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Communicated by K.-H. Neeb

Abstract. We address a linearity problem for differentiable vectors in repre-
sentations of infinite-dimensional Lie groups on locally convex spaces, which is
similar to the linearity problem for the directional derivatives of functions. In
particular, we find conditions ensuring that if π : G → End (Y) is such a repre-
sentation, and y ∈ Y is a vector such that dπ(x)y makes sense for every x in the
Lie algebra g of G , then the mapping dπ(·)y : g→ Y is linear and continuous.
Mathematics Subject Classification 2000: Primary 22E65; Secondary 22E66,
22A10, 22A25.
Key Words and Phrases: Lie group, topological group, unitary representation,
smooth vector.

1. Introduction

In this paper we address an issue raised in [Nee10a, Probl. 13.4] concerning
some linearity properties for differentiable vectors in representations of infinite-
dimensional Lie groups; see also [Nee10b] and the concluding comments in Exam-
ples 2.8 below. In particular, we find conditions ensuring that if π : G→ End (Y)
is such a representation, and y ∈ Y is a vector such that dπ(x)y makes sense for
every x in the Lie algebra g of G , then the mapping dπ(·)y : g→ Y is linear and
continuous. Before proceeding to a more detailed description of our approach to
that question, we should mention that the recent interest in this circle of ideas
is motivated in part by some applications of representation theory in the theory
of operator algebras on the one hand (see [Nee10a]) and in the theory of partial
differential equations on the other hand (see [BB09] and [BB11]).

It is worthwhile to place ourselves for the moment in the setting of topo-
logical groups, although the main classes of examples are provided by infinite-
dimensional Lie groups modeled on locally convex spaces (see situations 1.–3. and
6., and also sometimes 4., in Examples 2.7 below). Thus let G be a topological
group and denote by L(G) the set of its one-parameter subgroups (i.e., continuous
homomorphisms from the additive group R into G), endowed with the topology
of uniform convergence on the compact subsets of R . For X,X1, X2 ∈ L(G) we
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say that X = X1 +X2 whenever we have

(∀t ∈ R) X(t) = lim
n→∞

(
X1

( t
n

)
X2

( t
n

))n
(1.1)

uniformly on every compact subset of R .

Next let π : G→ End (Y) be a representation on a locally convex space Y
such that the group action G × Y → Y , (g, y) 7→ π(g)y is continuous. (The
continuous unitary representations provide a rich class of interesting and non-
trivial examples, however we are also interested in representations on locally convex
spaces in order to make our results applicable for group representations in spaces
of smooth functions or smooth vectors.) For every X ∈ L(G) we consider the
infinitesimal generator of the one-parameter group of operators π(X(·)),

dπ(X) :=
d

dt

∣∣∣
t=0
π(X(t)) : D(dπ(X))→ Y .

We then define the following linear subspaces of Y :

D1
dπ :=

⋂
X∈L(G)

D(dπ(X)),

D1,cont
dπ := {y ∈ D1

dπ | dπ(·)y ∈ C(L(G),Y)},
D1,lin

dπ := {y ∈ D1
dπ | if X,X1, X2 ∈ L(G) and X = X1 +X2,

then dπ(X)y = dπ(X1)y + dπ(X2)y}.

Here and henceforth we denote by C(A, S) the space of continuous mappings
between any topological spaces A and S .

The main motivation for the present paper consists in understanding the
relationship between these spaces. In particular, we are interested in describing
wide classes of group representations for which the above three spaces coincide. It
turned out in [Nee10a] that this problem is far from being trivial even in the special
case when G is a Banach-Lie group and Y is a Banach space. By way of showing
the difficulty of this problem, we recall that if G is the group of unitary operators
on some Hilbert space, endowed with the strong operator topology, then (1.1) is
the Trotter formula for the sum of the infinitesimal generators of the corresponding
one-parameter groups, and the addition of unbounded self-adjoint operators is a
highly nontrivial problem, as discussed in [Far75]; see also [Che74] and [Bel10, Ex.
2.1] for a lot of pathologies related to this operation.

Our approach to the aforementioned problem relies on a basic technique
developed in [Nel69] and [BC73] that turns out to work in a more general setting;
see Lemma 2.4 below. Our main results are Theorems 2.5 and 3.5, which in
particular provide an alternative proof to [Nee10a, Th. 8.2].

Throughout the paper we assume that the topological groups and the locally
convex spaces involved are Hausdorff spaces.

