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Abstract. Let g be a simple Lie algebra of rank [ over an algebraic closed
field of characteristic zero, b a Borel subalgebra of g, p a parabolic subalgebra
of g containing b. A linear map ¢ on p is called a product zero derivation if,
for x,y € p, [x,y] =0 implies [p(x),y] + [z, p(y)] = 0. It is shown in this paper
that a product zero derivation ¢ on p is just a sum of an inner derivation and
a scalar multiplication map in case that [ > 2.
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1. Introduction

Recently some researchers were interested in generalizing the concept derivation
of Lie algebras. Leger and Luks [1] introduced the concept generalized derivation
and quasiderivation of Lie algebras. Denote by L a Lie algebra, an element f
of Hom(L, L) is called a generalized derivation of L, if there exist f', f" €
Hom(L, L) such that

[f (@) gl + [z, f'(W)] = f"([z,9]),  Vz,yelL.

An element f of Hom(L, L) is called a quasiderivation of L, if there exits f’ €
Hom(L, L) such that

[f(@),y] + [2, f(W)] = f'([x,y]), Vao,y€L
Thus a tower for L is obtained:
ad(L) C Der(L) C QDer(L) € GDer(L) C gl(L),

where ad(L) (resp., Der(L); resp., QDer(L); resp., GDer(L)) is the set of
inner derivations (resp., derivations; resp., quasiderivations; resp., generalized
derivations) of L. In [1], it was shown that

QDer(L) = Der(L) + C(L)
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if L is generated by special weight spaces, where C(L) means the centroid of L.
In particular, for a parabolic subalgebra p of a simple Lie algebra of characteristic
0,

QDer(p) = ad(p) + ({,) if rank(g) > 2.

M. Bresar [2] introduced a more general concept called near derivation of Lie
algebras. An element f of Hom(L, L) is called a near derivation of L, if there
exists f' € Hom(L,L) such that (ad z)f — f'(ad z) is a derivation for every
x € L. M. Bresar [2] described near derivations for certain Lie algebras arising
from associative algebras. In the present paper we shall introduce a new concept:
product zero derivation of Lie algebras. Such maps behave like derivations only
on pairs of commuting elements. An element f of Hom(L, L) is called a product
zero derivation of L if [x,y] = 0 implies [f(z),y] + [z, f(y)] = 0. Note that this
concept is slightly more general than that of quasiderivation. In fact, let f be
a quasiderivation of a Lie algebra L with f" € Hom(L, L) satistying [f(z),y] +
[z, f(y)] = f'([x,y]). If [x,y] =0 for z,y € L, we have that

[f (), y]+ [z, f(9)] = f([x,y]) = 0.

This shows that f is a product zero derivation of L. Thus we get a new tower for
L:
ad(L) C Der(L) C QDer(L) € ZDer(L) C gl(L),

where Z Der(L) is the set of all product zero derivations of L. In this paper we are
interested in studying how much ZDer(p) differs from @QDer(p) and how much
Z Der(p) differs from gl(p) for p an arbitrary parabolic subalgebra of a simple Lie
algebra. The main result in this paper is that, if rank(g) > 2, then a product
zero derivation of p is just a sum of an inner derivation and a scalar multiplication
map, which generalizes Corollary 4.13 of [1], and the main result of [9] saying that
every derivation of p is inner.

We know that the derivation algebra, Der(L), of L has a close relation
with the automorphism group, Aut(L), of L. In our view, Der(L) is just a
linearization of Aut(L). From this point of view, ZDer(L) can be viewed as a
linearization of the group ZGL(L) of all invertible linear maps on L preserving
product zero. We found that, in 1982, Wong [3] described ZGL(L) for L a simple
Lie algebra of linear type. However for the more general case that p is an arbitrary
parabolic subalgebra of a simple Lie algebra, the problem on the structure of
ZGL(p) is left open till now. Based on the main result of the present paper, we
guess that, if rank(g) > 2, then ZGL(p) = Aut(p) x (Ip); if rank(g) = 1, then
ZGL(p) = GL(p).

