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Abstract. Let g be a simple Lie algebra of rank l over an algebraic closed
field of characteristic zero, b a Borel subalgebra of g , p a parabolic subalgebra
of g containing b . A linear map ϕ on p is called a product zero derivation if,
for x, y ∈ p , [x, y] = 0 implies [ϕ(x), y] + [x, ϕ(y)] = 0. It is shown in this paper
that a product zero derivation ϕ on p is just a sum of an inner derivation and
a scalar multiplication map in case that l ≥ 2.
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1. Introduction

Recently some researchers were interested in generalizing the concept derivation
of Lie algebras. Leger and Luks [1] introduced the concept generalized derivation
and quasiderivation of Lie algebras. Denote by L a Lie algebra, an element f
of Hom(L, L) is called a generalized derivation of L , if there exist f ′, f ′′ ∈
Hom(L, L) such that

[f(x), y] + [x, f ′(y)] = f ′′([x, y]), ∀x, y ∈ L.

An element f of Hom(L, L) is called a quasiderivation of L , if there exits f ′ ∈
Hom(L, L) such that

[f(x), y] + [x, f(y)] = f ′([x, y]), ∀x, y ∈ L.

Thus a tower for L is obtained:

ad(L) ⊆ Der(L) ⊆ QDer(L) ⊆ GDer(L) ⊆ gl(L),

where ad(L) (resp., Der(L); resp., QDer(L); resp., GDer(L)) is the set of
inner derivations (resp., derivations; resp., quasiderivations; resp., generalized
derivations) of L . In [1], it was shown that

QDer(L) = Der(L) + C(L)
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if L is generated by special weight spaces, where C(L) means the centroid of L .
In particular, for a parabolic subalgebra p of a simple Lie algebra of characteristic
0,

QDer(p) = ad(p) + (Ip) if rank(g) ≥ 2.

M. Brešar [2] introduced a more general concept called near derivation of Lie
algebras. An element f of Hom(L, L) is called a near derivation of L , if there
exists f ′ ∈ Hom(L, L) such that (ad x)f − f ′(ad x) is a derivation for every
x ∈ L . M. Brešar [2] described near derivations for certain Lie algebras arising
from associative algebras. In the present paper we shall introduce a new concept:
product zero derivation of Lie algebras. Such maps behave like derivations only
on pairs of commuting elements. An element f of Hom(L, L) is called a product
zero derivation of L if [x, y] = 0 implies [f(x), y] + [x, f(y)] = 0. Note that this
concept is slightly more general than that of quasiderivation. In fact, let f be
a quasiderivation of a Lie algebra L with f ′ ∈ Hom(L, L) satisfying [f(x), y] +
[x, f(y)] = f ′([x, y]). If [x, y] = 0 for x, y ∈ L , we have that

[f(x), y] + [x, f(y)] = f ′([x, y]) = 0.

This shows that f is a product zero derivation of L . Thus we get a new tower for
L :

ad(L) ⊆ Der(L) ⊆ QDer(L) ⊆ ZDer(L) ⊆ gl(L),

where ZDer(L) is the set of all product zero derivations of L . In this paper we are
interested in studying how much ZDer(p) differs from QDer(p) and how much
ZDer(p) differs from gl(p) for p an arbitrary parabolic subalgebra of a simple Lie
algebra. The main result in this paper is that, if rank(g) ≥ 2, then a product
zero derivation of p is just a sum of an inner derivation and a scalar multiplication
map, which generalizes Corollary 4.13 of [1], and the main result of [9] saying that
every derivation of p is inner.

