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Abstract. We develop an efficient algebraic approach to classifying nonlinear
evolution equations in one spatial dimension that admit non-local transformation
groups (quasi-local symmetries), i.e., groups involving integrals of the dependent
variable. It applies to evolution equations invariant under Lie point symmetries
leaving the temporal variable invariant. We construct inequivalent realizations of
two- and three-dimensional Lie algebras leading to evolution equations admitting
quasi-local symmetries. Finally, we generalize the approach in question for the
case of an arbitrary system of evolution equations in two independent variables.
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1. Introduction

In the present paper we study symmetries of nonlinear evolution equations in one
spatial dimension

ut = F (t, x, u, u1, u2, . . . , un), n ≥ 2. (1)

Here u = u(t, x) is a real-valued function of two real variables t, x , ui = ∂iu/∂xi ,
i = 1, 2, . . . , n , and F is an arbitrary smooth real-valued function.

There is an extensive body of literature devoted to analysis and applications
of local (Lie and higher Lie) symmetries to evolution equations of the form (1) (see,
e.g., [9] and the references therein). However, much less is known about nonlocal
symmetries of nonlinear equations (1). Unlike the case of local symmetries there is
still no regular method for constructing nonlocal symmetries of nonlinear partial
differential equations.

In what follows we develop group-theoretical approach to classifying nonlo-
cal symmetries of nonlinear evolution equations (1).
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The most general Lie point transformation group leaving differential equa-
tion (1) invariant has the form (see, e.g., [20, 21])

t′ = T (t, ~θ ), x′ = X(t, x, u, ~θ ), u = U(t, x, u, ~θ ). (2)

Here T,X, U are smooth real-valued functions satisfying the non-singularity con-
dition D(T,X,U)

D(t,x,u)
6≡ 0 in some open domain of R3 and ~θ = (θ1, θ2, . . . , θr) ∈ Rr is

the vector of group parameters.

If a transformation of the space of variables t, x, u changes the specific form
of (1) leaving invariant its differential structure, then we arrive at the concept of
equivalence group. More precisely, if the (locally) invertible change of variables,

t→ t′ = T (t, x, u), x→ x′ = X(t, x, u), u→ u′ = U(t, x, u)

maps Eq.(1) into a possibly different n-th order evolution equation

u′t′ = G(t′, x′, u′, u′1, u
′
2, . . . , u

′
n),

then this change of variables is called an equivalence transformation. The set of all
possible equivalence transformations forms a finite- or infinite-dimensional group,
E , which is called the equivalence group of equation (1). Clearly, if we require that
G ≡ F then the equivalence group boils down to the symmetry group of Eq.(1).
Consequently, Lie point symmetry group of a given equation is a subgroup of its
equivalence group. Further details can be found in [17].

Let partial differential equation (1) be invariant under Lie point transforma-
tion group (2). What would happen to this Lie symmetry if we perform a trans-
formation from the equivalence group of the equation under study? Evidently,
transformation group (2) after being rewritten in the ’new’ variables t′, x′, u′ be-
comes Lie point symmetry of the transformed equation.

Now suppose that we allow for a more general equivalence transformation
group

t→ t′ = T (t, x, u,~v), x→ x′ = X(t, x, u,~v), u→ u′ = U(t, x, u,~v),

where ~v = (u1, u2, . . . , up, ∂
−1u, ∂−2u, . . . ∂−su) with ∂−1u =

∫
u(t, x)dx and

∂−k−1 = ∂−1∂−k . Saying it another way, we allow for an equivalence transfor-
mation to include derivatives and integrals of the dependent variable u . If such a
transformation still preserves the differential structure of evolution equation (1),
what would happen to Lie point symmetries of the latter? The answer is, ’it
depends’. In some cases, Lie point symmetry transforms into another Lie point
symmetry. However, it could happen that some Lie point symmetries would ’dis-
appear’ after performing equivalence transformation, meaning that they cannot be
found within the framework of the infinitesimal Lie method. The reason is that the
transformation rule for the variables t, x, u might contain derivatives and integrals
of u , which are beyond reach for the standard Lie method. One needs to apply
the generalized Lie [10]-[4] or non-Lie [7] approaches to be able to handle those
symmetries.

Akhatov, Gazizov and Ibragimov were the first to introduce the concept
of quasi-local symmetry [1], which is a special case of nonlocal symmetry. In-
dependently, the notion of quasi-local symmetry has been suggested in [14]. We
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employ the term ’quasi-local symmetry’ in a more narrow sense meaning Lie point
symmetries which after nonlocal equivalence transformation of an equation under
study turn into non-Lie symmetries. Note that a similar concept was studied by
Kaptsov in [11].

In the present paper we suggest a simple regular method for deriving quasi-
local symmetries (QLS) of evolution equations. Note that the basic idea of the
method has been suggested in our paper [2] and some non-trivial examples of
second-order evolution equations with QLS are given in [21].

What is more, we demonstrate that the method developed readily applies
to arbitrary systems of evolution equations with two independent variables.

2. Method description

The most general Lie point transformation group admitted by evolution equation
(1) is of the form (2). The infinitesimal operator, Q , of this group reads as [20]

Q = τ(t)∂ + ξ(t, x, u)∂x + η(t, x, u)∂u. (3)

Provided τ ≡ 0, there is a transformation,

t→ t̄ = t, x→ x̄ = X(t, x, u), u→ ū = U(t, x, u), (4)

that reduces Q to the canonical form ∂u (we drop the bars). Evolution equation
(1) now becomes

ut = f(t, x, u1, u2, . . . , un). (5)

Note that the right-hand side of Eq.(5) does not depend explicitly on u .

