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1. Introduction

The problem of understanding branching laws for a unitary representation of a
group G with respect to a subgroup L has received attention due in part to
its important applications in Number Theory, Fourier Analysis on Homogeneous
spaces and Physics. The literature is quite vast and the techniques to attack the
problem rely on different areas of mathematics like algebraic geometry, combina-
torics, analysis, geometry. For an update on the problem we refer to [15] and
references therein. For the purpose of this note, G denotes a rank one, connected
matrix simple Lie group G. Once and for all we fix a maximal compact subgroup
K of G and denote by g = k + s the corresponding Cartan decomposition of the
Lie algebra of the group G. The Lie algebra of a group is denoted by the corre-
sponding German lower case letter and the complexification of either a real vector
space or a real connected matrix Lie group is denoted by adding the subscript C.
The aim of this note is to to list, up to equivalence, the totality of triple (G, L, V )
such that L is a closed connected subgroup of K and V is a Harish-Chandra
module for G which is L−admissible. We provide an answer in the language of
associated variety of a Harish-Chandra module.

To a Harish-Chandra module (π, V ), Vogan in [22], has attached an alge-
braic subvariety of sC. This variety is called the associated variety of (π, V ) and de-
noted by Ass(π). Based on the Langland’s classification of the irreducible Harish-
Chandra modules for G, Collingwood in [2] has determined the dimension of
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Ass(π). We state some of our results by means of the associated variety. In
order to state our results in terms of Langlands’s classification of Harish-Chandra
modules we refer to the tables in [2]. Let N denote the cone of nilpotent elements
in sC. The adjoint representation of GC restricted to KC leaves invariant the sub-
space sC as well as the cone N . Unless g = sl(2, R), N is the closure of one orbit
of KC. For example, for (π, V ) the underlying Harish-Chandra m odule of a Dis-
crete Series representation and g isomorphic to either so(1, 2q), q ≥ 2 or f4(−20)

the associated variety is N . Whereas, for sp(1, q) and (π, V ) a Discrete Series
representation which is small in the sense of [9], the associated variety is a proper
subvariety of N . For π irreducible Harish-Chandra module, the associated variety
of π is different of the trivial orbit if and only if π is infinite dimensional. To
avoid cumbersome statements, in this note, we only consider infinite dimensional
irreducible Harish-Chandra modules for g. Next, we consider a closed connected
subgroup L of K together with (π, V ) a Harish-Chandra module for G. Hence,
the restriction of (π, V ) to L decomposes as a direct sum of irreducible represen-
tations, by definition, (π, V ) restricted to L is admissible when the multiplicity
of each irreducible L−factor is finite . In [13], we find equivalent statements to
admissibility as well as properties of L−admissible representations. For a non-
compact closed semisimple subgroup H of G whose maximal compact subgroup
is L, and an irreducible unitary representation (π, V ) of G, we define (π, V ) to be
H−admissible whenever (π, V ) restricted to H decomposes as a Discrete Hilbert
sum of irreducible representations and each irreducible factor has finite multi-
plicity. In [6], [13] is shown that for a unitary irreducible representation of G,
admissible restriction to L of the underlying Harish-Chandra module implies
H−admissibility. In [5] is shown that whenever (π, V ) is a discrete series represen-
tation, H−admisibilty implies L−admissibility of the underlying Harish-Chandra
module. Kobayashi, in [14], conjectures that for an unitary irreducible representa-
tion of G and (G, H) a symmetric pair, H−admissibility implies L−admissibility
of the underlying Harish-Chandra module.

For our first result, we fix a compact connected subgroup L of K. Hence,
L acts on the unit sphere of s. We have,

Theorem 1.1. Assume L acts transitively on the unit sphere of s. Then,
any Harish-Chandra module (π, V ) for G is admissible when restricted to L.
Conversely, if the associated variety of π is N and (π, V ) restricted to L is
admissible. Then, L acts transitively on the unit sphere of s.

After we show theorem 1.1 we explicit the subgroups involved in the state-
ment of the result.

The ensuing results analyzes the case the associated variety is a proper
subvariety of N . To begin with, let us recall that up to local isomorphism, the
rank one groups are

SU(1, q), SO0(1, q), Sp(1, q), F4(−20).

Respective maximal compact subgroups are

S(U(1)× U(q)), SO(q), Sp(1)× Sp(q), Spin(9).
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With respect to the KC−orbits in N , in [3], we find a proof that for so(1, q), q ≥ 3
the nilpotent cone has no proper KC− invariant closed subvarieties. For either
sp(1, q), q ≥ 2 or f4(−20), KC has one proper orbit and for su(1, q), KC has two
proper orbits. Let L a compact connected subgroup of K.

Theorem 1.2. Assume the associated variety of the Harish-Chandra module
(π, V ) is a proper subvariety of N . Then,

• For su(1, q), π|L is admissible iff S[Cq]LC = C.

• For sp(1, q), π|L is admissible iff L is conjugate to either Sp(1) × B, with
B closed subgroup of Sp(q) or to S × Sp(q1) × · · · × Sp(qr), with S closed
subgroup of Sp(1) and q1 + · · ·+ qr = q.

One consequence of theorem 1.1 and theorem 1.2 is: Any Harish-Chandra
module for SO(1, 2q) (resp., Sp(1, q)) has admissible restriction to U(q) (resp.,
Sp(q)). In section 2,3,4 we point out more examples.

For the case of F4(−20) it follows from theorem 1.1 and the classification of
orthogonal groups which acts transitively on the unit sphere that every Harish-
Chandra module whose associated variety is N does not have an admissible
restriction to a proper subgroup of Spin(9). In order to state a result when Ass(π)
is a proper subvariety of N we set up some notation. From now on, for a subgroup
Spin(k) of Spin(9) we mean a conjugate to the inverse image of the immersion of
SO(k) in SO(9) as an upper left block or equivalently immersed as a lower right
block. For the next statement, let (π, V ) be a Harish-Chandra module for F4(−20).

Theorem 1.3. We set L to be a connected closed reductive subgroup of Spin(9).
Assume Ass(π) is proper. Then π restricted to L is admissible if and only if L
is conjugated to a subgroup which contains Spin(6).

Corollary 1.4. Assume Ass(π) is a proper subvariety of N . For L simple,
if π restricted to L is admissible, then L is conjugated to one of Spin(m), m =
6, 7, 8, 9.

In section 4 we verify that if semisimple connected subgroup H of F4(−20)

contains Spin(6) then H is compact. The copy of SO(6, 1) inside SO(8, 1) has
as one of its maximal compact subgroups the usual immersion of SU(4) in SO(8).
Actually, Spin(6) is conjugated to SU(4) by an outer automorphism of Spin(8)
of order two. We recall that every automorphism of Spin(8) is the restriction
of an inner automorphism of F4(C). The maximal connected closed subgroups of
Spin(9) are:

Spin(n)× Spim(m), n + m = 9, n ≤ m; SU(2) � SU(2)

and a homomorphic image of SU(2) whose projection on SO(9) acts irreducible
in R9. We show,
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Corollary 1.5. Assume Ass(π) is proper. Then π restricted to a maximal
connected closed subgroup L of Spin(9) is admissible if and only if L is conjugated
to one of Spin(m)× Spim(9−m), m = 6, 7, 8, 9.

