Product Zero Derivations of the Parabolic Subalgebras of Simple Lie Algebras

Dengyin Wang, Wei Zhang, and Zhengxin Chen

Communicated by G. Mauceri

Abstract. Let \mathfrak{g} be a simple Lie algebra of rank l over an algebraic closed field of characteristic zero, \mathfrak{b} a Borel subalgebra of \mathfrak{g} , \mathfrak{p} a parabolic subalgebra of \mathfrak{g} containing \mathfrak{b} . A linear map φ on \mathfrak{p} is called a product zero derivation if, for $x, y \in \mathfrak{p}$, [x, y] = 0 implies $[\varphi(x), y] + [x, \varphi(y)] = 0$. It is shown in this paper that a product zero derivation φ on \mathfrak{p} is just a sum of an inner derivation and a scalar multiplication map in case that $l \geq 2$.

Mathematics Subject Classification 2000: 17B20, 17B30, 17B40.

Key Words and Phrases: Simple Lie algebras, parabolic subalgebras, derivations of Lie algebras.

1. Introduction

Recently some researchers were interested in generalizing the concept derivation of Lie algebras. Leger and Luks [1] introduced the concept generalized derivation and quasiderivation of Lie algebras. Denote by L a Lie algebra, an element fof Hom(L, L) is called a *generalized derivation* of L, if there exist $f', f'' \in$ Hom(L, L) such that

$$[f(x), y] + [x, f'(y)] = f''([x, y]), \quad \forall x, y \in L.$$

An element f of Hom(L, L) is called a quasiderivation of L, if there exits $f' \in Hom(L, L)$ such that

$$[f(x), y] + [x, f(y)] = f'([x, y]), \quad \forall x, y \in L.$$

Thus a tower for L is obtained:

$$ad(L) \subseteq Der(L) \subseteq QDer(L) \subseteq GDer(L) \subseteq gl(L),$$

where ad(L) (resp., Der(L); resp., QDer(L); resp., GDer(L)) is the set of inner derivations (resp., derivations; resp., quasiderivations; resp., generalized derivations) of L. In [1], it was shown that

$$QDer(L) = Der(L) + C(L)$$

ISSN 0949–5932 / \$2.50 (c) Heldermann Verlag

if L is generated by special weight spaces, where C(L) means the centroid of L. In particular, for a parabolic subalgebra \mathbf{p} of a simple Lie algebra of characteristic 0,

$$QDer(\mathfrak{p}) = ad(\mathfrak{p}) + (I_{\mathfrak{p}}) \quad \text{if } rank(\mathfrak{g}) \ge 2.$$

M. Brešar [2] introduced a more general concept called near derivation of Lie algebras. An element f of Hom(L, L) is called a *near derivation* of L, if there exists $f' \in Hom(L, L)$ such that $(ad \ x)f - f'(ad \ x)$ is a derivation for every $x \in L$. M. Brešar [2] described near derivations for certain Lie algebras arising from associative algebras. In the present paper we shall introduce a new concept: product zero derivation of Lie algebras. Such maps behave like derivations only on pairs of commuting elements. An element f of Hom(L, L) is called a *product zero derivation* of L if [x, y] = 0 implies [f(x), y] + [x, f(y)] = 0. Note that this concept is slightly more general than that of quasiderivation. In fact, let f be a quasiderivation of a Lie algebra L with $f' \in Hom(L, L)$ satisfying [f(x), y] + [x, f(y)] = f'([x, y]). If [x, y] = 0 for $x, y \in L$, we have that

$$[f(x), y] + [x, f(y)] = f'([x, y]) = 0.$$

This shows that f is a product zero derivation of L. Thus we get a new tower for L:

$$ad(L) \subseteq Der(L) \subseteq QDer(L) \subseteq ZDer(L) \subseteq gl(L),$$

where ZDer(L) is the set of all product zero derivations of L. In this paper we are interested in studying how much $ZDer(\mathfrak{p})$ differs from QDer(p) and how much $ZDer(\mathfrak{p})$ differs from gl(p) for \mathfrak{p} an arbitrary parabolic subalgebra of a simple Lie algebra. The main result in this paper is that, if $rank(\mathfrak{g}) \geq 2$, then a product zero derivation of \mathfrak{p} is just a sum of an inner derivation and a scalar multiplication map, which generalizes Corollary 4.13 of [1], and the main result of [9] saying that every derivation of \mathfrak{p} is inner.