Differentiating (5) with respect to x yields

utx =
∂f

∂x
+

n∑
i=1

∂f

∂ui
ui+1.

Making the change of variables

t̄ = t, x̄ = x, ū = ux (6)

and dropping the bars we finally get

ut =
∂f

∂x
+
∂f

∂u
+

n∑
i=2

∂f

∂ui−1

ui, (7)

where f = f(t, x, u, u1, . . . , un−1).

Thus the nonlocal transformation (6) preserves the differential structure of
the class of evolution equations (5).

Let the differential equation (5) admit r -parameter Lie point transformation

group (2) with ~θ = (θ1, . . . , θr) and r ≥ 2. To obtain the symmetry group of
Eq.(7) we need to transform (2) according to (6). To this end we compute the
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first prolongation of formulas (2) and derive the transformation rule for the first
derivative of u

∂u′

∂x′
=

Uuux + Ux
Xuux +Xx

,

so that symmetry group (2) reads

t′ = T (t, ~θ ), x′ = X(t, x, v, ~θ ), u′ =
Uvu+ Ux
Xvu+Xx

(8)

with v = ∂−1u and U = (t, x, v, ~θ ). Consequently, if the right-hand sides of (8)
depend explicitly on the nonlocal variable v , then the transformation group (8) is
a quasi-local symmetry of Eq.(7).

Evidently, the transformations (8) include the variable v if and only if

Xv 6= 0 or
∂

∂v

(
Uvu+ Ux
Xvu+Xx

)
6= 0

or, equivalently (since all the functions involved are real-valued),

(Xv)
2 + (UvvXv − UvXvv)

2 + (UxvXx − UxXxv)
2

+(UvvXx + UxvXv − UxXvv − UvXxv)
2 6= 0. (9)

If Xv 6= 0, then the above inequality holds true. If Xv does vanish identically,
then (9) reduces to U2

xv + U2
vv 6= 0. It is straightforward to express the above

constraints in terms of the coefficients of the corresponding infinitesimal operator
of group (2). As a result, we get the following assertion.

Theorem 2.1. Equation (5) can be reduced to the evolution equation (7) having
QLS if it admits Lie point symmetry, whose infinitesimal generator satisfies one
of the inequalities

∂ξ

∂u
6= 0, (10)

∂ξ

∂u
= 0,

(
∂2η

∂u∂x

)2

+

(
∂2η

∂u∂u

)2

6= 0. (11)

Now we can formulate the procedure for constructing evolution equations
of the form (1) admitting QLS.

1. We compute the maximal Lie point symmetry group S of differential equa-
tion (1).

2. We classify inequivalent one-parameter subgroups of S and select subgroups
S1, . . .Sp whose infinitesimal operators are of the form Q = ξ(t, x, u)∂x +
η(t, x, u)∂u .

3. For each subgroup, Si , we construct a change of variables (4) reducing the
corresponding infinitesimal operator Q to the canonical operator ∂ū , which
leads to an evolution equation of the form (5).



Zhdanov 379

4. Since the invariance group, S̄ , admitted by (5) is isomorphic to S , we can
utilize the results of subgroup classification of S . For each of the one-
parameter subgroups of S̄ we check whether its infinitesimal generators
satisfies one of conditions (10), (11) of Theorem 2.1. This yields the list
of evolution equations that can be reduced to those having QLS.

5. Performing a nonlocal change of variables (6) we obtain the evolution equa-
tions (7) admitting quasi-local symmetries (8).

In what follows, we classify the realizations of two- and three-parameter Lie
point transformation groups leading to evolution equations (1) that admit QLS.

Hereafter we assume that evolution equation (1) admits a Lie symmetry
Q = ξ(t, x, u)∂x + η(t, x, u)∂u and therefore can be reduced to the form (5). Dif-
ferential equation (5) is guaranteed to admit at least the one-parameter symmetry
group generated by the operator ∂u . What we are going to do is to describe all
realizations of two- and three-dimensional Lie algebras, which

• are invariance algebras of equations of the form (5), and,

• have coefficients satisfying one of the inequalities (10), (11) from Theorem
2.1.

With these realizations in hand, the problem of describing equations having
QLS reduces to a straightforward application of the infinitesimal Lie method
[17, 15, 8], which boils down to integrating characteristic system for calculating
differential invariants of the corresponding Lie algebras of first-order differential
operators.

Let us recall that the most general symmetry generator admitted by (5)
is of the form (3), while the most general equivalence group admitted by Eq.(1)
reads as (see, e.g., [12])

t̄ = T (t), x̄ = X(t, x, u), ū = U(t, x, u), (12)

where T,X, U are arbitrary smooth real-valued functions.

We can always choose basis operators of the invariance algebra of Eq.(5) so
that

e0 = ∂u, ei = τi(t)∂t + ξi(t, x, u)∂x + ηi(t, x, u)∂u,

where i = 1, . . . , r . Note that by the Magadeev theorem [13] the maximal possible
value for r is n+4, n being the order of evolution equation (5), provided (5) is not
locally equivalent to a linear equation. In particular, for the second-order evolution
equation we have r ≤ 6. By the definition of Lie algebra there are constant r × r
matrix C and constant r -component vector ~c such that

[e0, ei] =
r∑
j=1

Cijej + cie0, i = 1, . . . , r. (13)

Here [Q1, Q2] ≡ Q1Q2 −Q2Q1 .