The connected simple Lie subgroups of F4(C) has been classified by Dynkin,
in order to show theorem 1.3 we review the list in section 4. The maximal closed,
connected reductive subgroups of F4(−20) have been classified by Komrakov [17].
The list up to conjugation and up to covering is:

SU(2, 1)× SU(3), SL2(R)×G2, SO(8, 1), Sp(2, 1)× SU(2), K.

Here, G2 is a compact Lie group for the algebra g2.

Theorem 1.6. Let H be a proper semisimple noncompact connected subgroup
so that H ∩K is a maximal compact subgroup of H and π an irreducible Harish-
Chandra module of F4(−20). Then, π restricted to H ∩K is admissible if and only
if the associated variety of π is a proper subvariety of N and H is conjugated to
SO(8, 1).

Many of the results of this note follow from ideas of Michel Duflo as well as
of enlightening discussions with him. The author would like to thank Michel Duflo
for his generosity. The author also likes to thank David Vogan for allowing to use
fact (2.3) and to Michel Brion, Willem de Graaf, Mike Eastwood, Peter Trapa for
neat and quick answer to questions.

2. Proof of theorem 1.1

For each Harish-Chandra module π , Vogan in [22] has defined the associated
variety Ass(π). This is an algebraic subset of the set of nilpotent elements N in
sC. Besides Ass(π) is invariant under the action of KC. Thus, KC acts on the
ring of regular functions in Ass(π). In [22] is shown that N is the union of finitely
many KC−orbits. Hence, Ass(π) enjoys the same property. Meanwhile is needed
we recall properties of N .

We now show:

(2.1)Let π be a Harish-Chandra module for G and let L denote a closed
connected subgroup of K which acts transitively on the unit sphere of s. Then, π
restricted to L is an admissible representation.

For this, we recall several important facts, let b denote the killing form on
g, we use the same notation for the quadratic form associated to b. Kostant-Rallis
in [18] has shown:

(2.2) N is the zero set in sC for the quadratic form attached to b. Moreover,
the ideal of the variety N is the ideal spanned by the restriction to sC of the
quadratic form associated to b.

Other important fact we need, which is due to Huang-Vogan, is:

(2.3) Let L be a closed connected subgroup of K. Then, a Harish-Chandra
module for G restricted to L is admissible if and only if the representation of
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L in the algebra of regular functions on the associated variety of the module is
admissible.

The following result is useful:

(2.4) Let L be a connected complex reductive group, V a finite dimen-
sional rational representation of L and C an irreducible and L− invariant cone in
V. Then, the left regular representation of L in the ring of regular functions C[C]
of C is admissible if and only if C[C]L = C.

For a proof c.f. [20]. Actually, (2.4) is a consequence of the following result
in algebraic geometry

(2.5) Via left multiplication each isotypic component for the representation
of L in C[C] becomes a module over the ring C[C]L. Then, for an irreducible cone
C, each isotypic component is a finitely generated module over the ring C[C]L. For
a proof [20].

We now show (2.1) Let L be a subgroup of K which acts transitively on the
unit sphere of s. Then S[sC]L = C[b]. In fact, if p is an invariant polynomial for L,
the assumption on L implies p takes on a constant value on each sphere centered
at the origin. Since, G is a rank one group, K acts transitively on each of such
spheres. Thus, p is K− invariant polynomial. The result of Huang-Vogan (2.3)
and (2.4) yields that any irreducible Harish-Chandra module for G is admissible
when restricted to L and we have shown (2.1) when the associated variety is N .
To conclude the proof of direct implication in theorem 1.1 we consider the case
Ass(π) is a proper subvariety of N . Since, the ring of regular functions C[Ass(π)]
of Ass(π) is an L−equivariant quotient of C[N ] and we have shown that C[N ]
is an admissible representation of L, the direct implication in theorem 1.1 follows
from (2.3).

Note: Another proof of the direct implication in theorem 1.1 is as follows,
let G = KAN denote an Iwasawa decomposition for G. As usual let M denote
the centralizer of A in K. Because of the Casselman embedding theorem (π, V ) is
a subrepresentation of a minimal principal series IndG

MAN(σ ⊗ ν). Hence, as K −
module, (π, V ) is a subrepresentation of IndK

M(σ). Our hypothesis implies that L
acts transitively on K/M. Therefore, the theorem of Mackey on restriction of an
induced representation yields that the Harish-Chandra module of (π, V ) has an
admissible restriction to L.

Next we show:

(2.6)Let π be an irreducible Harish-Chandra module for G whose associated
variety is N and which has admissible restriction to L. Then, L acts transitively
on the unit sphere of s.

Indeed, owing to the theorem of Huang Vogan (2.3) the invariants of L in
the ring of regular functions on N is the subspace of constant functions.

Assume L does not act transitively on the unit sphere of s. Thus, there
exists an L− invariant polynomial on s which separates two orbits of L in the
unit sphere, however, because of our hypothesis on L and π this polynomial is
the constant polynomial. Hence, L acts transitively on the unit sphere of s. This
shows (2.4) and we have conclude the proof of theorem 1.1.

Note: We like to point out, that if G is a semisimple connected Lie group
so that some subgroup of K acts transitively on the unit sphere of s, then G has
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real rank equal to one.

For sake of completeness, for each g we choose a Lie group G and we list
the closed connected subgroups L of K which acts transitively on the unit sphere
of s. For this, we denote by Spins(2k + 1) the image of Spin(2k + 1) by its spin
representation.

• SU(1, q) ⊃ K = U(q). Here s ≡ R2q. Then, L is one of: SU(q); U(q)
Besides, for q even Sp( q

2
).

• SO0(1, 2q+1) ⊃ K = SO(2q+1). For 2q+1 6= 7, L = K. For 2q+1 = 7, L =
SO(7) or L is the image of the seven dimension irreducible representation
for G2.

• SO0(1, 2q) ⊃ K = SO(2q). Then L is one of: K; SU(q); U(q);
Spins(7) ⊂ SO(8); Spins(9) ⊂ SO(16); Besides, for q even
S × Sp( q

2
) ⊂ SO(2q) , S closed subgroup of Sp(1).

• Sp(1, q) ⊃ K = Sp(1)× Sp(q). s ≡ R4q. L = S × Sp(q), S closed subgroup
of Sp(1).

• F4(−20) ⊃ K = Spin(9). L = K.

theorem 1.1 together with the list of subgroups of K which acts transitively on
the unit sphere of s leads us to:

Corollary 2.1. Let π be a Harish-Chandra module for G and L denote a proper
subgroup of K. Then for g, L listed bellow, π|L is an admissible representation of
L.

• su(1, q), L := SU(q), Sp(q/2)

• so(1, 7), L := G2

• so(1, 2q), L := SU(q), U(q), Sp(q/2), S × Sp(q/2),
Spins(7) ⊂ SO(8), Spins(9) ⊂ SO(16).

• sp(1, q), L := S × Sp(q).

Since for so(1, n), n ≥ 3, every non trivial KC−orbit in N is equal to N
we have,

Corollary 2.2. Let π be an infinite dimensional Harish-Chandra module for
so(1, n), n ≥ 3 and L a subgroup of K so that π|L is an admissible representation
of L. Then,

• For n odd, L = K, or n = 7 and also L = G2.