2. Differentiable functions

The main result of this section is Theorem 2.5 which establishes the relationship
between the above property (1.1) and the “first-order differential operators” in
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a topological setting. In the first part of the following definition we recall some
notions introduced in [BC73] and [BCR81].

Definition 2.1. Let G be a topological group and Y be a locally convex space.

1. If φ : G→ Y , X ∈ L(G), and g ∈ G , then we denote

(Dλ
Xφ)(g) = lim

t→0

φ(gX(t))− φ(g)

t
(2.1)

whenever the limit in the right-hand side exists.

2. We define C1(G,Y) as the set of all φ ∈ C(G,Y) such that the function

Dλφ : L(G)×G→ Y , (Dλφ)(X, g) = (Dλ
Xφ)(g)

is well defined and continuous. We also denote Dλφ = (Dλ)1φ .

Now let n ≥ 2 and assume that the space Cn−1(G,Y) and the mapping
(Dλ)n−1 have been defined. Then we define Cn(G,Y) as the set of all
functions φ ∈ C(n−1)(G,Y) such that the function

(Dλ)nφ : L(G)× · · · × L(G)×G→ Y ,
(X1, . . . , Xn, g) 7→ (Dλ

X1
(Dλ

X2
· · · (Dλ

Xn
φ) · · · ))(g)

is well defined and continuous.

Moreover we define C∞(G,Y) :=
⋂
n≥1
Cn(G,Y).

3. Let LUCloc(G,Y) be the set of all functions φ : G→ Y such that every point
g0 ∈ G has a neighborhood V such that φ|V is left uniformly continuous, in
the sense that for every neighborhood U of 0 ∈ Y there exists a neighborhood
W of 1 ∈ G such that if x, y ∈ V and x−1y ∈ W , then φ(x) − φ(y) ∈ U .
We define LUC1loc(G,Y) as the set of all functions φ ∈ LUCloc(G,Y) such
that the above mapping Dλφ : L(G) × G → Y is well defined and for
every X ∈ L(G) we have Dλ

Xφ ∈ LUCloc(G,Y). For n ≥ 2, if the space
LUCn−1loc (G,Y) has been defined, then we define LUCnloc(G,Y) as the set of all
functions φ ∈ LUCn−1loc (G,Y) such that the mapping (Dλ)nφ is well defined
and for every X1, . . . , Xn we have Dλ

X1
(Dλ

X2
· · · (Dλ

Xn
φ) · · · ) ∈ LUCloc(G,Y).

Moreover we define LUC∞loc(G,Y) :=
⋂
n≥1
LUCnloc(G,Y).

If Y = C , then we write simply Cn(G) := Cn(G,C), LUCnloc(G) := LUCnloc(G,C),
etc., for n = 1, 2, . . . ,∞ .

Before going any further, let us record some simple remarks on the notions
introduced above. Note that the Cn -concept used in the following statement
involves directional derivatives rather than the Fréchet differentials of functions as
in the Cn -concept habitually used in the differential calculus on Banach manifolds.
They agree for finite-dimensional Lie groups ([BC73, Folg. 1.4]), however the one
used here is slightly weaker in infinite dimensions.



774 Beltiţă and Beltiţă

Proposition 2.2. Let G be a topological group and Y be a locally convex space.

1. If G is locally compact, then C(G,Y) = LUCloc(G,Y).

2. If G is a Banach-Lie group and Y is a Banach space, then we have

(∀n ≥ 1) Cn(G,Y) ⊆ LUCn−1loc (G,Y)

where LUC0loc(G,Y) := LUCloc(G,Y).

Proof. The first assertion holds true since the continuous mappings from a
compact space into any uniform space are uniformly continuous with respect to
the unique uniform structure of that compact space ([Bou71, Ch. II, §4, no. 1]).

