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Abstract. The purpose of this paper is to define cohomology structures on
Hom-associative algebras and Hom-Lie algebras. The first and second cobound-
ary maps were introduced by Makhlouf and Silvestrov in the study of one-
parameter formal deformations theory. Among the relevant formulas for a
generalization of Hochschild cohomology for Hom-associative algebras and a
Chevalley-Eilenberg cohomology for Hom-Lie algebras, we define a Gerstenhaber
bracket on the space of multilinear mappings of Hom-associative algebras and a
Nijenhuis-Richardson bracket on the space of multilinear maps of Hom-Lie alge-
bras. Also we enhance the deformation theory of this Hom-algebras by studying
the obstructions.
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Introduction

Hom-Type algebras have been recently investigated by many authors. The main
feature of these algebras is that the identities defining the structures are twisted
by homomorphisms. Such algebras appeared in the ninetieth in examples of q -
deformations of the Witt and the Virasoro algebras. Motivated by these examples
and their generalization, Hartwig, Larsson and Silvestrov introduced and studied
in [11] the classes of quasi-Lie, quasi-Hom-Lie and Hom-Lie algebras. In the class
of Hom-Lie algebras skew-symmetry is untwisted, whereas the Jacobi identity is
twisted by a homomorphism and contains three terms as in Lie algebras, reducing
to ordinary Lie algebras when the twisting linear map is the identity map.

The Hom-associative algebras play the role of associative algebras in the
Hom-Lie setting. They were introduced by Makhlouf and Silvestrov in [16], where
it is shown that the commutator bracket of a Hom-associative algebra gives rise
to a Hom-Lie algebra. Given a Hom-Lie algebra, a universal enveloping Hom-
associative algebra was constructed by Yau in [25]. The Hom-Lie superalgebras
have been studied by Ammar and Makhlouf in [1]. In a similar way several other
algebraic structures have been investigated.

The one-parameter formal deformations of Hom-associative algebras and
Hom-Lie algebras were studied by Makhlouf and Silvestrov in [19]. The authors
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introduced the first and second cohomology spaces of Hom-associative algebras and
Hom-Lie algebras, which fits with the deformation theory. Naturally the approach
followed the seminal papers by Gerstenhaber for associative algebras [8, 9] and
Nijenhuis-Richardson for Lie algebras [21]. For global deformations and more
general works involving operads and where deformation theory is described using
a certain differential graded Lie algebras one may see [3, 4, 5, 6, 7, 13, 20, 24].

The purpose of this paper is to enhance the cohomology study initiated in
[19]. We consider multiplicative Hom-associative algebras and Hom-Lie algebras.
Among other the following main results are obtained:

(1) We define a Gerstenhaber bracket on the space of multilinear maps of
Hom-associative algebras and the Richardson-Nijenhuis bracket on the space of
multilinear maps of Hom-Lie algebras.

(2) We provide a Hochschild cohomology of Hom-associative algebras and
a Chevalley-Eilenberg cohomology of Hom-Lie algebras, extending in one hand
these cohomologies to Hom-algebras situation and in the other hand generalizing
the first and second coboundary maps introduced in [19].

The paper is organized as follows. In the first Section we summarize the
definitions of Hom-algebras of different type and present some preliminary results
on graded algebras. In Section 2 we define a Hochschild cohomology structure
H∗Hom(A,A) for a Hom-associative algebra (A, µ, α) where A is a K-vector space,
µ : A × A −→ A is a bilinear map and α : A → A is an algebra morphism.
Similarly we define a Chevalley-Eilenberg cohomology structure H∗HL(L,L) for a
Hom-Lie algebra (L, [., .], α). Section 3 is dedicated to study Cα(A,A), the set
of multilinear maps ϕ satisfying α(ϕ(x0, . . . , xn−1)) = ϕ(α(x0), . . . , α(xn−1)) for
all x0, . . . , xn−1 ∈ A . It is endowed with a Gerstenhaber bracket [., .]∆α leading
to a graded Lie algebra (Cα(A,A), [., .]∆α ). Henceforth, we provide a cohomology
differential operator Dα

µ = [µ, .]∆α on Cα(A,A). We denote by H∗D(A,A) the

corresponding cohomology spaces and we show that H∗D(A,A) = H∗+1
Hom(A,A).

Also we study the graded algebra (C̃α(L,L), [., .]∧α) of alternating multilinear maps
ϕ satisfying α(ϕ(x0, . . . , xn−1)) = ϕ(α(x0), . . . , α(xn−1)) for all x0, . . . , xn−1 ∈ L
and where [., .]∧α is the Nijenhuis-Richardson bracket. We provide a cohomology
differential operator Dα

[.,.] = [[., .], .]∆α . We denote by H∗D(L,L) the corresponding

space of cohomology and we show that H∗D(L,L) = H∗+1
HL (L,L). In the last

Section, we recall and enhance the one-parameter formal deformation theory of
Hom-associative algebras and Hom-Lie algebras introduced in [19], we study in
particular the obstructions involving third cohomology groups.

1. Preliminaries

In this Section we summarize the definitions of Hom-type algebras and provide
some examples (see [1],[11],[19],[16]) and present some preliminary results on
graded algebras (see [9], [14]). Throughout this paper K denotes an algebraically
closed field of characteristic 0.

1.1. Hom-algebras. We mean by Hom-algebra a triple (A, µ, α) consisting of
a K-vector space A , a bilinear map µ : A×A −→ A and a linear map α : A→ A .
The main feature of Hom-algebra structures is that the classical identities are
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twisted by the linear map. A Hom-algebra (A, µ, α) is said to be multiplicative
if α ◦ µ = µ ◦ (α × α). We summarize in the following the definitions of Hom-
associative algebras, Hom-Lie algebras and Hom-Poisson algebras.
Definition 1.1. A Hom-associative algebra is a triple (A, µ, α) consisting of a
K-vector space A , a bilinear map µ : A × A → A and a linear map α : A → A
satisfying

µ(α(x), µ(y, z)) = µ(µ(x, y), α(z)) for all x, y, z ∈ A (Hom-associativity identity)

We refer by A to the Hom-associative algebra when there is no ambiguity.
Remark 1.2. When α is the identity map, we recover the classical associative
algebra.

Example 1.1. Let A be a 2-dimensional vector space over K , generated by
{x1, x2} , µ : A×A → A be a multiplication defined by

• µ(x1, x1) = x1

• µ(xi, xj) = x2 if (i, j) 6= (1, 1)

and α : V → V be a linear map defined by α(x1) = λx1 + γx2, α(x2) =
(λ+ γ)x2 where λ, γ ∈ K∗.

Then (V, µ, α) is a Hom-associative algebra.

Definition 1.3. A Hom-Lie algebra is a triple (L, [., .], α) consisting by a K-vector
space L , a bilinear map [., .] : L × L → L and a linear map α : L → L satisfying

[x, y] = −[y, x] for all x, y ∈ L (skew-symmetry),

and 	x,y,z

[
α(x), [y, z]

]
= 0 for all x, y, z ∈ L (Hom-Jacobi identity)

where 	x,y,z denotes summation over the cyclic permutation on x, y, z .

We refer by L to the Hom-Lie algebra when there is no ambiguity.
Remark 1.4. We recover the classical Lie algebra when α = id .