• For n = 2q , L = K or L = SU(q), U(q), S × Sp(q/2),
Spins(7) ⊂ SO(8), Spins(9) ⊂ SO(16).
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3. Proof of theorem 1.2

In order to show theorem 1.2 we need to compute the associated variety of some
Harish-Chandra modules for G. Whenever g = so(1, n), the nilpotent cone is
equal to an orbit of KC union the origin and since, we dealt with represen-
tations whose associated variety is proper we are left to consider the algebras
su(1, q), sp(1, q), f4(−20). For these three cases, rank of K is equal to rank of G.
We fix a maximal torus T of K. Let Φ(g, t) denotes the root system for the pair
(gC, tC). Let θ denote the Cartan involution of g associated to the Cartan de-
composition g = k + s. Let q = l + u denote a θ−stable parabolic subalgebra of
gC. Then, for each one dimensional representation λ of l, Vogan and Zuckerman
has constructed a Harish-Chandra module Aq(λ) which is irreducible and nonzero
whenever λ is in the good range with respect to u. Let u− denote the opposite
algebra to u. For λ in the weak range with respect to u, in [13] we find a proof
that

Ass(Aq(λ)) = Ad(KC)(u− ∩ sC) (3.1).

Thus, Ass(Aq(λ)) is an irreducible KC− invariant subcone of N . Moreover, when-
ever the parameter λ varies among the good range parameters, the associated
variety of Aq(λ) depends only on the parabolic subalgebra q. Thus, we may write
Ass(Aq) for Ass(Aq(λ)).

Lemma 3.1. If Ass(π) is a proper subvariety of N , then for a convenient data
q we have that Ass(π) = Ass(Aq).

Proof. To show the lemma we do a case by case analysis. We recall there
exists an orthogonal basis ε, δ1, . . . , δq of it? so that

Φ(su(1, q), t) = {±(ε− δj), (δr − δs), r 6= s}

Φ(sp(1, q), t) = {±(ε± δj),±(δr ± δs),±2ε,±2δj, r 6= s, }.

An orthogonal basis δ1, . . . , δ4 of it? so that

Φ(f4(−20), t) = {±δj, (±δr ± δs),±
1

2
(δ1 ± δ2 ± δ3 ± δ4), r < s}.

To follow, we give a system of positive roots ∆ for Φ(k, t) and we list the
systems of positive roots for Φ(g, t) which contains ∆.

• su(1, q), ∆ := {δr−δs, r < s}, Ψa is associated to the lexicographic order

{δ1 > · · · > δa > ε > δa+1 > · · · > δq}, 0 ≤ a ≤ q.

Ψ0, Ψq are the holomorphic systems which contains ∆.

• sp(1, q), ∆ := {2ε, δr ± δs, 2δj, r < s}, Ψa associated to the lexicographic
order

{δ1 > · · · > δa > ε > δa+1 > · · · > δq}, 0 ≤ a ≤ q.

Ψ0 is the quaternionic (small) system in the sense of Gross-Wallach [9].
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• f4(−20), ∆ := {δj, δr ± δs, r < s, }. In this case, there are three systems of
positive roots for Φ(f4(−20), t) containing ∆.

Ψ1 := {δj, (δr ± δs), r < s,
1

2
(δ1 ± δ2 ± δ3 ± δ4)}.

whose simple roots are

δ2 − δ3, δ3 − δ4, δ4,
1

2
(δ1 − δ2 − δ3 − δ4)

Let β := 1
2
(δ1 − δ2 − δ3 − δ4), β

′ := 1
2
(δ1 − δ2 − δ3 + δ4), as usual, Sγ is the

reflexion about the root γ. The other systems are Ψ2 := SβΨ1, Ψ3 := Sβ′Ψ2.

In order to complete the proof of lemma 3.1 we define convenient parabolic
subalgebras and compute the associated variety Ass(Aq).

For either su(1, q) or sp(1, q) we set ba to denote the Borel subalgebra
determinate by the system of positive roots Ψa. Formula (3.1) yields,

• su(1, q). Let s+ := b0 ∩ sC, and s− := bq ∩ sC. Then

Ass(Ab0) = s−, Ass(Abq) = s+, Ass(Aba) = N , 1 ≤ a < q.

Both, s± are Ad(U(q)) invariant irreducible linear subspaces of dimension q. In
[3] is shown that s± are the unique proper subvarieties of N which are associated
varieties of a Harish-Chandra module.

• sp(1, q). For 1 ≤ a ≤ q, Ass(Aba) = N .

Ass(Ab0) = {v + t[Y2ε, v], v ∈
∑

j

CY−ε±δj
, t ∈ C} (3.1).

Here, Yα is a nonzero root vector for the root α. Hence, dimAss(Ab0) = 2q + 1.
The last equality follows from

Ass(Ab0) = Ad(KC)(
∑

j

CY−ε±δj
) = Ad(Sp(1))(

∑
j

CY−ε±δj
) (3.2).

Note that
∑

j CY−ε±δj
is invariant under the action of Texp(CY−2ε)× Sp(q). The

Bruhat decomposition for Sp(1) yields the equality (3.1). We point out that the
action of Sp(q) on the linear subspace

∑
j CY−ε±δj

is equivalent to usual one in

C2q. In [3] is shown that the variety (3.1) is the unique proper subvariety of N
equal to an associated variety.

• f4(−20). For the system Ψ2 the long simple roots are compact and the
short simple roots are noncompact. −β is the short simple root whose node in the
Dynkin diagram is an end point. Let q4 = l4 + u4 denote the parabolic subalgebra
associated to the fundamental weight corresponding to −β. Then, l4 ∩ f4(−20) ≡
so(6, 1), dim u4 ∩ kC = 10, dim u4 ∩ sC = 5 and dimAd(K)(u−4 ∩ sC) = 11. Since
in [3] there is a proof that in N there is only one KC−orbit of dimension 11
we conclude the proof of lemma 3.1 for f4(−20) . A direct computation shows that
the Lie algebra of Spin(9) ∩ SO(6, 1) is the usual immersion the algebra su(4) in
so(8).
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We now show theorem 1.2.

• su(1, q)

In [3] is shown that the proper subvarieties of N which are equal to the
associated varieties of some irreducible Harish-Chandra module are precisely the
subvarieties s±. Since, the action of U(q) in s+ is equivalent to the usual action of
U(q) in Cq the statement in theorem 1.2 about su(1, q) follows from the theorem
of Huang-Vogan (2.3) coupled with (3.1) Another proof is given in Kobayashi [12].