The second assertion will follow as soon as we have settled the case n = 1.
If φ ∈ C1(G,Y), then one can show that φ ∈ LUCloc(G,Y) as follows. Since
LUCloc(G,Y) is invariant under translations to the left, it suffices to check the
condition in Definition 2.1(3.) at g0 = 1 ∈ G . By working in a local chart
onto a neighborhood V0 of 0 ∈ g and denoting by ∗ the corresponding local
multiplication, it follows that we have to prove the following assertion: There
exists a neighborhood V of 0 ∈ V0 with the property that for every ε > 0 there
exists δ > 0 such that if x ∈ V and y ∈ g with ‖y‖ < δ , then x ∗ y ∈ V0
and ‖φ(x ∗ y) − φ(x)‖ < ε , where we denote by ‖ · ‖ some norms that define
the topologies of g and Y , respectively. This assertion follows at once by the
mean value theorem applied for the Y -valued function t 7→ φ(x ∗ (ty)) on the
interval [0, 1], as soon as we have found the neighborhood V of 0 ∈ g such that
the closure of V is contained in V0 and the differential dφ : V × g→ Y exists and
is continuous, since then we can shrink V to get sup{‖dφ(x, ·)‖ | x ∈ V } < ∞ .
(Recall from [Ham82, Subsect. 3.2] that the above continuity property of dφ
ensures that dφ(x, ·) : g→ Y is linear for every x ∈ V .) Since G is a Banach-Lie
group and φ ∈ C1(G,Y), we can find a neighborhood V of 0 ∈ g such that dφ
is continuous on V × g , by using the left trivalization of the tangent bundle of G
along with the homeomorphism g → L(G), x 7→ γx , where γx(t) = expG(tx) for
t ∈ R and x ∈ g (see also Example 2.7(1.) below). This completes the proof of
the fact that φ ∈ LUCloc(G,Y).

We now present a version of Taylor’s formula suitable for our present pur-
poses. See [Glö02] for a thorough discussion on how to avoid the assumption that
functions should take values in a sequentially complete space.

Proposition 2.3. Let G be a topological group, Y be a locally convex space,
n ≥ 1, and φ ∈ LUCnloc(G,Y). Then the following assertions hold:

1. For every g ∈ G, X ∈ L(G), and t ∈ R we have

φ(gX(t)) =
n∑
j=0

tj

j!
((Dλ

X)jφ)(g) + tnχ1(g,X, t)

where χ1 : G× L(G)× R→ Y is a function such that lim
t→0

χ1(g,X, t) = 0.
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2. If X1, X2 ∈ L(G), then

φ(gX1(t)X2(t)) = φ(g) + t((Dλ
X1

+Dλ
X2

)φ)(g) + tχ2(g,X1, X2, t)

where χ2 : G× L(G)× L(G)×R→ Y is a function satisfying the condition
lim
t→0

χ2(g,X1, X2, t) = 0.

Moreover, for every g0 ∈ G there exists a neighborhood V0 such that in the above
assertions we have both lim

t→0
χ1(g,X, t) = 0 and lim

t→0
χ2(g,X1, X2, t) = 0 uniformly

for g ∈ V0 .

Proof. Let us define

(∀t ∈ R) φg,X(t) = φ(gX(t)).

Since φg,X ∈ Cn(R,Y), we get by Taylor’s formula (see [Glö02, Prop. 1.17])

φg,X(t) =
n−1∑
j=0

tj

j!
φ
(j)
g,X(0) +

tn

(n− 1)!

1∫
0

(1− s)n−1φ(n)
g,X(ts)ds

=
n∑
j=0

tj

j!
φ
(j)
g,X(0) + tnχ1(g,X, t).

Here the function

χ1(g,X, t) =
1

(n− 1)!

1∫
0

(
(1− s)n−1φ(n)

g,X(ts)− 1

n
φ
(n)
g,X(0)

)
ds

=
1

(n− 1)!

1∫
0

(
(1− s)n−1((Dλ

X)nφ)(gX(ts))− 1

n
((Dλ

X)nφ)(g)
)

ds

has the property lim
t→0

χ1(g,X, t) = 0 uniformly for g in a suitable neighborhood of

an arbitrary point in G , since we have (Dλ
X)nφ ∈ LUCloc(G,Y) by the hypothesis

on φ .

Assertion (2) can then be obtained by iterating the formula provided by
Assertion (1). Specifically, by using that formula for X = X2 and n = 1 we get

(∀g ∈ G)(∀t ∈ R) φ(gX2(t)) = φ(g) + t(Dλ
X2
φ)(g) + tχ1(g,X2, t),

hence for arbitrary g ∈ G and t ∈ R we have

φ(gX1(t)X2(t)) = φ(gX1(t)) + t(Dλ
X2
φ)(gX1(t)) + tχ1(gX1(t), X2, t).

On the other hand, by Assertion (1) for X = X1 and n = 1 we get

φ(gX1(t)) = φ(g) + t(Dλ
X1
φ)(g) + tχ1(g,X1, t),
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again for all g ∈ G and t ∈ R . By plugging in this formula in the previous one,
we get

φ(gX1(t)X2(t)) = φ(g) + t(Dλ
X1
φ)(g) + t(Dλ

X2
φ)(g) + tχ2(g,X1, X2, t)

where

χ2(g,X1, X2, t) = ((Dλ
X2
φ)(gX1(t))− (Dλ

X2
φ)(g)) +χ1(g,X1, t) +χ1(gX1(t), X2, t).