Example 1.2 ([16]). (sl(2,C), [·, ·], α) is a 3-dimensional Hom-Lie algebra gen-
erated by

H =

(
1 0
0 −1

)
, E =

(
0 0
1 0

)
, F =

(
0 1
0 0

)
,

with [A,B] = AB − BA and where the twist maps are given with respect to the
basis by the matrices

Mα =

 a c d
2d b e
2c f b

 where a, b, c, d, e, f ∈ C,

Let (A, µ, α) and (A′, µ′, α′) (resp. (L, [., .], α) and (L′, [., .]′, α′)) be two
Hom-associative (resp. Hom-Lie) algebras. A linear map φ : A → A′ (resp.
φ : L → L′ ) is a morphism of Hom-associative (resp. Hom-Lie) algebras if

µ′ ◦ (φ⊗ φ) = φ ◦ µ (resp. [., .]′ ◦ (φ⊗ φ) = φ ◦ [., .]) and φ ◦ α = α′ ◦ φ.
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Now, we define Hom-Poisson algebras introduced in [19]. This structure
emerged naturally in deformation theory. It is shown that a one-parameter for-
mal deformation of commutative Hom-associative algebra leads to a Hom-Poisson
algebra.
Definition 1.5. A Hom-Poisson algebra is a quadruple (A, µ, {·, ·}, α) consisting
of a vector space A , bilinear maps µ : A× A→ A and {·, ·} : A× A→ A and a
linear map α : A→ A satisfying

1. (A, µ, α) is a commutative Hom-associative algebra,

2. (A, {·, ·}, α) is a Hom-Lie algebra,

3. for all x, y, z in A ,

{α(x), µ(y, z)} = µ(α(y), {x, z}) + µ(α(z), {x, y}). (1.1)

Example 1.3. Let {x1, x2, x3} be a basis of a 3-dimensional vector space A
over K . The following multiplication µ , skew-symmetric bracket and linear map
α on A define a Hom-Poisson algebra over K3 :

µ(x1, x1) = x1,
µ(x1, x2) = µ(x2, x1) = x3,

{x1, x2} = ax2 + bx3,
{x1, x3} = cx2 + dx3,

α(x1) = λ1x2 + λ2x3, α(x2) = λ3x2 + λ4x3, α(x3) = λ5x2 + λ6x3

where a, b, c, d, λ1, λ2, λ3, λ4, λ5, λ6 are parameters in K .

1.2. Graded Lie algebras. In the following we recall the definition of Z-graded
Lie algebra and elements of Gerstenhaber algebra which endow the set of classical
cochains, see [9, 14].
Definition 1.6. A pair (A, [., .]) is a Z-graded Lie algebra if

1. A is a graded algebra, i.e. a direct summation of vector subspaces, A =⊕
n∈ZA

n , such that [An, Am] ⊂ An+m ,

2. the bracket [., .] in A is graded skew-symmetric, i.e.

[x, y] = −(−1)pq[y, x] for x ∈ Ap, y ∈ Aq, (1.2)

3. and it satisfies the so called graded Jacobi identity :

	x,y,z (−1)pq
[
x, [y, z]

]
= 0, for x ∈ Ap, y ∈ Ar, z ∈ Aq. (1.3)

Remark 1.7. It is easy to check that if π ∈ A1 is such that [π, π] = 0 then
the map δpπ : Ap → Ap+1 defined by δpπ(x) = [π, x] is a coboundary map, i.e.
δp+1
π ◦ δpπ = 0. Indeed, from (1.3) one has

[[π, π], x] = 2[π, [π, x]] = 2δp+1
π

(
δpπ(x)

)
.
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Let A be a K-vector space and Mk(A,A) be the space of (k + 1)-linear
maps K : A×k → A and set M(A,A) =

⊕
k∈ZM

k(A,A). In [9, 14], the graded Lie
algebra (M(A,A), [., .]∆) is described for each vector space A with the property
that (A, µ) is an associative algebra if and only if µ ∈M1(A,A) and [µ, µ]∆ = 0.
This algebra is defined as follows:
For Ki ∈Mki and xj ∈ A one defines jK1K2 ∈Mk1+k2(A) by

jK1K2(x0, . . . , xk1+k2) =

k2∑
i=0

(−1)k1iK2(x0, . . . , K1(xi, . . . , xk1+i), . . . , xk1+k2).

In particular, if k1 = k2 = 1 one has jK1K2(x0, x1, x2) = K2(K1(x0, x1), x2) −
K2(x0, K1(x1, x2)) which is denoted sometimes by K2 ◦K1 .

The graded Lie bracket on M(A,A) is then given by

[K1, K2]∆ = jK1K2 − (−1)k1k2jK2K1.

The graded Jacobi identity is a consequence of the formula

j[K1,K2]∆ = [jK1 , jK2 ], where [., .] is the graded commutator in End(M(A,A)).

Also in [9, 14], the graded Lie algebra (λ(M(A,A)), [., .]∧) is described for each
vector space A with the property that (A, [., .]) is a Lie algebra if and only if
[., .] ∈M1(A,A) and

[
[., .], [., .]

]∧
= 0. This algebra is constructed as follows:

For the alternator operator λ : M(A,A) → M(A,A) one defines (λ(M(A,A)) as
the space of alternating cochains and

iK1(K2) :=
(k1 + k2 + 1)!

(k1 + 1)!(k2 + 1)!
λ(jK1(K2)).

The graded Lie bracket of λ(M(A,A)) is then given by

[K1, K2]∧ =
(k1 + k2 + 1)!

(k1 + 1)!(k2 + 1)!
λ([K1, K2]∆) = iK1K2 − (−1)k1k2iK2K1

if K1 ∈ Mk1(A,A) and K2 ∈ Mk2(A,A) then iK1K2 ∈ λ(Mk1+k2(A,A)). The
graded Jacobi identity is a consequence of the following formula

λ
(
jλ(K1)λ(K2)

)
= λ(jK1K2).

2. Cohomologies of Hom-associative algebras and Hom-Lie algebras

The first and the second cohomology groups of Hom-associative algebras and Hom-
Lie algebras were introduced in [19]. The aim of this section is to construct cochain
complexes that define cohomologies of these Hom-algebras with the assumption
that they are multiplicative.

2.1. Cohomology of multiplicative Hom-associative algebras. The pur-
pose of this section is to construct the cochain complex C∗Hom(A,A) of a multiplica-
tive Hom-associative algebra A with coefficients in A that defines a cohomology
H∗Hom(A,A).
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Let (A, µ, α) be a Hom-associative algebra, for n ≥ 1 we define a K−vector
space Cn

Hom(A,A) of n-cochains as follows :
a cochain ϕ ∈ Cn

Hom(A,A) is an n-linear map ϕ : An → A satisfying

α ◦ ϕ(x0, . . . , xn−1) = ϕ
(
α(x0), α(x1), . . . , α(xn−1)

)
for all x0, x1, . . . , xn−1 ∈ A.

Definition 2.1. We call, for n ≥ 1, n-coboundary operator of the Hom-associative
algebra (A, µ, α) the linear map δnHom : Cn

Hom(A,A)→ Cn+1
Hom(A,A) defined by

δnHomϕ(x0, x1, . . . , xn) = µ
(
αn−1(x0), ϕ(x1, x2, . . . , xn)

)
(2.1)

+
n∑
k=1

(−1)kϕ
(
α(x0), α(x1), . . . , α(xk−2), µ(xk−1, xk), α(xk+1), . . . , α(xn)

)
+ (−1)n+1µ

(
ϕ(x0, . . . , xn−1), αn−1(xn)

)
.

