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Abstract. Using Lusztig’s geometric classification, we find the reducibility
points of a standard module for the affine Hecke algebra, in the case when the
inducing data is generic. This recovers the known result of Mui¢ and Shahidi for
representations of split p-adic groups with Iwahori-spherical Whittaker vectors.
We also give a necessary (but insufficient) condition for reducibility in the non-
generic case.
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In [12], the unipotent representations of a split p-adic group G of adjoint
type are classified in terms of geometric data for the dual complex group GG. More
precisely, they are indexed by certain triples (x, O, L), where x is a Weyl orbit of
semisimple elements in G, O is a “graded” orbit in the Lie algebra g, and L is
a local system on (0. This is realized via equivalences with module categories for
affine Hecke algebras of geometric type constructed from G ([8, 9]). It is shown
in [15], that in this correspondence, the unipotent representations of G admitting
Whittaker vectors (generic) correspond to maximal orbits O and trivial £. For
Iwahori-spherical representations, the same result, with a different proof, follows
from [1] (and [2]).

In this paper, we determine explicitly, as a consequence of the geometric
classification, the reducibility points for the standard representations (in the sense
of Langlands classification) when the inducing data is generic. This was known
from [4] and [14], as a consequence of the Langlands-Shahidi method. In particular,
our main result, Theorem 3.2 is essentially the same as Proposition 3.3 in [14] (our
parameter v corresponds to the parameter s in there). We also show that for
non-generic inducing data, the reducibility points are necessarily a subset of those
for the corresponding generic case.

For simplicity, we will work in the setting of the graded affine Hecke algebra
H of [7], and real central character (section 1), from which one can recover the
representation theory of the affine Hecke algebra (see section 4 in [12] for example).
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Most of the paper is devoted to recalling the relevant geometric results, particularly
from [13]. Once they are in place, the reducibility follows immediately by a simple
comparison of dimensions of orbits. The essential result that we need is Corollary
2.5.

The information about reducibility of standard modules played an impor-
tant role in the determination of the generic Iwahori-spherical unitary dual (equiv-
alently, spherical unitary dual) of split p-adic groups of exceptional types in [3].
In fact, this paper is mainly motivated by that work.

1. Graded Hecke algebra

Let h be a finite dimensional vector space, R C bh* a root system, with II =
{ay,...,a,} the set of simple roots, R C b the set of coroots, and W the Weyl
group. Let ¢: R — Z-( be a function such that c, = cs, whenever a and (3 are
W -conjugate. As a vector space, the graded affine Hecke algebra is

H=C[W]|®A, (1)

where A is the symmetric algebra over h*. The generators are t,, € CIW], w € W
and w € h*. The relations between the generators are:

totw = twu, for all w,w’ € W;
2 =1, for any simple reflection s € W; )
ww' = ww, for all w,w’ € b*;
wts = tss(w) + caw(d), for simple reflections s = s,.

From [7], it is known that the center of H is A" . On any simple (finite di-
mensional) H-module, the center of H acts by a character, which we will call a
central character. The central characters correspond to W-conjugacy classes of
semisimple elements y € h. We will assume throughout the paper that the central
characters are real, i.e., hyperbolic.

We present the Langlands classification for H as in [5]. If V' is a finite
dimensional H-module, A induces a generalized weight space decomposition V =
Dy V- Call A a weight of V' if Vy # 0.

Definition 1.1.  An irreducible H-module V is called tempered if w;(\) < 0,
for every A-weight A of V' and every fundamental weight w; € h*. If w;(A) < 0,
for all \,w; as above, V is called a discrete series.

For every Ilp C II, define Rp C R to be the set of roots generated by Ilp,
Rp C R the corresponding set of coroots, and Wp C W the parabolic reflection
subgroup.

Let Hp be the Hecke algebra attached to (h, Rp). It can be regarded
naturally as a subalgebra of H. Define t = {v € h : (a,v) =0, for all « € IIp} and
t={Aebh*: (\a)=0, forall @ € lIp}. Then Hp has an algebra decomposition

Hp = H) @ S(t*),
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where HY% is the Hecke algebra attached to (C(Ilp), Rp).
We denote by I(P,U) the induced module I(P,U) = H®g, U.

Theorem 1.2 ([5]). 1. Bvery irreducible H-module is a quotient of a stan-
dard induced module X (P,o,v) = I(P,c®C,), where o is a tempered module
for H:, and vett ={v et:alv) >0, for alla € I\ IIp}.

2. Assume the notation from (1). Then X(P,o,v) has a unique irreducible
quotient, denoted by L(P,o,v).

8. If L(P,o,v) & L(P',o',V), then Ip = lp/, 0 = o' as HY-modules, and

v=1'.