The system of equations (13) is the starting point of our classification
algorithm. First of all, let us note that by re-arranging the basis of the Lie algebra,
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eµ →
∑r

ν=0 aµνeν , µ = 0, 1, . . . , r , we can always reduce the constant matrix C to
the canonical form. Consequently, without any loss of generality we may assume
that the matrix C is in the canonical form.

Computing commutators in the left-hand sides of (13) and equating the
coefficients of linearly-independent operators ∂t, ∂x, ∂u we get the following system
of partial differential equations:

∂~ξ

∂u
= C~ξ,

∂~η

∂u
= C~η + ~c, C~τ = 0, (14)

where ~ξ = (ξ1, . . . , ξr), ~η = (η1, . . . , ηr), ~τ = (τ1, . . . , τr). After integrating
differential equations (14) we need to ensure that the operators e1, . . . , er do form
a basis of Lie algebra and satisfy the additional set of commutation relations

[ei, ej] =
r∑

k=1

ckijek, k = 1, . . . , r.

Next, we simplify the form of operators e1, . . . , er using the suitable equivalence
transformations from the group E . As the final step, we verify that at least one
of the coefficients of one the operators e1, . . . , er satisfy either (10) or (11).

3. Realizations of two-dimensional QLS algebras

For the case r = 1, system (14) reduces to a pair of non-coupled differential
equations

ξu = λξ, ηu = λη + c, λτ = 0, (15)

where λ, c are constants.

While integrating (15) we need to differentiate between the two cases λ 6= 0
and λ = 0.

Case 1. λ 6= 0. The general solution of (15) has the form

τ(t) = 0, ξ(t, x, u) = W1(t, x) exp(λu),

η(t, x, u) = W2(t, x) exp(λu)− cλ−1.

where W1,W2 are arbitrary smooth functions. So that the two-dimensional Lie
algebra 〈e0, e1〉 reads as

e0 = ∂u, e1 = W1(t, x) exp(λu)∂x +
(
W2(t, x) exp(λu)− cλ−1

)
∂u.

As λ 6= 0 we can always re-scale u , i.e., make a transformation u→ ku, k = const,
in order to get λ = 1. Next taking as new e1 the linear combination cλ−1e0 + e1
we get rid of the term in e1 which is proportional to c , namely,

e0 = ∂u, e1 = W1(t, x) exp(u)∂x +W2(t, x) exp(u)∂u.

It is not difficult to verify that the most general subgroup of the equivalence group
E not altering the form of equation (5) and operator ∂u is given by the formulas

t̄ = T (t), x̄ = X(t, x), ū = u+ U(t, x), (16)
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where T,X, U are arbitrary smooth functions.

Since the functions W1 and W2 do not vanish simultaneously, we have three
possible subcases, (1) W1 6= 0,W2 6= 0, (2) W1 6= 0,W2 = 0, and W1 = 0,W2 6= 0.

Case 1.1. W1 6= 0,W2 6= 0. Applying (16) with T = t we reduce the operator e1
to the form

e1 = ε1 exp(u)∂x + ε2 exp(u)∂u,

where ε1 = ±1, ε2 = ±1. Combining equivalence transformation t → t, x →
−x, u → u and re-scaling e1 → −e1 we get the final form of the basis elements
e0, e1

e0 = ∂u, e1 = exp(u)(∂x + ∂u).

Since ξu = exp(u) 6= 0, the condition (10) of Theorem 2.1 holds true and the
evolution equation invariant under the above algebra is equivalent to a quasi-linear
evolution equation that admits QLS.

Case 1.2. W1 6= 0,W2 6= 0. Applying transformation (15) with T (t) = t, U(t, x) =
0, k = 1 we reduce the operator e1 to the form e1 = exp(u)∂x. Again, the
coefficient ξ = exp(u) obeys condition (10) of Theorem 2.1 and, therefore, it
gives rise to the two-dimensional Lie algebra

e0 = ∂u, e1 = exp(u)∂x

that leads to an evolution equation admitting QLS.

Case 1.3. W1 = 0,W2 6= 0. Applying transformation (15) with T (t) = t,X(t, x) =
x we reduce the operator e1 to the form e1 = ± exp(u)∂u . Re-scaling, if necessary,
the operator e1 to −e1 we can make sure that e1 reads as exp(u)∂u and finally
get

e0 = ∂u, e2 = exp(u)∂u.

Since the coefficient η = exp(u) obeys condition (11) of Theorem 2.1, an evolution
equation invariant under the above algebra is equivalent to a partial differential
equation of the form (7) which has QLS.

Case 2. λ = 0. System (15) is readily integrated to yield

T (t) = W0(t), ξ = W1(t, x), η = W2(t, x) + cu.

Here W0,W1,W2 are arbitrary smooth functions. Checking the conditions of
Theorem 2.1 we see that neither of them can be satisfied by the coefficients of
the operator e1 . Consequently, this case yields no equations admitting QLS.

