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Abstract. Making use of nonabelian harmonic analysis and representation
theory, we solve the functional equation

f1(xy) + f2(yx) + f3(xy−1) + f4(y−1x) = f5(x)f6(y)

on arbitrary compact groups, where all fi ’s are unknown square integrable
functions. It turns out that the structure of its general solution is analogous
to that of linear differential equations. Consequently, various special cases of
the above equation, in particular, the Wilson equation and the d’Alembert long
equation, are solved on compact groups.
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1. Introduction

Let G be a group. The d’Alembert equation

f(xy) + f(xy−1) = 2f(x)f(y), (1)

where f : G→ C is the function to determine, has a long and rich history (see, e.g.,
[2]). It is easy to check that if ϕ is a homomorphism from G into the multiplicative
group of nonzero complex numbers, the function f(x) = (ϕ(x) + ϕ(x)−1)/2 is a
solution of Eq. (1) on G . Such solutions and the zero solution are said to be
classical. Kannappan [13] proved that if G is abelian, then all solutions of Eq. (1)
are classical. This was generalized to certain nilpotent groups in [7, 8, 11, 15, 16].
On the other hand, Corovei [7] constructed a nonclassical solution of Eq. (1)
on the quaternion group Q8 . It was realized later that this solution is nothing
but the restriction to Q8 of the normalized trace tr/2 on SU(2), which is a
nonclassical solution of Eq. (1) on SU(2) (c.f. [1, 22]). Recently, it was proved in
[22, 23] that any nonclassical continuous solution of Eq. (1) on a connected compact
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group factors through SU(2), and that tr/2 is the only nonclassical continuous
solution on SU(2). This was generalized to arbitrary compact groups in [9, 24],
and further to any topological groups in [9] (with the group SU(2) replaced by
SL(2,C)). Hence Eq. (1) on topological groups has been completely solved. For
more information related to Eq. (1), we refer to [3, 5, 6, 10, 17, 18, 19, 20] and the
references therein.

A well-known generalization of the d’Alembert equation is the Wilson equa-
tion

f(xy) + f(xy−1) = 2f(x)g(y), (2)

where f and g are unknown complex functions on G . It was first considered by
Wilson [21] and has also been extensively studied (see, e.g., [9, 10, 11, 16, 17]).
It turns out in [9] that Eq. (2) plays an important role in solving Eq. (1), where
solutions of Eq. (2) were used to construct the homomorphisms from G to SL(2,C)
mentioned in the previous paragraph. It was also known (see, e.g., [16]) that if
(f, g) satisfies Eq. (2) with f 6≡ 0, then g is a solution of the d’Alembert long
equation

f(xy) + f(yx) + f(xy−1) + f(y−1x) = 4f(x)f(y). (3)

The question of solving Eq. (3) on arbitrary topological groups was raised in [9].
Note that the approaches in [9, 10, 22] do not apply to Eqs. (2) and (3).

In this paper, we consider the case that G is an arbitrary compact group,
endowed with the normalized Haar measure dx . Let L2(G) be the Hilbert space
of all square integrable (complex) functions on G with respect to dx . We study
the following much more general equation

f1(xy) + f2(yx) + f3(xy
−1) + f4(y

−1x) = f5(x)f6(y), (FE)

where fi (i = 1, ..., 6) are unknown functions in L2(G). We will find all L2 -
solutions of Eq. (FE) on G . It turns out that the structure of its general solution is
analogous to that of linear differential equations. Consequently, its various special
cases, including Eqs. (1)–(3), are completely solved on compact groups. Here, it is
worth mentioning that, under some mild conditions, nonzero L2 -solutions of the
d’Alembert equation (or some of its variant forms) exist only on compact groups
(cf. [14]).

Our main ingredients are nonabelian harmonic analysis on compact groups
and representation theory. Let G be a compact group. Then the Fourier transform
converts a square integrable function f on G to an operator-valued function f̂ on
Ĝ , the unitary dual of G . Applying the Fourier transform to both sides of Eq. (FE)
and taking some representation theory into account, we will convert Eq. (FE) to
a family of matrix equations. We call a tuple of matrices satisfying such matrix
equations an admissible (matrix) tuple. There are three types of admissible tuples,
i.e., complex, real, and quaternionic types, which correspond to the three types
of the representations [π] ∈ Ĝ , respectively. To determine admissible tuples is a
question of linear algebra. We will find all admissible tuples of each type. Then
applying the Fourier inversion formula, we obtain the general solution of Eq. (FE).

It is worth pointing out that the structure of the general solution of Eq. (FE)
is analogous to that of linear differential equations, where any solution is the sum
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of a particular solution and a solution of the associated homogeneous differential
equation. In our case, the homogeneous equation associated with Eq. (FE) is

f1(xy) + f2(yx) + f3(xy
−1) + f4(y

−1x) = 0. (FEh)

Clearly, the L2 -solutions of Eq. (FEh) form a closed subspace of L2(G)4 . Some
obvious solutions of Eq. (FEh) are provided by central functions. We will determine
the orthogonal complement of these obvious solutions in the solution space of
Eq. (FEh) using irreducible representations of G into O(1), O(2), and SU(2).
Obviously, the sum of a solution of Eq. (FE) and a solution of Eq. (FEh) is also
a solution of Eq. (FE). The converse and more is indeed true: It will be shown
that any solution of Eq. (FE) is the sum of a pure normalized solution of Eq. (FE)
(defined in Section 3) and a solution of Eq. (FEh), and that all pure normalized
solutions of Eq. (FE) correspond to irreducible representations of G into U(1),
O(2), SU(2), and O(3). This provides a complete picture of the general solution
of Eq. (FE). These results will be proved in Theorems 5.1–5.4. As applications,
we will solve various special cases of Eq. (FE), including Eqs. (2) and (3). In
particular, we will obtain that all nontrivial solutions of Eqs. (2) and (3) factor
through SU(2), and that Eqs. (3) and (1) have the same general solution.

The paper is organized as follows. We will briefly review some properties
of the Fourier transform on compact groups and some facts in representation
theory in Section 2. In Section 3 we will give some basic definitions related to
Eq. (FE), introduce the notion of admissible matrix tuples, reveal their relations
with Eq. (FE), and present some examples which are the building blocks of the
general solution. Then in Section 4 we will determine all admissible matrix tuples.
Our main results will be proved in Section 5. The general solutions of various
special cases of Eq. (FE) will be given in Section 6.

We should point out that one could apply our method in this paper to some
other types of functional equations on compact groups, and that the method could
be also generalized to solve functional equations on non-compact groups admitting
Fourier transforms.

Throughout this paper, G always denotes a compact group. By solutions of
Eq. (FE) (or its special cases) on G , we always mean its square integrable solutions
(written as L2 -solutions for short).

2. Preliminaries

As mentioned in the introduction, our basic tools in this paper are Fourier analysis
on compact groups and representation theory. In this section, we briefly review
some fundamental facts in these two subjects which will be frequently used later.
We also convert Eq. (FE) to a family of matrix equations.

2.1. Fourier analysis.

We mainly follow the approach of [12, Chapter 5]. Let Ĝ be the unitary dual
of G , i.e., the set of equivalence classes of irreducible unitary representations of
G . For [π] ∈ Ĝ , For [π] ∈ Ĝ , we denote the dimension of the representation space
of π by dπ , and view π as a homomorphism from G to U(dπ). For f ∈ L2(G),
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the Fourier transform of f is defined by

f̂(π) = dπ

∫
G

f(x)π(x)−1dx ∈M(dπ,C) for all [π] ∈ Ĝ,

where M(n,C), as usual, is the space of all n × n complex matrices. Note that,
for the sake of convenience, our definition is different from the one in [12] by a
factor dπ . In our setting, the Fourier inversion formula is

f(x) =
∑
[π]∈Ĝ

tr(f̂(π)π(x)).

If f ∈ L2(G) is of the form f(x) =
∑k

i=1 tr(Aiπi(x)), where [πi] ’s in Ĝ
are distinct and Ai ∈ M(dπi ,C), then, by the Peter-Weyl Theorem, we have

supp(f̂) ⊆ {[π1], . . . , [πk]} and f̂(πi) = Ai . Here supp(f̂) = {[π] ∈ Ĝ | f̂(π) 6= 0} .
Let L2

c(G) be the subspace of central functions in L2(G), i.e.,

L2
c(G) = {f ∈ L2(G) | f(xy) = f(yx) a.e. (x, y) ∈ G2},

and L2
c(G)⊥ be its orthogonal complement in L2(G). Then

f ∈ L2
c(G)⇔ f̂(π) ∈ CIdπ , f ∈ L2

c(G)⊥ ⇔ tr f̂(π) = 0

for every [π] ∈ Ĝ . The first assertion is well-known, and the second one can be
proved by the Fourier inversion formula.

A crucial property of the Fourier transform is that it converts the regular
representations of G into matrix multiplications. As usual, the left and right
regular representations of G in L2(G) are defined by

(Lyf)(x) = f(y−1x), (Ryf)(x) = f(xy),

respectively, where f ∈ L2(G) and x, y ∈ G . Then it is easy to show that

(Lyf )̂ (π) = f̂(π)π(y)−1, (Ryf )̂ (π) = π(y)f̂(π).

The following lemma is the starting point of our study of Eq. (FE).