Obviously, we have

Lemma 2.2. Let Di : Cn
Hom(A,A) → Cn+1

Hom(A,A) be linear operators defined
for ϕ ∈ Cn

Hom(A,A) and x0, x1, . . . , xn ∈ A by

D0ϕ(x0, x1, . . . , xn) = −µ(αn−1(x0), ϕ(x1, . . . , xn)) + ϕ(µ(x0, x1), α(x2), . . . , α(xn)),

Diϕ(x0, x1, . . . , xn) = ϕ(α(x0), . . . , µ(xi, xi+1), . . . , α(xn)) for 1 ≤ i ≤ n− 2,

Dn−1ϕ(x0, . . . , xn)=ϕ(α(x0), . . . , α(xn−2), µ(xn−1, xn))−µ(ϕ(x0, . . . , xn−1), αn−1(xn)),

Diϕ = 0 for i ≥ n.

Then

DiDj = DjDi−1 0 ≤ j < i ≤ n, and δnHom =
n∑
i=0

(−1)i+1Di.

Proposition 2.3. Let (A, µ, α) be a Hom-associative algebra and

δnHom : Cn
Hom(A,A)→ Cn+1

Hom(A,A) be the operator defined in (2.1) then

δn+1
Hom ◦ δ

n
Hom = 0 for n ≥ 1. (2.2)

Proof. Indeed

δn+1
Hom ◦ δ

n
Hom =

∑
0≤i,j≤n

(−1)i+jDiDj =
∑

0≤j<i≤n

(−1)i+jDiDj +
∑

0≤i≤j≤n

(−1)i+jDiDj

=
∑

0≤j<i≤n

(−1)i+jDjDi−1 +
∑

0≤i≤j≤n

(−1)i+jDiDj

=
∑

0≤j≤k≤n

(−1)k+j+1DjDk +
∑

0≤i≤j≤n

(−1)i+jDiDj

= 0.

Remark 2.4. A proof of the previous proposition could also be obtained as a
consequence of Propositions (3.4) and (3.5).
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Definition 2.5. The space of n−cocycles is defined by

Zn
Hom(A,A) = {ϕ ∈ Cn

Hom(A,A) : δnHomϕ = 0},
and the space of n−coboundaries is defined by

Bn
Hom(A,A) = {ψ = δn−1

Homϕ : ϕ ∈ Cn−1(A,A)}.

Lemma 2.6. Bn
Hom(A,A) ⊂ Zn

Hom(A,A).

Definition 2.7. We call the nth cohomology group of the Hom-associative algebra
A the quotient

Hn
Hom(A,A) =

Zn
Hom(A,A)

Bn
Hom(A,A)

.

Remark 2.8. The cohomology class of an element ϕ ∈ Cn
Hom(A,A) is given by

the set of elements ψ such that ψ = ϕ+ δn−1f where f is a (n− 1)-cochain.

Example 2.1. We consider the example (1.1) of Hom-associative algebras with

λ + γ = 0 i.e. the matrix of the twist map α is λ ·
(

1 0
−1 0

)
. We obtain with

respect to the same basis

• Z2
Hom(A,A) = {ψ : ψ(x1, x1) = ax1 + bx2, ψ(xi, xj) = cx2 if (i, j) 6=

(1, 1)}

• B2
Hom(A,A)={δf : δf(x1, x1)=ax1 + bx2, δf(xi, xj)=(a + b)x2 if (i, j) 6=

(1, 1)}
then

• H2
Hom(A,A) = {ψ : ψ(x1, x1) = ax1 + bx2, ψ(xi, xj) = cx2 if (i, j) 6=

(1, 1) c 6= a+ b}

• H3
Hom(A,A) = 0

2.2. Cohomology of multiplicative Hom-Lie algebras. The purpose of this
section is to construct the cochain complex C∗HL(L,L) of a multiplicative Hom-Lie
algebra L with coefficients in L that defines a cohomology H∗HL(L,L).

Let (L, [., .], α) be a Hom-Lie algebra. We define, for n ≥ 1, a K-vector
space Cn

HL(L,L) of n-linear alternating cochains as follows:
a cochain ϕ ∈ Cn

HL(L,L) is an n-linear alternating map ϕ : Ln → L satisfying

α ◦ ϕ(x0, . . . , xn−1) = ϕ
(
α(x0), α(x1), . . . , α(xn−1)

)
for all x0, x1, . . . , xn−1 ∈ L.

Definition 2.9. We call, for n ≥ 1, n-coboundary operator of the Hom-Lie
algebra (L, [., .], α) the linear map δnHL : Cn

HL(L,L)→ Cn+1
HL (L,L) defined by

δnHLϕ(x0, x1, . . . , xn) =
n∑
k=0

(−1)k
[
αn−1(xk), ϕ(x0, . . . , x̂k, . . . , xn)

]
(2.3)

+
∑

0≤i<j≤n

(−1)i+jϕ([xi, xj], α(x0), . . . , x̂i, . . . , x̂j, . . . , α(xn))

where x̂k means that xk is omitted.
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Note that this complex was found independently by Sheng [23].
Definition 2.10. The space of n−cocycles is defined by

Zn
HL(L,L) = {ϕ ∈ C̃n(L,L) : δnHLϕ = 0},

and the space of n−coboundaries is defined by

Bn
HL(L,L) = {ψ = δn−1

HL ϕ : ϕ ∈ C̃n−1(L,L)}.

Proposition 2.11. Let (L, [., .], α) be a Hom-Lie algebra and let δnHL :
Cn
HL(L,L)→ Cn+1

HL (L,L) be the operator defined in (2.3). Then

δn+1
HL ◦ δ

n
HL = 0 for n ≥ 1. (2.4)

Proof. The proof can be obtained by a long straightforward calculation or as
a consequence of propositions (3.12) and (3.13).

Remark 2.12. One has Bn
HL(L,L) ⊂ Zn

HL(L,L).
Definition 2.13. We call the nth cohomology group of the Hom-Lie algebra L
the quotient

Hn
HL(L,L) =

Zn
HL(L,L)

Bn
HL(L,L)

.

3. Gerstenhaber algebra and Nijenhuis-Richardson algebra

We define in this section two graded Lie algebras on the space of multilinear (resp.
alternating multilinear) maps which are multiplicative with respect to a linear map
α .

3.1. The algebra Cα(A,A). We provide in this section a variation of Gersten-
haber algebra supplying the set of all multiplicative multilinear maps on a given
vector space. Let A be a vector space and α : A→ A be a linear map. We denote
by Cn

α(A,A) the space of all (n+ 1)-linear maps ϕ : A×(n+1) → A satisfying

α(ϕ(x0, . . . , xn)) = ϕ
(
α(x0), . . . , α(xn)

)
for all x0, . . . , xn ∈ A (3.1)

We set
Cα(A,A) =

⊕
n≥−1

Cn
α(A,A).

If ϕ ∈ Ca
α(A,A) and ψ ∈ Cb

α(A,A) where a ≥ 0, b ≥ 0, then we define jαϕ(ψ) ∈
Ca+b+1
α (A,A) by

jαϕ(ψ)(x0, . . . , xa+b) =

b∑
k=0

(−1)akψ
(
αa(x0), . . . , αa(xk−1), ϕ(xk, . . . , xk+a), α

a(xa+k+1), . . . , αa(xa+b)
)
.

and
[ψ, ϕ]∆α = jαψ(ϕ)− (−1)abjαϕ(ψ)

The bracket [., .]∆α is called Gerstenhaber bracket.
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Remark 3.1. If a = b = 1 we have
jψϕ(x0, x1, x2) = ϕ(ψ(x0, x1), x2)− ϕ(x0, ψ(x1, x2))

which is denoted in [19] by ϕ ◦α ψ . The particular case, where ϕ = ψ corresponds
to the Hom-associator.