The classification of the close reductive subgroups L of GL(q, C) such that
S[Cq]L = C has not been accomplished, yet. A pair (L, V ) where L is complex
reductive groups and V finite dimensional representation of L so that L has an
open orbit in V is called a prehomogeneous spaces. For a prehomogeneous space
(L, V ) we always have C[V ]L = C. Whenever L is a semisimple complex Lie
subgroup of GL(V ) so that C[V ]L = C then (L, V ) is a prehomogeneous space, for
a proof c.f [16]. Substantial progress on the problem of classifying prehomogeneous
spaces has been accomplished by Kac, Sato, Kimura, Gerald Schwarz, Gyoja. For
a reference c.f. [16] and references therein. The semisimple irreducible subgroups
L of SLq such that (L, Cq) is a prehomogeneous space has been classified by Kac,
Sato-Kimura, Littelman, they are:

(SLn � SLm, Cn � Cm), m
2
≥ n ≥ 1; (SL2m+1, Λ

2(C2m+1));
(SL2n+1 � SL2, Λ

2(C2n+1) � C2); (Sp(n) � SL2m+1, C2n � C2m+1), n ≥ 2m + 1;
(Spin(10), C16) half spin rep in C16; (Sp(2) � SLm), m ≥ 5;

(H � SLm, Cn � Cm), m ≥ n ≥ 1,

H semisimple and which acts irreducible on Cn.

Example of pairs (L, Cq) so that C[Cq]L = C are constructed as follows:
Let Lj ⊂ GL(Cnj), j = 1, · · · , k be subgroups so that C[Cnj ]Lj = C. Let L =
L1 × · · · × Lk act on Cn1 × · · · × Cnk in the obvious way. Since,

C[Cn1 × · · · × Cnk ]L = C[Cn1 ]L1 ⊗ · · · ⊗ C[Cnk ]Lk

we have that C[Cn1 × · · · × Cnk ]L = C. As consequence, a holomorphic discrete
series for SU(1, 2n) has an admissible restriction to S(U(n)× U(n)), n ≥ 3.

• sp(1, q) In [3], we find a proof that the orbits of KC in N are: one dense
orbit; one orbit of dimension 2q + 1; the trivial orbit. Thus, (3.1), (3.2) imply
Ass(Ab0) is the unique associated variety which is a proper subvariety of N . To
begin with we analyze the structure of an invariant regular functions on Ass(Ab0).
Owing to (3.1), a regular function p on Ass(Ab0) may be written p =

∑
k ck(v)tk,

where ck are polynomials in v ∈
∑

j CY−ε±δj
.

We set T1 := Sp(1) ∩ T. Hence, T1 is a one dimensional torus. For s ∈ T1,
we have Ad(s)(v + t[Y2ε, v]) = s−εv + (sεt[Y2ε, v]). We consider a closed connected
subgroup B ⊂ Sp(q). Therefore, p is invariant under the action of T1 × B if and
only if for every k, ck is a homogeneous polynomial of degree k and invariant
under B. Thus, we conclude

C[Ass(Ab0)]
T1×B = C if and only if C[C2q]B = C.

Similarly,

C[Ass(Ab0)]
B = C if and only if C[C2q]B = C.
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Lemma 3.2. Let B be a closed connected subgroup of Sp(q). Then, S[C2q]BC =
C if and only if B is conjugated to a subgroup Sp(q1) × · · · × Sp(qr) with q1 +
· · ·+ qr = q.

Proof. Since Sp(C2q) has an open orbit in C2q the converse implication follows.
For the direct implication, the hypothesis on B implies there exists B− irreducible
linear subspaces V1, · · · , Vr of C2q so that

C2q = V1 ⊕ · · · ⊕ Vr.

Let ω denote a nondegenerate skew-symmetric form whose group of isometries is
Sp(q, C). We claim that no Vj is an isotropic subspace for ω. Otherwise, since ω
is nondegenerate, Vj ⊕ V ?

j would be an B−submodule and hence the evaluation
map would give rise to an B− invariant element of the symmetric algebra of C2q

of positive degree. Let pj denote the projection onto Vj along the sum of the
subspaces Vk, k 6= j. Thus, pj(B) is an irreducible subgroup of Sp(Vj, ω|) so that
S[Vj]

pj(B) = C. From the work of [19] we may conclude pj(BC) = Sp(Vj, ω). Thus,
B is isomorphic to a product of symplectic groups.

Lemma 3.2 together with the Theorem of Huang Vogan, let us conclude

(3.3) A Harish-Chandra module for sp(1, q) whose associated variety is of
dimension 2q + 1 has an admissible restriction to a subgroup L = T1 ×B, or to a
subgroup L = B if and only if B is conjugated to Sp(q1)× ...× Sp(qr),

∑
qj = q.

Since any two torus in Sp(1) are conjugated, we obtain part of the converse
implication in theorem 1.2 concerning to Sp(1, q).

To conclude of the proof of the converse implication for sp(1, q) we now show
that if Ass(π) has dimension 2q + 1, then π restricted to Sp(1) is an admissible
representation.

For this we recall a result of Kostant on the minimal nonzero nilpotent orbit
in sC. We state the result in a way that is valid for either sp(1, q) or f4(−20). We
fix a system of positive roots Ψ for Φ(g, t).

(3.4) The minimal nonzero nilpotent orbit in sC is equal to the orbit of any
nonzero root vector. The closure of the minimal nilpotent orbit is equal to the
union of the orbit with the zero orbit. Let βM denote the maximal noncompact
root in Ψ. Hence, βM is the highest weight for the irreducible K− module sC.
For each non negative integer k let VkβM

denote the irreducible representation of
K whose highest weight is kβM . Then, the KC−modules structure on the ring of
regular functions on the minimal nilpotent orbit is equivalent to ⊕k≥0V

?
kβM

. For a
proof c.f. [10].

Back to sp(1, q)! Because of (3.4) the Sp(1)×Sp(q)−decomposition of the
ring of regular functions on the minimal nilpotent orbit is

⊕k≥0V
?
kε � V ?

kδ1
.

Hence, C[Ass(b0)] is an admissible module over either Sp(1) or Sp(q). Thus, the
result of Huang-Vogan let us conclude that any Harish-Chandra module whose
associated variety is of dimension 2q + 1 has an admissible restriction to Sp(1).
This concludes the proof of the converse statement for case of sp(1, q).
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Note: Since V2kε contains a a nonzero vector fix by T1 we obtain that π
has no admissible restriction to a proper closed connected subgroup of Sp(1).

For the direct implication in theorem 1.2 which concerns the algebra sp(1, q),
let L be a subgroup of Sp(1) × Sp(q) so that some Harish-Chandra module π
whose associated variety is of dimension 2q + 1 has an admissible restriction to
L. After conjugation, and projecting onto the factors of K, we may assume L is
a contained in one of:

Sp(q), T1 ×B, Sp(1)×B.

In [6], [13] we find a proof of

(3.5) For a Harish-Chandra module for G, admissible restriction to L
implies admissible restriction to any subgroup of K which contains L.

Hence, if L1 denotes any of the three subgroups listed above, we have
C[Ass(π)]L1 = C. Thus, lemma 3.2 yields: for the first case

L = Sp(q1)× · · · × Sp(qr);

for the second possibility L is the product of a one dimensional torus times
L ∩ Sp(q), after conjugation by un element of Sp(q) we may assume the torus
is the graph (t, φ(t)) t ∈ T1 where φ : T1 → T ∩ Sp(q) is a rational morphism,
then Ad(L) leaves invariant the subspace

∑
j CY−ε±δj

, hence Ad(L) ∩ Sp(q) =
Sp(q1) × · · · × Sp(qr) and L is isomorphic to T1 × Sp(q1) × · · · × Sp(qr); for
the third case, L contains an ideal L2 of the type (a, φ(a)), a ∈ Sp(1), and
φ : Sp(1) → Sp(q) a morphism. If B does not contain an Sp(1)−factor, then
L = Sp(1)× B. If the projection of L2 into B is nontrivial, then the center of L
is contained in Sp(q) and we have to analyze the invariants for the sp(1) factor.