Lemma 2.1. A sequence f1, . . . , f6 of functions in L2(G) is a solution of
Eq. (FE) on G if and only if

tr[(f̂1(π)X +Xf̂2(π))π(y) + (f̂3(π)X +Xf̂4(π))tπ̄(y)] = tr(f̂5(π)X)f6(y) (4)

for all y ∈ G, [π] ∈ Ĝ, and X ∈M(dπ,C).

Proof. Eq. (FE) can be rewritten as

Ryf1 + Ly−1f2 +Ry−1f3 + Lyf4 = f6(y)f5.

Taking the Fourier transform, we see that this is equivalent to

π(y)f̂1(π) + f̂2(π)π(y) + π(y)−1f̂3(π) + f̂4(π)π(y)−1 = f6(y)f̂5(π)

for all [π] ∈ Ĝ . Then the lemma follows from the fact that a matrix A ∈M(dπ,C)
is equal to 0 if and only if tr(AX) = 0 for all X ∈M(dπ,C).
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2.2. Representation theory.

For a positive integer n , let In denote the n×n identity matrix, and if n is

even, let Jn =

[
0 In/2
−In/2 0

]
. If n is clear from the context, we will simply denote

I = In and J = Jn . Recall that if n is even, Sp(n) = {x ∈ U(n) | xJxtJ t = I} ,
where At refers to the transpose of a matrix A . We recall the following definitions.

Definition 2.1. Let π : G→ U(n) be an irreducible representation.

(1) π is of complex type if [π̄] 6= [π] .

(2) π is of real type if there exists x ∈ U(n) such that xπ(G)x−1 ⊆ O(n).

(3) π is of quaternionic type if n is even and there exists x ∈ U(n) such that
xπ(G)x−1 ⊆ Sp(n).

What is really important for us is the equivalence classes of representations.
So if π is of real (resp. quaternionic) type, we will always assume that π(G) ⊆ O(n)
(resp. π(G) ⊆ Sp(n)).

Let Ĝc (resp. Ĝr , Ĝq ) denote the set of (equivalence classes of) irreducible
representations of G of complex (resp. real, quaternionic) type. Then we have the
following basic fact.

Theorem 2.2. Ĝ is the disjoint union of Ĝc , Ĝr , and Ĝq .

Proof. (Sketched) Let π : G → U(n) be an irreducible representation. Con-
sider the representation ρ of G in M(n,C) defined by ρ(g)(A) = π(g)Aπ(g)t . Let
M(n,C)G denote the space of matrices A such that ρ(g)(A) = A for all g ∈ G .
Then [π̄] = [π] if and only if dimM(n,C)G = 1. In this case, any nonzero matrix
in M(n,C)G is invertible. It is easy to see that M(n,C) is decomposed as the
G-invariant direct sum of the space of symmetric matrices Msymm(n,C) and the
space of skew-symmetric matrices Mskew(n,C). Hence [π̄] = [π] if and only if ei-
ther dimMsymm(n,C)G = 1 (which means that π(G) lies in a conjugate of O(n)),
or dimMskew(n,C)G = 1 (which means that n is even and π(G) lies in a conjugate
of Sp(n)). Since dimM(n,C)G = 1, the two cases can not occur simultaneously.
For more details, see [4, Section 2.6].

We define an equivalence relation on Ĝ for which the equivalence class of [π]
is {[π], [π̄]} if [π] ∈ Ĝc , and {[π]} if [π] ∈ Ĝr or Ĝq . We denote the equivalence
class of [π] with respect to this equivalence relation by [[π]] , and the set of all
equivalence classes by [Ĝ] .

3. Constructing solutions from admissible tuples

We first introduce some notation and notions on solutions of Eq. (FE), and examine
their basic properties.

For g, h ∈ L2(G), let g⊗h ∈ L2(G×G) be defined by g⊗h(x, y) = g(x)h(y).
As being a solution of Eq. (FE) is a property about f1, f2, f3, f4 , and f5⊗ f6 , it is
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natural to write a solution as a 5-tuple F = (f1, f2, f3, f4, f5⊗f6). But sometimes
we will also write such a 5-tuple F as (fi)

6
i=1 or simply (fi) for convenience.

Similarly, for the associated homogeneous equation (FEh), we denote its solution
by a 4-tuple Fh = (f1, f2, f3, f4). By S and Sh we denote the set of solutions of
Eq. (FE) and Eq. (FEh), respectively. Clearly, Sh is a closed subspace of L2(G)4 .

As a matter of fact, one can naturally identify Sh with a subset of S . For if
(fi)

4
i=1 ∈ Sh , then (f1, f2, f3, f4, 0) ∈ S , where 0 is the zero function in L2(G×G).

Conversely, if (fi)
6
i=1 ∈ S satisfies f5 ⊗ f6 ≡ 0, then (fi)

4
i=1 ∈ Sh . (In this case,

without loss of generality, we always assume that f5 ≡ f6 ≡ 0.) Thus we identify
(fi)

4
i=1 ∈ Sh with (f1, f2, f3, f4, 0) ∈ S , and call such a solution a homogeneous

solution of Eq. (FE). It is said to be trivial if fi ≡ 0 for 1 ≤ i ≤ 4. Furthermore,
if F = (fi)

6
i=1 ∈ S and Fh = (f ′i)

4
i=1 ∈ Sh , then their sum

F + Fh = (f1 + f ′1, f2 + f ′2, f3 + f ′3, f4 + f ′4, f5 ⊗ f6)

is in S .

It is obvious that if c1, c2 ∈ L2
c(G), then

Fc1,c2 = (c1,−c1, c2,−c2) ∈ Sh. (5)

A solution (fi)
6
i=1 ∈ S is said to be normalized if f1− f2, f3− f4 ∈ L2

c(G)⊥ . Then
any solution of Eq. (FE) can be uniquely decomposed as F+Fc1,c2 , where F ∈ S is
normalized and Fc1,c2 is given by (5). Moreover, normalized homogeneous solutions
form the orthogonal complement of the space of solutions of the form Fc1,c2 in the
Hilbert space Sh .

Finally, we call a solution F = (fi)
6
i=1 of Eq. (FE) pure if

⋃6
i=1 supp(f̂i) ⊆ $

for some $ ∈ [Ĝ] . In this case, we say that F is supported on $ .

In Section 5, we will determine all pure normalized solutions of Eq. (FE),
prove that pure normalized homogeneous solutions span the space of normalized
homogeneous solutions, and that any solution is the sum of a pure normalized
solution and a homogeneous solution.

Lemma 2.1 converted Eq. (FE) to a family of matrix equations. We call
solutions of these matrix equations admissible matrix tuples. Before stating their
definitions, we need to introduce some linear mappings. For A,B,C,D,E, F ∈
M(n,C), consider the linear mappings Φc

A,B , Φr
A,B,C,D , Φq

A,B,C,D (if n is even),
and ΨE⊗F on M(n,C) defined by

Φc
A,B(X) = AX +XB,

Φr
A,B,C,D(X) = AX +XB + (CX +XD)t,

Φq
A,B,C,D(X) = AX +XB + J(CX +XD)tJ t,

ΨE⊗F (X) = tr(EX)F.

It is clear that ΨE⊗F depends only on E ⊗ F , and that if n is even we have

Φr
A,B,C,D(X) = −Φq

A,−JBJ,−C,JDJ(XJ)J. (6)

Definition 3.1. Keep the same notation as above.
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(1) T = (A,B,E ⊗ F ) is an admissible tuple of complex type (abbreviated as
c-admissible tuple) if trA = trB and Φc

A,B = ΨE⊗F .

(2) T = (A,B,C,D,E ⊗ F ) is an admissible tuple of real type (abbreviated as
r -admissible tuple) if trA = trB , trC = trD , and Φr

A,B,C,D = ΨE⊗F .

(3) T = (A,B,C,D,E ⊗ F ) is an admissible tuple of quaternionic type (abbre-
viated as q -admissible tuple) if n is even, trA = trB , trC = trD , and
Φq
A,B,C,D = ΨE⊗F .

We refer to n as the order of the tuples T . An admissible tuple T is
homogeneous if E ⊗ F = 0, and trivial if A = B(= C = D) = 0. Trivial
admissible tuples are obviously homogeneous. If T is homogeneous, we always
assume that E = F = 0.

We should mention that the trace conditions in Definition 3.1 are not essen-
tial. As we will see later, they are imposed so that admissible tuples correspond
to normalized solutions. This will simplify some arguments below.

We will determine all admissible matrix tuples in Section 4. In the rest of
this section, we explain how to construct pure normalized solutions of Eq. (FE)
from admissible tuples. We also exhibit some examples of admissible tuples, which
indeed include all nontrivial ones. The solutions constructed from these examples
form the building blocks of the general solution of Eq. (FE).

We begin with a simple example.

Example 3.1. Let a1, b1, a2, b2 ∈ C . Then (aibj/2, aibj/2, aibj) (i, j = 1, 2) are

1-ordered c-admissible tuples. Define F
U(1)
a1,b1,a2,b2

= (fi)
6
i=1 as

F
U(1)
a1,b1,a2,b2

:


f1(x) = f2(x) = 1

2
(a1b1x+ a2b2x̄),

f3(x) = f4(x) = 1
2
(a1b2x+ a2b1x̄),

f5 ⊗ f6(x, y) = (a1x+ a2x̄)(b1y + b2ȳ),

x, y ∈ U(1).