We know that the derivation algebra, Der(L), of L has a close relation
with the automorphism group, Aut(L), of L . In our view, Der(L) is just a
linearization of Aut(L). From this point of view, ZDer(L) can be viewed as a
linearization of the group ZGL(L) of all invertible linear maps on L preserving
product zero. We found that, in 1982, Wong [3] described ZGL(L) for L a simple
Lie algebra of linear type. However for the more general case that p is an arbitrary
parabolic subalgebra of a simple Lie algebra, the problem on the structure of
ZGL(p) is left open till now. Based on the main result of the present paper, we
guess that, if rank(g) ≥ 2, then ZGL(p) = Aut(p) × (Ip); if rank(g) = 1, then
ZGL(p) = GL(p).

Note that to say that a map f on a linear Lie algebra L arising from an
associative algebra A preserves product zero, namely [x, y] = 0 ⇒ [f(x), f(y)] =
0, is equivalently to say that f on A preserves commutativity: xy = yx ⇒
f(x)f(y) = f(y)f(x). Searching the literature, we observed that invertible maps
on associative algebras preserving commutativity have been extensively studied.
For examples, the commutativity preserving linear maps on triangular matrices
were determined in [4]; the commutativity preserving linear maps on strictly
triangular matrices were described in [5]; the nonlinear commutativity preserving
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maps on the algebra of full matrices were described by P. Šemrl in [6]. For more
references about commutativity preserving maps on associated algebras one may
consult the survey paper [7].

The authors thank the referee for his (or her) careful examination and
helpful suggestions.

2. Some elementary results

In this paper, the notation concerning Lie algebras follows mainly from [8]. Let F
be an algebraic closed field of characteristic zero, g a simple Lie algebra over F of
rank l , h a fixed Cartan subalgebra of g , Φ ⊆ h∗ the corresponding root system
of g , ∆ a fixed base of Φ, Φ+ (resp.,Φ− ) the set of positive (resp., negative) roots
relative to ∆. The roots in ∆ are called simple. Actually, ∆ defines a partial order
on Φ in such a way that β ≺ α iff α − β is a sum of simple roots or β = α . For
β =

∑
α∈∆ kαα ∈ Φ, denote the integer

∑
α∈∆ kα by ht β , and call it the height

of β . We denote by ker α , for α ∈ Φ, the kernel of α in h . For each α ∈ Φ+ ,
let eα be a non-zero element of gα , then there is a unique element e−α ∈ g−α

such that eα, e−α, hα = [eα, e−α] span a three-dimensional simple subalgebra of g

isomorphic to sl(2, F ) via eα 7→
(

0 1
0 0

)
, e−α 7→

(
0 0
1 0

)
, hα 7→

(
1 0
0 −1

)
.

The set {hα, eβ, e−β | α ∈ ∆, β ∈ Φ+} forms a basis of g . If α, β, α + β ∈ Φ,
then [eα, eβ] is a scalar multiple of eα+β since [gα, gβ] = gα+β . We define Nα,β by
[eα, eβ] = Nα,βeα+β , which we call the structure constants of g . We can choose a
basis {hα, eβ, e−β | α ∈ ∆, β ∈ Φ+} of g such that all structure constants of g are
all integers, which we call a Chevalley basis of g . In the following of this paper,
the set {hα, eβ, e−β | α ∈ ∆, β ∈ Φ+} will always denote a Chevalley basis of g .
For the fixed base ∆ of Φ, let d∆ = {dα | α ∈ ∆} be the dual basis of h relative to
∆. Namely, β(dα) takes the value 0 when β 6= α ∈ ∆ and takes the value 1 when
β = α ∈ ∆. A symmetric bilinear form ( , ) is defined on the l−dimensional real
vector space spanned by Φ, which is dual to the Killing form on g . For α, β ∈ Φ,
let 〈β, α〉 = 2(β, α)/(α, α). If α 6= ±β , let p, q be the greatest non-negative
integers for which β − pα, β + qα ∈ Φ, then 〈β, α〉 = p− q , and Nα,β = ±(p + 1).
A subalgebra p is called parabolic if it includes some Borel subalgebra. For a given
subset π of ∆, define p (relative to π ) to be the subalgebra of g generated by
all gα , α ∈ ∆ or α ∈ −π , along with h . Let Φπ = Zπ ∩ Φ, Φ−

π = Φπ ∩ Φ− . In
fact p = h +

∑
α∈Φ+∪Φ−π

gα . It is well known that every parabolic subalgebra of
g is conjugate under E(g) (a subgroup of Aut(g) generated by exp ad x for all
strongly ad-nilpotent elements x in g) to one of p . From this point of view, to
determine product zero derivations of an arbitrary parabolic subalgebra we only
need to determine those of p .