4. Proof of theorem 1.3 and theorem 1.6

We now show that there is only one connected simple Lie group F4(−20) whose
Lie algebra is f4(−20). Indeed, for f4 the weight lattice agrees with the root lattice.
Thus, the center of the complex simply connected Lie group of Lie algebra f4
is trivial. Hence, up to isomorphism, there is only one complex simple Lie group
whose Lie algebra is f4. In [8] page 348 we find a proof that the analytic subgroup of
F4(C) corresponding to f4(−20) is simply connected. Thus, there is up isomorphism,
one connected Lie group F4(−20) with Lie algebra f4(−20). For F4(−20), K ≡ Spin(9).
The Cartan decomposition is f(4(−20) = so(9) + R16 and the representation of
so(9) in s is the spin representation. It follows from the classification of the
subgroups of an orthogonal group which acts transitively on a unit sphere that
if L is a subgroup of Spin(9) acting transitively on the unit sphere of R16, then
L = Spin(16). Therefore, theorem 1.1 yields that for π a Harish-Chandra module
for F4(−20) whose associated variety is N , then π has no admissible restriction to
any proper subgroup of Spin(9). In [3] we find a proof there is a unique proper
Spin(9)C orbit on N , and is of dimension 11. It is the minimal nonzero nilpotent
orbit of KC in sC. Let βM = 1

2
(δ1 + δ2 + δ3 + δ4). Thus, βM is the highest weight

of the spin representation of Spin(9). For a dominant weight γ of Spin(9) let
Vγ denote the irreducible representation of highest weight γ. According to the
theorem of Kostant (3.4), the left regular representation of KC in the ring of
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regular functions in the closure of the minimal nilpotent orbit is equivalent to the
direct sum

∑
k≥1 V ?

kβM
. Thus, the theorem of Huang-Vogan yields

(4.1) Let π be a Harish-Chandra module for f4(−20) whose associated variety
is a proper subvariety of the nilpotent cone. Let L be a compact connected
subgroup of Spin(9). Then, π|L is admissible if and only if

V L
kβM

= {0} for every k ≥ 1.

From now on, when we refer to Spin(m), m = 5, 6, 7, 8, 9 as a subgroup of
Spin(9) we are thinking of the immersion of Spin(m) as a left upper block.

To follow we show the converse statement in theorem 1.3, which is a conse-
quence of (3.5) and
(4.2)Let π be a Harish-Chandra module for f4(−20) whose associated variety is a
proper subvariety of N . Then, π restricted to Spin(6) is admissible.

For this, we successively apply the theorem of Murnaghan, to
Spin(9) ⊃ Spin(8) ⊃ Spin(7) ⊃ Spin(6) and VkβM

.
Here, kβM = (k

2
, k

2
, k

2
, k

2
). Thus, the set of highest weight of the irreducible

Spin(6)−factors of VkβM
is

{(k
2
, a, b),

k

2
≥ a ≥ |b|}.

Therefore, for positive k the trivial representation of Spin(6) does not occur in
VkβM

. Thus, the theorem of Huang-Vogan yields π|Spin(6) is admissible. If we go
one step further to Spin(5) we get that the trivial representation of Spin(5) occurs
in V4kβM

, k > 0 which let us conclude.

(4.4)Let π be a Harish-Chandra module for f4(−20) so that its associated
variety is proper. Then π restricted to Spin(4)×Spin(5) is not admissible. Hence,
for any subgroup L of Spin(9) conjugated to a subgroup of Spin(5), π restricted
to L is not admissible as it follows from (3.5). In particular, for n = 2, 3, 4, 5 π
restricted to Spin(n) is not admissible.

Here, as usual, Spin(n) × Spin(m), n + m = 9 is the subgroup Spin(n)
times de image of Spin(m) as a lower right block.

For other proof of (4.4), we verify

V
Spin(4)×Spin(5)
kβM

6= {0} for integers k = 4s

This follows from the Theorem of Cartan-Helgason (theorem 8.49 in [11]). In fact,
since, for the symmetric pair (SO(9), SO(4) × SO(5)) a Cartan subspace is a
Cartan subalgebra for so(9), for the time being, we may fix t equal to a Cartan
subspace of the pair (SO(9), SO(4)×SO(5)). The Cartan-Helgason theorem gives:

V
Spin(4)×Spin(5)
kβM

6= {0} is equivalent to k(βM ,α)
2(α,α)

is a nonnegative integer for every

positive root α. This is so, for k = 4s. Hence, π restricted to Spin(4)× Spin(5)
is not an admissible representation.

Next, we study restriction to maximal subgroups of Spin(9).
In [7], Dynkin has computed the maximal connected subgroups of Spin(9). They
are:

Spin(n)× Spin(m), n + m = 9; Spin(3) � Spin(3);
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and the image of SU(2) = Spin(3) into Spin(9) whose projection into SO(9) is
equal to the image of the nine dimensional irreducible representation of SU(2).

We now show that π restricted to the image of the irreducible representation
(SU(2), R9) is not admissible.
We rely on a result of Birkes [1].

(4.5) Let L be a a complex connected reductive subgroup of GL(V ) and v
a vector in V whose isotropy subgroup contains a maximal torus of L. Then, the
orbit Lv is closed. In, particular, the orbit of a zero weight vector is closed.

To begin with, we construct the explicit immersion of SU(2) in Spin(9) as
a maximal subgroup. We fix once and for all a Chevalley basis for f4(−20)

H1, H2, H3, H4, Yα, α ∈ Φ(f4(−20), t).

The structure constants are as in [4]. Conjugation with respect to f4(−20) of Yγ

is Y−γ(resp. − Y−γ) for γ noncompact (resp. compact). We set δi(Hj) = δij. In
order to simplify the notation we write Y++−+ := Y 1

2
(δ1+δ2−δ3+δ4) and so on. The

minimal nilpotent orbit in sC (3.4) is the Spin(9)C−orbit of Y++++ and hence for
any noncompact root γ, any root vector Yγ, lies in the minimal nilpotent orbit.
Let

H = 8H1 + 6H2 + 4H3 + 2H4, X+ = Yδ1−δ2 + Yδ2−δ3 + Yδ3−δ4 + Yδ4 .

We denote by X− the conjugate of X+. Then, H, X+, X− span a principal
sl2−subalgebra slpr of so(9, C) and the ensuing representation of slpr in C9 is
orthogonal and irreducible. It readily follows that SLpr is the complexification
of a copy of SU(2) which, in turn, is a maximal subgroup of Spin(9). Under
Ad(SLpr) the space sC decomposes as the sum an eleven dimensional irreducible
representation of highest weight vector Y++++ plus a five dimensional irreducible
representation of highest weight vector 16Y++−−+Y+−++. Actually, from a simple
calculation if follows that a highest weight vector for the five dimensional subrep-
resentation is of the form aY++−− + Y+−++ for a convenient nonzero a. The table
in [4] yields a = 16. The subspace of vector of weight zero for ad(H) is spanned
by the root vectors Y+−−+, Y−++−. Both vec tors belong to the minimal nilpotent
orbit. Therefore (4.5) implies that the orbit Ad(SLpr)Y+−−+ is closed and hence
can be separated of the zero orbit by a regular function invariant under Ad(SLpr).
Thus, (2.4)and (2.3) imply π restricted to SLpr ∩ Spin(9) = ”SU(2)” is not an
admissible representation.