Below we give the full list of E -inequivalent realizations of two-dimensional
Lie algebras spanned by the operators e0 = ∂u , e1 = T (t)∂t+ξ(t, x, u)∂x+η(t, x, u)
∂u satisfying the conditions of Theorem 2.1

A1
2 : 〈∂u, exp(u)(∂x + ∂u)〉,

A2
2 : 〈∂u, exp(u)∂x〉,

A3
2 : 〈∂u, exp(u)∂u〉.

Evolution equations (5) invariant under the above algebras are reduced to
differential equations that admit QLS. The corresponding QLS are obtained by
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re-writing the transformation groups generated by the operators e1 in terms of
new (nonlocal) variables t, x, u and ∂−1u .

Consider, for example, the algebra A2
2 = 〈∂u, exp(u)∂x〉 . Applying the

standard infinitesimal Lie algorithm [17] we obtain the determining equations for
the function f

−uxf − fx + u2
xfux + (u3

x + 3uxuxx)fuxx = 0.

The general solution of the above equation reads as

f(t, x, ux, uxx) = uxf̃(ω0, ω1, ω2),

where f̃ is an arbitrary smooth function and ω0 = t , ω1 = (xux − 1)u−1
x ,

ω2 = (uxx + u2
x)u

−3
x are absolute invariants of the transformation group generated

by the operators ∂u and exp(u)∂x . Consequently, the evolution equation invariant
under the algebra A2

2 is of the form

ut = uxf̃(ω0, ω1, ω2).

Differentiating the above equation with respect to x and replacing ux with u
according to (6) we arrive at the evolution equation

ut = uxf̃ +
ux + u2

u2
f̃ω1 +

uuxx − 3(u2 + 1)ux
u4

f̃ω2

with ω0 = t , ω1 = x− u−1 , ω2 = (ux + u2)u−3 . This differential equation admits
the following quasi-local symmetry group

t′ = t, x′ = x+ θ exp(v), u′ =
u

1 + θu exp(v)
.

where θ is a group parameter and v = ∂−1u .

4. Realizations of three-dimensional QLS algebras

Consider system of partial differential equations (14) with r = 2. The constant
2×2 matrix C has been reduced to the canonical real Jordan form. There are three
inequivalent cases that need to be considered separately, namely, when eigenvalues

1. are complex conjugate,

2. are real, and the matrix C is diagonal,

3. are real and the matrix C is the 2× 2 canonical Jordan box(
λ 1
0 λ

)
.

We consider in detail the class of realizations of three-dimensional Lie algebras ob-
tained for the case when C has two complex eigenvalues λ1, λ2 . For the remaining
two classes we present the final results only.
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4.1. Case of diagonal canonical form with complex eigenvalues. As the
characteristic equation of the real matrix C is real, the eigenvalues have to satisfy
the additional constraint λ∗1 = λ2 , where the star stands for complex conjugation.
Consequently, if we define ν = (λ1+λ2)/2 and a = (λ1−λ2)/(2i), then the general
solution of (14) can be represented in the form

τ1 = 0, τ2 = 0,

ξ1 = (W1(t, x) cos(au) +W2(t, x) sin(au)) exp(νu),

ξ2 = (W2(t, x) cos(au)−W1(t, x) sin(au)) exp(νu), (17)

η1 = (W3(t, x) cos(au) +W4(t, x) sin(au)) exp(νu) + b1,

η2 = (W4(t, x) cos(au)−W3(t, x) sin(au)) exp(νu) + b2.

Here W1,W2,W3,W4 are arbitrary smooth real-valued functions, b1, b2 are real
constants. Hence, the most general form of the basis operators e1, e2 is

e1 = (W1(t, x) cos(au) +W2(t, x) sin(au)) exp(νu)∂x

+
(
(W3(t, x) cos(au) +W4(t, x) sin(au)) exp(νu) + b1

)
∂u,

e2 = (W2(t, x) cos(au)−W1(t, x) sin(au)) exp(νu)∂x

+
(
(W4(t, x) cos(au)−W3(t, x) sin(au)) exp(νu) + b2

)
∂u.

Note that a 6= 0, otherwise, λ1, λ2 are not complex. By re-scaling the variable u
we can make a equal to 1. Next, applying to the operators e1, e2 an equivalence
transformation (15) with T (t) = t,X(t, x) = x we can get rid of the function W2 .
With these remarks the operators e1, e2 take the form

e1 =
(
(W3(t, x) cos u+W4(t, x) sinu) exp(νu) + b1

)
∂u

+W1(t, x) cosu exp(νu)∂x, (18)

e2 =
(
(W4(t, x) cosu−W3(t, x) sinu) exp(νu) + b2

)
∂u

−W1(t, x) sinu exp(νu)∂x.

In what follows we need to distinguish between the cases, ν 6= 0 and ν = 0.

Case 1. ν 6= 0. Performing, if necessary, transformation (15) with T (t) =
t, U(t, x) = u we can always make non-vanishing identically function W equal
to 1. Next, taking as e1 and e2 the linear combinations e1 − b1e0 and e2 − b2e0
we can get rid of parameters b1, b2 .

Now we need to ensure that the operators e0, e1, e2 do form a realization of
a Lie algebra. To this end we have to verify that the relation

[e1, e2] = αe1 + βe2 + γe0 (19)

with some real α, β, γ holds true. Calculating the commutators and equating
the coefficients of linearly-independent operators ∂t, ∂x, ∂u we get the system of
differential equations for W3,W4 . Its general solution is given by the formulas

W3 = ν(ν2 + 1)−1(x+ p(t))−1, W4 = −(ν2 + 1)−1(x+ p(t))−1.



