, we may assume
gawa → w1 ∈ Y + and gay0 → w2 ∈ Y + with w1 6= w2 . This contradicts Lemma
4.2, because wa → y0 and (trivially) y0 → y0 .

Remark 4.4. The arguments in the preceding proof show that G is equicontin-
uous with respect to the uniform structure induced on Y by the uniform structure
of any compactification of it with totally disconnected remainder, e.g. by that of
its one-point compactification. This will be used in the proof of Theorem 7.2.

Lemma 4.5. Let X be locally compact and locally connected, and (G, X) be
2-closed. For F ⊂ G we let K(F ) = {x ∈ X : F (x) = {fx : f ∈ F} is relatively
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compact}. Then, K(F ) is open and closed in X .

Proof. Let K(F ) be not open. Then, there exist xi ∈ X − K(F ) such that
xi → x0 ∈ K(F ). Let A be an open and relatively compact neighborhood of the
compact set F (x0). Then, there are fi ∈ F such that fixi ∈ X − A . We may
assume fixi → y1 ∈ X+ −A and fix0 → y2 ∈ F (x0) ⊂ A , which implies y1 6= y2 .
This contradicts Lemma 4.2, because xi → x0 and x0 → x0 . For the closedness of
K(F ), let {dp : p ∈ P} be a family of bounded pseudometrics defining the uniform
structure U that is induced on X by the uniform structure of X+ (cf. the proof of
Lemma 4.3). Setting d∗p(x, y) = sup{dp(gx, gy) : g ∈ G} , we obtain a new family
{d∗p : p ∈ P} of pseudometrics on X , such that every g ∈ G is a d∗p -isometry.
Therefore, G is uniformly equicontinuous with respect to the uniform structure
U∗ defined by this new family. Since G is equicontinuous with respect to U and
dp(x, y) ≤ d∗p(x, y), U∗ gives the topology of X . Moreover, the entourages

E∗ = {(x, y) : (gx, gy) ∈ E∀g ∈ G}forE ∈ U

are symmetric and form a fundamental set for U∗ with the property (g×g)E∗ = E∗

for g ∈ G . Let xi ∈ K(F ) with xi → x0 in X , and E∗ be such that E∗(x0) =
{x ∈ X : (x0, x) ∈ E∗} is a relatively compact neighborhood of x0 . Let W ∗ be an
element of the preceding fundamental set of U∗ such that W ∗ ◦W ∗ ◦W ∗ ⊂ E∗ and
(x0, x0) ∈ W ∗ . Since F (x0) is compact, we may assume F (x0) ⊂

⋃t
m=1 E∗(fmx0)

for fm ∈ F . We have (fmx0, fmxi0) ∈ (fm × fm)W ∗ = W ∗ . For f ∈ F there is
some m ∈ {1, . . . , t} with fxi0 ∈ W ∗(fmxi0), i.e. (fmxi0 , fxi0) ∈ W ∗ . On the
other hand, we have (fxi0 , fx0) ∈ (f × f)W ∗ = W ∗ . The previous relations and
the choice of W ∗ give (fmx0, fx0) ∈ E∗ , which means fx0 ∈ E∗(fmx0).

Therefore,

F (x0) ⊂
⋃t

m=1
E∗(fmx0) =

⋃t

m=1
fm(E∗(x0)),

from which follows that x0 ∈ K(F ). Thus K(F ) is closed.

Proof of Theorem 1.2. Let ḡ ∈ Ḡ ⊂ C(X, X) and gi ∈ G with gi → ḡ , i.e.
gix → ḡ(x) for every x ∈ X . For given x , we may assume g−1

i ḡ(x) → z ∈ X+ .
For yi = gix → ḡ(x), we obtain g−1

i yi = x → x . From this and Lemma 4.2 follows
z = x ∈ X . Let U be a relatively compact neighborhood of x . Then g−1