Note that to say that a map f on a linear Lie algebra L arising from an
associative algebra A preserves product zero, namely [z,y] = 0 = [f(z), f(y)] =
0, is equivalently to say that f on A preserves commutativity: zy = yr =
f(z)f(y) = f(y)f(x). Searching the literature, we observed that invertible maps
on associative algebras preserving commutativity have been extensively studied.
For examples, the commutativity preserving linear maps on triangular matrices
were determined in [4]; the commutativity preserving linear maps on strictly
triangular matrices were described in [5]; the nonlinear commutativity preserving
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maps on the algebra of full matrices were described by P. Semrl in [6]. For more
references about commutativity preserving maps on associated algebras one may
consult the survey paper [7].

The authors thank the referee for his (or her) careful examination and
helpful suggestions.

2. Some elementary results

In this paper, the notation concerning Lie algebras follows mainly from [8]. Let F
be an algebraic closed field of characteristic zero, g a simple Lie algebra over F' of
rank [, b a fixed Cartan subalgebra of g, ® C bh* the corresponding root system
of g, A afixed base of ®, ®T (resp.,®) the set of positive (resp., negative) roots
relative to A. The roots in A are called simple. Actually, A defines a partial order
on ® in such a way that 0 < « iff @ — ( is a sum of simple roots or 3 = «. For
B = nen ko € @, denote the integer ) A ko by ht 3, and call it the height
of 3. We denote by ker «, for a € ®, the kernel of a in h. For each o € &,
let e, be a non-zero element of g,, then there is a unique element e_, € g_,
such that ey, e_q, ha = [€a,€_4] span a three-dimensional simple subalgebra of g

isomorphictosl(Q,F)Viaea'—>(8 é),e—aH(cl) g)aha'_)((l) _01)

The set {ha,e5,6_5 | @ € A, € &7} forms a basis of g. If o, 5,0+ € P,
then [eq, €s] is a scalar multiple of e, s since [ga, 93] = ga+s. We define N, 5 by
le, €3] = Nageats, which we call the structure constants of g. We can choose a
basis {ha,ep,e_5 | a € A, € T} of g such that all structure constants of g are
all integers, which we call a Chevalley basis of g. In the following of this paper,
the set {ha,es,e_5 | @ € A, 3 € &} will always denote a Chevalley basis of g.
For the fixed base A of ®, let 05 = {d, | @« € A} be the dual basis of h relative to
A. Namely, (d,) takes the value 0 when [ # o € A and takes the value 1 when
B =a¢€ A. A symmetric bilinear form ( , ) is defined on the [—dimensional real
vector space spanned by @, which is dual to the Killing form on g. For «,( € ®,
let (B,a) = 2(8,a)/(a,). If o # £, let p,q be the greatest non-negative
integers for which § — pa, §+ga € ©, then (8, a) =p—q, and N3 = £(p+1).
A subalgebra p is called parabolic if it includes some Borel subalgebra. For a given
subset m of A, define p (relative to 7) to be the subalgebra of g generated by
all go, « € A or a« € —m, along with h. Let &, =Zr NP, & =, Nd". In
fact p = b+ > cotue- Ba- 1t is well known that every parabolic subalgebra of
g is conjugate under £(g) (a subgroup of Aut(g) generated by exp ad x for all
strongly ad-nilpotent elements x in g) to one of p. From this point of view, to
determine product zero derivations of an arbitrary parabolic subalgebra we only
need to determine those of p.

In the following, we will always denote by p the parabolic subalgebra of
g relative to a fixing subset m of A. Let us start with some preliminary results.
Lemma 2.1 is obvious, for the sake of safety we also give a proof.