384 Zhdanov

Here p(t) is an arbitrary smooth function. Making the equivalence transformation
(15) with T (t) = t,X(t, x) = p(t), U(t, x) = 0 we eliminate the function p(t) and
arrive at the following realization of the three-dimensional Lie algebra

e0 = ∂u,

e1 = exp(νu) cos u∂x + (ν2 + 1)−1(ν cosu− sinu)x−1 exp(νu)∂u,

e2 = − exp(νu) sinu∂x − (ν2 + 1)−1(cosu− ν sinu)x−1 exp(νu)∂u,

Evidently, the coefficients of e1, e2 satisfy condition (10) of Theorem 2.1 and,
consequently, evolution equation invariant under the symmetry algebra e0 , e1 , e2
can be reduced to the one having QLS.

Case 2. ν = 0. Operators (18) take the form

e1 =
(
(W3(t, x) cos u+W4(t, x) sinu) + b1

)
∂u +W1(t, x) cos u∂x,

e2 =
(
(W4(t, x) cos u−W3(t, x) sinu) + b2

)
∂u −W1(t, x) sinu∂x.

Replacing e1 and e2 with the linear combinations e1−b1e0 and e2−b2e0 eliminates
the parameters b1, b2 . So that we can assume that b1 = 0, b2 = 0 without any loss
of generality.

Case 2.1. W1 6= 0. Utilizing equivalence transformation (15) with T = t, U = 0
we can make W1 equal to 1. After simple algebra we prove that for the operators
e1, e2 to satisfy the remaining commutation relation (19) the functions W3,W4

have to take one of the following forms:

W3 = 0, W4 = µ tan(µx),

W3 = 0, W4 = −µ tanh(µx),

W3 = 0, W4 = x−1,

where µ is an arbitrary real parameter. Inserting the above expressions into the
corresponding formulas for e1, e2 we finally get

e0 = ∂u,

e1 = cosu∂x + µ tan(µx) sinu∂u,

e2 = − sinu∂x + µ tan(µx) cosu∂u;

e0 = ∂u,

e1 = cosu∂x − µ tanh(µx) sinu∂u,

e2 = − sinu∂x − µ tanh(µx) cosu∂u;

e0 = ∂u,

e1 = cosu∂x − x−1 sinu∂u,

e2 = − sinu∂x − x−1 cosu∂u.

Case 2.2. W1 = 0. In this case using transformation (15) with T = t,X = x we
can eliminate W4 . Inserting the corresponding expressions for e1, e2 into (19) and
solving the obtained equations within the equivalence relation E yields

e0 = ∂u, e1 = cosu∂u, e2 = sinu∂u.
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Note that all realizations of three-dimensional Lie algebras obtained under Cases
2.1, 2.2 satisfy the conditions of Theorem 2.1. Consequently, evolution equations
invariant with respect to the above algebras can be transformed into equations
admitting QLS.

Summing up we present the full list of realizations of three-dimensional Lie
algebras, obtained for the case when 2 × 2 matrix C in (14) has two complex
eigenvalues.

A1
3 : 〈∂u, exp(µu) cos u∂x + (µ2 + 1)−1(µ cosu− sinu)x−1 exp(µu)∂u,

− exp(µu) sinu∂x − (µ2 + 1)−1(cosu− µ sinu)x−1 exp(µu)∂u〉,

A2
3 : 〈∂u, cosu∂x + µ tan(µx) sinu∂u,− sinu∂x + µ tan(µx) cosu∂u〉,

A3
3 : 〈∂u, cosu∂x − µ tanh(µx) sinu∂u, − sinu∂x − µ tanh(µx) cosu∂u〉,

A4
3 : 〈∂u, cosu∂x − x−1 sinu∂u, − sinu∂x − x−1 cosu∂u〉,

A5
3 : 〈∂u, cosu∂u, sinu∂u〉.

Here µ is an arbitrary real constant.

Evolution equations (5) invariant under the algebras A1
3, . . . , A

5
3 can be

reduced to equations admitting QLS.

4.2. Case of diagonal canonical form with real eigenvalues. Without loss
of generality we may assume that the matrix C from (14) has been reduced to the

diagonal matrix

(
λ1 0

0 λ2

)
. Since λ1, λ2 do not vanish simultaneously we may

assume that λ1 6= 0. Re-scaling u we make λ1 equal to 1. With this choice of C ,
system (14) takes the form

T1 = 0, λ2T2 = 0,

ξ1u = ξ1, ξ2u = λ2ξ2,

η1u = η1 + c1, η2u = λ2η2 + c2.