i ḡ(x) ∈ U
for i � i0 . Setting F = {g−1

i : i � i0} , we have ḡ(x) ∈ K(F ). From this and
Lemma 4.4 follows X = K(F ), which means that F (x) is relatively compact for
every x ∈ X and, by Ascoli’s Theorem, that F is relatively compact in C(X, X).
Hence, there is a subnet {gj} of {gi} such that g−1

j → h ∈ C(X, X). We claim
that h = ḡ−1 , therefore that ḡ ∈ H(X) (: the equicontinuity of G , guaranteed
by Lemma 4.3, implies the continuity of ḡ and ḡ−1 ). We have already shown that
g−1

j ḡ(x) → x , while g−1
j ḡ(x) → h(ḡ(x)). So, x = h ◦ ḡ(x) holds for every x ∈ X .

On the other hand, the equicontinuity of G implies that g−1
j x → h(x) is equivalent

to gjh(x) → x . From this follows that x = ḡ ◦ h(x), as required. Thus, Ḡ is a
subgroup of the group H(X).

We now show that Ḡ is 2-closed: Let xk
i → xk and ḡix

k
i → yk for ḡi ∈ Ḡ

and k = 1, 2. Also let gi
j → ḡi for gi

j ∈ G . Choosing neighborhood bases
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{U1
a : a ∈ A}, {U2

b : b ∈ B}, {V 1
c : c ∈ C}, {V 2

d : d ∈ D} of y1, y2, x1, x2

respectively, since gi
jx

k
i → ḡix

k
i → yk , we may assume that gi

jx
1
i ∈ U1

a , x1
i ∈ V 1

c

and gi
jxi

2 ∈ U2
b , x2

i ∈ V 2
d hold for i � i0 ≡ i(U1

a , U2
b , V 1

c , V 2
d ). Using this

notation, and applying a kind of a diagonal procedure, we can construct (1) the
set {s = s(U1

a , U2
b , V 1

c , V 2
d ) : a ∈ A, b ∈ B, c ∈ C, d ∈ D} that is directed, as

usual, according to the natural direction of the neighborhoods involved, and (2)
nets {gs} ⊂ G , x1

s → x1 , x2
s → x2 such that gsx

1
s → y1 and gsx

2
s → y2 . Since G

is 2-closed, there is some g ∈ G ⊂ Ḡ such that gxk = yk for k = 1, 2. Thus, Ḡ is
2-closed.

(b) Let xi → x and gixi → y in X for gi ∈ G . We have to prove that gi → ∞
in G is excluded. As in the proof of (a), using a relatively compact neighborhood
U of y , we conclude that F−1 = {gi : i � i0} is relatively compact in C(X, X).
Hence, there is a subnet {gj} of {gi} , such that gj → h ∈ C(X, X).

By (a), we have h ∈ H(X) and, by the closedness of G , h ∈ G , as required. It
follows that G acts properly. On the other hand, let xk

i → xk and gix
k
i → yk for

k = 1, . . . , q . Since the action is proper, we may assume that gi → g0 , otherwise
there would exist non-empty J -sets. By the properness, G is closed in H(X),
therefore g0 ∈ G , from which follows g0x

k = yk for k = 1, . . . , q and every q ∈ N .
(c) By assumption and (a), we have Ḡ < H(X), hence, by (b), the group H̄ ,
being a closed subgroup of Ḡ , acts properly. Let H be q -closed, g ∈ H̄ and
hi → g for hi ∈ H . Assume xk

i → xk for k = 1, . . . , q . Then hix
k
i → gxk . By the

q -closedness of H , there is some h ∈ H such that hxk = gxk , i.e. h−1g ∈ H̄xk

for all k , which means g ∈ H · (
⋂q

k=1H̄xk). On the other hand, let xk
i → xk and

hix
k
i → yk . Since Ḡ , hence H̄ , acts properly on X , we may assume hi → g ∈ H̄

which implies gxk = yk , where g = h · f for some h ∈ H and f ∈
⋂q

k=1H̄xk . It
follows that yk = gxk = h · fxk = hxk .