We know that the derivation algebra, Der(L), of L has a close relation with the automorphism group, Aut(L), of L. In our view, Der(L) is just a linearization of Aut(L). From this point of view, ZDer(L) can be viewed as a linearization of the group ZGL(L) of all invertible linear maps on L preserving product zero. We found that, in 1982, Wong [3] described ZGL(L) for L a simple Lie algebra of linear type. However for the more general case that \mathfrak{p} is an arbitrary parabolic subalgebra of a simple Lie algebra, the problem on the structure of $ZGL(\mathfrak{p})$ is left open till now. Based on the main result of the present paper, we guess that, if $rank(\mathfrak{g}) \geq 2$, then $ZGL(\mathfrak{p}) = Aut(\mathfrak{p}) \times (I_{\mathfrak{p}})$; if $rank(\mathfrak{g}) = 1$, then $ZGL(\mathfrak{p}) = GL(\mathfrak{p})$.

Note that to say that a map f on a linear Lie algebra L arising from an associative algebra A preserves product zero, namely $[x, y] = 0 \Rightarrow [f(x), f(y)] = 0$, is equivalently to say that f on A preserves commutativity: $xy = yx \Rightarrow f(x)f(y) = f(y)f(x)$. Searching the literature, we observed that invertible maps on associative algebras preserving commutativity have been extensively studied. For examples, the commutativity preserving linear maps on triangular matrices were determined in [4]; the commutativity preserving linear maps on strictly triangular matrices were described in [5]; the nonlinear commutativity preserving

maps on the algebra of full matrices were described by P. Semrl in [6]. For more references about commutativity preserving maps on associated algebras one may consult the survey paper [7].

The authors thank the referee for his (or her) careful examination and helpful suggestions.

2. Some elementary results

In this paper, the notation concerning Lie algebras follows mainly from [8]. Let Fbe an algebraic closed field of characteristic zero, \mathfrak{g} a simple Lie algebra over F of rank l, \mathfrak{h} a fixed Cartan subalgebra of $\mathfrak{g}, \Phi \subseteq \mathfrak{h}^*$ the corresponding root system of \mathfrak{g} , Δ a fixed base of Φ , Φ^+ (resp., Φ^-) the set of positive (resp., negative) roots relative to Δ . The roots in Δ are called *simple*. Actually, Δ defines a partial order on Φ in such a way that $\beta \prec \alpha$ iff $\alpha - \beta$ is a sum of simple roots or $\beta = \alpha$. For $\beta = \sum_{\alpha \in \Delta} k_{\alpha} \alpha \in \Phi$, denote the integer $\sum_{\alpha \in \Delta} k_{\alpha}$ by $ht \beta$, and call it the *height* of β . We denote by ker α , for $\alpha \in \Phi$, the kernel of α in \mathfrak{h} . For each $\alpha \in \Phi^+$, let e_{α} be a non-zero element of \mathfrak{g}_{α} , then there is a unique element $e_{-\alpha} \in \mathfrak{g}_{-\alpha}$ such that $e_{\alpha}, e_{-\alpha}, h_{\alpha} = [e_{\alpha}, e_{-\alpha}]$ span a three-dimensional simple subalgebra of \mathfrak{g} isomorphic to sl(2, F) via $e_{\alpha} \mapsto \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, e_{-\alpha} \mapsto \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, h_{\alpha} \mapsto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. The set $\{h_{\alpha}, e_{\beta}, e_{-\beta} \mid \alpha \in \Delta, \beta \in \Phi^+\}$ forms a basis of \mathfrak{g} . If $\alpha, \beta, \alpha + \beta \in \Phi$, then $[e_{\alpha}, e_{\beta}]$ is a scalar multiple of $e_{\alpha+\beta}$ since $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] = \mathfrak{g}_{\alpha+\beta}$. We define $N_{\alpha,\beta}$ by $[e_{\alpha}, e_{\beta}] = N_{\alpha,\beta} e_{\alpha+\beta}$, which we call the structure constants of \mathfrak{g} . We can choose a basis $\{h_{\alpha}, e_{\beta}, e_{-\beta} \mid \alpha \in \Delta, \beta \in \Phi^+\}$ of **g** such that all structure constants of **g** are all integers, which we call a *Chevalley basis* of \mathfrak{g} . In the following of this paper, the set $\{h_{\alpha}, e_{\beta}, e_{-\beta} \mid \alpha \in \Delta, \beta \in \Phi^+\}$ will always denote a Chevalley basis of \mathfrak{g} . For the fixed base Δ of Φ , let $\mathfrak{d}_{\Delta} = \{ d_{\alpha} \mid \alpha \in \Delta \}$ be the dual basis of \mathfrak{h} relative to Δ . Namely, $\beta(d_{\alpha})$ takes the value 0 when $\beta \neq \alpha \in \Delta$ and takes the value 1 when $\beta = \alpha \in \Delta$. A symmetric bilinear form (,) is defined on the *l*-dimensional real vector space spanned by Φ , which is dual to the Killing form on \mathfrak{g} . For $\alpha, \beta \in \Phi$, let $\langle \beta, \alpha \rangle = 2(\beta, \alpha)/(\alpha, \alpha)$. If $\alpha \neq \pm \beta$, let p, q be the greatest non-negative integers for which $\beta - p\alpha, \beta + q\alpha \in \Phi$, then $\langle \beta, \alpha \rangle = p - q$, and $N_{\alpha,\beta} = \pm (p+1)$. A subalgebra \mathfrak{p} is called *parabolic* if it includes some Borel subalgebra. For a given subset π of Δ , define \mathfrak{p} (relative to π) to be the subalgebra of \mathfrak{g} generated by all \mathfrak{g}_{α} , $\alpha \in \Delta$ or $\alpha \in -\pi$, along with \mathfrak{h} . Let $\Phi_{\pi} = \mathbb{Z}\pi \cap \Phi$, $\Phi_{\pi}^{-} = \Phi_{\pi} \cap \Phi^{-}$. In fact $\mathfrak{p} = \mathfrak{h} + \sum_{\alpha \in \Phi^+ \cup \Phi^-_{\pi}} \mathfrak{g}_{\alpha}$. It is well known that every parabolic subalgebra of \mathfrak{g} is conjugate under $\mathcal{E}(\mathfrak{g})$ (a subgroup of $Aut(\mathfrak{g})$ generated by $exp \ ad \ x$ for all strongly ad-nilpotent elements x in \mathfrak{g}) to one of \mathfrak{p} . From this point of view, to determine product zero derivations of an arbitrary parabolic subalgebra we only need to determine those of \mathfrak{p} .