Lemma 3.2. We have j[ϕ,ψ]∆α
= [jαϕ , j

α
ψ ] for all ϕ, ψ ∈ Cα(A,A), where [., .] is

the graded commutator on End(Cα(A,A)).

Proof. Let ϕ ∈ Ca
α(A,A), ψ ∈ Cb

α(A,A), ξ ∈ Cc
α(A,A)

[jαϕ , j
α
ψ ](ξ)(x0, . . . ., xa+b+c) =

(
jαϕ(jαψξ)− (−1)abjαψ(jαϕξ)

)
(x0, . . . ., xa+b+c)

= S1 − (−1)abS2.

where

S1 = jαϕ
(
jαψ(ξ)

)
(x0, . . . , xa+b+c) and S2 = jαψ(jαϕξ)

)
(x0, . . . ., xa+b+c).

We have

S1 =
b+c∑
k=0

(−1)akjαψ(ξ)
(
αa(x0), .., αa(xk−1), ϕ(xk, .., xk+a), α

a(xa+k+1), .., αa(xa+b+c)
)

= A+B + C

where

A =
b+c∑

k=b+1

k−(b+1)∑
i=0

(−1)ak+biξ
(
αa+b(x0), . . . , αa+b(xi−1), ψ(αa(xi), . . . , α

a(xi+b)),

αa+b(xi+b+1), . . . , αa+b(xk−1), αb(ϕ(xk, . . . , xk+a)), α
a+b(xa+k+1), . . . , αa+b(xa+b+c)

)
,

B =
c∑

k=0

k∑
i=k−b

(−1)ak+biξ
(
αa+b(x0), . . . , αa+b(xi−1), ψ(αa(xi), . . . , α

a(xk−1),

ϕ(xk, . . . , xk+a), α
a(xk+a+1), . . . , αa(xa+b+i)), α

a+b(xa+b+i+1), . . . , αa+b(xa+b+c)
)
,

C =
c−1∑
k=0

a+c∑
i=a+k+1

(−1)ak+b(i−a)ξ
(
αa+b(x0), . . . , αa+b(xk−1), αb(ϕ(xk, . . . , xk+a)),

αa+b(xa+k+1), . . . , ψ(αa(xi), . . . , α
a(xi+b)), . . . , α

a+b(xa+b+c)
)
.

We obtain S2 if we permute ϕ and ψ .

S2 = D + E + F

where

D =
a+c∑

k=a+1

k−(a+1)∑
i=0

(−1)ak+biξ
(
αa+b(x0), . . . , αa+b(xi−1), ϕ(αb(xi), . . . , α

b(xi+a)),

αa+b(xi+a+1), . . . , αa+b(xk−1), αa(ψ(xk, . . . , xk+b)), α
a+b(xa+k+1), . . . , αa+b(xa+b+c)

)
,
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E =
c∑

k=0

k∑
i=k−b

(−1)ak+biξ
(
αa+b(x0), . . . , αa+b(xi−1), ϕ(αb(xi), . . . , α

b(xk−1),

ψ(xk, . . . , xk+b), α
b(xk+b+1), . . . , αb(xa+b+i)), α

a+b(xa+b+i+1), . . . , αa+b(xa+b+c)
)
,

F =
c−1∑
k=0

b+c∑
i=b+k+1

(−1)bk+a(i−b)ξ
(
αa+b(x0), . . . , αa+b(xk−1), αa(ψ(xk, . . . , xk+b)),

αa+b(xb+k+1), . . . , ϕ(αb(xi), . . . , α
b(xi+a)), . . . , α

a+b(xa+b+c)
)
.

Since

α ◦ ϕ(x0, . . . , xa) = ϕ
(
α(x0), α(x1), . . . , α(xa)

)
,

then

αb(ϕ(x0, . . . , xa)) = ϕ
(
αb(x0), αb(x1), . . . , αb(xa)

)
.

So A− (−1)abF = 0, C − (−1)abD = 0 and

[jαϕ , j
α
ψ ](ξ) = B − (−1)abE

=
c∑

k=0

k∑
i=k−b

(−1)ak+biξ
(
αa+b(x0), . . . , αa+b(xi−1), ψ(αa(xi), . . . , α

a(xk−1),

ϕ(xk, . . . , xk+a), α
a(xk+a+1), . . . , αa(xa+b+i)), α

a+b(xa+b+i+1), . . . , αa+b(xa+b+c)
)

− (−1)ab
c∑

k=0

k∑
i=k−a

(−1)ai+bkξ
(
αa+b(x0), . . . , αa+b(xi−1), ϕ(αb(xi), . . . , α

b(xk−1),

ψ(xk, . . . , xk+b), α
b(xk+b+1), . . . , αb(xa+b+i)), α

a+b(xa+b+i+1), . . . , αa+b(xa+b+c)
)

= j[ϕ,ψ]∆α
(ξ).

Theorem 3.3. Given a vector space A and a linear map α : A→ A, the pair(
Cα(A,A), [., .]∆α

)
is a graded Lie algebra.

Proof. The proof is based on the previous Lemma. Let ϕ ∈ Ca
α(A,A), ψ ∈

Cb
α(A,A), φ ∈ Cc

α(A,A).

1. Skew-symmetry

[ϕ, ψ]∆α = jαϕψ − (−1)abjαψϕ

= (−1)ab+1
(
jαψϕ− (−1)abjαϕψ

)
= (−1)ab+1[ψ, ϕ]∆α .
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2. Graded Hom-Jacobi identity

	ϕ,ψ,φ (−1)ac
[
ϕ, [ψ, φ]∆α

]∆
α

= (−1)acjαϕ [ψ, φ]∆α − (−1)abj[ψ,φ]∆α
ϕ

+ (−1)bajαψ [φ, ϕ]∆α − (−1)bcj[φ,ϕ]∆α
ψ

+ (−1)cbjαφ [ϕ, ψ]∆α − (−1)caj[ϕ,ψ]∆α
φ

= (−1)acjαϕ(jαψφ− (−1)cbjαφψ)− (−1)abj[ψ,φ]∆α
ϕ

+ (−1)bajαψ(jαφϕ− (−1)acjαϕφ)− (−1)bcj[φ,ϕ]∆α
ψ

+ (−1)cbjαφ (jαϕψ − (−1)abjαψϕ)− (−1)caj[ϕ,ψ]∆α
φ.

Organizing these terms leads to

	ϕ,ψ,φ (−1)ac
[
ϕ, [ψ, φ]∆α

]∆
α

= (−1)ba
(
jαψ(jαφϕ)− (−1)cbjαφ (jαψϕ)− j[ψ,φ]∆α

ϕ
)

+ (−1)cb
(
jαφ (jαϕψ)− (−1)acjαϕ(jαφψ)− j[φ,ϕ]∆α

ψ
)

+ (−1)ac
(
jαϕ(jαψφ)− (−1)abjαψ(jαϕφ)− j[ϕ,ψ]∆α

φ
)

= (−1)ba
(
[jαψ , j

α
φ ]− j[ψ,φ]∆α

)
ϕ

+ (−1)cb
(
[jαφ , j

α
ϕ ]− j[φ,ϕ]∆α

)
ψ

+ (−1)ac
(
[jαϕ , j

α
ψ ]− j[ϕ,ψ]∆α

)
φ.