Lemma 2.1.  For 3,7 € ®, ker = ker ~v if and only if 3 = +.
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Proof. Arrange A as A = {ay,a9,...,0;}. Suppose 3 = > _\boa; v =
Y oen Gat. Anelement h = )" _\ z.d, belongs to ker 3 if and only if > A\ ba®a =
0. Also, h € ker v & > caGaZa = 0. If ker 3 = ker ~, then the equation
Zae A bazoe = 0 and the equation ) a0Zs = 0 have the same solutions. So

aEA
the row vector (ba,,bay;---,ba,) and the row vector (aa,,@ay,---,aq,) are linear
dependent, forcing 5 and ~ are linear dependent. So G = +7. Another direction
is obvious. [ |

Lemma 2.2.  Let ¢ € ZDer(p). There exists x € p such that (p—ad x)(h) C b.

Proof. Let hy be a regular semisimple element in b, namely, Cy(ho) = .
Then a(hg) # 0 for every a € ®. Suppose p(ho) = h1 + D cop+up- Gala With
hi € b, and choose © = — Zaeq>+uq>; ao(ho)"tes. Then (p—ad x)(hg) = hy € b.
Denote ¢ —ad z by ;. For any h € b, by [h, hy] = 0, we have that

[p1(h), ho] = [@1(h), kol + [, ¢1(ho)] = 0.
Thus 1(h) € Cylho) = . S0 ¢1(5) . -

Lemma 2.3. Let ¢ € ZDer(p). If p(h) C b, then ¢(gz) C b+ gs+g_p for
every € dTU D .

Proof.  For any h € ker 3, by [h,eg] = 0, we have that [h, p(eg)]+[p(h), es] =
0, which shows that [h,p(es)] = —[p(h),es] € gg. Assume p(eg) = t +
Y acatups @a€a, Where t € h. Then [h,p(es)] = > corie- @a(h)eq. For
B #a€ ®tUd,, since [h,p(eg)] € gg, we know that a,a(h) =0. So a, =0

when «a(h) # 0. If a # £, we get a, = 0, since we can choose hg € ker [ such
that a(hg) # 0 (recall Lemma 2.1). Hence p(es) € h+ g5+ 9-5. ]

Lemma 2.4.  Let ¢ € ZDer(p), rank(g) > 2. If o(h) C b, then (ga) € h+ga
for every o € AU (—r).

Proof.  Forafixed « € AU(—m), we can find § € ®* such that f+a ¢ PU{0}
but 8 — «a € ®*. Indeed, if « € A, we can find £ € A, distinct with «, such
that (o,&) # 0. Thus £ + « € ®F. Let k& be the maximal positive integer
such that € + ka € ®*. Namely, £ + ka € ®F but £+ (k+ 1)a ¢ ®F. Let
0 =&+ ka, then 3 is as required. If o € —7, we can find g € A, distinct with
—a, such that (a,8) #0. Then 4+ a ¢ ®U{0} and f — a € &. Now suppose
¢(ea) = ta + aaa + bae_o, p(eg) =tz + ageg + bge_g, where t,,t5 € h (using
Lemma 2.3). By [eg, €] = 0, we have

[ts + ages + bge_p, €a] = —[€g, ta + An€a + bae_a].

That is
Oé(tg)ea + Nfgyabgea,g = ﬁ(ta)eg — Ng,,abaegfa.

This follows that b, = 0. So p(ey) € b+ ga- n



WANG, ZHANG, AND CHEN 171

Lemma 2.5. Let ¢ € ZDer(p), rank(g) > 2. If o(h) = 0, then there exists
h € b such that (¢ — ad h)(gs) =0 for every a € A.

Proof. For a € A, following from Lemma 2.4, we may assume ¢(e,) =
ta + Ga€q, With t, € h. Choose h = > A Gada € b, then a(h) = a, for
any a € A. Denote ¢ —ad h by ¢;. Then ¢(e,) =t, € h for Va € A. We now
need to show that t, = 0 for all « € A. For a fixed a € A, if § € A satisfies
(B,a) = 0, then by [e, eq] = 0, we have [tg, eo] = —[eg, t ], which shows that
B(ty) =0. If € A, distinct with «, satisfies (G,a) # 0, then f+ a € . Let
k be the maximal positive integer such that 6+ ka € <I>+. Denote (§ + ka by
v, and v —a by o. Choose h € b such that o(h) =0, v(h) = —N,,. Then it
follows from [h + eq, e, + €,] = 0 that

[tar o+ €5] = —[h + €a, p1(es) + @1(ey)].