Remark 4.6. (a) Assertion (c) of Theorem 1.2 indicates that q -closedness for
q ≥ 2 does not necessarily respect restrictions of the action on dense subgroups,
unless the isotropy groups are sufficiently “big”, as it is the case in Example 4.1.
So, proper dense subgroups of groups acting properly with trivial isotropy groups
cannot be q -closed. For example, the restriction of the action of the q -closed group
< of translations on a line to the group Q of the rational numbers is not 2-closed:
If a and b are irrational numbers with irrational difference and pn, qn for n ∈ N
are rational numbers with pn → a and qn → b , then the rational translations
qn − pn send pn to qn , but there is no rational translation sending a to b .

(b) According to Theorem 1.2(b), we are allowed to think of 2-closedness as “pre-
properness” and may replace properness in already known structure theorems
appropriately formulated. For example, the existence of a 2-closed action (G, X)
with Ḡ non compact implies remarkable restrictions on X , as the following results
indicate, where Ḡ replaces the properly acting group G in [1] and [2]:

Corollary 4.7. Let X be as in Theorem 1.2 and G be 2-closed, such that Ḡ
is not compact. Then X has 1, 2 or infinitely many ends. If, moreover, Ḡ is
connected, then X = <k × Y holds, provided (according to Iwasawa’s Theorem,
cf. [13, 4.13, Th., p. 188]) Ḡ is homeomorphic to <k ×K , where Y is a global
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K -slice of the action (Ḡ, X) on which the maximal compact subgroupK of Ḡ acts
effectively.

The proof is an immediate consequence of Theorem 1.2(b), [1, Satz A] and [2, 0.1].

Proof of Corollary 1.3. The proper actions on metrizable spaces like our X are
exactly the closed subgroups of the groups of isometries with respect to admissible
metrics on X (cf., for instance, [16, 4.2]). This and Theorem 1.2(c) complete the
proof.

5. The q -closed geometries

In this section we use the characterizations of the 1- and 2-closed actions proved
so far in order to provide topological foundations of “q -closed geometries” on
orientable and non compact 2-manifolds of finite genus (see Definition 5.2). Our
axioms are similar to those in Hilbert’s paper of 1902 as concerns either their
function (see Definition 5.2(I) and (II) and Remark 5.3) or their formulation (see
Definition 5.2(III)). The classical plane geometries are included in our “2-closed
geometries” (cf. Theorem 7.2 and Remark 7.3(b)).

Remark 5.1. Hilbert’s foundation, published in 1902, is concerned with the
common part of the Euclidean and the Hyperbolic Plane Geometries. The foun-
dation itself is based on a group, G , of homeomorphisms of <2 and has a purely
topological character, a novelty in its time, where the transformations related to
foundations of geometries were supposed to be analytic. In order for the paper
not to be lengthy, we shall restrict ourselves to the following remarks about the
three axioms in Hilbert’s important paper [10, Appendix IV], to which we refer,
that initiated the theory of topological transformation groups and its connection
to geometry. These remarks intend to indicate the relation of our requirements to
Hilbert’s axioms.

In modern terminology, Hilbert’s Axioms may be formulated as follows:

Axiom I: Every homeomorphism of G preserves the orientation. This axiom
is responsible, in Hilbert’s paper, for the indirect consequence that G lies in
the connected component of the identity of the group of Euclidean isometries
(if it contains an abelian normal subgroup) or of the hyperbolic isometries. Our
requirement (I) in Definition 5.2, stating that the founding group is connected, has
its origin in this fact, which, in connection with Axiom II, leads to the conclusion
that G is, in fact, the full connected component of the group of either the Euclidean
or the hyperbolic isometries.