Now let g0 ∈ G arbitrary. We have proved above that there exists a neighborhood
V0 of g0 such that lim

t→0
χ1(g,X, t) = 0 uniformly for g ∈ V0 . Moreover, since

Dλ
X2
φ ∈ LUCloc(G,Y), it follows that for a suitable neighborhood V1 of g0 we

have lim
t→0

((Dλ
X2
φ)(gX1(t) − (Dλ

X2
φ)(g)) = 0 uniformly for g ∈ V1 . Moreover, we

may assume that V1U1 ⊆ V0 for a suitable neighborhood U1 of 1 ∈ G , hence
gX1(t) ∈ V0 for g ∈ V1 and t in a suitable neighborhood of 0 ∈ R (depending
only on U1 ). Then we get lim

t→0
χ2(g,X1, X2, t) = 0 uniformly for g ∈ V1 , and this

completes the proof.

The next result is obtained by using the method of proof of [Nel69, §4,
Th. 1] and [BC73, Lemma 2.2].

Lemma 2.4. Let G be a topological group and Y be a locally convex space. If
the one-parameter subgroups X,X1, X2 ∈ L(G) have the property X = X1 + X2 ,
then

Dλ
Xφ = Dλ

X1
φ+Dλ

X2
φ

for every φ ∈ LUC1loc(G,Y).

Proof. Let us denote

(∀t ∈ R) g(t) = X1(t)X2(t).

For each g0 ∈ G we have to prove the equality

(Dλ
Xφ)(g0) = (Dλ

X1
φ)(g0) + (Dλ

X2
φ)(g0). (2.2)

To this end fix an arbitrary continuous seminorm | · | on Y and let ε > 0 arbitrary.
Since Dλ

Xj
φ ∈ C(G,Y) for j = 1, 2, there exists a neighborhood U ∈ VG(1) such

that
(∀g ∈ U) |((Dλ

X1
+Dλ

X2
)φ)(g0g)− ((Dλ

X1
+Dλ

X2
)φ)(g0)| < ε. (2.3)

On the other hand, since φ ∈ LUC1loc(G,Y), it follows by Proposition 2.3(2) that,
by shrinking U , we can find δ > 0 such that for all x ∈ g0U and t ∈ (−δ, δ) \ {0}
we have ∣∣∣1

t
(φ(xg(t))− φ(x))− ((Dλ

X1
+Dλ

X2
)φ)(x)

∣∣∣ < ε

2
. (2.4)

Now let δ1 > 0 such that X(t) ∈ U0 if −δ1 ≤ t ≤ δ1 , where U0 is a neighborhood
of 1 ∈ G such that U0U0 ⊆ U . By using (1.1) with uniform convergence on
the interval [−δ1, δ1] , we get n1 ≥ 1 such that if n ≥ n1 and −δ1 ≤ t ≤ δ1 , then
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g(t/n)n ∈ U . There exists δ2 ∈ (0, δ1) such that if n = 1, . . . , n1 and −δ2 ≤ t ≤ δ2 ,
then g(t/n)n ∈ U . Therefore

g
( t
n

)n
∈ U if − δ2 ≤ t ≤ δ2 and n ≥ 1.

Moreover, if 1 ≤ k ≤ n and |t| ≤ δ2 , then |(k/n)t| ≤ |t| ≤ δ2 , hence

g
( t
n

)k
= g
((k/n)t

k

)k
∈ U.

Thus

g
( t
n

)k
∈ U if − δ2 ≤ t ≤ δ2 and 1 ≤ k ≤ n.

This allows us to use (2.3) and (2.4) in order to show that if −δ2 ≤ t ≤ δ2 , t 6= 0,
and n ≥ 1, then∣∣∣1
t

(
φ
(
g0g
( t
n

)n)
− φ(g0)

)
− ((Dλ

X1
+Dλ

X2
)φ)(g0)

∣∣∣
≤ 1

n

n∑
k=1

∣∣∣ 1

t/n

(
φ
(
g0g
( t
n

)k)
− φ
(
g0g
( t
n

)k−1))
− ((Dλ

X1
+Dλ

X2
)φ)
(
g0g
( t
n

)k−1)∣∣∣
+

1

n

n∑
k=1

∣∣∣((Dλ
X1

+Dλ
X2

)φ)
(
g0g
( t
n

)k−1)
− ((Dλ

X1
+Dλ

X2
)φ)(g0)

∣∣∣
<

1

n

n∑
k=1

ε

2
+

1

n

n∑
k=1

ε

2
= ε.