Then it is easy to check that F
U(1)
a1,b1,a2,b2

is a pure normalized solution of Eq. (FE)
on U(1) supported on [[ιU(1)]] , where ιU(1) is the identity representation of U(1).
It is homogeneous if and only if it is trivial.

The general principle of constructing solutions from admissible tuples of
real and quaternionic types is as follows. For a closed irreducible subgroup K of
U(n) and a matrix L ∈M(n,C), define a function fL on K via

fL(x) = tr(Lx), x ∈ K.

Then we have supp(f̂L) ⊆ {[ιK ]} and f̂L(ιK) = L , where ιK : K → U(n) is the
inclusion. Let A,B,C,D,E, F ∈M(n,C). For T = (A,B,C,D,E⊗F ), we define
the 5-tuple of functions

FKT = (fA, fB, fC , fD, fE ⊗ fF ).

Clearly, fE ⊗ fF depends only on E ⊗ F .
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Proposition 3.2. Let T = (A,B,C,D,E⊗F ), and keep the notation as above.

(1) If T is an n-ordered r -admissible tuple, then F
O(n)
T is a pure normalized

solution of Eq. (FE) on O(n) supported on {[ιO(n)]}. F
O(n)
T is homogeneous

if and only if T is homogeneous.

(2) If n is even and T is an n-ordered q -admissible tuple, then F
Sp(n)
T is a pure

normalized solution of Eq. (FE) on Sp(n) supported on {[ιSp(n)]}. F
Sp(n)
T is

homogeneous if and only if T is homogeneous.

Proof. (1) Suppose T is an n-ordered r -admissible tuple. Then, by definition,
Φr
A,B,C,D = ΨE⊗F . Thus, for all x, y ∈ O(n), we have

fA(xy) + fB(yx) + fC(xy−1) + fD(y−1x)

= tr(Axy) + tr(Byx) + tr(Cxyt) + tr(Dytx)

= tr(Axy + xBy + xtCty +Dtxty)

= tr(Φr
A,B,C,D(x)y)

= tr(tr(Ex)Fy)

=fE(x)fF (y).

This shows that F
O(n)
T is a solution of Eq. (FE) on O(n). Obviously it is a pure

solution supported on {[ι]} , where ι = ιO(n) . Since tr(f̂A(ι)−f̂B(ι)) = tr(A−B) =

0, we have fA− fB ∈ L2
c(O(n))⊥ . Similarly, fC − fD ∈ L2

c(O(n))⊥ . Thus F
O(n)
T is

normalized. It is homogeneous if and only if fE ≡ 0 or fF ≡ 0, which is equivalent
to E ⊗ F = f̂E(ι)⊗ f̂F (ι) = 0, i.e., T is homogeneous.

(2) Suppose T is an n-ordered q -admissible tuple. Since Φq
A,B,C,D = ΨE⊗F ,

for all x, y ∈ Sp(n) we have

fA(xy) + fB(yx) + fC(xy−1) + fD(y−1x)

= tr(Axy) + tr(Byx) + tr(CxJytJ t) + tr(DJytJ tx)

= tr(Axy + xBy + J txtCtJy + J tDtxtJy)

= tr(Φq
A,B,C,D(x)y)

= tr(tr(Ex)Fy)

=fE(x)fF (y).

Hence F
Sp(n)
T is a solution of Eq. (FE) on Sp(n). The proofs of the other assertions

in (2) are similar to those of the corresponding parts in (1) and omitted here.

Note that if ϕ : G→ K is a homomorphism and FK = (fi) is a solution of
Eq. (FE) on K , then FK ◦ϕ = (fi ◦ϕ) is a solution on G . Some relations between
FK and FK ◦ ϕ are revealed in the following proposition.

Proposition 3.3. Let π : G→ U(n) be an irreducible representation of complex
(resp. real, quaternionic) type, and let K = U(n) (resp. O(n), Sp(n)). If
FK = (fi) is a pure solution of Eq. (FE) on K supported on [[ιK ]], then FK ◦ π



An, J. and Yang, D. 435

is a pure solution of Eq. (FE) on G supported on [[π]], and FK ◦ π is normalized
(resp. homogeneous) if and only if FK is normalized (resp. homogeneous).

Proof. It suffices to prove that if f ∈ L2(K) with supp(f̂) ⊆ [[ιK ]] , then

supp((f ◦ π)̂ ) ⊆ [[π]], f ◦ π ∈ L2
c(G)⊥ ⇔ f ∈ L2

c(K)⊥, f ◦ π ≡ 0⇔ f ≡ 0.

Suppose that π is of complex type. Then f is of the form

f(x) = tr(Ax) + tr(Bx̄) for all x ∈ U(n)

for some A,B ∈M(n,C). Hence

(f ◦ π)(y) = tr(Aπ(y)) + tr(Bπ̄(y)) for all y ∈ G.

This implies that (f◦π)̂ (π) = A , (f◦π)̂ (π̄) = B , and (f◦π)̂ (π′) = 0 if [π′] /∈ [[π]] .
So supp((f ◦ π)̂ ) ⊆ [[π]] . Moreover, we have

f ◦ π ∈ L2
c(G)⊥ ⇔ trA = trB = 0⇔ f ∈ L2

c(K)⊥,

f ◦ π ≡ 0⇔ A = B = 0⇔ f ≡ 0.

The proofs of the other two cases are similar and left to the reader.

Example 3.4. Any 1-ordered r -admissible tuple is of the form

Ta,b = (a/2, a/2, b/2, b/2, a+ b)

for some a, b ∈ C . It is homogeneous ⇔ a+ b = 0. Define F
O(1)
a,b as

F
O(1)
a,b :


f1(x) = f2(x) = a

2
x,

f3(x) = f4(x) = b
2
x,

f5 ⊗ f6(x, y) = (a+ b)xy,

x, y ∈ O(1).

Then F
O(1)
a,b = F

O(1)
Ta,b

. By Proposition 3.2 (1), it is a pure normalized solution of

Eq. (FE) on O(1) supported on {[ιO(1)]} . It is homogeneous ⇔ a + b = 0. Note

that F
O(1)
a,b is the restriction of the solution F

U(1)
a,1,b,0 on O(1) (see Example 3.1). But

it may occur that F
U(1)
a,1,b,0 is non-homogeneous while F

O(1)
a,b is homogeneous. This

fact is meaningful when we construct the general solution of Eq. (FE) on arbitrary

compact groups (see Section 5). For later reference, we denote F
O(1)
a = F

O(1)
2a,−2a . In

our notation of homogeneous solutions, F
O(1)
a = (fi)

4
i=1 is given by

FO(1)
a : f1(x) = f2(x) = −f3(x) = −f4(x) = ax, x ∈ O(1).

Now we consider admissible matrix tuples of higher order. Since the bilinear
mapping (X, Y ) 7→ tr(XY ) (X, Y ∈ M(n,C)) is non-degenerate, for a linear
mapping Γ : M(n,C) → M(n,C), we can define its adjoint Γ† on M(n,C) by
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tr(Γ(X)Y ) = tr(XΓ†(Y )) for all X, Y ∈ M(n,C). It is straightforward to check
that

(Φc
A,B)† = Φc

B,A, (7)

(Φr
A,B,C,D)† = Φr

B,A,Ct,Dt , (8)

(Φq
A,B,C,D)† = Φq

B,A,JCtJt,JDtJt , (9)

(ΨE⊗F )† = ΨF⊗E. (10)

Lemma 3.5. Let A,B ∈M(2,C) with trA = trB . Then the following hold.

(1) The tuples

TrA,B = (A,B,−A,−B,−(JA+BJ)⊗ J),

(TrA,B)† = (A,B,−Bt,−At,−J ⊗ (AJ + JB))

are r -admissible. They are homogeneous ⇔ trA = 0 and B = At .

(2) The tuples

T
q
A,B = (A,B,A,B, (A+B)⊗ I),

(TqA,B)† = (A,B, JBtJ t, JAtJ t, I ⊗ (A+B))

are q -admissible. They are homogeneous ⇔ trA = 0 and B = −A.

Proof. We first prove the assertions for TrA,B and T
q
A,B . Since Y + JY tJ t =

tr(Y )I for all Y ∈M(2,C), we have

Φq
A,B,A,B(X) = AX +XB + J(AX +XB)tJ t

= tr(AX +XB)I

= Ψ(A+B)⊗I(X). (11)

So T
q
A,B is q -admissible. By (6), we have

Φr
A,B,−A,−B(X) = −Φq

A,−JBJ,A,−JBJ(XJ)J

= −Ψ(A−JBJ)⊗I(XJ)J

= Ψ−(JA+BJ)⊗J(X).

So TrA,B is r -admissible.

Now by (8)–(10), we have

Φq
A,B,JBtJt,JAtJt = (Φq

B,A,B,A)† = (Ψ(A+B)⊗I)
† = ΨI⊗(A+B), (12)

Φr
A,B,−Bt,−At = (Φr

B,A,−B,−A)† = (Ψ−(JB+AJ)⊗J)† = Ψ−J⊗(AJ+JB).

Hence (TqA,B)† and (TrA,B)† are admissible tuples of quaternionic and real type,
respectively.

The proofs of the conditions of being homogeneous are easy and left to the
reader.
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Remark 3.6. The families TrA,B and (TrA,B)† (resp. T
q
A,B and (TqA,B)† ) are not

mutually exclusive. Indeed, it is easy to check that

TrA,B = (TrA,B)† ⇔ B = At and T
q
A,B = (TqA,B)† ⇔ B = tr(A)I − A.