Axiom II: For x, y ∈ <2 with x 6= y , the orbit Gx(y) has infinitely many points.
This axiom is crucial in proving that the Gx ’s are the maximal possible compact
isotropy groups: They are isomorphic to the group S1 of plane rotations. Hilbert
used the fact that the isotropy groups contain the “halfrotations” in order to
construct the “lines” of the geometries (cf. [10, pp. 215–227]). This construction
is the essential step for the conclusion of Hilbert’s paper: The constructed “lines”
together with the notion of “betweeness”, defined via their parametrization, satisfy
the axioms of Hilbert’s classical foundation; therefore the three topological axioms
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provide a foundation of the classical plane geometries. This function of Hilbert’s
Axiom II led to our requirement in Definition 5.2(II) (cf. also Remark 5.3(b)).

Axiom III: The group G is 3-closed. As remarked in the introduction, 2-
closedness suffices in the framework of Hilbert’s foundations. Because of this,
we shall require 2-closedness instead of 3-closedness. The procedures in Hilbert’s
paper exhibit Axiom III as the most functional one.

Definition 5.2. A q -closed geometry for q ∈ N on an orientable and non-
compact 2-manifold M of finite genus is defined by a group G of homeomorphisms
of M satisfying the following three conditions:

(I) The group G is connected.

(II) There exists at least one group of lines, i.e., a connected and non compact
subgroup F of G , which acts non transitively on M , and has the property that
there is at least one point p ∈ M such that the van Dantzig - van der Waerden
condition is satisfied on the orbit F (p): If fn →∞ in F , then fnp →∞ in M .

(III) The action (G, M) is q -closed.

Remark 5.3. (a) According to the results of the preceding sections, we are
mainly interested in the cases q = 1 and 2.

(b) We call a group F as in (II) a group of lines, because its orbits will play
the role of lines of the occurring geometry. So, our condition (II) is analogous to
Hilbert’s Axiom II in that it produces “lines”. It is more substantial than Hilbert’s
Axiom II, but it refers only to one F -orbit, while Hilbert’s Axiom II refers to all
the points of the plane. There may be more than one groups of lines, e.g. the
1-parameter subgroups of the connected component of the Lie group of isometries
of the Euclidean Geometry on the plane.

(c) The van Dantzig - van der Waerden condition in Definition 5.2(II) is an
abstraction of the transitive <-action by translations on an ordinary line of the
plane. It is equivalently formulated for the first time in [5, p. 375] as a property of
the action of the group Id(X) of the d-isometries on a locally compact, separable
and connected metric space (X, d). This property played a crucial role in [5] to
prove that Id(X) is a locally compact topological group.

Problems 5.4. From the above definition arise the following questions concern-
ing orientable and non compact 2-manifolds of finite genus, which will be treated
in the sequel:

(1) Which groups of lines actually occur for q -closed geometries on the M ’s? (cf.
Theorem 6.1)

(2) Which M ’s admit q -closed geometries? (cf. Corollary 6.5(a))

(3) Which are (up to conjugation) the connected subgroups of H(M) that define
1- or 2-closed geometries on the admissible M ’s? (cf. 7)

6. The groups of lines

In this section we intent to prove the following.
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Theorem 6.1. Let F be a group of lines of a q -closed geometry on an ori-
entable and non compact 2-manifold M of finite genus. Then, F is (topologically)
isomorphic to the group <, the dynamical system (F, M) is D -stable, equivalent
to a C∞ -differentiable one, and such that its orbits are closed subsets of M . In
particular, the orbit F (p) (cf. Definition 5.2(II)) is homeomorphic to <.

To this end, we need the following three Lemmas, where we shall use the assump-
tions and the notation of the above theorem.

Lemma 6.2. If G defines a q -closed geometry on M and F is a group of lines
of it, then:

(a) F is a closed subgroup of G, which is therefore non compact, and F (p) is a
closed subset of M .

(b) F is a Lie group homeomorphic to < × K where K is a maximal compact
subgroup of it.

(c) The action (F, M) is q -closed.

Proof. (a) Let fi ∈ F and fi → g ∈ G− F . Then, fi → ∞ in F ,
while fip → gp ∈ M , which contradicts Definition 5.2(II). Thus F is closed
in G , which is therefore non compact, because F is non compact. Since the
action (F, M) satisfies the van Dantzig - van der Waerden condition, the natural
map F/Fp → F (p) is a homeomorphism, and the isotropy group Fp is compact.
Moreover, the orbit F (p) is a closed subset of M , because the set L(p) of its limit
points in M is empty.