On the other hand, for every t ∈ R we have lim
n→∞

g(t/n)n = X(t) in G , by (1.1).

Since φ : G → Y is continuous, we then get lim
n→∞

φ(g0g(t/n)n) = φ(g0X(t)) in Y .

It then follows by the above estimates that if −δ2 ≤ t ≤ δ2 and t 6= 0, then∣∣∣1
t
(φ(g0X(t))− φ(g0))− ((Dλ

X1
+Dλ

X2
)φ)(g0)

∣∣∣ ≤ ε.

For t→ 0 and then ε→ 0 we get

|(Dλ
Xφ)(g0)− ((Dλ

X1
φ)(g0) + (Dλ

X2
φ)(g0))| = 0

Since | · | is an arbitrary continuous seminorm on the Hausdorff locally convex
space Y , it follows that (2.2) holds.

Theorem 2.5. Let G be a topological group such that L(G) has a structure
of real vector space whose scalar multiplication and vector addition satisfy the
following conditions for all t, s ∈ R and X1, X2 ∈ L(G):

(tX1)(s) = X1(ts),

(X1 +X2)(t) = lim
n→∞

(
X1

( t
n

)
X2

( t
n

))n
,

where the convergence is assumed to be uniform on any compact subset of R. Then
for every locally convex space Y and every φ ∈ LUC1loc(G,Y) the mapping

Dλφ : L(G)→ LUCloc(G,Y), X 7→ Dλ
Xφ

is linear.
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Proof. It is easily checked that the mapping Dλφ is R-homogeneous, and the
fact that it is additive follows by Lemma 2.4.

We now establish some continuity properties of the linear mappings pro-
vided by the above theorem. The proof of the following corollary was suggested
by the proof of [Mag81, Prop. 2].

Corollary 2.6. Assume the setting of Theorem 2.5 along with the following
additional hypotheses:

1. L(G) is endowed with a Baire topology that is stronger than the compact-open
topology and is compatible with the vector space structure.

2. The locally convex space Y is metrizable.

If LUCloc(G,Y) is endowed with the topology of pointwise convergence, then for
every φ ∈ LUC1loc(G,Y) the mapping Dλφ : L(G) → LUCloc(G,Y) is linear and
continuous.

Proof. Let φ ∈ LUC1loc(G,Y). The linearity of Dλφ follows by Theorem 2.5.
To prove the continuity property, let g ∈ G arbitrary. It follows by (2.1) that the
mapping (Dλφ)(g) : L(G) → Y is the pointwise limit of a sequence of mappings
which are continuous with respect to the compact-open topology of L(G), hence
are also continuous with respect to the Baire topology mentioned in the statement.
Since Y is metrizable and L(G) is a Baire space, it then follows by [Bou74, Ch.
IX, §5, Ex. 20b)] that the set of discontinuity points of (Dλφ)(g) is of the first
category, hence (Dλφ)(g) has at least one continuity point. Since moreover L(G) is
a topological vector space, then it easily follows that the linear mapping (Dλφ)(g)
is continuous throughout L(G).

Examples 2.7. Here is a list of special classes of topological groups to which
Theorem 2.5 applies, besides the classical case of the finite-dimensional Lie groups
(which is covered by several of the following situations):

1. Locally exponential Lie groups; in particular, the Banach-Lie groups. A
locally convex Lie group G with the Lie algebra g is locally exponential if it
has a smooth exponential map expG : g→ G which is a local diffeomorphism
at 0 ∈ g ([Nee06, Def. IV.1.1]). For x ∈ g let γx : R→ G , γx(t) = expG(tx).
Then the mapping x 7→ γx is a homeomorphism g→ L(G) and for x, y ∈ g
we have γx+y = γx+γy . The right-hand side of the latter equation is defined
by (1.1), and the corresponding uniform convergence on compact subsets of
R can be obtained by using Taylor’s formula; compare [Nee06, Rem. II.1.8
and Lemma IV.1.17]. Thus L(G) with the compact-open topology is turned
into a locally convex space isomorphic to g .