In the following, we will always denote by \mathfrak{p} the parabolic subalgebra of \mathfrak{g} relative to a fixing subset π of Δ . Let us start with some preliminary results. Lemma 2.1 is obvious, for the sake of safety we also give a proof.

Lemma 2.1. For $\beta, \gamma \in \Phi$, ker $\beta = \ker \gamma$ if and only if $\beta = \pm \gamma$.

Proof. Arrange Δ as $\Delta = \{\alpha_1, \alpha_2, \dots, \alpha_l\}$. Suppose $\beta = \sum_{\alpha \in \Delta} b_\alpha \alpha$; $\gamma = \sum_{\alpha \in \Delta} a_\alpha \alpha$. An element $h = \sum_{\alpha \in \Delta} x_\alpha d_\alpha$ belongs to $\ker \beta$ if and only if $\sum_{\alpha \in \Delta} b_\alpha x_\alpha = 0$. Also, $h \in \ker \gamma \Leftrightarrow \sum_{\alpha \in \Delta} a_\alpha x_\alpha = 0$. If $\ker \beta = \ker \gamma$, then the equation $\sum_{\alpha \in \Delta} b_\alpha x_\alpha = 0$ and the equation $\sum_{\alpha \in \Delta} a_\alpha x_\alpha = 0$ have the same solutions. So the row vector $(b_{\alpha_1}, b_{\alpha_2}, \dots, b_{\alpha_l})$ and the row vector $(a_{\alpha_1}, a_{\alpha_2}, \dots, a_{\alpha_l})$ are linear dependent, forcing β and γ are linear dependent. So $\beta = \pm \gamma$. Another direction is obvious.

Lemma 2.2. Let $\varphi \in ZDer(\mathfrak{p})$. There exists $x \in \mathfrak{p}$ such that $(\varphi - ad x)(\mathfrak{h}) \subseteq \mathfrak{h}$.

Proof. Let h_0 be a regular semisimple element in \mathfrak{h} , namely, $C_{\mathfrak{g}}(h_0) = \mathfrak{h}$. Then $\alpha(h_0) \neq 0$ for every $\alpha \in \Phi$. Suppose $\varphi(h_0) = h_1 + \sum_{\alpha \in \Phi^+ \cup \Phi_{\pi}^-} a_{\alpha} e_{\alpha}$ with $h_1 \in \mathfrak{h}$, and choose $x = -\sum_{\alpha \in \Phi^+ \cup \Phi_{\pi}^-} a_{\alpha} \alpha(h_0)^{-1} e_{\alpha}$. Then $(\varphi - ad x)(h_0) = h_1 \in \mathfrak{h}$. Denote $\varphi - ad x$ by φ_1 . For any $h \in \mathfrak{h}$, by $[h, h_0] = 0$, we have that

$$[\varphi_1(h), h_0] = [\varphi_1(h), h_0] + [h, \varphi_1(h_0)] = 0.$$

Thus $\varphi_1(h) \in C_{\mathfrak{g}}(h_0) = \mathfrak{h}$. So $\varphi_1(\mathfrak{h}) \subseteq \mathfrak{h}$.