Using the previous lemma we get

	ϕ,ψ,φ (−1)ac
[
ϕ, [ψ, φ]∆α

]∆
α

= 0.

The Gerstenhaber bracket defined above permits to construct a new com-
plex.

Proposition 3.4. Let (A, µ, α) be a Hom-associative algebra and
Dα
µ : Cα(A,A)→ Cα(A,A)

be a linear map defined by

Dα
µφ = [µ, φ]∆α for all φ ∈ Cα(A,A).

Then Dα
µ is a differential operator.

Moreover for φ ∈ Cn−1
α (A,A) we have Dα

µφ = −δnHomφ.
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Proof. Let φ ∈ Cn−1
α (A,A) and x0, . . . , xn ∈ A ,

Dα
µφ(x0, . . . , xn) = [µ, φ]∆(x0, . . . , xn) =

(
jαµ (φ)− (−1)n−1jαφ (µ)

)
(x0, . . . , xn)

=
n−1∑
k=0

(−1)kφ
(
α(x0), . . . , α(xk−1), µ(xk, xk+1), α(xk+2), . . . , α(xn)

)
− (−1)n−1µ(φ(x0, . . . , xn−1), αn−1(xn))

− (−1)n−1(−1)n−1µ
(
αn−1(x0), φ(x1, . . . , xn)

)
= −

(
µ
(
αn−1(x0), φ(x1, . . . , xn)

)
+

n∑
k=1

(−1)kφ
(
α(x0), . . . , α(xk−2), µ(xk−1, xk),

α(xk+1), . . . , α(xn)
)

+ (−1)n+1µ(φ(x0, . . . , xn−1), αn−1(xn))
)

= −δnHom(φ).

This completes the proof.

Let (A, µ, α) be a Hom-algebra, it is easy to see that [µ, µ]∆α = 0 if and
only if (A, µ, α) is a Hom-associative algebra. Indeed, let x, y, z ∈ A

[µ, µ]∆α
(
x, y, z

)
=
(
jαµµ− (−1)1jαµµ

)
(x, y, z) = 2jαµµ(x, y, z)

= 2
(
µ(µ(x, y), α(z))− µ(α(x), µ(y, z))

)
.

Henceforth, if we use the Remark 1.7 then we obtain the following proposition:

Proposition 3.5. The differential operator Dα
µ : Cα(A,A) → Cα(A,A) satis-

fies (Dα
µ)2 = 0.

Remark 3.6. The proof of the fundamental Proposition 2.3 is a direct consequence
of Propositions 3.4 and 3.5.

We denote the corresponding space of (n+ 1)−cocycles for the coboundary
operator Dα

µ by

Zn
D(A,A) = {ϕ ∈ Cn

α(A,A) : Dα
µϕ = 0},

and the space of (n+ 1)−coboundaries by

Bn
D(A,A) = {Dα

µϕ : ϕ ∈ Cn−1
α (A,A)}.

Hence the corresponding cohomology is given by

Hn
D(A,A) =

Zn
D(A,A)

Bn
D(A,A)

.

Remark 3.7. The relation with the cohomology H∗Hom(A,A) introduced above
is

Bn
D(A,A)=Bn+1

Hom(A,A), Zn
D(A, A)=Zn+1

Hom(A,A) and Hn
D(A,A) = Hn+1

Hom(A,A).
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3.2. The algebra C̃α(A,A) . Let A be a vector space and α : A → A be a

linear map. We denote by C̃n
α(A,A) the space of all alternating (n + 1)-linear

maps ϕ : A×(n+1) → A satisfying for all x0, . . . , xn ∈ A

α(ϕ(x0, . . . , xn)) = ϕ(α(x0), . . . , α(xn)),

and set

C̃α(A,A) =
⊕
n≥−1

C̃n
α(A,A).

We define the alternator λ : Cα(A,A)→ Cα(A,A) by

(λϕ)(x0, . . . , xa) =
1

(a+ 1)!

∑
σ∈Sa+1

ε(σ)ϕ(xσ(0), . . . , xσ(a)) for ϕ ∈ Ca
α(A,A).

where Sa+1 is the permutation group and ε(σ) is the signature of σ .

Remark 3.8. The set C̃α(A,A) may be viewed as images by λ of elements of
Cα(A,A).

Lemma 3.9. The alternator λ : Cα(A,A) → Cα(A,A) satisfies λ2 = λ, and
we have

λ
(
jαλ(ϕ)λ(ψ)

)
= λ(jαϕψ) for all ϕ, ψ ∈ Cα(A,A).

Proof. The proof is similar to the classical case (α = id).

We define an operator and a bracket for ϕ ∈ Ca
α(A,A) and ψ ∈ Cb

α(A,A)
by

iαϕ(ψ) :=
(a+ b+ 1)!

(a+ 1)!(b+ 1)!
λ(jαϕψ),

[ϕ, ψ]∧α :=
(a+ b+ 1)!

(a+ 1)!(b+ 1)!
λ([ϕ, ψ]∆α ) = iαϕ(ψ)− (−1)abiαψ(ϕ).

Thus iαϕ(ψ) ∈ C̃a+b+1
α .

The bracket [., .]∧α is called Nijenhuis-Richardson bracket.

Theorem 3.10. Given a vector space A and a linear map α : A → A, the
pair (Cα(A,A), [., .]∧α) is a graded Lie algebra. In particular, (C̃α(A,A), [., .]∧α) is
a graded Lie algebra.

Proof. Let ϕ ∈ Ca
α(A,A), ψ ∈ Cb

α(A,A) and φ ∈ Cc
α(A,A)

	ϕ,ψ,φ (−1)ac
[
ϕ, [ψ, φ]∧α

]∧
α

=
(a+ b+ c+ 1)!

(a+ 1)!(b+ 1)!(c+ 1)!
	ϕ,ψ,φ λ(

[
ϕ, λ([ψ, φ]∆α )

]∆
α

).

Notice that,

λ
(
[ϕ, ψ]∆α

)
= λ

(
[λ(ϕ), λ(ψ)]∆α

)
and λ2 = λ.
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Then,

	ϕ,ψ,φ (−1)ac
[
ϕ, [ψ, φ]∧α

]∧
α

=
(a+ b+ c+ 1)!

(a+ 1)!(b+ 1)!(c+ 1)!
λ
(
	ϕ,ψ,φ

[
ϕ, [ψ, φ]∆α

]∆
α

)
= 0.

The following lemma is a generalization to twisted case of a result in [14].

Lemma 3.11. Let ϕ ∈ Ca
α(A,A), ψ ∈ Cb

α(A,A). Then

iαϕ(ψ)(x0, . . . , xb+a) =

1

b!(a+ 1)!

∑
σ∈Sa+b+1

ε(σ)ψ
(
ϕ(xσ(0), . . . , xσ(a)), α

a(xσ(a+1)), . . . , α
a(xσ(a+b))

)
Proposition 3.12. Let (L, [., .], α) be a Hom-Lie algebra and Dα

[.,.] : C̃α(L,L)→
C̃α(L,L) the linear map defined by

Dα
[.,.](φ) =

[
[., .], φ

]∧
α

for all φ ∈ C̃α(L,L).