In the following, we will always denote by p the parabolic subalgebra of
g relative to a fixing subset π of ∆. Let us start with some preliminary results.
Lemma 2.1 is obvious, for the sake of safety we also give a proof.

Lemma 2.1. For β, γ ∈ Φ, ker β = ker γ if and only if β = ±γ .
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Proof. Arrange ∆ as ∆ = {α1, α2, . . . , αl} . Suppose β =
∑

α∈∆ bαα ; γ =∑
α∈∆ aαα . An element h =

∑
α∈∆ xαdα belongs to ker β if and only if

∑
α∈∆ bαxα =

0. Also, h ∈ ker γ ⇔
∑

α∈∆ aαxα = 0. If ker β = ker γ , then the equation∑
α∈∆ bαxα = 0 and the equation

∑
α∈∆ aαxα = 0 have the same solutions. So

the row vector (bα1 , bα2 , . . . , bαl
) and the row vector (aα1 , aα2 , . . . , aαl

) are linear
dependent, forcing β and γ are linear dependent. So β = ±γ . Another direction
is obvious.

Lemma 2.2. Let ϕ ∈ ZDer(p). There exists x ∈ p such that (ϕ−ad x)(h) ⊆ h.

Proof. Let h0 be a regular semisimple element in h , namely, Cg(h0) = h .
Then α(h0) 6= 0 for every α ∈ Φ. Suppose ϕ(h0) = h1 +

∑
α∈Φ+∪Φ−π

aαeα with
h1 ∈ h , and choose x = −

∑
α∈Φ+∪Φ−π

aαα(h0)
−1eα . Then (ϕ−ad x)(h0) = h1 ∈ h .

Denote ϕ− ad x by ϕ1 . For any h ∈ h , by [h, h0] = 0, we have that

[ϕ1(h), h0] = [ϕ1(h), h0] + [h, ϕ1(h0)] = 0.

Thus ϕ1(h) ∈ Cg(h0) = h . So ϕ1(h) ⊆ h .

Lemma 2.3. Let ϕ ∈ ZDer(p). If ϕ(h) ⊆ h, then ϕ(gβ) ⊆ h + gβ + g−β for
every β ∈ Φ+ ∪ Φ−

π .

Proof. For any h ∈ ker β , by [h, eβ] = 0, we have that [h, ϕ(eβ)]+[ϕ(h), eβ] =
0, which shows that [h, ϕ(eβ)] = −[ϕ(h), eβ] ∈ gβ . Assume ϕ(eβ) = t +∑

α∈Φ+∪Φ−π
aαeα , where t ∈ h . Then [h, ϕ(eβ)] =

∑
α∈Φ+∪Φ−π

aαα(h)eα . For
β 6= α ∈ Φ+ ∪ Φ−

π , since [h, ϕ(eβ)] ∈ gβ , we know that aαα(h) = 0. So aα = 0
when α(h) 6= 0. If α 6= ±β , we get aα = 0, since we can choose h0 ∈ ker β such
that α(h0) 6= 0 (recall Lemma 2.1). Hence ϕ(eβ) ∈ h + gβ + g−β .

Lemma 2.4. Let ϕ ∈ ZDer(p), rank(g) ≥ 2. If ϕ(h) ⊆ h, then ϕ(gα) ⊆ h+gα

for every α ∈ ∆ ∪ (−π).