By Lemma 2.4, we may assume that ¢1(e,) = t, +bye,, p1(e,) =t,+be,. Then
it follows from above equality that

o(ta)es +(ta)ey = alty)eq — bo Ny gey — v(R)byey + alty)eq,

which shows that o(t,) = 0. On the other hand, the fact [e,,e,] = 0 leads to

[tas €4] = —[ea, ¢1(ey)], which follows that v(t,) = 0. So a(t,) = (v —0)(ts) =
Furthermore, (3(t,) = (v — ka)(to) = 0. Now we have that §(t,) = 0 for all
6 € A. Hence t, =0. (]

Lemma 2.6.  Suppose ¢ € ZDer(p) satisfies p(h) = 0.
(1) If ©(ga) =0 for every a € A, then o(gg) =0 for every 5 € ®F.
(11) If ©(ga) =0 for every a € —m, then ¢(gz) =0 for every 3 € O_.

Proof. (i) For § € T, assume ¢(eg) = tg + ages + bge_g with tz € h (using
Lemma 2.3). We first use increasing induction for ht 3 to show that ¢(gsz) € b
for every g € ®*. If ht 3 = 1, the result already holds. Assume the result holds
for each positive root v with ht v < k. Now let § be a positive root with height
k+1. Apart from the case that ® is of type Gy and § = a5 +2as (here we assume
the base of G5 consists of a long root «; and a short root as), we can find o € A
such that # —a € @t and f+ o ¢ . Denote § — a by v. Choose h € h such
that v(h) =0 and B(h) = —N,.. Then by [h + eq, e, + €] = 0, we have that

[h + €a, pley) + ples)] = 0.
By induction assumption we know that ¢(e,) =t,. Then it follows from
[h + éq, ty +tg+ ageg + bge_p] =0

that ag = bg = 0. So p(eg) =tz € h. If ® is of type Gy and [ = a; + 2az,
We know that No, a0 = 0, Nagaitas = 20, Nagai+2as = 30, Where 0 = 1, or
—1. Let hy = —dda,. Then (ag + kag)(hg) = —ko. Assume @(€q,1ray) =
te + Qk€aythar + k€0 —kass tk €0, for 1 <k < 3. It follows from

[ea2 + hO? 60{1 + 6a1+a2 + ecx1+2cx2 + 60&1-‘1—3(12] - 0
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that

3 3 3
[eag + h(), Z le + Z akCo+kay T Z bke—al—kaz} = 0.
k=1 k=1 k=1

By this equality we have that a; = by = 0. Also we have p(gg) € b.

Secondly, we shall use decreasing induction for ht 3 to show that ¢z = 0 for
every € ®T. If  is the unique maximal root, since [e,,e5] = 0 for all @ € A,
then it follows from [e,,t5] = 0 that a(tg) = 0 for all @ € A, which leads to
tg = 0. Now assume ¢, = 0 for v € &+ with ht v > k + 1, and suppose § € &
with ht § = k (where k£ > 2). For the aim to show tg = 0, it suffices to show
that a(tg) =0 for all @ € A. If o € A satisfies o+ 3 ¢ @, then by [es, e5] =0,
we have that [e,,?s] = 0, which follows that a(tz) = 0. If « is a simple root such
that a + (8 is a root, let m be the maximal positive integer such that a4+ mpg is
a root. Denote ae+mf3 by v, v — 3 by o. Choose h € b such that o(h) =0 and
v(h) = —Ng,. By [h+eg, es+e,] = 0, we have that [ts, e, +e,] = —[h+eg, to+1,].
This shows that o(tg) = v(tg) = 0. So B(tg) = (v — 0)(tg) = 0. Furthermore,
a(tg) = (y —mpP)(tg) = 0. Now we see a(tg) =0 for all @« € A. Hence t3 = 0.