To follow we show π restricted to SU(2) � SU(2) ≡ Spin(3) � Spin(3) is
not admissible.
Let H, X, Y be a basis of sl2 := sl(2, C) so that [H, X] = 2X, [H, Y ] = −2Y,
[X,Y ] = H. The irreducible representation of sl2 in C3 is orthogonal. We fix a
basis of weight vectors v2, v0, v−2 and quadratic form q on C3 invariant under the
action of sl2. Thus,

q(v2, v2) = q(v−2, v−2) = 0, q(v0, v0) = −q(v2, v−2) = 1.

This form is invariant under the action of SU(2). Hence,there exists an SU(2)
–invariant real vector subspace V of C3 so that q is positive definite in V and
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C3 = V ⊗R C. We consider the quadratic form q1 := q⊗ q. The maximal subgroup
SU(2) � SU(2) is the image of SU(2) × SU(2) in Spin(V ⊗ V, q1). Dynkin has
shown that this image is a maximal subgroup. The matrix of q1 in the ordered
bas is B

v2 ⊗ v2, v2 ⊗ v0, v2 ⊗ v−2, v0 ⊗ v2, v0 ⊗ v0, v0 ⊗ v−2, v−2 ⊗ v2, v−2 ⊗ v0, v−2 ⊗ v−2

is antidiagonal and every entry in the antidiagonal is nonzero. Thus, in the ordered
basis B the diagonal matrices

diag(h1, h2, h3, h4, 0,−h4,−h3,−h2,−h1)

gives a Cartan subalgebra for spin(9)C. Here,

δj(diag(h1, h2, h3, h4,−h4,−h3,−h2,−h1)) = hj.

On the basis B the matrix of H ⊗ id is equal to

diag(2, 2, 2, 0, 0, 0,−2,−2,−2)

and for id⊗H is
diag(2, 0,−2, 2, 0,−2, 2, 0,−2).

H ⊗ id, id⊗H span a Cartan subalgebra u for sl2 ⊗ sl2, we denote the roots by
±φj, j = 1, 2 hence,

φ1(H ⊗ id) = 2, φ1(id⊗H) = 0, φ2(H ⊗ id) = 0, φ2(id⊗H) = 2.

Then, weights of the spin representation for Spin(9) restricted to u are

1

2
(θ1δ1 + θ2δ2 + θ3δ3 + θ4δ4)|u = (θ1 + θ2 + θ3)

φ1

2
+ (θ1 − θ3 + θ4)

φ2

2
.

Here, θj ∈ {1,−1}. Thus, the zero u−weight subspace has dimension zero.

Since the roots which restrict to φ1 are δ2, δ3 +δ4, δ1−δ4 and the roots that
restrict to φ2 are δ4, δ1 − δ2, δ2 − δ3 the vectors Y++++, Y++−+ are dominant with
respect to φ1, φ2. Hence, the restriction to sl2 ⊗ sl2 of the spin representation of
so(9) decomposes as

C4 � C2 ⊕ C2 � C4

Let a, b complex numbers and

va,b := Ad(exp(aY−δ1−δ2 + bY−δ3−δ4))Y++++

Thus, va,b belongs to the minimal nilpotent orbit. We claim that when ab 6= 0,
then Ad(SL2(C) � SL2(C))va,b is closed. To compute va,b we apply the tables in
[4] and obtain

va,b = Y++++ − aY−−++ + bY++−− + abY−−−−

Hence, the TC orbit of va,b is closed as soon as ab 6= 0. The Bruhat decomposition
of SL2(C)�SL2(C) and a computation yields that the orbit is closed and we have
verified that π restricted to SU(2) � SU(2) is not admissible.
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Up to now, we have shown the converse implication for both theorem 1.3
and theorem 1.6, as well as corollary 1.5. The direct implication in theorem 1.3
and corollary 1.4 will be completed at the end of this section.

We now show the direct implication in theorem 1.6. For this we consider
table 1 bellow, from which it follows. The maximal connected reductive subgroups
H of F4(−20) has been obtained by Komrakov [17]. Up to conjugation and cov-
ering in the first column we list the maximal connected reductive subgroups, in
the second column we compute a maximal compact subgroup and the third col-
umn indicates H ∩K−admissibility of Harish-Chandra modules whose associated
variety is proper.

H H ∩K Adm. Res.
Sp(1, 2)× SU(2) Spin(4)× Spin(5) No
SU(3)l × SU(2, 1)s SU(3)× U(2) No
SO(8, 1) Spin(8) Yes
SL2(R)×G2 SO(2)×G2 No
Spin(9) Spin(9) Yes

Table 1

We are left to justify the statement for both SL2(R)×G2 and SU(3)l×SU(2, 1)s.
We first consider SL2(R) × G2. For this we compute an explicit immersion of
SL2(R) × G2 in F4(−20). The complex Lie algebra f4, as an Spin(8)−module,
decomposes as the sum of the adjoint representation plus the first fundamental
representation and the sum of the two spin representations. That is,

f4 = so(8) + (
∑

j

CYδj
+

∑
j

CY−δj
) + W + W ′

Here, W, W ′ are copy of the spin representations for Spin(8). Actually,

W =
∑

CYε1ε2ε3ε4 , W ′ =
∑

CYε1ε2ε3ε4 (4.6)

The sum for W runs over the epsilon’s so that ε1ε2ε3ε4 = 1 and the one for W ′

over the epsilon’s w ith ε1ε2ε3ε4 = −1.

As a module over Spin(7), f4 is equal to the sum of: the adjoint representa-
tion, two copies of the seven dimensional representation, the trivial representation
and two copies of the spin representation. We explicit the pieces needed for future
computations,

so(7, C) := span{H2, H3, H4}+
∑

2≤i6=j≤4

CY±δi±δj

+
∑

2≤j≤4

C(Yδ1+δj
+ Y−δ1+δj

) +
∑

2≤j≤4

C(Yδ1−δj
+ Y−δ1−δj

)

The line in so(9) fixed by so(7) is C(Yδ1 − Y−δ1). Every irreducible finite dimen-
sional representation of G2 is orthogonal and the lower dimensional irreducible
representations are of dimension 1, 7, 14. We fix a copy of g2 in so(7, C). Hence,
there exists Z,Z ′ copies of the seven dimensional irreducible representation for
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G2, and X, Y vectors where G2 acts trivially so that W = Z + CX, W ′ =
Z ′ + CY. Since the centralizer of g2 in f4 is isomorphic to sl2, [7], we obtain
that g2 × spanC{(Yδ1 − Y−δ1), X, Y } is a realization of g2 × sl2 as a maximal sub-
algebra of f4. We need more information on X,Y. For this we conjugate the copy
of G2 in Spin(7) so that a Cartan subalgebra v for g2 is

v := {h2H2 + h3H3 + h4H4 : h2 + h3 + h4 = 0}.