A triple (P,o,v) as in Theorem 1.2 is called a Langlands parameter.

2. Geometric parameterization

In the sequel, whenever ) denotes a complex Lie group, Q° will be the identity
component, and ¢ will denote the Lie algebra. If s is an element of @) or q, we
will denote by Zg(s) the centralizer in @) of s.

Let G be a reductive connected complex algebraic group, with Lie algebra
g. Let B be a Borel subgroup, and A C B a maximal torus, and denote by A the
roots of A in G, and by A™, the roots of A in B.

Let S = LU denote a parabolic subgroup, with s = [4+u the corresponding
Lie algebras, such that [ admits an irreducible L-equivariant cuspidal local system
= on a nilpotent L-orbit C C [ (as in [8],[11]). The classification of cuspidal local
systems can be found in [11]. In particular, W = N(L)/L is a Coxeter group.

Let H be the center of L with Lie algebra h, and let R be the set of nonzero
weights « for the ad-action of h on g, and RT C R the set of weights for which
the corresponding weight space g, C u. For each parabolic S; = L;U;, j = 1,n,
such that S C S; maximally and L C Lj, let R} = {a € R* : a(3(1;)) = 0},
where 3(I;) denotes the center of [;. It is shown in [§] that each R contains a
unique «; such that o; ¢ 2R.

Let Zg(C) denote the centralizer in G of a Lie triple for C, and 3(C) its
Lie algebra.

Proposition 2.1 ([8]). 1. R is a (possibly non-reduced) root system in h*,
with simple roots 11 = {ay, ..., a,}, with Weyl group W.

2. H is a mazimal torus in Z° = Z2(C).
3. W is isomorphic to W(Z&(C)) = Nz (H)/H.

4. The set of roots in 3(C) with respect to § is exactly the set of non-multipliable
roots in R.

For each 7 =1,...,n,let d; > 2 be such that
(ad(e)% 2 :Nu—L;Nu)#0, and (ad(e) ™ :Nu— Nu)=0. (3)
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By Proposition 2.12 in [8], d; = d; whenever «; and «; are W-conjugate.
Therefore, as in (1),(2), we can define a Hecke algebra Hg with parameters
¢;j = d;/2. The explicit algebras which may appear are listed in 2.13 of [§].
The case of Hecke algebras with equal parameters c¢; = 1, arises when one takes
S=B, R=A, and C and = to be trivial.

If P C G is a parabolic subgroup, such that S C P, then denote

HP/S:{ijEHZSjCP}. (4)

When S = B, we write just Ilp.

Let us denote by ®(G) the set of graded Hecke algebras Hg obtained by
the above construction. The unique Hecke algebra with equal parameters in ®(G)
will be denoted by H.

Fix a (hyperbolic) semisimple element x € a, and set

Go={9eG:Adlg)x=x}, s={yeg:[x.yl=ty}, teR. (5)
Note that
D o t#£0
aEAa(x)=t
p— 6
g ad @ o, t=0. (6)
a€A,a(x)=0

For H € ®(G), corresponding to a parabolic subgroup S = LU, denote by
mod, H the category of finite dimensional H-modules of central character equal to
the projection of x onto b.

Theorem 2.2 ([9]).  There exists a one-to-one correspondence between the stan-
dard (or irreducible) objects in Upcaoqymody(H) and the set of pairs & = (O, L),
where

1. O is a Gy-orbit on g;.

2. L is an irreducible Gy-equivariant local system on O.

We say that two modules in Ugecao(eymod, (H) are in the same L-packet if
they correspond to the same orbit O.

For Hy-modules, the local systems which appear are of Springer type ([13]).
More precisely, if e € O, then L corresponds to a representation ¢ of the
component group Zg,(€)/Za,(€)?. The representations ¢ which are allowed must
be in the restriction Zg,(e)/Za,(€)® C Za(e)/Zg(e)? of a representation which
appears in Springer’s correspondence. In particular, the trivial local systems
always parameterize Hy-modules.

Let Orbi(x) denote the set of Gy orbits on g;. It has the following prop-
erties:

1. Orby(x) is finite.

2. For every O € Orbi(x), O\ O is the union of certain orbits O’ with
dim 0" < dim O.
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3. There is a unique open dense orbit O, in Orby ().

In other words, g; is a prehomogeneous vector space with finitely many
Go-orbits. A parameterization of Orb;(x) appeared in [6]. We will instead use
the formulation of [13].