2. Mapping groups, and in particular loop groups. If M is a compact manifold
and K is a finite-dimensional Lie group with the Lie algebra k , then it
follows as a very special case of [Nee06, Th. IV.1.12] that the mapping group
C∞(M,K) is a locally exponential Lie group with the Lie algebra C∞(M, k),
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hence we are actually placed in the above situation 1. The loop groups are
obtained when M is the unit circle.

3. Diffeomorphism groups of compact manifolds. If G is the diffeomorphism
group of a compact manifold M ([Mil84, Ex. 1.4], [Nee06, Ex. II.3.14]),
then it follows by [CM70, Th. 5] that every continuous one-parameter
subgroup of G is smooth. The sum of vector fields agrees with the operation
defined by (1.1) (see for instance [Nel69, §4, Th. 1]), hence L(G) can thus
be identified with the linear space of all smooth vector fields on M .

4. Connected locally compact groups; more generally, the connected pro-Lie
groups. A pro-Lie group G is a topological group which is isomorphic
(as a topological group) to the limit of a projective system {Gj}j∈J of
finite-dimensional Lie groups. The continuity property of the functor L(·)
established in [HM07, Th. 2.25(ii)] shows that L(G) is isomorphic as a
topological Lie algebra to the projective limit of the Lie algebras of the
groups Gj for j ∈ J ; see also [BC73, Lemma 2.1]. We also note that G
is isomorphic to a closed subgroup of a direct product of finite-dimensional
Lie groups ([HM07, Th. 3.39]), hence in the limits of the type (1.1) we have
uniform convergence on the compact subsets of R , by the definition of the
direct product topology along with the corresponding uniform convergence
in the finite-dimensional Lie groups (see the situation 1. above).

5. Unitary groups of finite von Neumann algebras. Consider a von Neumann
algebra with a faithful normal tracial state τ . If G is its unitary group
endowed with the strong operator topology, then it follows by [Bel10, Th. 3.6]
that L(G) with the sum operation given by (1.1) is a vector space isomorphic
to the space of all skew-symmetric τ -measurable operators on the space of
the GNS representation associated with τ .

6. Direct limits of finite-dimensional Lie groups. If G is the limit of a countable
direct system of finite-dimensional Lie groups with injective homomorphisms,
then L(G) is isomorphic as a topological Lie algebra to the corresponding
inductive limit of finite-dimensional Lie algebras. Moreover, it follows by
[Glö05, Prop. 4.6] and its proof that for every X, Y ∈ L(G) there exists
X + Y ∈ L(G) given by (1.1) with uniform convergence on the compact
subsets of R .

7. Nilpotent topological groups. If G is such a group, then it follows by [MS75,
Th. 1] that the topology of any subgroup generated by finitely many elements
in L(G) can be refined to a unique topology of a finite-dimensional Lie group.
Therefore, one can use the situation of finite-dimensional Lie groups to see
that for every X, Y ∈ L(G) there exists X + Y ∈ L(G) given by (1.1) with
uniform convergence on the compact subsets of R , and moreover L(G) is
thus turned into a vector space. See also [Nee06, Th. IV.1.24] for a related
result on 2-step nilpotent groups.

We now show that Corollary 2.6 applies and leads to continuity properties
in several of the situations mentioned in Examples 2.7.
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Examples 2.8. Here we use the same numbering and notation as in Exam-
ples 2.7. Continuity properties can be established in the situations 1.–5.

1. If G is a locally exponential Lie group whose Lie algebra is a Baire space,
then L(G) is in particular a Baire space with respect to the compact-open
topology.

2. If G = C∞(M,K), then its Lie algebra g = C∞(M, k) is a Fréchet space,
hence we are placed in the above situation.

3. If G is the diffeomorphism group of a compact manifold M , then we have
already seen that L(G) can be identified with the vector space V(M) of
all smooth vector fields on M . Moreover, V(M) is a Fréchet space and
it follows by [Nee06, Rem. II.5.3, Rem. III.2.5, and Th. III.3.1] that the
exponential map expG : V(M) → G is smooth. In particular, the mapping
Ψ: R × V → G , Ψ(t, x) = expG(tx), is continuous. One then gets by a
straightforward reasoning (see for instance [BCR81, Lemma 0.1.4.2]) that
the mapping V → C(R, G), x 7→ γx(·) := Ψ(·, x) is continuous with respect
to the compact-open topology on C(R, G). Therefore the mapping x 7→ γx is
continuous from V(M) into L(G), and this shows that the Fréchet topology
induced from V(M) on L(G) is stronger than the compact-open topology.