In particular, if TrA,B (or (TrA,B)† ) is homogeneous, then TrA,B = (TrA,B)† . Similarly,
if T

q
A,B (or (TqA,B)† ) is homogeneous, then T

q
A,B = (TqA,B)† .

Example 3.7. Let A,B ∈ M(2,C) with trA = trB . By Proposition 3.2

(1) and Lemma 3.5 (1), the tuples F
O(2)
A,B = F

O(2)
TrA,B

and (F
O(2)
A,B )† = F

O(2)

(TrA,B)†
are

pure normalized solutions of Eq. (FE) on O(2) supported on {[ιO(2)]} . Writing
explicitly, we have

F
O(2)
A,B :


f1(x) = −f3(x) = tr(Ax),

f2(x) = −f4(x) = tr(Bx),

f5 ⊗ f6(x, y) = − tr((JA+BJ)x) tr(Jy),

x, y ∈ O(2);

(F
O(2)
A,B )† :


f1(x) = −f4(x−1) = tr(Ax),

f2(x) = −f3(x−1) = tr(Bx),

f5 ⊗ f6(x, y) = − tr(Jx) tr((AJ + JB)y),

x, y ∈ O(2).

The solutions F
O(2)
A,B and (F

O(2)
A,B )† are homogeneous ⇔ trA = 0 and B = At . In

this case they are equal (cf. Remark 3.6). We denote F
O(2)
A = F

O(2)
A,At = (F

O(2)
A,At)

† if

trA = 0. The functions in F
O(2)
A are

F
O(2)
A : f1(x) = f2(x

−1) = −f3(x) = −f4(x−1) = tr(Ax), x ∈ O(2).

Example 3.8. Let A,B ∈ M(2,C) with trA = trB . By Proposition 3.2 (2),

Lemma 3.5 (2), and the fact Sp(2) = SU(2), the tuples of functions F
SU(2)
A,B :=

F
SU(2)

T
q
A,B

and (F
SU(2)
A,B )† := F

SU(2)

(TqA,B)†
are pure normalized solutions of Eq. (FE) on

SU(2) supported on {[ιSU(2)]} . These solutions are given by

F
SU(2)
A,B :


f1(x) = f3(x) = tr(Ax),

f2(x) = f4(x) = tr(Bx),

f5 ⊗ f6(x, y) = tr((A+B)x) tr y,

x, y ∈ SU(2);

(F
SU(2)
A,B )† :



f1(x) = tr(Ax),

f2(x) = tr(Bx),

f3(x) = trA trx− tr(Bx),

f4(x) = trA trx− tr(Ax),

f5 ⊗ f6(x, y) = trx tr((A+B)y),

x, y ∈ SU(2).

They are homogeneous ⇔ trA = 0 and B = −A , and in this case we have
F
SU(2)
A,B = (F

SU(2)
A,B )† . We denote F

SU(2)
A = F

SU(2)
A,At = (F

SU(2)
A,At )† if trA = 0. Writing

explicitly, we have

F
SU(2)
A : f1(x) = −f2(x) = f3(x) = −f4(x) = tr(Ax), x ∈ SU(2).
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Now we consider 3-ordered r -admissible tuples. We view elements of C3

as column vectors. For u, v ∈ C3 , let 〈u, v〉 = utv and define

τu,v = uvt − 1

2
〈u, v〉I3 ∈M(3,C).

By Mskew(3,C) we mean the space of 3 × 3 skew-symmetric complex matrices.
For u = (u1, u2, u3)

t ∈ C3 , set

σu =

 0 −u3 u2
u3 0 −u1
−u2 u1 0

 ∈Mskew(3,C).

Note that, for w ∈ C3 , σuw is (the complex analogue of) the cross product u×w
of u and w .

Lemma 3.9. For all u, v ∈ C3 , the tuple

Tu,v = (τu,v, τv,u,−τu,v,−τv,u, σu ⊗ σv)

is r -admissible. It is homogeneous if and only if it is trivial.

Proof. First, we consider the representations ρ1 and ρ2 of the Lie algebra
gl(3,C) on Mskew(3,C) and C3 defined by

ρ1(A)(Y ) = AY + Y At, ρ2(A)(w) = (tr(A)I3 − At)w, (13)

respectively, where A ∈ gl(3,C), Y ∈Mskew(3,C), w ∈ C3 .

We claim that the linear isomorphism σ : C3 → Mskew(3,C) sending w to
σw is an equivalence between ρ1 and ρ2 , i.e.,

ρ1(A)(σw) = σ(ρ2(A)(w)) (14)

for all A ∈ gl(3,C) and w ∈ C3 . To prove this, we note (the complex analogue
of) the equality for scalar triple products, i.e., for all w,w1, w2 ∈ C3 , we have

〈σww1, w2〉 = det[w,w1, w2],

where [w,w1, w2] is the 3 × 3 matrix specified by column vectors. Now let
A ∈ gl(3,C) and w,w1, w2 ∈ C3 . Then we have

〈ρ1(A)(σw)w1, w2〉 = 〈(Aσw + σwA
t)w1, w2〉

= 〈Aσww1, w2〉+ 〈σwAtw1, w2〉
= 〈σww1, A

tw2〉+ 〈σwAtw1, w2〉
= det[w,w1, A

tw2] + det[w,Atw1, w2]

and

〈σ(ρ2(A)(w))w1, w2〉 = det[ρ2(A)(w), w1, w2]

= det[(tr(A)I3 − At)w,w1, w2]

= trA det[w,w1, w2]− det[Atw,w1, w2].



An, J. and Yang, D. 439

This proves (14) by noting the fact that

det[Aw,w1, w2] + det[w,Aw1, w2] + det[w,w1, Aw2] = trA det[w,w1, w2]

for all A ∈ gl(3,C) and w,w1, w2 ∈ C3 . Therefore, ρ1 and ρ2 are equivalent.

Now we notice that

ρ2(τu,v)(w) = −〈u,w〉v =
1

2
tr(σuσw)v,

τ tu,v = τv,u, σtu = −σu.

From these identities, (13) and (14), it follows that for all X ∈M(3,C)

Φr
τu,v ,τv,u,−τu,v ,−τv,u(X) =τu,vX +Xτv,u − (τu,vX +Xτv,u)

t

=τu,v(X −X t) + (X −X t)τ tu,v

=ρ1(τu,v)(X −X t) = σ(ρ2(τu,v)(σ
−1(X −X t)))

=− σ(〈u, σ−1(X −X t)〉v) = −〈u, σ−1(X −X t)〉σ(v)

=
1

2
tr(σu(X −X t))σv = tr(σuX)σv

=Ψσu⊗σv(X). (15)

This proves that Tu,v is r -admissible.

If Tu,v is homogeneous, then σu = 0 or σv = 0, which implies that u = 0
or v = 0. Hence it is the trivial tuple.

Example 3.10. For u, v ∈ C3 , we define F
O(3)
u,v as F

O(3)
Tu,v

, which is given by

FO(3)
u,v :

{
f1(x) = f2(x

−1) = −f3(x) = −f4(x−1) = tr(τu,vx),

f5 ⊗ f6(x, y) = tr(σux) tr(σvy),
x, y ∈ O(3).

Then Proposition 3.2 (1) and Lemma 3.9 imply that F
O(3)
u,v is a pure normalized

solution of Eq. (FE) on O(3) supported on {[ιO(3)]} . It is homogeneous if and
only if it is trivial.

4. Determination of admissible tuples

In this section we determine all admissible matrix tuples, which are completely de-
scribed in the following three propositions. These results are critical for obtaining
our main theorems. We keep the same notation as in Section 3.

Proposition 4.1. Let T = (A,B,E ⊗ F ) be an n-ordered c-admissible tuple.

(1) If n = 1, then T = (a, a, 2a) for some a ∈ C.

(2) If n ≥ 2, then T is the trivial tuple.

Proposition 4.2. Let T = (A,B,C,D,E ⊗ F ) be an n-ordered r -admissible
tuple.
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(1) If n = 1, then T = Ta,b for some a, b ∈ C.

(2) If n = 2, then T = TrA,B or (TrA,B)† for some A,B ∈ M(2,C) with
trA = trB .

(3) If n = 3, then T = Tu,v for some u, v ∈ C3 .

(4) If n ≥ 4, then T is the trivial tuple.

Proposition 4.3. Let n be even, and let T = (A,B,C,D,E ⊗ F ) be an n-
ordered q -admissible tuple.

(1) If n = 2, then T = T
q
A,B or (TqA,B)† for some A,B ∈ M(2,C) with

trA = trB .

(2) If n ≥ 4, then T is the trivial tuple.

The assertions in Propositions 4.1 (1) and 4.2 (1) are trivial. It remains to
prove the others. Since our proofs of 4.3 (2) (resp. 4.2 (2)) make use of 4.2 (4)
(resp. 4.3 (1)), and the proofs of 4.1 (2) and 4.2 (4) are similar, we proceed the
proofs in the following order:

4.1 (2), 4.2 (4) ⇒ 4.3 (2), 4.3 (1) ⇒ 4.2 (2), 4.2 (3).

Before giving the proofs, we make the following convention: A linear poly-
nomial p in the variables y1, . . . , ym is always written in its reduced form, so
that the omitted part is independent of the appeared variables. For instance, if
p(y) = a1y1 + a2y2 + · · · , then the omitted terms “· · · ” contain neither y1 nor y2 .