Lemma 2.3. Let $\varphi \in ZDer(\mathfrak{p})$. If $\varphi(\mathfrak{h}) \subseteq \mathfrak{h}$, then $\varphi(\mathfrak{g}_{\beta}) \subseteq \mathfrak{h} + \mathfrak{g}_{\beta} + \mathfrak{g}_{-\beta}$ for every $\beta \in \Phi^+ \cup \Phi_{\pi}^-$.

Proof. For any $h \in \ker \beta$, by $[h, e_{\beta}] = 0$, we have that $[h, \varphi(e_{\beta})] + [\varphi(h), e_{\beta}] = 0$, which shows that $[h, \varphi(e_{\beta})] = -[\varphi(h), e_{\beta}] \in \mathfrak{g}_{\beta}$. Assume $\varphi(e_{\beta}) = t + \sum_{\alpha \in \Phi^+ \cup \Phi_{\pi}^-} a_{\alpha}e_{\alpha}$, where $t \in \mathfrak{h}$. Then $[h, \varphi(e_{\beta})] = \sum_{\alpha \in \Phi^+ \cup \Phi_{\pi}^-} a_{\alpha}\alpha(h)e_{\alpha}$. For $\beta \neq \alpha \in \Phi^+ \cup \Phi_{\pi}^-$, since $[h, \varphi(e_{\beta})] \in \mathfrak{g}_{\beta}$, we know that $a_{\alpha}\alpha(h) = 0$. So $a_{\alpha} = 0$ when $\alpha(h) \neq 0$. If $\alpha \neq \pm \beta$, we get $a_{\alpha} = 0$, since we can choose $h_0 \in \ker \beta$ such that $\alpha(h_0) \neq 0$ (recall Lemma 2.1). Hence $\varphi(e_{\beta}) \in \mathfrak{h} + \mathfrak{g}_{\beta} + \mathfrak{g}_{-\beta}$.

Lemma 2.4. Let $\varphi \in ZDer(\mathfrak{p})$, $rank(\mathfrak{g}) \geq 2$. If $\varphi(\mathfrak{h}) \subseteq \mathfrak{h}$, then $\varphi(\mathfrak{g}_{\alpha}) \subseteq \mathfrak{h} + \mathfrak{g}_{\alpha}$ for every $\alpha \in \Delta \cup (-\pi)$.

Proof. For a fixed $\alpha \in \Delta \cup (-\pi)$, we can find $\beta \in \Phi^+$ such that $\beta + \alpha \notin \Phi \cup \{0\}$ but $\beta - \alpha \in \Phi^+$. Indeed, if $\alpha \in \Delta$, we can find $\xi \in \Delta$, distinct with α , such that $(\alpha, \xi) \neq 0$. Thus $\xi + \alpha \in \Phi^+$. Let k be the maximal positive integer such that $\xi + k\alpha \in \Phi^+$. Namely, $\xi + k\alpha \in \Phi^+$ but $\xi + (k+1)\alpha \notin \Phi^+$. Let $\beta = \xi + k\alpha$, then β is as required. If $\alpha \in -\pi$, we can find $\beta \in \Delta$, distinct with $-\alpha$, such that $(\alpha, \beta) \neq 0$. Then $\beta + \alpha \notin \Phi \cup \{0\}$ and $\beta - \alpha \in \Phi^+$. Now suppose $\varphi(e_\alpha) = t_\alpha + a_\alpha e_\alpha + b_\alpha e_{-\alpha}, \ \varphi(e_\beta) = t_\beta + a_\beta e_\beta + b_\beta e_{-\beta}$, where $t_\alpha, t_\beta \in \mathfrak{h}$ (using Lemma 2.3). By $[e_\beta, e_\alpha] = 0$, we have

$$[t_{\beta} + a_{\beta}e_{\beta} + b_{\beta}e_{-\beta}, e_{\alpha}] = -[e_{\beta}, t_{\alpha} + a_{\alpha}e_{\alpha} + b_{\alpha}e_{-\alpha}].$$

That is

$$\alpha(t_{\beta})e_{\alpha} + N_{-\beta,\alpha}b_{\beta}e_{\alpha-\beta} = \beta(t_{\alpha})e_{\beta} - N_{\beta,-\alpha}b_{\alpha}e_{\beta-\alpha}.$$

This follows that $b_{\alpha} = 0$. So $\varphi(e_{\alpha}) \in \mathfrak{h} + \mathfrak{g}_{\alpha}$.