4. If G is a connected pro-Lie group, then by [HM07, Th. 3.12, Prop. 3.8, and
Cor. A2.9] we get a linear topological isomorphism of L(G) onto RJ for a
suitable set J , so L(G) is a Baire space with respect to the compact-open
topology by [Bou74, Ch. IX, §5, Ex. 16a)].

5. If G is the unitary group of a von Neumann algebra with a finite trace τ ,
then L(G) with the compact-open topology of is homeomorphic (by the
linear isomorphism) to the aforementioned space of measurable operators
endowed with the τ -measure topology, which is linear and defined by a
complete metric that is invariant under translations; see for instance [Bel10,
Rem. 2.4]. Thus L(G) is a Baire space with respect to the compact-open
topology.

So in any of the above cases it follows by Corollary 2.6 that if Y is a metrizable
locally convex space and φ ∈ LUC1loc(G,Y), then Dλφ : L(G) → Y is a linear
continuous mapping. We thus get a possible approach to [Nee10a, Probl. 13.4],
which in particular asked for conditions ensuring that if G is a Banach-Lie group
with the Lie algebra g , and φ : G→ R is a function such that for some g ∈ G and
every x ∈ g the derivative

dφ(g)(g.x) :=
d

dt

∣∣∣
t=0
φ(g expG(tx))

exists, then the functional dφ(g) : TgG→ R is linear.

Remark 2.9. The method of proof of Lemma 2.4 also gives the following result:
Let G be a topological group and Y be a locally convex space. If X,X1, X2 ∈ L(G)
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have the property that

(∀t ∈ R) X(t2) = lim
n→∞

(
X1

( t
n

)
X2

( t
n

)
X1

( t
n

)−1
X2

( t
n

)−1)n2

uniformly on every compact subset of R , then

Dλ
Xφ = Dλ

X1
(Dλ

X2
φ)−Dλ

X2
(Dλ

X1
φ)

for every φ ∈ LUC2loc(G,Y).

3. Differentiable vectors

In this section we apply Theorem 2.5 and Remark 2.6 to the study of differen-
tiable vectors in group representations. We shall use the notation set up in the
Introduction, and the main result is Theorem 3.5.

Setting 3.1. Unless otherwise mentioned, we assume the following:

• G is a topological group;

• Y is a locally convex space and End (Y) stands for the space of continuous
linear maps on Y ;

• π : G→ End (Y) is a representation such that the group action

G× Y → Y , (g, y) 7→ π(g)y

is a continuous mapping;

• there exists a neighborhood V of 1 ∈ G such that the set of operators π(V )
is equi-continuous on Y .

For instance, these assumptions are satisfied if the aforementioned action is con-
tinuous and Y is a Banach space; see [Nee10a, Lemma 5.2].

Definition 3.2. Let us denote D0
dπ := Y . In addition to the spaces D1

dπ , D1,lin
dπ ,

and D1,cont
dπ defined in the Introduction, we also define inductively for every k ≥ 1,

Dk+1
dπ = {y ∈ D1

dπ | (∀X ∈ L(G)) dπ(X)y ∈ Dkdπ}.

It is clear that D0
dπ ⊇ D1

dπ ⊇ D2
dπ ⊇ · · · , and we define

D∞dπ =
⋂
k≥1

Dkdπ.

The spaces

C∞(dπ) :=
⋂

X∈L(G)

(⋂
k≥1

D(dπ(X)k)
)
,

Y∞ :={y ∈ Y | π(·)y ∈ C∞(G,Y)}
will also be needed.
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Remark 3.3. It is easily seen that C∞(dπ), Y∞ , and Dkdπ for k = 0, 1, . . . ,∞
are linear subspaces of Y which are invariant under the family of operators π(G).
We have

Y∞ ⊆ D∞dπ ⊆ C∞(dπ) ⊆ D1
dπ

and the first two of these inclusions are actually equalities if G is a finite-
dimensional Lie group, as a consequence of Goodman’s theorem; see [Wa72, sub-
sect. 4.4.4] for a broader discussion. The space Y∞ for representations of topologi-
cal groups was introduced in [Bos76], the definition of C∞(dπ) agrees with [Mag81,
Def. 1] for locally compact groups, and finally the spaces Dkdπ for k = 0, 1, . . . ,∞
were introduced in [Nee10a, Def. 3.1] for representations of locally convex Lie
groups.