(b) So, F (p) is locally compact. It follows that F/Fp is locally compact, too, hence
that F is a locally compact group. Since it is also connected and non-compact
(cf. (a)), by Iwasawa’s Theorem, it is homeomorphic to <n × K , where n is a
positive integer. Here K is a (possibly empty) maximal compact and connected
subgroup of F . Let K ≡ {1M} × K , where 1M denotes the identity of M , be
non-trivial. Since the action (F, M) is not transitive, the codimension of the orbits
of the action (K,M+) is lower than 2. Thus, by [14, Cor. in p. 1, (iii)], K is a
compact and connected Lie group. It follows that F is locally euclidean, hence
a Lie group. Taking into account the arguments and the notation in the proof of
(a), and the fact that the maximal compact subgroups of F are conjugate to each
other, we may assume that the compact group Fp is contained in K . From this
and the 1-dimensionality of F (p) (because it is connected and locally compact,
and F does not act transitively on M ), follows n = 1, as required.

(c) The assertion is a consequence of (a), Definition 5.2(III), and Theorem 1.2(c).

Concerning the maximal compact subgroup K of F , we have:

Lemma 6.3. (a) If M+ is aspherical, or M+ −M consists of more than two
points, then K is trivial.

(b) Let M+ = S2 and M+ −M have at most two points. If the case K 6= ∅ can
occur, then a subgroup of K isomorphic to S1 acts on M = <2 with exactly one
fixed point surrounded by periodic orbits, or on M = <× S1 with periodic orbits.
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Proof. (a) By Lemma 6.2(b), if K is non-trivial, it contains a subgroup
isomorphic to S1 . Assume that M+ is aspherical. Since M+−M is a non empty
and totally disconnected set, it consists of fixed points of the action (S1, M+);
therefore, by [4, Cor 5.3], this action is trivial, a contradiction.

Assume now that M+ = S2 and M+ − M has more than two points. Then,
if e is an end-point of M , the action (S1, M+ − {e} = <2) has at least one
1-dimensional orbit. Therefore, by [13, 6.5, Th. in p. 252], it has exactly one
fixed point surrounded by periodic orbits. This contradicts the assumption about
the existence of at least two fixed points of the action (S1, M+ − {e}), which are
end-points of M .

(b) There are two subcases: M = S2−{e} = <2 and M = S2−{e1, e2} = <×S1 .
In the first case, if we assume that K is non-trivial, the preceding arguments
show that its subgroup S1 can act on M as the isotropy group of its unique
fixed point. In the second case, e2 will be the unique fixed point of the action
(S1, M+ − {e1} = <2), therefore S1 can act on M with periodic orbits.

Proposition 6.4. A maximal compact subgroup K of F is always trivial.

Proof. Let K be non trivial. According to Lemma 6.3(a), we may restrict
ourselves to the cases M = <2 and M = < × S1 . By Lemma 6.2(b), F is
homeomorphic to < ×K and K has a subgroup isomorphic to S1 , which, as in
the proof of Lemma 6.3(a), acts on M with periodic orbits that surround a fixed
point (an end in the case M = < × S1 ). So, the point p from Definition 5.2(II)
is contained in the interior of such periodic orbits. On the other hand, because
of the van Dantzig - van der Waerden condition, the connected orbit F (p) is non
compact. Therefore, intersects periodic orbits of the form ({1M} × S1)(x) ⊂
F (x). Let fp , for some f ∈ F , be a point of such an intersection. Then
({1M} × S1)(fp) is a simple closed curve contained in F (p), which contains also
the “line” (<×{1M})(p). Therefore, F (p) is 2-dimensional, hence an open subset
of M . Since, by Lemma 6.2(a), F (p) is also closed in M , the action (F, M) would
be transitive, which contradicts Definition 5.2(II). Thus K must be trivial.