170

Lemma 2.5. Let $\varphi \in ZDer(\mathfrak{p})$, $rank(\mathfrak{g}) \geq 2$. If $\varphi(\mathfrak{h}) = 0$, then there exists $h \in \mathfrak{h}$ such that $(\varphi - ad h)(\mathfrak{g}_{\alpha}) = 0$ for every $\alpha \in \Delta$.

Proof. For $\alpha \in \Delta$, following from Lemma 2.4, we may assume $\varphi(e_{\alpha}) = t_{\alpha} + a_{\alpha}e_{\alpha}$, with $t_{\alpha} \in \mathfrak{h}$. Choose $h = \sum_{\alpha \in \Delta} a_{\alpha}d_{\alpha} \in \mathfrak{h}$, then $\alpha(h) = a_{\alpha}$ for any $\alpha \in \Delta$. Denote $\varphi - ad h$ by φ_1 . Then $\varphi_1(e_{\alpha}) = t_{\alpha} \in \mathfrak{h}$ for $\forall \alpha \in \Delta$. We now need to show that $t_{\alpha} = 0$ for all $\alpha \in \Delta$. For a fixed $\alpha \in \Delta$, if $\beta \in \Delta$ satisfies $(\beta, \alpha) = 0$, then by $[e_{\beta}, e_{\alpha}] = 0$, we have $[t_{\beta}, e_{\alpha}] = -[e_{\beta}, t_{\alpha}]$, which shows that $\beta(t_{\alpha}) = 0$. If $\beta \in \Delta$, distinct with α , satisfies $(\beta, \alpha) \neq 0$, then $\beta + \alpha \in \Phi^+$. Let k be the maximal positive integer such that $\beta + k\alpha \in \Phi^+$. Denote $\beta + k\alpha$ by γ , and $\gamma - \alpha$ by σ . Choose $h \in \mathfrak{h}$ such that $\sigma(h) = 0$, $\gamma(h) = -N_{\alpha,\sigma}$. Then it follows from $[h + e_{\alpha}, e_{\sigma} + e_{\gamma}] = 0$ that

$$[t_{\alpha}, e_{\sigma} + e_{\gamma}] = -[h + e_{\alpha}, \varphi_1(e_{\sigma}) + \varphi_1(e_{\gamma})].$$

By Lemma 2.4, we may assume that $\varphi_1(e_{\sigma}) = t_{\sigma} + b_{\sigma}e_{\sigma}$, $\varphi_1(e_{\gamma}) = t_{\gamma} + b_{\gamma}e_{\gamma}$. Then it follows from above equality that

$$\sigma(t_{\alpha})e_{\sigma} + \gamma(t_{\alpha})e_{\gamma} = \alpha(t_{\sigma})e_{\alpha} - b_{\sigma}N_{\alpha,\sigma}e_{\gamma} - \gamma(h)b_{\gamma}e_{\gamma} + \alpha(t_{\gamma})e_{\alpha}$$

which shows that $\sigma(t_{\alpha}) = 0$. On the other hand, the fact $[e_{\alpha}, e_{\gamma}] = 0$ leads to $[t_{\alpha}, e_{\gamma}] = -[e_{\alpha}, \varphi_1(e_{\gamma})]$, which follows that $\gamma(t_{\alpha}) = 0$. So $\alpha(t_{\alpha}) = (\gamma - \sigma)(t_{\alpha}) = 0$. Furthermore, $\beta(t_{\alpha}) = (\gamma - k\alpha)(t_{\alpha}) = 0$. Now we have that $\beta(t_{\alpha}) = 0$ for all $\beta \in \Delta$. Hence $t_{\alpha} = 0$.

Lemma 2.6. Suppose $\varphi \in ZDer(\mathfrak{p})$ satisfies $\varphi(\mathfrak{h}) = 0$. (i) If $\varphi(\mathfrak{g}_{\alpha}) = 0$ for every $\alpha \in \Delta$, then $\varphi(\mathfrak{g}_{\beta}) = 0$ for every $\beta \in \Phi^+$. (ii) If $\varphi(\mathfrak{g}_{\alpha}) = 0$ for every $\alpha \in -\pi$, then $\varphi(\mathfrak{g}_{\beta}) = 0$ for every $\beta \in \Phi_{\pi}^-$.