Proof. For a fixed α ∈ ∆∪(−π), we can find β ∈ Φ+ such that β+α /∈ Φ∪{0}
but β − α ∈ Φ+ . Indeed, if α ∈ ∆, we can find ξ ∈ ∆, distinct with α , such
that (α, ξ) 6= 0. Thus ξ + α ∈ Φ+ . Let k be the maximal positive integer
such that ξ + kα ∈ Φ+ . Namely, ξ + kα ∈ Φ+ but ξ + (k + 1)α /∈ Φ+ . Let
β = ξ + kα , then β is as required. If α ∈ −π , we can find β ∈ ∆, distinct with
−α , such that (α, β) 6= 0. Then β + α /∈ Φ ∪ {0} and β − α ∈ Φ+ . Now suppose
ϕ(eα) = tα + aαeα + bαe−α , ϕ(eβ) = tβ + aβeβ + bβe−β , where tα, tβ ∈ h (using
Lemma 2.3). By [eβ, eα] = 0, we have

[tβ + aβeβ + bβe−β, eα] = −[eβ, tα + aαeα + bαe−α].

That is

α(tβ)eα + N−β,αbβeα−β = β(tα)eβ −Nβ,−αbαeβ−α.

This follows that bα = 0. So ϕ(eα) ∈ h + gα .
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Lemma 2.5. Let ϕ ∈ ZDer(p), rank(g) ≥ 2. If ϕ(h) = 0, then there exists
h ∈ h such that (ϕ− ad h)(gα) = 0 for every α ∈ ∆.

Proof. For α ∈ ∆, following from Lemma 2.4, we may assume ϕ(eα) =
tα + aαeα , with tα ∈ h . Choose h =

∑
α∈∆ aαdα ∈ h , then α(h) = aα for

any α ∈ ∆. Denote ϕ− ad h by ϕ1 . Then ϕ1(eα) = tα ∈ h for ∀α ∈ ∆. We now
need to show that tα = 0 for all α ∈ ∆. For a fixed α ∈ ∆, if β ∈ ∆ satisfies
(β, α) = 0 , then by [eβ, eα] = 0, we have [tβ, eα] = −[eβ, tα] , which shows that
β(tα) = 0. If β ∈ ∆, distinct with α , satisfies (β, α) 6= 0, then β + α ∈ Φ+ . Let
k be the maximal positive integer such that β + kα ∈ Φ+ . Denote β + kα by
γ , and γ − α by σ . Choose h ∈ h such that σ(h) = 0, γ(h) = −Nα,σ . Then it
follows from [h + eα, eσ + eγ] = 0 that

[tα, eσ + eγ] = −[h + eα, ϕ1(eσ) + ϕ1(eγ)].

By Lemma 2.4, we may assume that ϕ1(eσ) = tσ + bσeσ , ϕ1(eγ) = tγ + bγeγ . Then
it follows from above equality that

σ(tα)eσ + γ(tα)eγ = α(tσ)eα − bσNα,σeγ − γ(h)bγeγ + α(tγ)eα,

which shows that σ(tα) = 0. On the other hand, the fact [eα, eγ] = 0 leads to
[tα, eγ] = −[eα, ϕ1(eγ)], which follows that γ(tα) = 0. So α(tα) = (γ − σ)(tα) = 0.
Furthermore, β(tα) = (γ − kα)(tα) = 0. Now we have that β(tα) = 0 for all
β ∈ ∆. Hence tα = 0.

Lemma 2.6. Suppose ϕ ∈ ZDer(p) satisfies ϕ(h) = 0.
(i) If ϕ(gα) = 0 for every α ∈ ∆, then ϕ(gβ) = 0 for every β ∈ Φ+ .
(ii) If ϕ(gα) = 0 for every α ∈ −π , then ϕ(gβ) = 0 for every β ∈ Φ−

π .