A similar discussion shows that (ii) also holds, we omit the analogous
process. [

Theorem 2.7. (i) If rank(g) = 1, then ZDer(p) = gl(p).
(ii) If rank(g) > 2, then ZDer(p) = ad(p) + (1)

Proof. For (i), ® has the type A;. In this case, [z,y] = 0 if and only if
x and y are linear dependent. Let ¢ be an arbitrary linear map on p, and
suppose [z,y[= 0. Then obviously, [¢(x),y] + [z, ¢(y)] = 0, which implies that
@ € ZDer(p). Hence ZDer(p) = gl(p).

(ii)) Let ¢ € ZDer(p). By Lemma 2.2, we can find = € p such that
(p —ad x)(h) € h. Denote ¢ —ad x by ;. By Lemma 2.3, we know that
©1(gs) Ch+gs+gp forevery 3 € T U D . Now let {d, | « € A} be the
dual basis of h relative to A. For a fixed a« € A, if § € A differs from «,
then by [da,es] = 0, we have that [¢1(da),es] = —[da, p1(es)]. It follows that
[p1(da), eg] = 0 since [dq, p1(eg)] = 0. Thus B(p1(ds)) = 0 for any simple root [
distinct with «. Hence ¢;(d,) € Fd,. Now suppose ¢1(dy) = cad, for a € A.
We shall show that all ¢, actually take a same value. Let agy be an arbitrary fixed
simple root. We can find § € A such that S+« is aroot. By [dg—day, €s1ae) = 0,
we have that

[Cﬂdﬂ — Caglay, 65+C¥0] = _[dﬂ — day, 901(6,3-1-0&0)]'

Recalling that ¢1(egiay) € B+88+1a0+0—p—ao, We see that [dg—da,, P1(€81a,)] = 0.
However, [cgds — Caydag, €4+a0) = (€8 — Cag)€tag - SO € = Cqp - Since the Dynkin
diagram of ® is connected, we know that all ¢, for a € A take a same value.
Denote the same value by c¢. Thus ¢; — cl, sends each element in b to zero.
Denote @1 — cl, by 2. By Lemma 2.5, we can find certain hg € b such that
(p2 — ad hgy)(ga) = 0 for every o € A. Denote s — ad hy by ¢3. Then it follows
from (i) of Lemma 2.6 that ¢3(gs) =0 for all § € &F.

For a fixed « € 7, suppose ps(e_o) =t_o + ae_, + be, with t_, € . For
B € A satisfying 8+ a € @, it follows from [e_,,e5] = 0 that [t_, + ae_o +
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beq, es] = 0, which shows that b = 0 and (3(t_,) = 0. Choose h € b such that
(a4 B)(h) =0 and B(h) = =N_pat+s.- By [h+e_qa,€atrp + €3] = 0, we have that

[t_a + ae_q, €arp +egl =0,

which follows that a = 0 and (a + 3)(t_o) = 0. We have shown that §(t_.) =0,
so we further get «a(t_,) = 0. For § € A satisfying (5,a) = 0, then it follows
from [e_q,es] = 0 that [t_,, es] = 0, which forces that 5(t_,) =0. So B(t_o) =0
for all g € A, which implies that ¢t_, = 0. Thus ¢3(g_) = 0 for all & € 7. So
by (ii) of Lemma 2.6, we get @3(gs) =0 for all 8 € & . Hence s is just the zero
map. In the end we get ¢ = ad x+ad ho+cl,. Therefore, ZDer(p) = ad(p)+ (1),
as desired. [

It has been shown in [1] that if rank(g) = 1, then QDer(p) = gl(p); if
rank(g) > 2, then QDer(p) = ad(p) + (L,). Thus one will easily see that:

Corollary 2.8.  Fach product zero derivation of p is conversely a quasideriva-
tion of p.
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