Proof. (i) For $\beta \in \Phi^+$, assume $\varphi(e_\beta) = t_\beta + a_\beta e_\beta + b_\beta e_{-\beta}$ with $t_\beta \in \mathfrak{h}$ (using Lemma 2.3). We first use increasing induction for $ht \beta$ to show that $\varphi(\mathfrak{g}_\beta) \in \mathfrak{h}$ for every $\beta \in \Phi^+$. If $ht \beta = 1$, the result already holds. Assume the result holds for each positive root γ with $ht \gamma \leq k$. Now let β be a positive root with height k+1. Apart from the case that Φ is of type G_2 and $\beta = \alpha_1 + 2\alpha_2$ (here we assume the base of G_2 consists of a long root α_1 and a short root α_2), we can find $\alpha \in \Delta$ such that $\beta - \alpha \in \Phi^+$ and $\beta + \alpha \notin \Phi$. Denote $\beta - \alpha$ by γ . Choose $h \in \mathfrak{h}$ such that $\gamma(h) = 0$ and $\beta(h) = -N_{\alpha,\gamma}$. Then by $[h + e_\alpha, e_\gamma + e_\beta] = 0$, we have that

$$[h + e_{\alpha}, \varphi(e_{\gamma}) + \varphi(e_{\beta})] = 0.$$

By induction assumption we know that $\varphi(e_{\gamma}) = t_{\gamma}$. Then it follows from

$$[h + e_{\alpha}, t_{\gamma} + t_{\beta} + a_{\beta}e_{\beta} + b_{\beta}e_{-\beta}] = 0$$

that $a_{\beta} = b_{\beta} = 0$. So $\varphi(e_{\beta}) = t_{\beta} \in \mathfrak{h}$. If Φ is of type G_2 and $\beta = \alpha_1 + 2\alpha_2$, We know that $N_{\alpha_2,\alpha_1} = \delta$, $N_{\alpha_2,\alpha_1+\alpha_2} = 2\delta$, $N_{\alpha_2,\alpha_1+2\alpha_2} = 3\delta$, where $\delta = 1$, or -1. Let $h_0 = -\delta d_{\alpha_2}$. Then $(\alpha_1 + k\alpha_2)(h_0) = -k\delta$. Assume $\varphi(e_{\alpha_1+k\alpha_2}) = t_k + a_k e_{\alpha_1+k\alpha_2} + b_k e_{-\alpha_1-k\alpha_2}$, $t_k \in \mathfrak{h}$, for $1 \leq k \leq 3$. It follows from

$$[e_{\alpha_2} + h_0, e_{\alpha_1} + e_{\alpha_1 + \alpha_2} + e_{\alpha_1 + 2\alpha_2} + e_{\alpha_1 + 3\alpha_2}] = 0$$

that

$$[e_{\alpha_2} + h_0, \sum_{k=1}^3 t_k + \sum_{k=1}^3 a_k e_{\alpha_1 + k\alpha_2} + \sum_{k=1}^3 b_k e_{-\alpha_1 - k\alpha_2}] = 0.$$

By this equality we have that $a_2 = b_2 = 0$. Also we have $\varphi(\mathfrak{g}_\beta) \in \mathfrak{h}$.

Secondly, we shall use decreasing induction for $ht \beta$ to show that $t_{\beta} = 0$ for every $\beta \in \Phi^+$. If β is the unique maximal root, since $[e_{\alpha}, e_{\beta}] = 0$ for all $\alpha \in \Delta$, then it follows from $[e_{\alpha}, t_{\beta}] = 0$ that $\alpha(t_{\beta}) = 0$ for all $\alpha \in \Delta$, which leads to $t_{\beta} = 0$. Now assume $t_{\gamma} = 0$ for $\gamma \in \Phi^+$ with $ht \ \gamma \ge k + 1$, and suppose $\beta \in \Phi^+$ with $ht \ \beta = k$ (where $k \ge 2$). For the aim to show $t_{\beta} = 0$, it suffices to show that $\alpha(t_{\beta}) = 0$ for all $\alpha \in \Delta$. If $\alpha \in \Delta$ satisfies $\alpha + \beta \notin \Phi$, then by $[e_{\alpha}, e_{\beta}] = 0$, we have that $[e_{\alpha}, t_{\beta}] = 0$, which follows that $\alpha(t_{\beta}) = 0$. If α is a simple root such that $\alpha + \beta$ is a root, let m be the maximal positive integer such that $\alpha + m\beta$ is a root. Denote $\alpha + m\beta$ by $\gamma, \gamma - \beta$ by σ . Choose $h \in \mathfrak{h}$ such that $\sigma(h) = 0$ and $\gamma(h) = -N_{\beta,\sigma}$. By $[h+e_{\beta}, e_{\sigma}+e_{\gamma}] = 0$, we have that $[t_{\beta}, e_{\sigma}+e_{\gamma}] = -[h+e_{\beta}, t_{\sigma}+t_{\gamma}]$. This shows that $\sigma(t_{\beta}) = \gamma(t_{\beta}) = 0$. So $\beta(t_{\beta}) = (\gamma - \sigma)(t_{\beta}) = 0$. Furthermore, $\alpha(t_{\beta}) = (\gamma - m\beta)(t_{\beta}) = 0$. Now we see $\alpha(t_{\beta}) = 0$ for all $\alpha \in \Delta$. Hence $t_{\beta} = 0$.