Proof of Theorem 6.1. From Lemma 6.2(b) and Proposition 6.4 follows that F
is isomorphic to the topological group < . By Lemma 6.2(c), the dynamical system
(F, M) is D-stable, therefore the orbit F (p), being non compact, is homeomorphic
to < . For the same reason, the F -orbits are closed subsets of M (cf. Proposition
3.1), and the non compact orbit F (p) is homeomorphic to < . It remains to prove
the C∞ -differentiability of (F, M): The end-point compactification M+ of M is
an orientable and compact 2-manifold such that M+ − M , the set of the ends
of M , is totally disconnected [3, p. 620]. The action (F, M) has an extension
(F, M+). By the “Smoothing Theorem” in [8, p. 17], a dynamical system on a
compact 2-manifold is topologically equivalent to a C∞ -differentiable one, if it has
simple minimal sets. We recall that a minimal set of a non-transitive dynamical
system on a 2-manifold is textit{simple} if it consists of a fixed point or a periodic
orbit. Non-simple minimal sets on a compact manifold contain Poisson-stable
points (i.e., points x for which x ∈ L+(x) ∩ L−(x) holds). According to [3, Cor
3.1], the Poisson-stable points of a D-stable dynamical system on a 2-manifold of
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finite genus are either fixed or periodic. This, and the fact that the ends of M
are fixed points of the action (F, M+), because F is connected, implies that the
minimal sets of this action are simple, and the theorem is proved.

Corollary 6.5. (a) The orientable and non-compact 2-manifolds of finite genus
admitting q -closed geometries are exactly those of genus at most one.

(b) The face portraits of the actions of the groups of lines for the q -closed geome-
tries on orientable and non compact 2-manifolds of finite genus are described in
Examples 3.3.

Proof. The assertion in (a) is an immediate consequence of Theorem 6.1 and [3,
Th. 4.3], where it is shown that an orientable and non compact 2-manifold of finite
genus admitting a non minimal D-stable flow has genus at most 1. The assertion
in (b) follows from the fact that Examples 3.3 exhaust the D-stable dynamical
systems on the M ’s with at least one non compact orbit (corresponding to the
orbit F (p)).

7. The “minimal” 1- and the “maximal” 2-closed geometries

7.1. The 1- but not 2-closed groups. As we saw in Remark 3.2(b), there exist
transitive actions of groups on M defining 1- but not 2-closed geometries. Then,
the connected subgroups of H(M) containing such a group would also define an 1-
but not 2-closed geometry. So, it is reasonable to deal with “minimal” subgroups
of H(M) defining 1- but not 2-closed geometries on M . Here the “minimality”
is defined by requiring that the corresponding group has no strict subgroups
determining 1- but not 2-closed geometries. It is clear that these minimal groups
correspond to the various groups of lines that do not act properly. By Corollary
6.5(b), the face portraits of the corresponding actions are described in Examples
3.3, excluding the cases of the parallelizable flows. The non minimal 1- but not
2-closed groups correspond to those connected subgroups of H(M) that contain
one of these groups of lines and act transitively on M . A typical example of such
a transitive action is described in Remark 3.2(b).

We add the following information: If M is different from <2 or < × S1 , or it
has more than two ends, then every group of lines F defines an 1- but not 2-
closed geometry. To see this, check that, by Theorem 6.1 and Remark 6.2(a), F
is isomorphic to < and closed in H(M). It cannot be 2-closed; otherwise, by
Theorem 1.2(b), it should act properly, from which follows that M should have
an <-factor, contrary to our assumptions.