Proof of Proposition 4.1 (2). Denote Φ = Φc
A,B and Nn = {1, . . . , n} .

Since Φ = ΨE⊗F , we have dim Im(Φ) ≤ 1. So, for X ∈ M(n,C), the entries
Φ(X)ij (i, j ∈ Nn) of Φ(X), viewed as linear polynomials in the entries Xij of X ,
are mutually linearly dependent.

Let i, j ∈ Nn , i 6= j . It is easy to see that

Φ(X)ii = AijXji + 0Xjj + · · · ,
Φ(X)ij = 0Xji + AijXjj + · · · .

Since they are linearly dependent, we must have Aij = 0. So A is diagonal.
Similarly, B is diagonal.

Now we have

Φ(X)rs = (Arr +Bss)Xrs for all r, s ∈ Nn.

Setting (r, s) = (i, i), (i, j), (j, i), (j, j), we get four polynomials. From their mutual
linear dependence, it follows that at most one of the four sums Aii+Bii , Aii+Bjj ,
Ajj+Bii , Ajj+Bjj is nonzero. This forces that they are all zero. So A = −B ∈ CI .
But we have trA = trB . Hence A = B = 0. This proves that T is the trivial
tuple. �
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We use a similar idea to prove 4.2 (4).

Proof of Proposition 4.2 (4). Denote Φ = Φr
A,B,C,D . Then dim Im(Φ) ≤ 1

and Φ(X)ij (i, j ∈ Nn) are mutually linearly dependent.

Let i, j ∈ Nn with i 6= j . Since n ≥ 4, there exist k, l ∈ Nn such that
i, j, k, l are distinct. Then we compute

Φ(X)ik = AijXjk + 0Xjl + · · · ,
Φ(X)il = 0Xjk + AijXjl + · · · .

Since they are linearly dependent, we have Aij = 0. So A is diagonal. Similarly,
B,C,D are diagonal.

Now we have

Φ(X)rs = (Arr +Bss)Xrs + (Css +Drr)Xsr for all r, s ∈ Nn.

Setting (r, s) = (i, j), (i, l), (k, j), (k, l), we get four polynomials. Their mutual
linear dependence implies that at most one of Aii + Bjj , Aii + Bll , Akk + Bjj ,
Akk +Bll is nonzero. This forces that they are all zero. So Aii+Bjj = 0 whenever
i 6= j . This is impossible unless A = −B ∈ CI . But we have trA = trB . So
A = B = 0. Similarly, C = D = 0. Hence T is trivial. �

We now apply Proposition 4.2 (4) to prove Proposition 4.3 (2).

Proof of Proposition 4.3 (2). Suppose n ≥ 4 and T is q -admissible.
Then it follows from (6) that (A,−JBJ,−C, JDJ,−(JE)⊗(FJ)) is r -admissible.
By Proposition 4.2 (4), we have A = −JBJ = −C = JDJ = 0. Hence
A = B = C = D = 0. �

Similarly, due to (6), Proposition 4.2 (2) is equivalent to Proposition 4.3
(1). We find that the proof of Proposition 4.3 (1) is easier to write up. So we
prove it first. In the following proof, we will constantly use the fact that

Y + JY tJ t = tr(Y )I for all Y ∈M(2,C)

without any further mention.

Proof of Proposition 4.3 (1). Denote Φ = Φq
A,B,C,D . Then dim Im(Φ) ≤ 1

and Φ(X)ij (i, j ∈ N2) are mutually linearly dependent. We divide the proof into
two steps.

Step (i). Assume that C = −A and D = −B . We wish to prove

trA = 0, B = A, Φ(X) = 2 tr(X)A for all X ∈M(2,C).

In this case, we have

Φ(X) = AX +XB − J(AX +XB)tJ t. (16)

Let (i, j) = (1, 2) or (2, 1). Since

Φ(X)ii = (Aij −Bij)Xji + · · · ,
Φ(X)ij = 0Xji + 2AijXjj + 2BijXii + · · · ,
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their linear dependence implies that

Aij = Bij.

Using this, one can easily compute that

Φ(X)ij = 2(Aii +Bjj)Xij + · · · ,
Φ(X)ji = 0Xij + 2(Ajj +Bii)Xji + · · · ,
Φ(X)ii = (Aii +Bii)Xii − (Ajj +Bjj)Xjj.

We now claim that
Aii +Bjj = 0.

For otherwise, if Aii + Bjj 6= 0, then by the mutual linear dependence, we have
Ajj + Bii = Aii + Bii = Ajj + Bjj = 0, which conflicts with Aii + Bjj 6= 0. This
ends the proof of the claim.

Now if A =

[
a b
c d

]
, then B =

[
−d b
c −a

]
. As trA = trB (from the

definition of q -admissible tuples), we get trA = 0 and B = A . This also implies
that JAtJ t = −A . By (16), we have Φ(X) = 2 tr(X)A .

Step (ii). We prove the general case. Since

Φ(X)− JΦ(X)tJ t = (A− C)X +X(B −D)− J [(A− C)X +X(B −D)]tJ t,

ΨE⊗F (X)− JΨE⊗F (X)tJ t = tr(EX)(F − JF tJ t),

the tuple (A − C,B − D,C − A,D − B,E ⊗ (F − JF tJ t)) is q -admissible. By
Step (i), we have

trA = trC, (17)

B −D = A− C, (18)

Φ(X)− JΦ(X)tJ t = 2 tr(X)(A− C). (19)

From (17) and (18), some straightforward computations give

Φ(X) + JΦ(X)tJ t

=(A+ C)X +X(B +D) + J [(A+ C)X +X(B +D)]tJ t

=(A+ C)X + J [(A+ C)X]tJ t +X(B +D) + J [X(B +D)]tJ t

= tr((A+B + C +D)X)I

=2 tr((A+D)X)I.

Hence combining this and (19) yields

Φ(X) = tr(X)(A− C) + tr((A+D)X)I. (20)

There are two cases to consider.

Case (a). A − C and I are linearly dependent. Then A − C is a scalar
matrix. It now follows from (17) that A = C . From (18), we see that D = B . By
(11), we have Φ = Ψ(A+B)⊗I and T = T

q
A,B .
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Case (b). A − C and I are linearly independent. Since dim Im(Φ) ≤ 1,
from (20) one has

dim{(trX, tr((A+D)X)) | X ∈M(2,C)} ≤ 1.

This implies that A+D is a scalar matrix. Hence

D = A+D − A =
1

2
tr(A+D)I − A = tr(A)I − A = JAtJ t.

By (18), B+C is also a scalar matrix. Similarly, we have C = JBtJ t . From (12),
we see that Φ = ΨI⊗(A+B) and T = (TqA,B)† . �

Proof of Proposition 4.2 (2). By (6), (A,−JBJ,−C, JDJ,−(JE) ⊗
(FJ)) is a q -admissible tuple, which must be T

q
A,−JBJ or (TqA,−JBJ)† by Proposition

4.3 (1). This implies that T is equal to TrA,B or (TrA,B)† . �

Finally we prove 4.2 (3). We will make use of the representations ρ1 and
ρ2 of gl(3,C) on Mskew(3,C) and C3 defined in (13).

Proof of Proposition 4.2 (3). Denote Φ = Φr
A,B,C,D . Then dim Im(Φ) ≤ 1

and Φ(X)ij (i, j ∈ N3) are mutually linearly dependent. We divide the proof into
two steps.

Step (i). Assume that C = A and D = B . Then

Φ(X) = AX +XB + (AX +XB)t.

We will prove that A = B = 0.

Let i, j ∈ N3 , i 6= j . Let k ∈ N3 with {i, j, k} = N3 . Since

Φ(X)ii = 0Xjk + 2AijXji + · · · ,
Φ(X)ik = AijXjk + · · · ,

their linear dependence implies that Aij = 0. So A is diagonal. Similarly, B is
diagonal. Now we have six polynomials

Φ(X)rr =2(Arr +Brr)Xrr, r ∈ N3,

Φ(X)rs =(Arr +Bss)Xrs + (Ass +Brr)Xsr, (r, s) ∈ {(1, 2), (2, 3), (3, 1)}.

Their mutual linear dependence forces that A = −B ∈ CI . But trA = trB . So
A = B = 0.

Step (ii). Now we prove the general case. Since

Φ(X) + Φ(X)t = (A+ C)X +X(B +D) + [(A+ C)X +X(B +D)]t,

ΨE⊗F (X) + ΨE⊗F (X)t = tr(EX)(F + F t),

the tuple (A + C,B + D,A + C,B + D,E ⊗ (F + F t)) is r -admissible. By Step
(i), we have

A+ C = 0, B +D = 0.
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So

Φ(X) = AX +XB − (AX +XB)t. (21)

Let i, j ∈ N3 , i 6= j . Let k ∈ N3 with N3 = {i, j, k} . Since

Φ(X)ij = (Aij −Bji)Xjj + · · · ,
Φ(X)ik = 0Xjj + AijXjk −BjiXkj + · · · ,

their linear dependence implies that

Bji = Aij. (22)

We now claim that

Aii −Bii = Ajj −Bjj. (23)

Indeed, if both Φ(X)ik and Φ(X)jk are identically zero, from the expressions

Φ(X)ik = (Aii +Bkk)Xik − (Akk +Bii)Xki + · · · ,
Φ(X)jk = (Ajj +Bkk)Xjk − (Akk +Bjj)Xkj + · · · ,

we get
Aii +Bkk = Ajj +Bkk = Akk +Bii = Akk +Bjj = 0,

which implies (23). Now assume that one of Φ(X)ik and Φ(X)jk , say Φ(X)ik , is
not identically zero. Since Φ(X)ik 6≡ 0, Bjk = Akj , and the polynomials

Φ(X)ik =BjkXij − AkjXji + · · · ,
Φ(X)ij =(Aii +Bjj)Xij − (Ajj +Bii)Xji + · · ·

are linearly dependent, we must have Aii + Bjj = Ajj + Bii , which also implies
(23). Therefore, our claim is proved.