A similar discussion shows that (ii) also holds, we omit the analogous process. $\hfill\blacksquare$

Theorem 2.7. (i) If $rank(\mathfrak{g}) = 1$, then $ZDer(\mathfrak{p}) = gl(\mathfrak{p})$. (ii) If $rank(\mathfrak{g}) \ge 2$, then $ZDer(\mathfrak{p}) = ad(\mathfrak{p}) + (I_{\mathfrak{p}})$.

Proof. For (i), Φ has the type A_1 . In this case, [x, y] = 0 if and only if x and y are linear dependent. Let φ be an arbitrary linear map on \mathfrak{p} , and suppose [x, y] = 0. Then obviously, $[\varphi(x), y] + [x, \varphi(y)] = 0$, which implies that $\varphi \in ZDer(\mathfrak{p})$. Hence $ZDer(\mathfrak{p}) = gl(\mathfrak{p})$.

(ii) Let $\varphi \in ZDer(\mathfrak{p})$. By Lemma 2.2, we can find $x \in \mathfrak{p}$ such that $(\varphi - ad x)(\mathfrak{h}) \subseteq \mathfrak{h}$. Denote $\varphi - ad x$ by φ_1 . By Lemma 2.3, we know that $\varphi_1(\mathfrak{g}_\beta) \subseteq \mathfrak{h} + \mathfrak{g}_\beta + \mathfrak{g}_{-\beta}$ for every $\beta \in \Phi^+ \cup \Phi_\pi^-$. Now let $\{d_\alpha \mid \alpha \in \Delta\}$ be the dual basis of \mathfrak{h} relative to Δ . For a fixed $\alpha \in \Delta$, if $\beta \in \Delta$ differs from α , then by $[d_\alpha, e_\beta] = 0$, we have that $[\varphi_1(d_\alpha), e_\beta] = -[d_\alpha, \varphi_1(e_\beta)]$. It follows that $[\varphi_1(d_\alpha), e_\beta] = 0$ since $[d_\alpha, \varphi_1(e_\beta)] = 0$. Thus $\beta(\varphi_1(d_\alpha)) = 0$ for any simple root β distinct with α . Hence $\varphi_1(d_\alpha) \in Fd_\alpha$. Now suppose $\varphi_1(d_\alpha) = c_\alpha d_\alpha$ for $\alpha \in \Delta$. We shall show that all c_α actually take a same value. Let α_0 be an arbitrary fixed simple root. We can find $\beta \in \Delta$ such that $\beta + \alpha_0$ is a root. By $[d_\beta - d_{\alpha_0}, e_{\beta + \alpha_0}] = 0$, we have that

$$[c_{\beta}d_{\beta} - c_{\alpha_0}d_{\alpha_0}, e_{\beta+\alpha_0}] = -[d_{\beta} - d_{\alpha_0}, \varphi_1(e_{\beta+\alpha_0})].$$

Recalling that $\varphi_1(e_{\beta+\alpha_0}) \in \mathfrak{h}+\mathfrak{g}_{\beta+\alpha_0}+\mathfrak{g}_{-\beta-\alpha_0}$, we see that $[d_\beta-d_{\alpha_0},\varphi_1(e_{\beta+\alpha_0})]=0$. However, $[c_\beta d_\beta - c_{\alpha_0} d_{\alpha_0}, e_{\beta+\alpha_0}] = (c_\beta - c_{\alpha_0})e_{\beta+\alpha_0}$. So $c_\beta = c_{\alpha_0}$. Since the Dynkin diagram of Φ is connected, we know that all c_α for $\alpha \in \Delta$ take a same value. Denote the same value by c. Thus $\varphi_1 - cI_{\mathfrak{p}}$ sends each element in \mathfrak{h} to zero. Denote $\varphi_1 - cI_{\mathfrak{p}}$ by φ_2 . By Lemma 2.5, we can find certain $h_0 \in \mathfrak{h}$ such that $(\varphi_2 - ad h_0)(\mathfrak{g}_\alpha) = 0$ for every $\alpha \in \Delta$. Denote $\varphi_2 - ad h_0$ by φ_3 . Then it follows from (i) of Lemma 2.6 that $\varphi_3(\mathfrak{g}_\beta) = 0$ for all $\beta \in \Phi^+$.