It follows that the subspace of sC where v acts by zero is spanned by the vectors

Y++++, Y−−−−, Y−+++, Y+−−−.

Because of (4.6) the first two vectors are in W and the second two in W ′. The
zero weight in Z has multiplicity one and ad(Yδ1 − Y−δ1) maps W in W ′. All of
these allows us to choose the root vectors so that

X = Y++++ + Y−−−−, Y = Y−+++ − Y+−−−

and
[Yδ1 − Y−δ1 , X] = Y, [Yδ1 − Y−δ1 , Y ] = −X.

Hence, X2 + Y 2 is invariant under ad(Yδ1 − Y−δ1) and we conclude that
(4.7) X2 + Y 2 is invariant under K ∩ (SL2(R)×G2).
Since b(X2+Y 2, Y++++) 6= 0 we have shown that π restricted to K∩(SL2(R)×G2)
is not an admissible representation.

We now analyze the subgroup SU(3)l × SU(2, 1)s.
The Lie algebra of this group is constructed as follows. A Cartan subalgebra is t

and the root system is the span of −δ1−δ2, δ2−δ3, δ4,
1
2
(δ1−δ2−δ3−δ4). The long

roots provides the SU(3) factor whereas the two short roots generate the SU(2, 1)
factor. The decomposition of sC as K ∩ (SU(3)l × SU(2, 1)s)−module is:

C � C2 + C3 � C2 + C � C2 + C3 � C2

Generators for each summand are respectively

Y+−−+, Y+−−−; Y++++, Y−−++, Y−+−+, Y+++−Y−−+−, Y−+−−;
Y−++−, Y−+++; Y++−−, Y−−−−, Y+−+−, Y++−+Y−−−+, Y+−++.

The representations of K ∩ (SU(3)l×SU(2, 1)s) in the subspaces, C � C2, C � C2

are contragredient. The regular function defined by either Y+−−+ or Y−++− re-
stricted to Ass(π) is nonconstant, since Ass(π) is an irreducible closed subvariety,
their product is nonzero. Hence, Y+−−+Y−++− determines a nonconstant regular
function on Ass(π) invariant under K ∩ (SU(3)l×SU(2, 1)s). Thus, (2.3) implies
that π restricted to K ∩ (SU(3)l×SU(2, 1)s) is not admissible. This verifies table
1 and concludes the proof of the direct implication in theorem 1.6 and hence the
proof of theorem 1.6 is concluded.

Next, we study admissible restriction to a reductive subgroup of Spin(9)
of a Harish-Chandra module whose associated variety is proper. In the following
tables for each group Spin(m) shown on the first line, in the first column we
list a representative of each conjugacy class of its maximal connected reductive
subgroups, on the second column we point if a Harish-Chandra module with proper
associate variety has an admissible restriction to the subgroup on the same row.
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Spin(9)
Spin(1)× Spin(8) Yes
Spin(2)× Spin(7) Yes
Spin(3)× Spin(6) Yes
Spin(4)× Spin(5) No
SU(2) No
SU(2) � SU(2) No

Spin(8)
Spin(1)× Spin(7) Yes
Spin(2)× Spin(6) Yes
Spin(3)× Spin(5) No
Spin(4)× Spin(4) No
U(4) No
Spins(7) No
SU(3) No
Sp(1) � Sp(2) No

Spin(7)
Spin(1)× Spin(6) Yes
Spin(2)× Spin(5) No
Spin(3)× Spin(4) No
G2 No

Spin(6)
Spin(1)× Spin(5) No
Spin(2)× Spin(4) No
Spin(3)× Spin(3) No
U(3) No

Here U(n) indicates the image of the usual immersion of U(n) in SO(2n), G2 is
the image of the seven dimensional representation of the simple connected compact
Lie group of Lie algebra g2, SU(3) is the image of SU(3) under the adjoint
representation, SU(2) is the image of the irreducible representation of dimension
9 of SU(2) in Spin(9).

We already have verified the table for Spin(9). To justify the statement on
Spin(r) × Spin(s) ⊂ Spin(r + s) we apply (3.5), (4.2), (4.3) and (4.4). The
subgroups Spin(3) × Spin(3), Spin(3) × Spin(4) are handled via the Cartan-
Helgason theorem as the subgroup Spin(4)× Spin(5). From (4.7) we deduce the
statement for G2. The analysis of the subgroups U(3), U(4) is somewhat parallel.
The line CY++++ as well as the line CY−−−− are invariant under U(3), U(4) and
the action are respectively 1

2
(1, 1, 1, 1),−1

2
(1, 1, 1, 1). Both vectors Y++++, Y−−−−

determine nonconstant regular functions on Ass(π). The irreducibility of Ass(π)
implies that their product defines a nonconstant regular function on the associated
variety. The product is invariant under U(3), U(4). Thus, (2.3) implies that there
is no admissible restriction to U(3), U(4).

The subgroup Sp(1) � Sp(2) = Spin(3) � Spin(5) ⊂ Spin(C2 � C4) as
maximal subgroup of Spin(8) is handled in a blend of the technique applied to
the subgroup SU(2) � SU(2) and the subgroup SU(2) as maximal subgroups of
Spin(9). We first realize by means of a convenient basis of C2 ⊗ C4 the action of
the usual torus a of Spin(3)�Spin(5). We do this in such a way that a becomes a
subspace of a Cartan subalgebra which consists of all the the diagonal matrices in
so(8, C). Next, we obtain the decomposition of W as Spin(3) � Spin(5) module,
it is W = C3 � C + C � C5. Thus, the trivial weight for a occurs with multiplicity
two in W. It turns out that Y++++, Y+−−+ is a basis of the zero weights vectors for
a. Thus, the theorem of Birkes (4.5) together with (2.1) yields that π restricted
to Sp(1) � Sp(2) is not admissible.

We now analyze the inclusion of SU(3) in Spin(8). The dimension of the
lower irreducible and nonequivalent representations of SU(3) are 1, 3, 3, 6, 6, 8.
Either the representations of dimension three or six are not equivalent to their
respective contragredient representations, the eight dimensional representation is
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equivalent to the adjoint representation and hence orthogonal. Dynkin has shown
this image of SU(3) is a maximal subgroup of Spin(8). Every spin representation
of Spin(8) is orthogonal, which forces that any spin representation of Spin(8) is
irreducible when restricted to the image of SU(3). Thus, the zero weight for a

has multiplicity two on either W or W ′. Since a zero weight vector for a is a sum
of root vectors for t and all the root vectors in s are in Ass(π) (4.2) yields an
SU(3)C−closed orbit in Ass(π) and hence, π restricted to SU(3) is not admissibl
e. This concludes the verification of the four tables.

We show the converse statement in corollary 1.4. For this, we list the
compact simple groups together with the nontrivial morphisms into Spin(9).

After the work of Dynkin it follows that the simple subgroups of Spin(9)
are images of

G2, SU(2) ≡ Spin(3) ≡ Sp(1), SU(3),

SU(4) ≡ Spin(6), Spin(5) ≡ Sp(2), Spin(7), Spin(8), Spin(9).