From (23), there exists a constant α ∈ C such that Bii = Aii + α . But
trA = trB . So we have

Bii = Aii. (24)

From (22) and (24), we have B = At . Thus from (21) one gets

Φ(X) = A(X −X t) + (X −X t)At.

Set Φ1 = Φ|Mskew(3,C) . Then

Φ1(Y ) = 2(AY + Y At) for all Y ∈Mskew(3,C).

Now we consider the representations ρ1 and ρ2 of gl(3,C) on Mskew(3,C)
and C3 , respectively, which are defined in (13). Note that Φ1 = 2ρ1(A). From the
proof of Lemma 3.9, we know that ρ1 and ρ2 are equivalent. So

rank(A− tr(A)I) = rank(tr(A)I − At) = dim Im(ρ2(A))

= dim Im(ρ1(A)) = dim Im(Φ1) ≤ 1.

Hence there exist u, v ∈ C3 such that A−tr(A)I = uvt , i.e., A = uvt−〈u, v〉I/2 =
τu,v . Now we have

B = At = τv,u, C = −A = −τu,v, D = −B = −τv,u.

By (15), we have Φ = Ψσu⊗σv . Therefore T = Tu,v . �
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5. Main theorems

We now prove the main theorems using the descriptions of admissible tuples in
the previous section. The first theorem determines all pure normalized solutions
of Eq. (FE). We keep the same notation as in Examples 3.1–3.10.

Theorem 5.1. Let [π] ∈ Ĝ, and let F be a nontrivial pure normalized solution
of Eq. (FE) on G supported on [[π]]. Denote K = U(dπ), O(dπ), or Sp(dπ)
according to the type of π . Then F = FK ◦ π , where FK is a solution of Eq. (FE)
on K , and the only possibilities of K and FK are as follows:

(1) K = U(1) and FK = F
U(1)
a1,b1,a2,b2

for some a1, b1, a2, b2 ∈ C;

(2) K = O(2) and FK = F
O(2)
A,B or (F

O(2)
A,B )† for some A,B ∈ M(2,C) with

trA = trB ;

(3) K = Sp(2) (= SU(2)) and FK = F
SU(2)
A,B or (F

SU(2)
A,B )† for some A,B ∈

M(2,C) with trA = trB ;

(4) K = O(3) and FK = F
O(3)
u,v for some u, v ∈ C3 .

Proof. Since F is normalized, we have

tr(f̂1(π)− f̂2(π)) = tr(f̂3(π)− f̂4(π)) = 0.

According to the types of π (cf. Theorem 2.2), there are three cases to consider.

Case (a). π is of complex type, i.e., [π] 6= [π̄] . Applying Lemma 2.1 to π
and π̄ , we have

f̂1(π)X +Xf̂2(π) = tr(f̂5(π)X)f̂6(π),

(f̂3(π)X +Xf̂4(π))t = tr(f̂5(π)X)f̂6(π̄),

f̂1(π̄)X +Xf̂2(π̄) = tr(f̂5(π̄)X)f̂6(π̄),

(f̂3(π̄)X +Xf̂4(π̄))t = tr(f̂5(π̄)X)f̂6(π)

for all X ∈M(dπ,C). So the 3-tuples

(f̂1(π), f̂2(π), f̂5(π)⊗ f̂6(π)), (f̂3(π), f̂4(π), f̂5(π)⊗ f̂6(π̄)t),

(f̂1(π̄), f̂2(π̄), f̂5(π̄)⊗ f̂6(π̄)), (f̂3(π̄), f̂4(π̄), f̂5(π̄)⊗ f̂6(π)t)

are c-admissible. Since F is nontrivial and supported on [[π]] , these tuples can
not be all trivial. By Proposition 4.1, we have dπ = 1, i.e., K = U(1). Let

f̂5(π) = a1, f̂5(π̄) = a2, f̂6(π) = b1, f̂6(π̄) = b2.

Then

f̂1(π) = f̂2(π) = a1b1/2, f̂1(π̄) = f̂2(π̄) = a2b2/2,

f̂3(π) = f̂4(π) = a1b2/2, f̂3(π̄) = f̂4(π̄) = a2b1/2.
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From Example 3.1 and the Fourier inversion formula, we have the formula F =
F
U(1)
a1,b1,a2,b2

◦ π .

Case (b). π is of real type, i.e., π(G) ⊆ O(dπ). Then π̄(y) = π(y) for all
y ∈ G . By Lemma 2.1, for all X ∈M(dπ,C) we have

f̂1(π)X +Xf̂2(π) + (f̂3(π)X +Xf̂4(π))t = tr(f̂5(π)X)f̂6(π).

So the 5-tuple

Tr = (f̂1(π), f̂2(π), f̂3(π), f̂4(π), f̂5(π)⊗ f̂6(π))

is r -admissible. Since F is nontrivial and supported on [[π]] , Tr is nontrivial.
By Proposition 4.2, we have dπ = 1, 2, or 3, which correspond to the case of
K = O(1), O(2), or O(3), respectively.

If dπ = 1, then Tr = Ta,b and F = F
O(1)
a,b ◦π for some a, b ∈ C (see Example

3.4). As mentioned in Example 3.4, this case can be absorbed into the case of
K = U(1).

If dπ = 2, then Tr = TrA,B or (TrA,B)† , and F = F
O(2)
A,B ◦ π or (F

O(2)
A,B )† ◦ π for

some A,B ∈M(2,C) with trA = trB (see Example 3.7).

If dπ = 3, then Tr = Tu,v and F = F
O(3)
u,v ◦ π for some u, v ∈ C3 (see

Example 3.10).

Case (c). π is of quaternionic type, i.e., dπ is even and π(G) ⊆ Sp(dπ).
Then π̄(y) = Jπ(y)J t for all y ∈ G . By Lemma 2.1, for all X ∈ M(dπ,C) we
have

f̂1(π)X +Xf̂2(π) + J(f̂3(π)X +Xf̂4(π))tJ t = tr(f̂5(π)X)f̂6(π).

So the 5-tuple

Tq = (f̂1(π), f̂2(π), f̂3(π), f̂4(π), f̂5(π)⊗ f̂6(π))

is q -admissible. As before, Tq is nontrivial. By Proposition 4.3, we have dπ = 2

and Tq = T
q
A,B or (TqA,B)† . Hence K = Sp(2) = SU(2), and F = F

SU(2)
A,B ◦ π or

(F
SU(2)
A,B )† ◦ π for some A,B ∈M(2,C) with trA = trB (see Example 3.8).

Our next theorem gives all pure normalized homogeneous solutions.

Theorem 5.2. Under the same conditions as in Theorem 5.1, if, in addition,
F is homogeneous, then the only possibilities of K and FK are as follows:

(1) K = O(1) and FK = F
O(1)
a for some a ∈ C;

(2) K = O(2) and FK = F
O(2)
A for some A ∈M(2,C) with trA = 0;

(3) K = SU(2) and FK = F
SU(2)
A for some A ∈M(2,C) with trA = 0.

Proof. This follows directly from the proof of Theorem 5.1 and the conditions
for FK being homogeneous given in Examples 3.1–3.10.
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The next theorem characterizes the space of normalized homogeneous solu-
tions.

Theorem 5.3. The Hilbert space of normalized homogeneous solutions of Eq. (FE)
is spanned by its pure normalized homogeneous solutions.

Proof. Let Fh = (fi)
4
i=1 be a normalized homogeneous solution of Eq. (FE)

on G . It suffices to prove that Fh is a sum of some pure normalized homogeneous
solutions. For $ ∈ [Ĝ] , let

f$i (x) =
∑
[π]∈$

tr(f̂i(π)π(x)), 1 ≤ i ≤ 4.

Then

(f$i )̂ (π) =

{
f̂i(π), [π] ∈ $;

0, [π] /∈ $.

By Lemma 2.1, F$h = (f$i )4i=1 is a pure normalized homogeneous solution of
Eq. (FE) supported on $ , and we have F =

∑
$∈[Ĝ] F

$ . This proves the
theorem.

Finally, we describe the structure of the general solution of Eq. (FE). It
turns out that the structure is analogous to that of linear differential equations.

Theorem 5.4. Any solution F of Eq. (FE) on G is of the form

F = F0 + Fh,

where F0 is a pure normalized solution, and Fh is a homogeneous solution.

Proof. Let F = (fi)
6
i=1 be a solution of Eq. (FE) on G . Applying Lemma 2.1

to F and taking the Fourier transform at the both sides of (4), we obtain that

supp((tr(f̂5(π)X)f6)̂ ) ⊆ [[π]] for all [π] ∈ Ĝ, X ∈M(dπ,C).

So if [π] ∈ supp(f̂5), then supp(f̂6) ⊆ [[π]] . Hence there exists $0 ∈ [Ĝ] such that

supp(f̂5) ∪ supp(f̂6) ⊆ $0.