For a fixed $\alpha \in \pi$, suppose $\varphi_3(e_{-\alpha}) = t_{-\alpha} + ae_{-\alpha} + be_{\alpha}$ with $t_{-\alpha} \in \mathfrak{h}$. For $\beta \in \Delta$ satisfying $\beta + \alpha \in \Phi$, it follows from $[e_{-\alpha}, e_{\beta}] = 0$ that $[t_{-\alpha} + ae_{-\alpha} + ae_{-\alpha}]$

 $be_{\alpha}, e_{\beta} = 0$, which shows that b = 0 and $\beta(t_{-\alpha}) = 0$. Choose $h \in \mathfrak{h}$ such that $(\alpha + \beta)(h) = 0$ and $\beta(h) = -N_{-\alpha,\alpha+\beta}$. By $[h + e_{-\alpha}, e_{\alpha+\beta} + e_{\beta}] = 0$, we have that

$$[t_{-\alpha} + ae_{-\alpha}, e_{\alpha+\beta} + e_{\beta}] = 0,$$

which follows that a = 0 and $(\alpha + \beta)(t_{-\alpha}) = 0$. We have shown that $\beta(t_{-\alpha}) = 0$, so we further get $\alpha(t_{-\alpha}) = 0$. For $\beta \in \Delta$ satisfying $(\beta, \alpha) = 0$, then it follows from $[e_{-\alpha}, e_{\beta}] = 0$ that $[t_{-\alpha}, e_{\beta}] = 0$, which forces that $\beta(t_{-\alpha}) = 0$. So $\beta(t_{-\alpha}) = 0$ for all $\beta \in \Delta$, which implies that $t_{-\alpha} = 0$. Thus $\varphi_3(\mathfrak{g}_{-\alpha}) = 0$ for all $\alpha \in \pi$. So by (ii) of Lemma 2.6, we get $\varphi_3(\mathfrak{g}_{\beta}) = 0$ for all $\beta \in \Phi_{\pi}^-$. Hence φ_3 is just the zero map. In the end we get $\varphi = ad x + ad h_0 + cI_{\mathfrak{p}}$. Therefore, $ZDer(\mathfrak{p}) = ad(\mathfrak{p}) + (I_{\mathfrak{p}})$, as desired.

It has been shown in [1] that if $rank(\mathfrak{g}) = 1$, then $QDer(\mathfrak{p}) = gl(\mathfrak{p})$; if $rank(\mathfrak{g}) \geq 2$, then $QDer(\mathfrak{p}) = ad(\mathfrak{p}) + (I_{\mathfrak{p}})$. Thus one will easily see that:

Corollary 2.8. Each product zero derivation of \mathfrak{p} is conversely a quasiderivation of \mathfrak{p} .

References

- Leger, G. F., and E. M. Luks, *Generalized derivations of Lie algebras*, J. Algebra 228 (2000), 165–203.
- [2] Brešar, M., Near-derivations in Lie algebras, J. Algebra 320 (2008), 3765– 3772.
- [3] Wong, W. J., Maps on simple algebras preserving zero products, II: Lie algebras of linear type, Pacific J. Math. 92 (1981), 469–487.
- [4] Marcoux, L. W., and A. R. Sourour, Commutativity preserving linear maps and Lie automorphisms of triangular matrix algebras, Lin. Alg. Appl. 288 (1999), 89–104.
- [5] Cao Y., Z. Chen, and C. Huang, Commutativity preserving linear maps and Lie automorphisms of strictly triangular matrix space, Lin. Alg. Appl. 350 (2002), 41–66.
- [6] Šemrl P., Non-linear commutativity preserving maps, Acta Sci. Math. (Szeged) 71 (2005), 781–819.
- [7] —, Commutativity preserving maps, Lin. Alg. Appl. **429** (2008), 1051–1070.
- [8] Humphreys, J. E., "Introduction to Lie algebras and representation theory," Springer, 1972.
- [9] Tolpygo, A. K., On cohomology of parabolic Lie algebras, Math. Notes 12 (1973), 585–587.

Dengyin Wang and Wei Zhang Department of Mathematics China University of Mining and Technology Xuzhou, 221008 China wdengyin@126.com

Received August 15, 2009 and in final form February 27, 2010 Zhengxin Chen School of Mathematics and Computer Science Fujian Normal University Fuzhou China chenzx@fjnu.edu.cn