By [10], the categories mod,H, H € ®(G), have tempered modules if and
only if x is one half of the middle element of a nilpotent orbit in g. In this case the
standard modules parameterized by (Ogpen, £) are irreducible and they exhaust
the tempered modules. If in addition, x is one half of the middle element of a
distinguished nilpotent orbit, then the tempered modules are discrete series.

By [15], there is a unique generic module in Ugecsgymod, (H), which is
parametrized by (Oppen, triv), where triv denotes the trivial local system. Note
that this is always a module of Hy. The fact that the generic module in mod, (Hj)
is parameterized by (Ogpen, triv) is also an immediate consequence of the results
in [1] and [2]. In [1], it is proven that the generic Hy-module is characterized by
the property that it contains the sign representation of W.

Let e be a representative of an orbit O = O, in g;. To e, one associates,
as in [13], a parabolic subalgebras of g, which will be denoted by p°. It will be
used to give a parameterization of Orb;(x).

By the graded version of the Jacobson-Morozov triple ([13]), e € g; can be
embedded into a Lie triple {e, h, f}, such that h € a C gg, and f € g_;. Define a
gradation of g with respect to %h as well,

1 1
g ={ycg: [§h,y] =71y}, T € 52 (7)

and set

g, =g Ng. (8)
Then

s=Pa (9)

t,r

Set

n=@a, v =P pomon (10)
t=r

t<r

Clearly, a C g) C m°.

Definition 2.3. One says that x is rigid for a Levi subalgebra m, if y is
congruent modulo 3(m) to one half of a middle element of a nilpotent orbit in m.

Whenever @ is a subgroup with Lie algebra ¢, we will write Qg = @ N Gy and

9 =qM g
We record the important properties of p°.

Proposition 2.4 ([13]).  Consider the subalgebra p¢ defined by (10), and let P¢
be the corresponding parabolic subgroup.

1. p® depends only on e and not on the entire Lie triple {e, h, f}.
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. X s rigid for me.

. e 15 an element of the open MG -orbit in m].

2
3
4. The F§-orbit of e in p§ is open, dense in p°.
5. Zg,(e) C Pe.

6

. The inclusion Zy(e) C Zg,(e) induces an isomorphism of the component
groups.

An immediate corollary of (4) and (5) in Proposition 2.4 is a dimension
formula for the orbits in Orb;(x).

Corollary 2.5 (Lusztig).  For an orbit O, € Orby(x),
dim O, = dim p{ — dim pg + dim go, (11)
where p§ =p°Ng;, 1 =0,1.

Definition 2.6. A parabolic subgroup P with Lie algebra p is called good for x
if p = p° for some nilpotent e € g; (notation as in (10)), and such that it satisfies
(2) in Proposition 2.4.

Let P(x) denote the set of good parabolic subgroups for x. The parame-
terization of Orb;(x) is as follows.

Theorem 2.7 ([13]).  The map O, — P¢ defined in (10) induces a bijection
between Orbi(x) and Gg-conjugacy classes in P(x).

Proof. The definition of the inverse map is as follows. Let P = MN be a
good parabolic for y. Then there exists s a middle element of a Lie triple in m,
such that x = 1s (mod 3(m)). Moreover, the decomposition (10) must hold with
respect to y and s. Let GJ C Gy be the reductive subgroup whose Lie algebra is
g5 Then G acts on gi, and there is a unique open orbit of this action. Let O be
the unique Gy-orbit on g; containing it. The inverse map associates O to P. =

3. Reducibility points

Let {e,h, f} be a graded Lie triple for the orbit O, € Orbi(x). Assume that
p = m+n is a standard parabolic subalgebra, b C p, such that {e, h, f} C m. Let
p = m + n be the opposite parabolic subalgebra. Let IIp C II denote the simple
roots defining P, and denote by Ay, and Ay the roots in m, respectively n. We
can write

1
X = §h+27 Wlthke 5G(67 h7f)

Lemma 3.1.  Let {e, h, f}, x be as before, and assume that y = %h +v has v
dominant with respect to Ay. Then:
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1o m® =m = (1)
2. p¢=p.

In particular, p is a good parabolic for x.

Proof. The first assertion is obvious by the definitions. From (10) and the
dominance conditions, we also see immediately that n = n®. [ |

Let o be a generic tempered module of HY% (notation as in section 1)
parameterized by {e, h, f}. By the classification theorems of [9] and [10], we known
that, in the correspondences of Theorem 2.2, the standard module X (P, o,v) and
the Langlands quotient L(P, 0, v) are parameterized in Orb;(x) by the orbit Gy-e.
Therefore, in Theorem 2.7, they correspond to the parabolic subalgebra p.

Now assume that p = m + n is a maximal parabolic subalgebra of g. Then
[T\ IIp = {a}. Let @ denote the fundamental coweight for a.