Let
f$0
i (x) =

∑
[π]∈$0

tr(f̂i(π)π(x)), 1 ≤ i ≤ 4.

Then

(f$0
i )̂ (π) =

{
f̂i(π), [π] ∈ $0;

0, [π] /∈ $0.

By Lemma 2.1, F0 = (f$0
1 , f$0

2 , f$0
3 , f$0

4 , f5 ⊗ f6) is a pure normalized solution
supported on $0 . So Fh = (fi − f$0

i )4i=1 is a homogeneous solution of Eq. (FE)
on G , and we have F = F0 + Fh .
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Theorems 5.1–5.4 provide a complete picture of the general solution of
Eq. (FE) on the compact group G . They also provide a method of constructing all
solutions. For a fixed G , we first find all irreducible representations of G into U(1),
O(2), SU(2), and O(3). Then we apply Theorem 5.1 to obtain all pure normalized
solutions. Theorem 5.2 gives all pure normalized homogeneous solutions. Here we
should be careful that representations into O(1) provide nontrivial homogeneous
solutions. Theorem 5.3 tells us that pure normalized homogeneous solutions and
solutions of the form Fc1,c2 span the space of homogeneous solutions. Therefore
we determine all homogeneous solutions. Finally, by Theorem 5.4, we obtain the
general solution by picking an arbitrary pure normalized solution and taking its
sum with an arbitrary homogeneous solution. We illustrate this method by finding
the general solution of Eq. (FE) on SU(2).

Example 5.5 (General Solution on SU(2)). It is well known that for each
positive integer d there exists exactly one d-dimensional irreducible representation
of SU(2) (see, e.g., [4]). The 1-dimensional one is the trivial representation. So it
is a representation into O(1). The 2-dimensional one is the identity representation
id. The 3-dimensional one is the adjoint representation Ad in the Lie algebra
su(2) of SU(2), which can be viewed as a representation into O(3). As the 1-
dimensional representation is into O(1), when applying Theorem 5.1 (1), we can
use Example 3.4. Indeed, as the 1-dimensional representation is trivial, the pure
normalized solutions obtained from Theorem 5.1 (1) are constant solutions. They
are of the form

f1 ≡ f2 ≡ a/2, f3 ≡ f4 ≡ b/2, f5 ⊗ f6 ≡ a+ b (25)

for some a, b ∈ C . The pure normalized solutions obtained by applying Theorem
5.1 (3)–(4) to id (resp. Ad) are F

SU(2)
A,B , (F

SU(2)
A,B )† (resp. F

O(3)
u,v ◦Ad). Thus we get

all pure normalized solutions of Eq. (FE) on SU(2). Now applying Theorem 5.2,
we obtain all pure normalized homogeneous solutions. They are

f1 ≡ f2 ≡ −f3 ≡ −f4 ≡ α ∈ C and F
SU(2)
C .

By Theorem 5.3, all homogeneous solutions of Eq. (FE) on SU(2) are of the form
f1(x) = tr(Cx) + c1(x) + α,

f2(x) = − tr(Cx)− c1(x) + α,

f3(x) = tr(Cx) + c2(x)− α,
f4(x) = − tr(Cx)− c2(x)− α,

(26)

where C ∈ M(2,C), c1, c2 ∈ L2
c(G), α ∈ C . Finally, by Theorem 5.4, the general

solution F of Eq. (FE) on SU(2) is given by F = F0 + Fh , where

F0 ∈ {(25),F
SU(2)
A,B , (F

SU(2)
A,B )†,FO(3)

u,v ◦ Ad},

and Fh is given by (26).
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6. Applications

In this section, we apply the theorems in Section 5 to solve various special cases
of Eq. (FE). In particular, we solve the Wilson equation and the d’Alembert
long equation on compact groups. We also recover the general solution of the
d’Alembert equation obtained in [9, 22].

First consider the equation

f(xy) + g(xy−1) = h(x)k(y) (27)

where f, g, h, k are unknown L2 -functions. It is clear that Eq. (27) corresponds
to the special case of Eq. (FE) where f2 ≡ f4 ≡ 0. As before, we denote a
solution of Eq. (27) by F = (f, g, h ⊗ k), and say that it is homogeneous if
h ⊗ k ≡ 0. If F = (f, g, h ⊗ k) is a solution and Fh = (f ′, g′, 0) is homogeneous,
then F+Fh = (f+f ′, g+g′, h⊗k) is also a solution of Eq. (27). We first construct
some homogeneous solutions of Eq. (27).

Example 6.1. Let π : G→ O(1) be a representation, and let a ∈ C . We view
π as a function on G . Then

Fπ,a = (aπ,−aπ, 0)

is a homogeneous solution of Eq. (27) on G . More generally, if πj : G→ O(1) are
distinct representations and aj ∈ C (j = 1, 2, . . .), then∑

j≥1

Fπj ,aj = (
∑
j≥1

ajπj,−
∑
j≥1

ajπj, 0)

is a homogeneous solution, provided that
∑

j≥1 |aj|2 <∞ .

Now we construct some solutions of Eq. (27) on U(1), O(2), and SU(2).

Example 6.2. Let G = U(1). For a1, b1, a2, b2 ∈ C , define
f(x) = a1b1x+ a2b2x̄,

g(x) = a1b2x+ a2b1x̄,

h⊗ k(x, y) = (a1x+ a2x̄)(b1y + b2ȳ),

x, y ∈ U(1).

Then (f, g, h⊗ k) is a solution of Eq. (27) on U(1).

Example 6.3. Let G = O(2). For P ∈M(2,C), define{
f(x) = −g(x) = tr(Px),

h⊗ k(x, y) = − tr(JPx) tr(Jy),
x, y ∈ O(2).

Then (f, g, h⊗ k) is a solution of Eq. (27) on O(2).
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Example 6.4. Let G = SU(2). For P ∈M(2,C), define{
f(x) = g(x) = tr(Px),

h⊗ k(x, y) = tr(Px) tr y,
x, y ∈ SU(2).

Then (f, g, h⊗ k) is a solution of Eq. (27) on SU(2).

We leave the verification of the above examples to the reader. The following
result claims that the above examples are the building blocks of the general solution
of Eq. (27) on G .

Theorem 6.5. Any solution of Eq. (27) on G is of the form

F ◦ π +
∑
j≥1

Fπj ,aj ,

where π : G → K is an irreducible representation with K = U(1), O(2), or
SU(2), F is a solution of Eq. (27) on K as in Examples 6.2–6.4, and

∑
j≥1 Fπj ,aj

as in Example 6.1.

Proof. Let (f, g, h ⊗ k) be a solution of Eq. (27). Then (f, 0, g, 0, h ⊗ k) is
a solution of Eq. (FE). By Theorems 5.1–5.4, there exist c1, c2 ∈ L2

c(G) and
irreducible representations πj : G→ Kj (j ≥ 0) with [[πj]] ’s distinct, such that

(f, 0, g, 0, h⊗ k) = Fc1,c2 +
∑
j≥0

FKj ◦ πj, (28)

where FK0 = (fK0
1 , fK0

2 , fK0
3 , fK0

4 , fK0
5 ⊗ fK0

6 ) is a pure normalized solution of

Eq. (FE) on K0 , FKj = (f
Kj
1 , f

Kj
2 , f

Kj
3 , f

Kj
4 ) (j ≥ 1) is a homogeneous solution

of Eq. (FE) on Kj , and the only possibilities of Kj , πj , and FKj are given in
Theorems 5.1 and 5.2. It follows from (28) that

c1 =
∑
j≥0

f
Kj
2 ◦ πj, c2 =

∑
j≥0

f
Kj
4 ◦ πj

and
f =

∑
j≥0

(f
Kj
1 + f

Kj
2 ) ◦ πj, g =

∑
j≥0

(f
Kj
3 + f

Kj
4 ) ◦ πj. (29)

Without loss of generality, we may assume that each FKj is nontrivial.

We first prove that K0 6= O(3). Suppose K0 = O(3). Then FK0 = F
O(3)
u,v

for some u, v ∈ C3 . Since FKj ◦ πj is a pure solution of Eq. (FE) on G supported

on [[πj]] for any j ≥ 0 and [[πj]] ’s are distinct, we have (f
Kj
2 ◦ πj )̂ (π0) = 0 if

j ≥ 1. Hence

ĉ1(π0) =
∑
j≥0

(f
Kj
2 ◦ πj )̂ (π0) = (fK0

2 ◦ π0)̂ (π0) = τv,u,

where τv,u is as in Lemma 3.9. Since c1 is a central function, the matrix vut =
ĉ1(π0) + 〈u, v〉I3/2 is a scalar one. This implies that vut = 0, i.e., u = 0 or v = 0.
Hence FK0 is the trivial solution, a contradiction.
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Now we prove that if Kj = O(2), then j = 0 and FK0 = F
O(2)

A, 1
2
tr(A)I

for

some A ∈ M(2,C). Suppose Kj = O(2). Then FKj = F
O(2)
A,B or (F

O(2)
A,B )† for

some A,B ∈ M(2,C) with trA = trB , and B = At with trA = 0 if j ≥ 1. If

FKj = F
O(2)
A,B , similar to the above proof, we obtain that B = ĉ1(πj) is a scalar

matrix. So B = tr(A)I/2. If j ≥ 1, then A = B = 0, conflicting with the

assumption that FKj is nontrivial. Hence j = 0. If FKj = (F
O(2)
A,B )† , then similarly