Integrating the above system within the equivalence relation E , inserting the result
into the remaining commutation relation (19) and solving the equations obtained



386 Zhdanov

we arrive at the following realizations of three-dimensional Lie algebras:

A6
3 : 〈∂u, exp(u)∂x, (x2 + σ(t)) exp(−u)∂x + 2x exp(−u)∂u〉,

A7
3 : 〈∂u, exp(u)∂x + ε exp(u)∂u, (σ(t) exp(x)± exp(2x) + µ) exp(−u)∂x

+(± exp(2x)− µ)∂u〉,
A8

3 : 〈∂u, exp(u)∂x + exp(u)∂u, (σ(t) exp(−µx)± exp((1− µ)x))

× exp(µu)∂x ± exp((1− µ)x)) exp(µu)∂u〉,
A9

3 : 〈∂u, exp(u)∂x, σ(t)x exp(µu)∂x + σ(t) exp(µu)∂u〉,
A10

3 : 〈∂u, exp(u)∂x, σ(t) exp(µu)∂u〉,
A11

3 : 〈∂u, exp(u)(∂x + ∂u), (σ(t) + exp(x))∂x + exp(x)∂u + ε∂t〉,
A12

3 : 〈∂u, exp(u)(∂x + ∂u), σ(t)∂x + ε∂t〉,
A13

3 : 〈∂u, exp(u)∂x, σ(t)(x∂x + ∂u) + ε∂t〉,
A14

3 : 〈∂u, exp(u)∂x, σ(t)(∂x + ∂u) + ε∂t〉,
A15

3 : 〈∂u, exp(u)∂u, σ(t)∂u + ε∂t〉,
A16

3 : 〈∂u, exp(u)∂u, ∂x + σ(t)∂u〉,
A17

3 : 〈∂u, exp(u)(∂x + ∂u), exp(u)(σ1(t) exp(−x) + σ2(t))∂x

+σ1(t) exp(u)∂u〉,
A18

3 : 〈∂u, exp(u)∂x, exp(u)(σ1(t)x+ σ2(t))∂x + σ1(t) exp(u)∂u〉,
A19

3 : 〈∂u, exp(u)∂u, x exp(u)∂u〉,
A20

3 : 〈∂u, exp(u)∂u, t exp(u)∂u〉.

Here σ(t), σ1(t), σ2(t) are arbitrary real-valued smooth functions, µ is an arbitrary
real parameter, and ε = 0, 1.

By construction coefficients of algebras A6
3 − A20

3 satisfy the conditions of
Theorem 2.1. Consequently, evolution equations (5) invariant under these algebras
can be reduced to ones having QLS.

4.3. Case of non-diagonal canonical form. For the case under consideration,

the matrix C from (14) is of the form

(
θ 1

0 θ

)
. System of partial differential

equations (13) now reads as

θT1 + T2 = 0, θT2 = 0,

ξ1u = θξ1 + ξ2, ξ2u = θξ2,

η1u = θη1 + η2 + c1, η2u = θη2 + c2.

Integrating the above system within the equivalence relation E , inserting the result
into (19) and solving the relations obtained we obtain eleven realizations of three-
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dimensional Lie algebras:

A21
3 : 〈∂u, u exp(u)∂x + x−1(u+ 1) exp(u)∂u, exp(u)∂x + x−1 exp(u)∂u〉,

A22
3 : 〈∂u, u∂x + (µu2 + σ(t) exp(4µx))∂u, ∂x + 2µ∂u〉,

A23
3 : 〈∂u, u∂x + (µx+ νu+ σ1(t))∂u + σ2(t)∂t, ∂x〉,

A24
3 : 〈∂u, ∂x + µu tan(µx)∂u, tan(µx)∂u〉,

A25
3 : 〈∂u, ∂x − µu tanh(µx)∂u, tanh(µx)∂u〉,

A26
3 : 〈∂u, ∂x − x−1u∂u, x

−1∂u〉,
A27

3 : 〈∂u, (u2 + x)∂u, u∂u〉,
A28

3 : 〈∂u, (u2 + t)∂u, u∂u〉,
A29

3 : 〈∂u, u(ν + 2µ tan(µt+ αx))∂u + 2∂t, (ν + 2µ tan(µt+ αx))∂u〉,
A30

3 : 〈∂u, u(ν + 2µ tanh(−µt+ αx))∂u + 2∂t, (ν + 2µ

× tanh(−µt+ αx))∂u〉,
A31

3 : 〈∂u, (µνx− µt− 2)(t− νx)−1u∂u + 2t∂t, (µνx− µt− 2)

×(t− νx)−1u∂u〉.

Here σ(t), σ1(t), σ2(t) are arbitrary real-valued smooth functions, α, µ, ν are arbi-
trary real parameters.

Evolution equations (5) admitting symmetry algebras A21
3 , . . . , A

31
3 can be

reduced to equations having QLS.

5. Some generalizations

The technique developed in the previous sections naturally expands to cover gen-
eral systems of evolution equations

~ut = ~F (t, x, ~u, ~u1, . . . , ~un), n ≥ 2. (20)

Here ~F = (F 1, . . . , Fm) is an arbitrary m-component real-valued smooth function,
~u = (u1, . . . , um) ∈ Rm , and ~ui = (∂i~u)/(∂xi), i = 1, . . . , n .

Suppose that system of evolution equations (20) admits m-parameter Abe-
lian symmetry group which leaves the temporal variable, t , invariant. The in-
finitesimal generators of this group have to be of the form

Qi = ξi(t, x, ~u)∂x +
m∑
j=1

ηij(t, x, ~u)∂uj , i = 1, . . . , n (21)

and what is more, the rank of the matrix composed of the coefficients of differential
operators ∂x, ∂u1 , . . . , ∂um equals to m . Given these conditions, there exists a
change of variables

t̄ = t, x̄ = X(t, x, ~u), ~̄u = ~U(t, x, ~u) (22)

that reduces operators (21) to canonical ones Q̄i = ∂ūi , i = 1, . . . ,m (see, e.g.,
[17]). Consequently system of evolution equations (20) takes the form

~ut = ~f(t, x, ~u1, . . . , ~un), n ≥ 2. (23)
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Note that we dropped the bars.