Via the map

sl(2) = Cle, h, f) — m, (12)
the algebra n is an sl(2)-module, by means of the adjoint action of m. Let k(«)
denote the multiplicity with which a appears in the highest root for A. !

The coweight @ commutes with the s/(2). Decompose n as n = @fg)ni,
where n; is the i-eigenspace of w. Then decompose each n; into simple sl(2)-
modules

n, = @j(di]’), 1= 1, .. .,k’(a), (13)

where (d) is the simple s/(2)-module of dimension d.

Theorem 3.2. Let p = m + n be a maximal parabolic, and o be a generic
tempered module parameterized by (12). Then the reducibility points v > 0 of the
standard Hy-module X (P,o,v) are

dij +1
B 14
ue{ . } (14)

where the integers d;; are defined in (18). Equivalently, these are the zeros of the
rational function in v,

H 1_<57X>7 (15)

seny  Bix)

where x = %h + vw is the central character of X(P,o,v).

Proof.  Let O(p) be the orbit parameterizing X (P,o,v). Then X (P, o,v) is
irreducible if and only if O(p) = Oppen.-

Corollary 2.4 implies that dim O(p) = dim go — dim(go N p) + dim(g; N p).
From this and the fact that dim O, = dim gy, it follows, by equation (6), that
O(p) = Oypen if and only if

{6 e An:{(B,x) =1} =#{f € Ax: (B,x) = 0}. (16)

'Tf g is a classical simple algebra, this multiplicity is always 1 or 2.
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Consider the rational function of v, [] BeAn LE;O Thus, the reducibility points

Bx
are given by the zeros of this function.

The explicit list of reducibility points follows from the fact that

{(6, h) : ﬂ < AN} = l—li,j{dij — 17dij — 3, ey —dij + 1},
and so o
11 =1l245— (17)
seny X0 =t
| |

We remark that in the proof of formula (15), one does not use the assump-
tion that p be maximal parabolic subalgebra. This formula holds as is for any
standard parabolic subalgebra p.

Example 3.3. The most interesting example of reducibility points for maximal
parabolic induction is the case [Ip = A4+ Ay + Ay in Il = Fg, with e the principal
nilpotent in Ay + As + A; (which means that o is the Steinberg representation).
Then k(a) =6, dimn = 106, and the s/(2) decompositions (13) are

ny=(8)+2-(6)+2-(4)+(2) ny = (9)+ (7) + 2 (5) + (3) + (1)
ng = (8) + (6) + (4) + (2) ny = (7)+(5) +(3)
ns = (4) +(2) e = (5). (18)

There are 11 reducibility points:

3
10’
One also immediately obtains a partial result for non-generic data. Recall
the notation and construction of section 2. In particular, if ¢’ is parameterized by

(12), there exists a unique triple (S,C,Z) such that o’ is a discrete series for the
subalgebra ]HIS,HP/S in Hg.

Y

A~ w

5 73.5709
21,222,228 1
’67 76727 ’27272} (9)

DN | —

Proposition 3.4.  Let o and o' be tempered modules in the L-packet parameter-
ized by (12), and assume that o is generic. The standard Hg-module X (P/S, o', v)
is reducible for v > 0 only if the standard Hy-module X (P,o,v) is reducible.

Proof. If X(P/S,0',v) is reducible, then the corresponding orbit is not the
open orbit. But this means X (P, o, v) is reducible as well. [

Remark 3.5. This result gives necessary conditions for reducibility, but not
sufficient. In fact, these conditions are far from being sharp for non-generic
inducing data as seen in the following example.

Example 3.6. Consider Hy of type C),;1, and p of type C,, and assume that n
is a triangular number. Let the nilpotent element e correspond to the distinguished



BARBASCH AND CIUBOTARU 845

orbit (2,4,...,2k) in sp(2n), and x be one half of the middle element of a Lie
triple for e.

There are (LZ J) discrete series in mod, Hy(C,,). Let o be the generic one.
2

There exists a unique nongeneric discrete series, call it o', characterized by the
fact that o'|w(c,) is irreducible. More precisely, o’'|w c,) = x, where

2mtl 5 (), if k=2
e = { m i m (20)

0x (m+ 1)+ if k=2m+ 1.

(The notation for W(C,,)-representations, and the algorithms for the Springer
correspondence are in [11].)
Theorem 3.2 implies that the reducibility points, v > 0, for X(C,,, o, v) are

c 1 3 5 k—l—l
14 . Ty T -
27 27 27 ) 2 )

but one can show, using the W (C,,1)-structure, that the only reducibility points

of X(Cy,0',v) are
€ b +1 k:—l—l
Szl T e
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