Then Dα
[.,.] is a differential operator, and for φ ∈ C̃n−1

α (L,L) we have Dα
[.,.](φ) =

δnHL(φ).

Proof. The proof is obtained using Lemma 3.11 and straightforward calcula-
tion.

A Hom-algebra (L, [., .], α) is a Hom-Lie algebra if and only if
[
[., .], [., .]

]∧
α

= 0.

Indeed, let x, y, z ∈ L[
[., .], [., .]

]∧
α

(
x, y, z

)
=
(
iα[.,.][., .]− (−1)1iα[.,.][., .]

)
(x, y, z)

= 2iα[.,.][., .](x, y, z)

= 2
(
	x,y,z [[x, y], α(z)]

)
.

Thus, using the Remark 1.7 we have the following proposition:

Proposition 3.13. The differential operator Dα
[.,.] : C(L,L)→ Cα(L,L) satis-

fies (Dα
[.,.])

2 = 0.

Remark 3.14. The proof of the fundamental Proposition 2.11 is a direct conse-
quence of Propositions 3.12 and 3.13.

We denote the corresponding space of (n+ 1)-cocycles for the coboundary
operator Dα

[.,.] by

Z̃n
D(L,L) = {ϕ ∈ Cn

α(L,L) : Dα
[.,.]ϕ = 0},

the space of (n+ 1)-coboundaries by

B̃n
D(L,L) = {Dα

[.,.]ϕ : ϕ ∈ C̃n−1(L,L)}
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and the corresponding cohomology group by

H̃n
D(L,L) =

Z̃n
D(L,L)

B̃n
D(L,L)

.

Remark 3.15. The relationship with the cohomology H∗HL(L,L) introduced
above is

B̃n
D(L,L) = Bn+1

HL (L,L), Z̃n
D(L,L) = Zn+1

HL (L,L) and H̃n
D(L,L) = Hn+1

HL (L,L).

4. One-parameter formal deformations

The one-parameter formal deformations of Hom-associative algebras and Hom-Lie
algebras were introduced in [19]. In this section we review the results and study,
in terms of cohomology, the problem of extending a formal deformation of order
k − 1 to a deformation of order k . we consider multiplicative Hom-associative
algebras and multiplicative Hom-Lie algebras.

Let K[[t]] be the power series ring in one variable t and coefficients in K
and A[[t]] be the set of formal series whose coefficients are elements of the vector
space A , (A[[t]] is obtained by extending the coefficients domain of A from K
to K[[t]]), any K-bilinear map ϕ : A × A → A admits naturally an extension
to a K[[t]]-bilinear map ϕ : A[[t]] × A[[t]] → A[[t]] , that is, if x =

∑
i≥0 ait

i and
y =

∑
j≥0 yjt

j then ϕ(x, y) =
∑

i≥0,j≥0 t
i+jϕ(ai, bj). The same holds for linear

maps.

4.1. Deformation of Hom-associative algebras.
Definition 4.1. Let (A, µ, α) be a Hom-associative algebra. A formal deformation
of the Hom-associative algebra A is given by a K[[t]]-bilinear map

µt : A[[t]]×A[[t]] −→ A[[t]]

of the form µt =
∑

i≥0 t
iµi where each µi is a K-bilinear-map µi : A × A → A

(extended to be K[[t]]-bilinear) and µ0 = µ such that hold for x, y, z ∈ A the
following condition

µt(µt(x, y), α(z)) = µt(α(x), µt(y, z)) (4.1)

The deformation is said to be of order k if µt =
∑k

i≥0 t
iµi .

The identity (4.1) is called deformation equation of the Hom-associative
algebra and may be written∑

i≥0,j≥0

ti+j
(
µi(µj(x, y), α(z))− µi(α(x), µj(y, z))

)
= 0,

or ∑
s≥0

ts
∑
i≥0

(
µi(µs−i(x, y), α(z))− µi(α(x), µs−i(y, z))

)
= 0,

which is equivalent to the following infinite system of equations∑
i≥0

(
µi(µs−i(x, y), α(z))− µi(α(x), µs−i(y, z))

)
= 0, for s = 0, 1, 2, . . .
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By using the trilinear map defined for ϕ, ψ : A× A→ A and x, y, z ∈ A by

ϕ ◦α ψ(x, y, z) = ϕ(ψ(x, y), z)− ϕ(x, ψ(y, z)),

the previous system may be written∑
i≥0

µi ◦α µs−i = 0, for s = 0, 1, 2, . . . (4.2)

In particular, for s = 0, we have µ0 ◦α µ0 = 0 which corresponds to the
Hom-associativity of A .

For s = 1 we have µ0◦αµ1 +µ1◦αµ0 = 0 which is equivalent to δ2
Homµ1 = 0

(i.e.D(µ1) = [µ, µ1]∆α = 0). It turns out that µ1 is always a 2-cocycle.

For s ≥ 2, the identity (4.2) is equivalent to :

δ2
Homµs = −

∑
p+q=s

µp ◦α µq =
1

2

∑
p+q=s,p>0,q>0

[µp, µq]
∆
α ,

where, µp ◦α µq = jαµqµp (see Section 3 for the definitions of jαµqµp and [., .]∆α ).

Definition 4.2. Let (A, µ, α) be a Hom-associative algebra. Given two defor-
mations At = (A, µt, α) and A′t = (A, µ′

t, α) of A where µt =
∑

i≥0 t
iµi and

µ′t =
∑

i≥0 t
iµ′i with µ0 = µ , µ′0 = µ . We say that At and A′t are equivalent if

there exists a formal automorphism (φt)t≥0 : A[[t]] → A[[t]] that may be written
in the form φt =

∑
i≥0 φit

i where φi ∈ End(A) and φ0 = id such that

φt(µt(x, y)) = µ
′

t(φt(x), φt(y)) for x, y ∈ A[[t]], (4.3)

φ(α(x)) = α(φ(x)) (4.4)

A deformation At of A is said to be trivial if and only if At is equivalent to A
(viewed as an algebra over A[[t]]).

The identity (4.3) may be written : for all x, y ∈ A∑
i≥0,j≥0,

ti+j
(
φi(µj(x, y))−

∑
i≥0,j≥0,k≥0

ti+j+kµj(φi(x), φk(y))
)

= 0.

i.e. ∑
i≥0,s≥0

ts
(
φi(µs−i(x, y))

)
−

∑
i≥0,j≥0,s≥0

ts
(
µj(φi(x), φs−i−j(y))

)
= 0.

Then ∑
i≥0

(
φi(µs−i(x, y))−

∑
j≥0

µj(φi(x), φs−i−j(y))
)

= 0 for s = 0, 1, 2, . . .

In particular, for s = 0 we have µ0 = µ′0, and for s = 1

φ0(µ1(x, y)) + φ1(µ0(x, y)) = µ′0(φ0(x), φ1(y)) + µ′0(φ1(x), φ0(y))µ′1(φ0(x), φ0(y)).

Since φ0 = id then

µ′1(x, y) = µ1(x, y) + φ1(µ0(x, y))− µ′0(x, φ1(y))− µ′0(φ1(x), y). (4.5)

Therefore two 2-cocycles corresponding to two equivalent deformations are coho-
mologous.
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Definition 4.3. Let (A, µ, α) be a Hom-associative algebra, and µ1 be an element
of Z2

Hom(A,A), the 2-cocycle µ1 is said integrable if there exists a family (µt)t≥0

such that µt =
∑

i≥0 t
iµi defines a formal deformation At = (A[[t]], µt, α) of A .