Now we can apply the same trick we utilized for the case of a single evolution
equation. Namely, we differentiate (23) with respect to x and map ~u → ~ux thus
getting

~ut =
∂ ~f

∂x
+

n∑
i=1

m∑
j=1

∂ ~f

∂uji−1

uji (24)

with uj0 ≡ uj .

If system of evolution equations (23) admits the Lie point transformation
group

t′ = T (t, θ), x′ = X(t, x, ~u, θ), ~u′ = ~U(t, x, ~u, θ), (25)

where θ ∈ R is a group parameter, then the transformed system of equations (25)
admits the group

t′ = T (t, θ),

x′ = X(t, x,~v, θ), (26)

~u′ =
~Ux +

∑m
i=1

~Uviui

Xx +
∑m

i=1Xviui

with vi = ∂−1ui ≡
∫
uidx and ~U = ~U(t, x,~v, θ). Consequently, provided either of

relations
∂X

∂vj
6= 0,

∂

∂vj

(
~Ux +

∑m
i=1

~Uviui

Xx +
∑m

i=1Xviui

)
6= 0 (27)

holds for some j, 1 ≤ j ≤ m , system of evolution equations admits QLS (26).

Set of relations (27) is equivalent to the following system of inequalities

m∑
i=1

X2
vi 6= 0,

or
m∑
i=1

X2
vi = 0,

m∑
i,j=1

(U j
xvi)

2 +
m∑

i,j,k=1

(Uk
vivj)2 6= 0.

Note that all the functions involved are real-valued, so that vanishing of the sum of
squares requires for every summand to vanish individually. Rewriting the obtained
relations in terms of coefficients of the corresponding infinitesimal operators we
arrive at the following assertion.

Theorem 5.1. System of evolution equations (23) can be reduced to a system
having QLS if it admits Lie point symmetry whose infinitesimal operator Q =
τ(t)∂t + ξ(t, x, ~u)∂x +

∑m
i=1 ηi(t, x, ~u)∂ui satisfies one of the inequalities

m∑
i=1

ξ2
vi 6= 0, (28)

m∑
i=1

ξ2
vi = 0,

m∑
i,j=1

(ηj
xvi)

2 +
m∑

i,j,k=1

(ηkvivj)2 6= 0. (29)
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Summing up we formulate the procedure for classification of systems of
evolution equations (20) admitting QLS.

1. We compute the maximal Lie point symmetry group S of system of partial
differential equations (20).

2. We classify inequivalent m-parameter Abelian subgroups S1, . . .Sp of the
group S and select subgroups whose infinitesimal operators are of the form
(21).

3. For each subgroup Si we construct change of variables (22) reducing com-
muting infinitesimal operators, Qi , to the canonical forms ∂ūi , which leads
to system of evolution equations (23).

4. Since the invariance group, S̄ , admitted by (23) is isomorphic to S , we
can utilize the results of subgroup classification of S . For each of the
m-parameter Abelian subgroups of S̄ we check whether their infinitesimal
generators satisfy one of conditions (28), (29) of Theorem 5.1. This yields
the list of systems of evolution equations that can be reduced to those having
QLS.

5. Performing the nonlocal change of variables ui → uix , i = 1, . . . ,m we obtain
systems of evolution equations (24) admitting quasi-local symmetries (26).

We intend to devote a special publication to application of this algorithm
to Schrödinger-type systems of partial differential equations. Here we present an
example of Galilei-invariant nonlinear Schrödinger equation, which leads to the
equation possessing QLS.

Consider the nonlinear Schrödinger equation

iψt = ψxx + 2(x+ iα)−1ψx − (i/2)(x+ iα) (30)

+F (2iα(x+ iα)ψx − (x− iα)(ψ − ψ∗)),

where ψ = ψRE(t, x) + iψIM(t, x), ψ∗ = ψRE(t, x) − iψIM(t, x), α 6= 0 is an
arbitrary real constant and F is an arbitrary complex-valued function. According
to [22], Eq.(30) admits the Lie algebra of the Galilei group having the following
basis operators:

e1 = ∂t,

e2 = ∂ψ + ∂ψ∗ ,

e3 = (x+ iα)−1∂ψ + (x− iα)−1∂ψ∗ ,

e4 = ∂x − (t+ (x+ iα)−1ψ)∂ψ − (t+ (x− iα)−1ψ∗)∂ψ∗ .

Operators e2 , e3 commute and the rank of the matrix of coefficients of
operators ∂t, ∂x, ∂ψ, ∂ψ∗ is equal to 2. Consequently, there is a change of variables
that reduces e2 , e3 to canonical forms ∂u , ∂v . Indeed, making the change of
variables

u(t, x) = (1/2)(ψ + ψ∗), v(t, x) = (2iα)−1(x2 + α2)(ψ − ψ∗) (31)
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transforms e1, e2 to become e1 = ∂u , e2 = ∂v . So we can apply the above approach
to Eq.(30) transformed according to (31). As the coefficients of the transformed
operator e3 satisfy (29), it leads to QLS of the system of evolution equations of
the form (24).