Proof. (i) For β ∈ Φ+ , assume ϕ(eβ) = tβ + aβeβ + bβe−β with tβ ∈ h (using
Lemma 2.3). We first use increasing induction for ht β to show that ϕ(gβ) ∈ h

for every β ∈ Φ+ . If ht β = 1, the result already holds. Assume the result holds
for each positive root γ with ht γ ≤ k . Now let β be a positive root with height
k+1. Apart from the case that Φ is of type G2 and β = α1+2α2 (here we assume
the base of G2 consists of a long root α1 and a short root α2 ), we can find α ∈ ∆
such that β − α ∈ Φ+ and β + α /∈ Φ. Denote β − α by γ . Choose h ∈ h such
that γ(h) = 0 and β(h) = −Nα,γ . Then by [h + eα, eγ + eβ] = 0, we have that

[h + eα, ϕ(eγ) + ϕ(eβ)] = 0.

By induction assumption we know that ϕ(eγ) = tγ . Then it follows from

[h + eα, tγ + tβ + aβeβ + bβe−β] = 0

that aβ = bβ = 0. So ϕ(eβ) = tβ ∈ h . If Φ is of type G2 and β = α1 + 2α2 ,
We know that Nα2,α1 = δ, Nα2,α1+α2 = 2δ, Nα2,α1+2α2 = 3δ , where δ = 1, or
−1. Let h0 = −δdα2 . Then (α1 + kα2)(h0) = −kδ . Assume ϕ(eα1+kα2) =
tk + akeα1+kα2 + bke−α1−kα2 , tk ∈ h , for 1 ≤ k ≤ 3. It follows from

[eα2 + h0, eα1 + eα1+α2 + eα1+2α2 + eα1+3α2 ] = 0
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that

[eα2 + h0,
3∑

k=1

tk +
3∑

k=1

akeα1+kα2 +
3∑

k=1

bke−α1−kα2 ] = 0.

By this equality we have that a2 = b2 = 0. Also we have ϕ(gβ) ∈ h .

Secondly, we shall use decreasing induction for ht β to show that tβ = 0 for
every β ∈ Φ+ . If β is the unique maximal root, since [eα, eβ] = 0 for all α ∈ ∆,
then it follows from [eα, tβ] = 0 that α(tβ) = 0 for all α ∈ ∆, which leads to
tβ = 0. Now assume tγ = 0 for γ ∈ Φ+ with ht γ ≥ k + 1, and suppose β ∈ Φ+

with ht β = k (where k ≥ 2). For the aim to show tβ = 0, it suffices to show
that α(tβ) = 0 for all α ∈ ∆. If α ∈ ∆ satisfies α + β /∈ Φ, then by [eα, eβ] = 0,
we have that [eα, tβ] = 0, which follows that α(tβ) = 0. If α is a simple root such
that α + β is a root, let m be the maximal positive integer such that α + mβ is
a root. Denote α + mβ by γ , γ − β by σ . Choose h ∈ h such that σ(h) = 0 and
γ(h) = −Nβ,σ . By [h+eβ, eσ+eγ] = 0, we have that [tβ, eσ+eγ] = −[h+eβ, tσ+tγ] .
This shows that σ(tβ) = γ(tβ) = 0. So β(tβ) = (γ − σ)(tβ) = 0. Furthermore,
α(tβ) = (γ −mβ)(tβ) = 0. Now we see α(tβ) = 0 for all α ∈ ∆. Hence tβ = 0.

A similar discussion shows that (ii) also holds, we omit the analogous
process.

Theorem 2.7. (i) If rank(g) = 1, then ZDer(p) = gl(p).
(ii) If rank(g) ≥ 2, then ZDer(p) = ad(p) + (Ip).

Proof. For (i), Φ has the type A1 . In this case, [x, y] = 0 if and only if
x and y are linear dependent. Let ϕ be an arbitrary linear map on p , and
suppose [x, y[= 0. Then obviously, [ϕ(x), y] + [x, ϕ(y)] = 0, which implies that
ϕ ∈ ZDer(p). Hence ZDer(p) = gl(p).