According to identity (4.5), the integrability of µ1 depends only on its
cohomology class. Thus, we get the following:

Theorem 4.4. Let (A, µ, α) be a Hom-associative algebra and At=(A[[t]], µt, α)
be a one-parameter formal deformation of A, where µt =

∑
i≥0 t

iµi . Then there
exists an equivalent deformation A′t = (A[[t]], µ′t, α), where µ′t =

∑
i≥0 t

iµ′i such
that µ′1 ∈ Z2

Hom(A,A) and µ′1 does not belong to B2
Hom(A,A).

Hence, If H2
Hom(A,A) = 0 then every formal deformation is equivalent to

a trivial deformation.

Hom-associative algebras for which every formal deformation is equivalent
to a trivial deformation are said to be analytically rigid. The nullity of the second
cohomology group (H2

Hom(A,A) = 0) gives a sufficient criterion for rigidity.

In the following we assume that H2
Hom(A,A) 6= 0, then one may obtain

nontrivial one-parameter formal deformations. We consider the problem of ex-
tending a one parameter formal deformation of order k − 1 to a deformation of
order k .

Theorem 4.5. Let (A, µ, α) be a Hom-associative algebra and At=(A[[t]], µt, α)
be a one-parameter formal deformation of A of order k−1, where µt =

∑k−1
i≥0 t

iµi .

Then Ψ(µ1, . . . , µk−1) = 1
2

∑
p+q=k−1,p>0,q>0[µp, µq]

∆
α ∈ Z3

Hom(A,A) (i.e.

Ψ ∈ Z2
D(A,A)).

Therefore the deformation extends to a deformation of order k if and only
if ψ(µ1, . . . , µk) is a coboundary.

Proof. We start by defining the linear map ^: Cα(A,A) × Cα(A,A) →
Cα(A,A) by

ϕ ^ ψ(x0, . . . , xa+b) = µ0(ϕ(x0, . . . , xa), ψ(xa+1, . . . , xa+b+1)),

for ϕ ∈ Ca
α(A,A), ψ ∈ Cb(A,A) and for x0, . . . , xa+b+1 ∈ A. Then,

δ3
Hom(µp ◦α µq) = δ2

Homµp ◦α µq − µp ◦α δ2
Homµq − µp ^ µq + µq ^ µp

Notice that ∑
p+q=k,p>0,q>0

µq ^ µp −
∑

p+q=k,p>0,q>0

µp ^ µq = 0

We have

δ3
Hom

(
ψ(µ1, . . . , µk)

)
=

∑
p+q=k,p>0,q>0

(
δ2
Homµp ◦α µq − µp ◦α δ2

Homµq
)

=
∑

s+l+q=k,q>0,s>0,l>0

(µs ◦α µl) ◦α µq −
∑

s+l+p=k,p>0,s>0,l>0

µp ◦α (µl ◦α µr)

=
∑

s+l+r=k,r>0,s>0,l>0

(µs ◦α µl) ◦α µr −
∑

s+l+r=k,l>0,s>0,r>0

µs ◦α (µl ◦α µr)
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Yet, for any β, ϕ, γ ∈ C1
α(A,A)

(β ◦α ϕ) ◦α γ − β ◦α (ϕ ◦α γ) = −(β ◦α γ) ◦α ϕ+ β ◦α (γ ◦α ϕ)

Indeed, let x, y, z, t ∈ A

(β ◦α ϕ) ◦α γ(x, y, z, t)− β ◦α (ϕ ◦α γ)(x, y, z, t) =

β(γ(ϕ(x, y), α(z)), α2(t))− β(γ(α(x), ϕ(y, z)), α2(t))

+ β(α2(x), γ(ϕ(y, z), α(t)))− β(α2(x), γ(α(t), ϕ(z, t)))

− β(γ(ϕ(x, y), α(z)), α2(t)) + β(α(ϕ(x, y)), γ(α(z), α(t))

+ β(γ(α(x), ϕ(y, z))α2(t))− β(α2(x), γ(ϕ(y, z), α(t)))

− β(γ(α(x), α(y)), α(ϕ(z, t))) + β(α2(x), γ(α(t), ϕ(z, t)))

= β(α(ϕ(x, y)), γ(α(z), α(t))− β(γ(α(x), α(y)), α(ϕ(z, t))).

Since
α(γ(x, y)) = γ(α(x), α(y)), α(ϕ(x, y)) = ϕ(α(x), α(y)),

then

(β ◦α ϕ) ◦α γ(x, y, z, t)− β ◦α (ϕ ◦α γ)(x, y, z, t) =

−(β ◦α γ) ◦α ϕ(x, y, z, t) + β ◦α (γ ◦α ϕ)(x, y, z, t).

Thus,
δ3
HomΨ(µ1, . . . , µk) = 0.

In the deformation equation corresponding to µt =
∑k

i≥0 t
iµi one has moreover

the equation
δ2
Homµk = Ψ(µ1, . . . , µk−1).

Hence, the formal deformation of order (k − 1) extends to a formal deformation
of order k whenever Ψ is a coboundary.

Corollary 4.6. If H3
Hom(A,A) = H2

D(A,A) = 0, then any infinitesimal defor-
mation can be extended to a formal deformation.

The connection to Hom-Poisson algebra has been shown in [19].

Theorem 4.7 ([19]). Let (A0, µ0, α0) be a commutative Hom-associative algebra
and At = (A0[[t]], µt, αt) be a one-parameter formal deformation of A0 . Consider
the bracket defined for x, y ∈ A by {x, y} = µ1(x, y) − µ1(y, x) where µ1 is the
first order element of the deformation µt . Then (A, µ0, {·, ·}, α0) is a Hom-Poisson
algebra.

4.2. Deformation of Hom-Lie algebras.
Definition 4.8. Let (L, [., .], α) be a Hom-Lie algebra. A one-parameter formal
Hom-Lie deformation of L is given by the K[[t]]-bilinear map [., .]t : L[[t]]×L[[t]]→
L[[t]] of the form

[., .]t =
∑
i≥0

ti[., .]i



Ammar, Ejbehi and Makhlouf 831

where each [., .]i is a bilinear map [., .]i : L × L → L (extended to be K[[t]]-
bilinear), [., .] = [., .]0 and satisfying the following conditions

[x, y]t = −[y, x]t skew-symmetry,

	x,y,z

[
α(x), [y, z]t

]
t

= 0 Hom-Jacobi identity (4.6)

The deformation is said to be of order k if [., .]t =
∑k

i≥0 t
i[., .]i.

Remark 4.9. the skew-symmetry of [., .]t is equivalent to the skew-symmetry of
all [., .]i for i ≥ 0.

The identity (4.6) is called deformation equation of the Hom-Lie algebra
and it is equivalent to

	x,y,z

∑
i≥0,j≥0

ti+j
[
α(x), [y, z]i

]
j

= 0

i.e.
	x,y,z

∑
i≥0,s≥0

ts
[
α(x), [y, z]i

]
s−i = 0

or ∑
s≥0

ts 	x,y,z

∑
i≥0

[
α(x), [y, z]i

]
s−i = 0

which is equivalent to the following infinite system

	x,y,z

∑
i≥0

[
α(x), [y, z]i

]
s−i = 0, for s = 0, 1, 2, . . . (4.7)

In particular, for s = 0 we have 	x,y,z

[
α(x), [y, z]0

]
0

= 0 which is the Hom-Jacobi
identity of L .
The equation, for s=1, leads to δ2

HL[., .]1 = 0, i.e. D[., .]1 = [[., .], [., .]1]∧α = 0. Then
[., .]1 is a 2-cocycle.