Remark 7.1. Since a group of lines acts non transitively, the axiom that “two
different points are joined by a unique line” is not satisfied in an 1- but not 2-closed
geometry defined by a minimal group. It can be satisfied in a 2-closed geometry,
if the group G is sufficiently “rich” of 1-parameter subgroups acting properly,
e.g. if G is the connected component of the groups of isometries of the classical
geometries on the plane.
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7.2. The 2-closed geometries. By Theorem 1.2(a) and (b), we may regard
the 2-closed groups as dense subgroups of groups G < H(X) acting properly
on M . It is, therefore, reasonable to study the “maximal” subgroups of H(M)
defining 2-closed geometries on M . A 2-closed group G is “maximal”, if there
is no subgroup of H(X) strictly containing G and defining a 2-closed geometry
on M . By Theorem 1.2(a), the maximal groups are necessarily closed in H(M).
Thus, by Theorem 1.2(b), a maximal group is q -closed for every q ∈ N . If we
know the maximal groups, then any other 2-closed group can be obtained taking
into account Theorem 1.2(c).

Theorem 7.2. <2 and < × S1 are the only orientable and non-compact 2-
manifolds of finite genus admitting 2-closed geometries. On <2 there are, up to
conjugation in H(<2), two maximal groups defining 2-closed geometries, namely
the connected components of the groups of isometries of either the Euclidean or
the Hyperbolic Geometries of <2 . The maximal subgroups of H(< × S1) define
2-closed geometries on <× S1 that are Riemannian and such that their groups of
isometries are isomorphic to <× S1 .

Proof. By Theorem 1.2(a) and (b), we may assume that the maximal group
G defining a 2-closed geometry on M acts properly on M . The group of lines
F = < (cf. Theorem 6.1) is, by Lemma 6.2(a), a closed subgroup of G , therefore
the action (F, M) is proper. So, according to [1, 0.1], M is homeomorphic to
<× S for suitable S . Since M is a 2-dimensional manifold, S is a 1-dimensional
manifold (cf. [9, Ch. VII, 1.6]), hence S = < or S1 .

Let M = <2 . According to Remark 4.4., G acts equicontinuously on M with
respect to the uniform structure induced on <2 by that of the one-point com-
pactification, S2 , of <2 . By [6, 2, Th. 1], the maximal connected subgroups of
H(<2) acting equicontinuously on <2 with respect to this uniform structure are
(up to conjugation in H(<2) the connected components of the group of isometries
of either the Euclidean or the Hyperbolic Geometries, which, thus, are the only
maximal groups defining 2-closed geometries on <2 .

Now let M = <× S1 . The group G is locally compact (: it acts properly on M ),
connected (by Definition 5.2.(I)) and non compact (by Lemma 6.2(a)); therefore,
it is homeomorphic to <n × K . Since the action (G, M) is proper, its orbits,
G(x), are homeomorphic to G/Gx , and the isotropy groups, Gx , are compact; it
follows n = 1. Regarding F = < × {1M} as a group of lines, we conclude, as
before, that the (maximal) K -factor of G acts on the S1 -factor of M , from which
follows K = S1 . Thus, we have G = <× S1 . Since, the actions of F = <× {1M}
and {1M} × K on M are differentiable (by Theorem 6.1 and Lemma 6.3(b),
respectively), the action (G, M) is C∞ -differentiable. Moreover, G acts properly
on M . So, we may assume that it acts by Riemannian isometries (cf. [12, Ch.
I, 4, Th. 2]). Since M is not simply connected, the dimension of its group of
Riemannian isometries is less than 3 (cf., for instance, [11, Ch. 2, Th. 3.1]).
Therefore, G = <× S1 is the maximal Lie group that can occur as connected Lie
group of Riemannian isometries on M .
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Remark 7.3. (a) Our requirements in Definition 5.2., in conjunction with the
maximality of the corresponding groups, topologically characterize the geometries
mentioned in the above theorem and their Lie groups of isometries in the spirit
the of Hilbert’s 5th problem.

(b) The considerations in this section show that among the 2-closed geometries
on M , only in the case M = <2 isotropy groups isomorphic to S1 can occur,
as in the framework of Hilbert’s foundation of the classical geometries by virtue
of his Axiom II. This axiom is responsible for the “maximal” isotropy groups
that can occur in Hilbert’s framework; a feature corresponding to the maximality
of the groups defining 2-closed geometries on M , among which are the classical
geometries on the plane.
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