(ii) Let ϕ ∈ ZDer(p). By Lemma 2.2, we can find x ∈ p such that
(ϕ − ad x)(h) ⊆ h . Denote ϕ − ad x by ϕ1 . By Lemma 2.3, we know that
ϕ1(gβ) ⊆ h + gβ + g−β for every β ∈ Φ+ ∪ Φ−

π . Now let {dα | α ∈ ∆} be the
dual basis of h relative to ∆. For a fixed α ∈ ∆, if β ∈ ∆ differs from α ,
then by [dα, eβ] = 0, we have that [ϕ1(dα), eβ] = −[dα, ϕ1(eβ)]. It follows that
[ϕ1(dα), eβ] = 0 since [dα, ϕ1(eβ)] = 0. Thus β(ϕ1(dα)) = 0 for any simple root β
distinct with α . Hence ϕ1(dα) ∈ Fdα . Now suppose ϕ1(dα) = cαdα for α ∈ ∆.
We shall show that all cα actually take a same value. Let α0 be an arbitrary fixed
simple root. We can find β ∈ ∆ such that β+α0 is a root. By [dβ−dα0 , eβ+α0 ] = 0,
we have that

[cβdβ − cα0dα0 , eβ+α0 ] = −[dβ − dα0 , ϕ1(eβ+α0)].

Recalling that ϕ1(eβ+α0) ∈ h+gβ+α0+g−β−α0 , we see that [dβ−dα0 , ϕ1(eβ+α0)] = 0.
However, [cβdβ − cα0dα0 , eβ+α0 ] = (cβ − cα0)eβ+α0 . So cβ = cα0 . Since the Dynkin
diagram of Φ is connected, we know that all cα for α ∈ ∆ take a same value.
Denote the same value by c . Thus ϕ1 − cIp sends each element in h to zero.
Denote ϕ1 − cIp by ϕ2 . By Lemma 2.5, we can find certain h0 ∈ h such that
(ϕ2 − ad h0)(gα) = 0 for every α ∈ ∆. Denote ϕ2 − ad h0 by ϕ3 . Then it follows
from (i) of Lemma 2.6 that ϕ3(gβ) = 0 for all β ∈ Φ+ .

For a fixed α ∈ π , suppose ϕ3(e−α) = t−α + ae−α + beα with t−α ∈ h . For
β ∈ ∆ satisfying β + α ∈ Φ, it follows from [e−α, eβ] = 0 that [t−α + ae−α +
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beα, eβ] = 0, which shows that b = 0 and β(t−α) = 0. Choose h ∈ h such that
(α + β)(h) = 0 and β(h) = −N−α,α+β . By [h + e−α, eα+β + eβ] = 0, we have that

[t−α + ae−α, eα+β + eβ] = 0,

which follows that a = 0 and (α + β)(t−α) = 0. We have shown that β(t−α) = 0,
so we further get α(t−α) = 0. For β ∈ ∆ satisfying (β, α) = 0, then it follows
from [e−α, eβ] = 0 that [t−α, eβ] = 0, which forces that β(t−α) = 0. So β(t−α) = 0
for all β ∈ ∆, which implies that t−α = 0. Thus ϕ3(g−α) = 0 for all α ∈ π . So
by (ii) of Lemma 2.6, we get ϕ3(gβ) = 0 for all β ∈ Φ−

π . Hence ϕ3 is just the zero
map. In the end we get ϕ = ad x+ad h0+cIp . Therefore, ZDer(p) = ad(p)+(Ip),
as desired.

It has been shown in [1] that if rank(g) = 1, then QDer(p) = gl(p); if
rank(g) ≥ 2, then QDer(p) = ad(p) + (Ip). Thus one will easily see that:

Corollary 2.8. Each product zero derivation of p is conversely a quasideriva-
tion of p.
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