For s ≥ 2, the identities (4.7) are equivalent to :

δ2
HL[., .]s(x, y, z) = −

∑
p+q=s

	x,y,z

[
α(x), [y, z]q

]
p

=
1

2

∑
p+q=s,p>0,q>0

[
[., .]p, [., .]q

]∧
α
(x, y, z)

See Section 3 for the definition of [., .]∧α .
Definition 4.10. Let (L, [., .], α) be a Hom-Lie algebra. Given two deformations
Lt = (L, [., .]t, α) and L′t = (L, [., .]′t, α) of A where [., .]t =

∑
i≥0 t

i[., .]i and
[., .]′t =

∑
i≥0 t

i[., .]′i with [., .]0 = [., .]′0 = [., .] . We say that Lt and L′t are
equivalents if there exists a formal automorphism (φt)t≥0 : L[[t]] → L[[t]] , that
may be written in the form φt =

∑
i≥0 φit

i where φi ∈ End(L) and φ0 = id , such
that

φt([x, y]t) = [φt(x), φt(y)]
′

t.

A deformation Lt is said to be trivial if and only if Lt is equivalent to L (viewed
as an algebra on L[[t]] .)
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Similarly to Hom-associative algebras, we have that two 2-cocycles corre-
sponding to two equivalent deformations are cohomologous.
Definition 4.11. Let (L, [., .], α) be a Hom-Lie algebra, and [., .]1 be an ele-
ment of Z2

HL(L,L), the 2-cocycle [., .]1 is said to be integrable if there exists
a family ([., .]t)t≥0 such that [., .]t =

∑
i≥0 t

i[., .]i defines a formal deformation
Lt = (L, [., .]t, α) of A .

One may also prove

Theorem 4.12. Let (L, [., .], α) be a Hom-Lie algebra and Lt = (L, [., .]t, α) be
a one-parameter formal deformation of L, where [., .]t =

∑
i≥0 t

i[., .]i . Then there
exists an equivalent deformation [., .]′t =

∑
i≥0 t

i[., .]′i , where µ′t =
∑

i≥0 t
iµ′i such

that [., .]′1 ∈ Z2
HL(L,L) and [., .]′1 does not belong to B2

HL(L,L).

Hence, If H2
HL(L,L) = 0 then every formal deformation is equivalent to a

trivial deformation.

The Hom-Lie algebras, whose all formal deformations are trivial, are said
to be analytically rigid. The previous theorem gives a criterion for rigidity.

The obstruction study leads in the case of Hom-Lie algebras to the following
theorem.

Theorem 4.13. Let (L, [., .], α) be a Hom-Lie algebra and Lt = (L, [., .]t, α)
be a one-parameter formal deformation of L of order k − 1, where [., .]t =∑k−1

i≥0 t
i[., .]i .

Then

Ψ([., .]1, . . . , [., .]k−1) =
1

2

∑
p+q=k−1,p>0,q>0

[[., .]p, [., .]q]
∧
α ∈ Z3

HL(L,L)

i.e Ψ ∈ Z̃2
D(L,L).

Therefore the deformation extends to a deformation of order k if and only
if Ψ([., .]1, . . . , [., .]k−1) is a coboundary.

Proof. with a direct computation we have

δ3
HL

(
Ψ([., .]1, . . . , [., .]k)

)
(x, y, z, t) = A1 +B1 + C1
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where

A1 =
∑

p+q=k,p>0,q>0

(
δ2
HL[., .]q(α(x), α(t), [y, z]p) + δ2

HL[., .]q(α(y), α(z), [x, t]p)

+ δ2
HL[., .]q(α(x), α(y), [z, t]p) + δ2

HL[., .]q(α(x), α(z), [t, y]p)

+ δ2
HL[., .]q(α(y), α(t), [z, x]p) + δ2

HL[., .]q(α(z), α(t), [x, y]p)
)
,

B1 =
∑

p+q=k,p>0,q>0

([
α2(x), δ2

HL[., .]p(z, y, t)
]
q

+
[
α2(y), δ2

HL[., .]p(x, z, t)
]
q

+
[
α2(z), δ2

HL[., .]p(y, x, t)
]
q

+
[
α2(t), δ2

HL[., .]p(x, y, z)
]
q

)
,

C1 =
∑

p+q=k,p>0,q>0

(
−
[
[α(z), α(t)]p, [α(x), α(y)]q

]
0
−
[
[α(t), α(y)]p, [α(x), α(z)]q

]
0

−
[
[α(y), α(z)]p, [α(x), α(t)]q

]
0
−
[
[α(x), α(t)]p, [α(y), α(z)]q

]
)

−
[
[α(z), α(x)]p, [α(y), α(t)]q

]
0
−
[
[α(x), α(y)]p, [α(z), α(t)]q

]
0

)
= 0.

since
δ2
HL[., .]m = −

∑
r+s=m

	x,y,z

[
α(x), [y, z]r

]
s
.

Then
A1 = A11 + A12,

where

A11 =
∑

p+s+l=k

(
	z,y,t [α2(x), [α(z), [t, y]p]s]l+ 	z,y,t [α2(y), [α(x), [t, z]p]s]l

+ 	z,y,t [α2(z), [α(t), [x, y]p]s]l+ 	z,y,t [α2(t), [α(x), [z, y]p]s]l
)
,

A12 =
∑

p+s+l=k

([
[α(y), α(z)]p, [α(x), α(t)]s

]
l
+
[
[α(x), α(t)]p, [α(y), α(z)]s

]
l

+
[
[α(z), α(t)]p, [α(x), α(y)]s

]
l
+
[
[α(t), α(y)]p, [α(x), α(z)]s

]
l

+
[
[α(z), α(x)]p, [α(y), α(t)]s

]
l
+
[
[α(x), α(y)]p, [α(z), α(t)]s

]
l

)
,

B1 =
∑

q+s+l=k

(
	z,y,t [α2(x), [α(z), [y, t]l]s]q+ 	z,y,t [α2(y), [α(x), [z, t]l]s]q

+ 	z,y,t [α2(z), [α(t), [y, x]l]s]q+ 	z,y,t [α2(t), [α(x), [y, z]l]s]q
)
.

We have
A11 +B1 = 0 and A12 = 0.

Therefore
δ3
HL

(
Ψ([., .]1, . . . , [., .]k)

)
(x, y, z, t) = 0.

In the deformation equation corresponding to [., .]t =
∑k

i≥0 t
i[., .]i one has moreover

the equation
δ2
HL[., .]k = Ψ([., .]1, . . . , [., .]k−1).

Hence, the formal deformation of order (k − 1) extends to a formal deformation
of order k whenever Ψ is a coboundary.
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Corollary 4.14. If H3
HL(L,L) = H̃2

D(L,L) = 0, then any infinitesimal defor-
mation can be extended to a formal deformation.

As in the Hom-associative case the space H2
HL(L,L) classify the infinites-

imal deformation and the space H3
HL(L,L) contains the obstructions. Note that

we also recover the results of the classical cases.
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