6. Concluding remarks

In the present paper we develop the efficient approach to constructing evolution
type partial differential equations which admit quasi-local symmetries. It is im-
portant to emphasize that the approach in question can be applied iteratively.
Namely, if the transformed equation possesses Lie point symmetries which satisfy
conditions of Theorem 2.1, then it again can be transformed to a new evolution
equation admitting QLS and so on. What is more, the equation obtained as
the N th iteration of the algorithm admits QLS which involves nonlocal variables
∂−1u, ∂−2u, . . . , ∂−Nu .

It is of great interest to explore quasi-local symmetries of nonlinear multi-
component evolution equations. The most natural objects are the nonlinear
Schrödinger-type equations and systems of nonlinear reaction-diffusion equations.

There is a different approach to analyzing nonlocal symmetries for some
special differential equations based on the notion of potential symmetries intro-
duced by Bluman [5, 3]. Recently, we have established that for the case of arbitrary
evolution equation in one spatial variable any potential symmetry is quasi-local.
More precisely, for any potential symmetry of an equation of the form (1) there
is a (non-point) transformation reducing it to a group of contact transformations
leaving invariant the properly transformed equation (1) [18]. A similar assertion
holds for the case of system of evolution equations in one spatial variable [19]. A
detailed discussion of alternative approaches to analysis of nonlocal symmetries of
partial differential equations can be found in [6, 16].

A study of the above mentioned problems is in progress now and will be
reported in our future publications.

Acknowledgements. The author would like to thank the referee for useful re-
marks and suggestions which helped to improve the presentation of the results.

References

[1] Akhatov, I. S., R. K. Gazizov, and N. K. Ibragimov, Nonlocal symmetries:
A heuristic approach, Journal of Soviet Mathematics 55 (1991), 1401-1450.

[2] Basarab-Horwath, P., V. Lahno, and R. Zhdanov, The structure of Lie
algebras and the classification problem for partial differential equations, Acta
Applicandae Mathematicae 69 (2001), 43–94.

[3] Bluman, G. W., Use and construction of potential symmetries, Mathematical
and Computer Modelling 18 (1993), 1-14.

[4] Bluman, G., and S. Kumei, “Symmetries and Differential Equations,”
Springer, 1989.



Zhdanov 391

[5] Bluman, G. W., G. J. Reid, and S. Kumei, New classes of symmetries for
partial differential equations, Journal of Mathematical Physics 29 (1988),
806-811.

[6] Bocharov, A. V., V. N. Chetverikov, S. V. Duzhin, N. G. Khor’kova, I. S.
Krasil’shchik, A. V. Samokhin, Yu. N. Torkhov, A. M. Verbovetsky, and A.
M. Vinogradov, “Symmetries and conservation laws for differential equations
of mathematical physics,” American Mathematical Society, 1999.

[7] Fushchych, W. I., and A. G. Nikitin, “Symmetries of Equations of Quantum
Mechanics,” Allerton Press, 1994.

[8] Fushchych, W., W. Shtelen, and M. Serov, “Symmetry analysis and exact
solutions of equations of nonlinear mathematical physics,” Kluwer, 1993.

[9] Ibragimov, N. H., “Handbook of Lie Group Analysis of Differential Equa-
tions,” CRC Press 1–3, 1994–1996.

[10] Ibragimov, N. H., “Transformation Groups Applied to Mathematical Phy-
sics,” Reidel, 1985.

[11] Kaptsov, O. V., An extension of the symmetry of evolution equations, Dok-
lady Akademii Nauk SSSR 262 (1982), 1056–1059.

[12] Kingston, J. G., and C. Sophocleous, On form-preserving point transforma-
tions of partial differential equations, Journal of Physics A: Mathematical
and General 31 (1998), 1597–1619.

[13] Magadeev, B. A., On group classification of nonlinear evolution equations,
Saint Petersburg Mathematical Journal 5(1994), 345-359.

[14] Meirmanov, A. M., V. M. Pukhnachov, and S. I. Shmarev, “Evolution
equations and Lagrangian coordinates,” Walter de Gruyter, Berlin, 1997.

[15] Olver, P. J., “Applications of Lie Groups to Differential Equations,”
Springer, New York etc., 1987.

[16] —, Nonlocal symmetries and ghosts. New trends in integrability and partial
solvability, Kluwer, NATO Scientific Series II: Mathematics, Physics and
Chemistry 132, 1994, 199–215.

[17] Ovsyannikov, L. V., “Group Analysis of Differential Equations,” Academic
Press, New York, 1982.

[18] Zhdanov, R., On relation between potential and contact symmetries of evolu-
tion equations, Journal of Mathematical Physics 50 (2009), paper no. 053522,
23 pp.

[19] —, Nonlocal symmetries of nonlinear evolution equations, arXiv:
0906.3006v1 (2009).



392 Zhdanov

[20] Zhdanov, R., and V. Lahno, Group classification of the general second-order
evolution equation: semi-simple invariance groups, Journal of Physics A:
Mathematical and Theoretical 40 (2007), 5083–5103.

[21] —, Group classification of the general evolution equation: local and quasilocal
symmetries, SIGMA 1 (2005).

[22] Zhdanov, R. Z., and O. V. Roman, On preliminary symmetry classification of
nonlinear Schrödinger equations with some applications to Doebner-Goldin
model, Reports on Mathematical Physics 45 (2000), 273–291.

Renat Zhdanov
BIO-key International
Eagan, MN 55123
USA
renat.zhdanov@bio-key.com

Received November 24, 2009
and in final form May 4, 2010