Also, in the same paper Dynkin classified the simple subgroups of F4(C). They
are images of one of

SL2(C), SL3(C), SL4(C) ≡ Spin(6, C), Spin(5, C) ≡ Sp(2, C),

Spin(7, C), Spin(8, C), Spin(9, C), Sp(3, C), G2(C).

We shall verify that some groups may have nonconjugated images. We recall that
any automorphism of Spin(9) is inner, hence, the list of the maximal subgroups of
Spin(9) let us conclude that if L is a subgroup of Spin(9) image of Spin(8) then
L is conjugated the usual immersion of Spin(8) in Spin(9). The group Spin(7)
has precisely two images into Spin(9). One is Spin(7) and the other is Spins(7).
In fact, the spin representation for Spin(7) is orthogonal, hence its image gives
rise to a subgroup Spins(7) of Spin(8). Spins(7) is not conjugated to Spin(7)
because under Spin(7), R9 decomposes as the first fundamental representation
plus two copies of the trivial representation, whereas the decomposition of R9,
as Spins(7) module, is equal to the sum of the spin representation added to
the trivial representation. The claim that, up to conjugation, these are two
conjugated images of Spin(7) in Spin(9) follows from the fact the irredu cible
representations of Spin(7) of dimension less than 9 are orthogonal and they are
R, R7, R8. For Spin(6) ≡ SU(4) the irreducible representations for Spin(6) of
dimension less than 10 are: R, C4, (C4)?, R6. The second and third representations
are neither orthogonal nor symplectic. Hence, the morphism of SU(4) in Spin(9)
are: SU(4) ⊂ Spin(8), SU(4) ≡ Spin(6). We already know there is no admissible
restriction to the first image, while there is admissible restriction to the second
image. We claim Spin(5) has two nonconjugated images in Spin(9). For this we
recall that the low dimensional irreducible representations of Spin(5) are C, C5, C4.
The last one is a symplectic representation. The other two are orthogonal. Hence,
we get the image Spin(5) ⊂ SO(C4 + (C4)?). The image of this Spin(5) is a
subset of SU(4) ⊂ Spin(8). Hence, there is no admissible restriction to this
image of Spin(5). The other image is the usual one. The images of SU(3) are:
the irreducible image in Spin(8) and the inclusion SU(3) ⊂ SO(C3 + (C3)?) =
SO(6, C). The tables show that there is no admissible restriction to any of the
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two images. To finish the proof we consider SU(2) ≡ Spin(3). The case of the
irreducible representation of SU(2) in R9 was considered previously. The other
possibilities yields that the image of SU(2) in some cases is contained in subgroups
Spin(r) × Spin(s) so that there is no admissible restriction to, except for the
case the image is contained in Spin(7) × Spin(2). Dynkin has shown that the
irreducible image of SU(2) in R7 is contained in G2. The tables show there is no
admissible restriction for this case. The other possibility is an inclusion of the type
SU(2) ⊂ SU(2r) ⊂ SO(C2r +(C2r)?). The tables show that there is no admissible
restriction and we have shown corollary 1.4.

To conclude the proof of the direct implication in theorem 1.3 we assume
L is a closed connected reductive nonsimple subgroups L of Spin(9) so that some
Harish Chandra module with proper associate variety has an admissible restriction
to L. We want to show some conjugate of L contains Spin(6). Owing to the table
for Spin(9) we may assume L is a subgroup of one of Spin(n)×Spin(9−n), n =
6, 7, 8. For L contained in Spin(8) the table for Spin(8) shows may assume L
is a subgroup of Spin(7) or Spin(6) × Spin(2). For the first case, the table for
Spin(7) implies L contains a copy of Spin(6), for the second possibility and
L semisimple we have that L is contained in Spin(6), the table for Spin(6)
implies L = Spin(6), if the center of L is of positive dimension after some
work it also follows that L contains a conjugate of Spin(6). For a semisimple
subgroup L of Spin(7) × Spin(2) we have L is a subgroup of Spin(7) and the
table for Spin(7) yields that L contains a conjugate of Spin(6). For a re ductive
subgroup L of Spin(6)× Spin(3) and the projection of L into Spin(3) is trivial,
the table for Spin(6) implies L is equal to Spin(6). For a reductive subgroup L
of Spin(6)×Spin(3) and the projection of L into Spin(3) is non trivial we arrive
in a contradiction unless L = Spin(6) × Spin(3). In fact, if L were a proper
subgroup of Spin(6) × Spin(3), there would be a nontrivial smooth morphism

φ : Spin(3) −→ Spin(6) so that L = {(φ(a), a), a ∈ Spin(3)}(̇L ∩ Spin(6)) and
the image of φ commutes with L ∩ Spin(6). This forces that L is contained in a
conjugate of either Spin(3) � Spin(3) or Spin(4)×Spin(5), which in turn any of
two, implies there is no admissible restriction to L. Also, by use of LiE and the
list of maximal subgroups of Spin(6) we checked that for (L∩ Spin(6))Spin(3) a
proper reductive subgroup of Spin(6)× Spin(3) there is no admissible restriction
to L.

5. Aside on Discrete Series representations

Harish-Chandra showed that G admits representations whose matrix coefficients
are square integrable with respect to Haar measure on G if and only if a maximal
torus T for K is a Cartan subgroup of G. Then, he parameterizes the equivalence
classes of square integrable irreducible representations by nonsingular elements of
the weight lattice of characters of T. Another way to parameterize the Harish-
Chandra modules associated to Discrete Series representations is by the set of
equivalence classes of Ab(λ) where b is a Borel subalgebra which contains t and λ
is a unitary character for T in the good range for b. Hence, (3.1) implies that the
associated variety for Ab(λ) depends only on b and not on the character λ. Thus,
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(2.3) yields that admissible restricted to L of the family of Discrete Series Ab(λ)
depends only on the systems of positive roots Ψ corresponding to b. Actually, in
[5] we have shown for Discrete series representation H−admissibility is equivalent
to H ∩ K−admissibility of the underlying Harish-Chandra module. As before,
G is a connec ted matrix rank one Lie group. Henceforth, we assume G admits
square integrable representations.

Theorem 5.1. Let L be a connected compact subgroup of K. There exists a
square integrable irreducible representation (π, V ) whose Harish Chandra parame-
ter λ is dominant with respect to Ψ with admissible restriction to L if and only
if

For su(1, q), either Ψ is a holomorphic system and L is so that C[Cq]L = C
or Ψ is a non holomorphic system and L belongs to the class of groups which acts
transitively on the unit sphere of R2q.

For G locally isomorphic to SO(1, 2q), Ψ is arbitrary and L is a subgroup
which acts transitively on the unit sphere of R2q.

For sp(1, q), and Ψ a quaternionic system, L is conjugated either to S ×
Sp(q1) × · · · × Sp(qr) with q1 + · · · + qr = q and S subgroup of Sp(1) or to
Sp(1) × B, B an arbitrary subgroup of Sp(q). When Ψ is a non quaternionic
system, L belongs to the class of subgroups that acts transitively on the unit sphere
of R4q.

For F4(−20), Ψ is arbitrary and L = K.
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5000 Córdoba, Argentine
vargas@famaf.unc.edu.ar

Received April 9, 2010
and in final form July 1, 2010