B = ĉ1(πj) and −At = ĉ2(πj) are scalar matrices. So A = B = λI for some
λ ∈ C . By Remark 3.6, this case can be absorbed into the former case. Setting
P = A+ tr(A)I/2 yields{

fK0
1 (x) + fK0

2 (x) = −(fK0
3 (x) + fK0

4 (x)) = tr(Px),

fK0
5 ⊗ fK0

6 (x, y) = − tr(JPx) tr(Jy),
x, y ∈ O(2). (30)

Using a similar argument, one can show that if Kj = SU(2), then j = 0 and

FK0 = F
SU(2)

A, 1
2
tr(A)I

for some A ∈ M(2,C). In this case, setting P = A + tr(A)I/2,

we have {
fK0
1 (x) + fK0

2 (x) = fK0
3 (x) + fK0

4 (x) = tr(Px)

fK0
5 ⊗ fK0

6 (x, y) = tr(Px) tr y,
x, y ∈ SU(2). (31)

The above proofs also imply that if j ≥ 1, then Kj = O(1) and FKj = F
O(1)
aj

for some aj ∈ C . So

f
Kj
1 (x) + f

Kj
2 (x) = −(f

Kj
3 (x) + f

Kj
4 (x)) = ajx, x ∈ O(1). (32)

Therefore, from the above proof, there are only three possibilities for K0 ,
i.e., K0 = U(1), O(2), or SU(2). In each case, it is easy to see from (29)–(32)
that

(f, g, h⊗ k) = F ◦ π0 +
∑
j

Fπj ,aj ,

where F is a solution of Eq. (27) on K0 as in Examples 6.2–6.4. The proof of the
theorem is completed by setting K = K0 and π = π0 .

Now we consider the special case of Eq. (27) where f ≡ g .

Theorem 6.6. The general solution of the equation

f(xy) + f(xy−1) = h(x)k(y) (33)

on G is given by {
f(x) = tr(Pπ(x)),

h⊗ k(x, y) = tr(Pπ(x)) trπ(y),

where π : G→ SU(2) is a representation and P ∈M(2,C).
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Proof. Clearly, the general solution of Eq. (33) corresponds to the solutions of
Eq. (27) for which f ≡ g . By Theorem 6.5, the functions f and g in a solution
of Eq. (27) have the forms

f = fK ◦ π +
∑
j≥1

ajπj, g = gK ◦ π −
∑
j≥1

ajπj,

where K = U(1), O(2), or SU(2), π : G → K , and πj : G → O(1) are distinct
irreducible representations, fK and gK are functions on K as in Examples 6.2–6.4.

Applying the Fourier transform, it is easy to see that f ≡ g if and only
if fK ≡ gK and aj = 0. Restricting our attention to nontrivial solutions, we
can see that either K = U(1) and b1 = b2 (in the notation of Example 6.2), or
K = SU(2). If K = SU(2) we are done. If K = U(1) and b1 = b2 =: b , then the
homomorphism x 7→ diag(π(x), π̄(x)) ∈ SU(2) and P = diag(a1b, a2b) satisfy our
requirements.

Let us remark that, from Theorem 6.6, all solutions of Eq. (33) are actually
continuous. The following corollaries are straightforward from Theorem 6.6.

Corollary 6.7. Any nontrivial solution of the Wilson equation (2) on G is of
the form

f(x) = tr(Pπ(x)), g(x) =
1

2
trπ(x),

where π : G→ SU(2) is a representation and P ∈M(2,C).

Corollary 6.8. Any nontrivial solution of the equation

f(xy) + f(xy−1) = 2g(x)f(y) (34)

on G is of the form

f(x) = a trπ(x), g(x) =
1

2
trπ(x) for all x ∈ G,

where π : G→ SU(2) is a representation and a ∈ C.

Corollary 6.9. Any nontrivial solution of the d’Alembert equation (1) on G is
given by

f(x) =
1

2
trπ(x)

for some representation π : G→ SU(2).

Indeed, to prove Corollaries 6.7–6.9, it suffices to examine the solutions of
Eq. (33) satisfying h ≡ 2f , k ≡ 2f , and h ≡ 2k ≡ 2f , respectively.

Now we apply the results in Section 5 to the following Eq. (35), which is
another special form of Eq. (FE). As Eq. (33), we can see that its all solutions are
also continuous.



An, J. and Yang, D. 453

Theorem 6.10. Let (f, h⊗ k) be a solution of the equation

f(xy) + f(xy−1) + f(yx) + f(y−1x) = h(x)k(y) (35)

on G. Then either there exist an irreducible representation π : G → O(2) and
a ∈ C such that {

f(x) = a tr(Jπ(x)),

h⊗ k(x, y) = 2a tr(Jπ(x)) trπ(y),

or there exist a representation π : G→ SU(2) and A ∈M(2,C) such that{
f(x) = tr(Aπ(x)),

h⊗ k(x, y) = 2 tr(Aπ(x)) trπ(y).

Proof. It is clear that (f, f, f, f, h ⊗ k) is a solution of Eq. (FE). Similar to
the proof of Theorem 6.5, we may write

(f, f, f, f, h⊗ k) = Fc1,c2 +
∑
j≥0

FKj ◦ πj, (36)

where c1, c2 ∈ L2
c(G), πj : G → Kj (j ≥ 0) are irreducible representations with

[[πj]] ’s distinct, FK0 = (fK0
1 , fK0

2 , fK0
3 , fK0

4 , fK0
5 ⊗fK0

6 ) is a pure normalized solution

of Eq. (FE) on K0 , FKj = (f
Kj
1 , f

Kj
2 , f

Kj
3 , f

Kj
4 ) (j ≥ 1) is a homogeneous solution

of Eq. (FE) on Kj , and the possibilities of Kj , πj , and FKj are given in Theorems
5.1 and 5.2. From (36) we obtain

f = c1 +
∑
j≥0

f
Kj
1 ◦πj = −c1 +

∑
j≥0

f
Kj
2 ◦πj = c2 +

∑
j≥0

f
Kj
3 ◦πj = −c2 +

∑
j≥0

f
Kj
4 ◦πj.

Thus
2c1 =

∑
j≥0

(f
Kj
2 − f

Kj
1 ) ◦ πj, 2c2 =

∑
j≥0

(f
Kj
4 − f

Kj
3 ) ◦ πj.

Since c1, c2 ∈ L2
c(G) and the right hand sides of the above two equations belong

to L2
c(G)⊥ , we must have c1 ≡ c2 ≡ 0.

By considering the Fourier transform, it is easy to see that f
Kj
1 ≡ f

Kj
2 ≡

f
Kj
3 ≡ f

Kj
4 for any j ≥ 0. Now one can verify that FKj is trivial if j ≥ 1, and

K0 , π0 , FK0 take one of the following forms:

(1) K0 = U(1) and FK0 = F
U(1)
a1,b,a2,b

for some a1, a2, b ∈ C ;

(2) K0 = O(2) and FK0 = (F
O(2)
aJ,aJ)† for some a ∈ C ;

(3) K0 = SU(2) and FK0 = F
SU(2)
A,A for some A ∈M(2,C).

Clearly, (2) and (3) satisfy the conclusion of the theorem. For (1), it suffices to set
π(x) = diag(π0(x), π̄0(x)) ∈ SU(2) and A = diag(a1b, a2b).

Similar to Corollaries 6.7–6.9, we have the following corollaries.
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Corollary 6.11. Let (f, g) be a nontrivial solution of the equation

f(xy) + f(xy−1) + f(yx) + f(y−1x) = 4f(x)g(y). (37)

Then either there exist an irreducible representation π : G → O(2) and a ∈ C
such that

f(x) = a tr(Jπ(x)), g(x) =
1

2
trπ(x) for all x ∈ G,

or there exist a representation π : G→ SU(2) and A ∈M(2,C) such that

f(x) = tr(Aπ(x)), g(x) =
1

2
trπ(x) for all x ∈ G.

Corollary 6.12. Any nontrivial solution of the equation

f(xy) + f(xy−1) + f(yx) + f(y−1x) = 4g(x)f(y) (38)

is of the form

f(x) = a trπ(x), g(x) =
1

2
trπ(x) for all x ∈ G,

where π : G→ SU(2) is a reperesentation and a ∈ C.

Corollary 6.13. Any nontrivial solution of the d’Alembert long equation (3) is
given by

f(x) =
1

2
tr π(x) for all x ∈ G,

for some representation π : G→ SU(2).

Remark 6.14. By Corollary 6.13, the d’Alembert long equation (3) and the
d’Alembert equation (1) have the same general solution. As a byproduct, the
question raised in [9] is solved on compact groups. A similar result for step 2
nilpotent groups was proved in [16].

The factorization property of the d’Alembert equation on compact groups
was studied in [9, 10, 22, 23]. To conclude this section, we summarize similar
properties of the above equations as follows.

Corollary 6.15. The following factorization properties hold.

(1) All nontrivial solutions of Eqs. (33) and (38) on a compact group factor
through SU(2).

(2) All nontrivial solutions of Eq. (35) on a compact group factor through O(2)
or SU(2).

As a simple consequence, all nontrivial solutions of every special case of
Eqs. (33) and (38), in particular, the Wilson equation and the d’Alembert long
equation, factor through SU(2).
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