Lemma 3.4. We have Dkdπ = {y ∈ Y | π(·)y ∈ LUCkloc(G,Y)} for every
k = 0, 1, . . . ,∞.

Proof. For k = 0 we have to prove that for arbitrary y ∈ Y ,

π(·)y ∈ LUCloc(G,Y). (3.1)

In fact, for arbitrary g0, h ∈ G and g ∈ V we have

π(gg0h)y − π(gg0)y = π(g)π(g0)(π(h)y − y).

Since the family of operators π(V ) is equi-continuous on Y , it easily follows by the
above equality that for every neighborhood U of 0 ∈ Y there exists a neighborhood
V1 of 1 ∈ V such that for all h ∈ V1 and g ∈ V we have π(gg0h)y− π(gg0)y ∈ U .
This shows that π(·)y is left uniformly continuous on the neighborhood V g0 of
g0 ∈ V , and (3.1) is completely proved.

If X ∈ L(G), then y ∈ D(dπ(X)) if and only if the function π(X(·))y is
differentiable at 0 ∈ R . If this the case, then

Dλ
X(π(·)y) = π(·)dπ(X)y (3.2)

and now (3.1) shows that Dλ
X(π(·)y) ∈ LUCloc(G,Y). These remarks show that

the assertion holds for k = 1. The general case follows by induction on k .

Theorem 3.5. Within Setting 3.1 we have D1
dπ = D1,lin

dπ . If the following
additional conditions are satisfied:

1. L(G) is endowed with a Baire topology that is stronger than the compact-open
topology;

2. for every X1, X2 ∈ L(G) there exists X ∈ L(G) such that the property
X = X1 + X2 holds true, and L(G) is a topological vector space with the
vector sum thus defined;

3. the locally convex space Y is metrizable;

then we have also D1
dπ = D1,cont

dπ .
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Proof. Let y ∈ D1
dπ be arbitrary and denote φ := π(·)y .

For the first part of the statement we have to show that y ∈ D1,lin
dπ . To this

end let X,X1, X2 ∈ L(G) with the property X = X1 +X2 . Since y ∈ D1
dπ , we get

φ ∈ LUC1loc(G,Y) by Lemma 3.4, and then Dλ
Xφ = Dλ

X1
φ+Dλ

X2
φ ∈ LUCloc(G,Y)

by Lemma 2.4. By evaluating both sides of this equality at 1 ∈ G and by
using (3.2), we get dπ(X)y = dπ(X1)y + dπ(X2)y . Therefore y ∈ D1,lin

dπ .

For the second part of the statement we have to show that if the additional
conditions 1.–3. are satisfied, then conditions y ∈ D1,cont

dπ . To this end we just have
to use Corollary 2.6 along with (3.2) again evaluated at 1 ∈ G .

Remark 3.6. We have seen in Example 2.8(1.) that the additional conditions
1.–2. in Theorem 3.5 are satisfied if G is a locally exponential Lie group modeled
on a locally convex space which is a Baire space; for instance if G is a locally
exponential Fréchet-Lie group. On the other hand, these conditions are also
satisfied by groups as in Example 2.8(3.) whose exponential maps may fail to
be locally surjective (see e.g., [Mil84, Warning 1.6]) or as in as in Example 2.8(5.)
where it may fail to be locally injective (e.g., unitary groups of von Neumann
factors of type II1 ; see [Bel10, Cor. 4.4]).

We now briefly mention a few other special cases of Theorem 3.5 and related
results that occurred in the earlier literature.

1. It follows by [Bos76, Satz 2.1] that if G is a connected pro-Lie group, then
Y∞ ⊆ D1,lin

dπ ∩ D
1,cont
dπ .

2. It was proved in [Mag81, Prop. 2] that if G is a a connected locally
compact group, Y is a Hilbert space, and π is a unitary representation,
then C∞(dπ) ⊆ D1,lin

dπ ∩ D
1,cont
dπ .

3. It was proved in [Nee10a, Lemma 8.1] that if G is a Fréchet-Lie group and
Y is a Fréchet space, then D1,lin

dπ ⊆ D
1,cont
dπ .

4. The conclusion of our Theorem 3.5 was then obtained in [Nee10a, Th. 8.2]
in the case when G is a Banach-Lie group and Y is a Banach space.
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Institute of Mathematics
“Simion Stoilow”
of the Romanian Academy,
P.O. Box 1-764, Bucharest, Romania
Daniel.Beltita@imar.ro

Received February 22, 2011
and in final form March 14, 2011


