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Abstract. We define the periodic Full Kostant-Toda lattice on every simple
Lie algebra, and show its Liouville integrability. More precisely we show that
this lattice is given by a Hamiltonian vector field, associated to a Poisson bracket
which results from an R -matrix. We construct a large family of constants of
motion which we use to prove the Liouville integrability of the system with the
help of several results on simple Lie algebras, R -matrices, invariant functions
and root systems.
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1. Introduction

The non-periodic (resp. periodic) Toda lattice on sln(C) is the system of differen-
tial equations given by a following Lax equation:

L̇ = [L,L−] , (resp. L̇(λ) = [L(λ), L(λ)−]), (1)
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where L and L− are the traceless matrices of the form given below. For the
non-periodic case, we impose:

L =



b1 1 0 · · · · · · 0

a1 b2 1
. . .

...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . an−2 bn−1 1
0 · · · · · · 0 an−1 bn


,

L− =



0 0 · · · · · · 0

a1 0
. . .

...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
...

. . . an−2 0 0
0 · · · · · · 0 an−1 0

 .

(2)

In the periodic case, we choose a formal parameter λ and we impose:

L(λ) =



b1 1 0 · · · 0 anλ
−1

a1 b2 1
. . . 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0

0
. . . an−2 bn−1 1

λ 0 · · · 0 an−1 bn


,

L(λ)− =


0 · · · · · · 0 anλ

−1

a1 0 0

0
. . . . . .

...
...

. . . an−2
. . .

...
0 · · · 0 an−1 0

 .

(3)

These systems of differential equations are classical examples of what is called
Liouville integrable systems [1, Definition 4.13], which form a class of equations
known to be integrable by quadrature (i.e., whose solutions can be expressed
from their initial values with the help of elementary operations, integration, and
inversion of diffeomorphism, see [1, Section 4.2] for a more precise description).
For our present purpose, we have to introduce Liouville integrability not only
for symplectic manifolds, but in the enlarged context of Poisson manifolds (see
again [1] for the notion of Poisson manifold, and related notions, like rank, Casimir
functions and involutive families):

Definition 1.1. Let (M, {· , ·}) be a Poisson manifold of rank 2r . A family
F = (F1, . . . , Fs) of functions on M is said to be Liouville integrable if

(1) For all i, j = 1, . . . , s , the functions Fi, Fj commute, i.e., {Fi, Fj} = 0.

(2) The functions (F1, . . . , Fs) form an independent family on M .
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(3) s = dimM − r , i.e., cardF = dimM − 1
2

Rk(M, {· , ·}).

The triple (M, {· , ·} ,F) is then said to be a Liouville integrable system of rank
2r .

By a slight abuse of vocabulary, a differential equation is said to be Liouville
integrable when one can find a Liouville integrable system such that one of the
Hamiltonian vector fields describes the equation.

The non-periodic and periodic Toda lattices admit a natural extension1 and
several of them have been proved to be Liouville integrable. To start with, Deift,
Li, Nanda, Tomei [2] have proved the Liouville integrability of the (non-periodic)
Full Kostant-Toda lattice, that they define to be the system of differential equations
given by:

L̇ = [L,L−], (4)

where L is a symmetric matrix of gln(C) and L− it is the skew-symmetric part
of L with respect to the decomposition of matrices as upper-triangular matrices
and skew-triangular matrices. Up to a Poisson morphism, this system is shown
by Ercolani, Flaschka and Singer [5] to be given by an equation of the form (4),
where L is of the form:

L =


a11 1 0

a21 a22
. . .

...
. . . 1

an1 · · · an,n−1 ann

 ∈ gln(C) (5)

and L− is the strictly lower triangular part of L with respect to the decomposition
of matrices as upper-triangular matrices and strictly lower-symmetric matrices.

As the non-periodic Full Kostant-Toda lattice is an extension of the non-
periodic Toda lattice, there is a natural extension of the periodic Toda lattice,
namely the system of differential equations is given by:

L̇(λ) = [L(λ), L(λ)−], (6)

where λ is a formal parameter and L(λ) is imposed to be of the form:

L(λ) =


a11 1 + b12λ

−1 b13λ
−1 · · · b1nλ

−1

...
. . . . . . . . .

...
...

. . . . . . bn−2,nλ
−1

an−1,1 · · · · · · . . . 1 + bn−1,nλ
−1

an1 + λ an2 · · · · · · ann

 (7)

and

L(λ)− =


0 b12λ

−1 · · · b1nλ
−1

a21
. . . . . .

...
...

. . . . . . bn−1,nλ
−1

an1 · · · an,n−1 0

 .

1Here, we do not wish to give a precise meaning to the word ”extension”, that we simply use
to speak of a differential equation of the same shape on a bigger phase space.
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We call this system of differential equations the periodic Full Kostant-Toda lattice
on sln(C). It deserves to be noticed that this system (more precisely its symmetric
equivalent) appears as the extreme case of a sequence of systems studied by van
Moerbeke and Mumford [10].

The transition from the non-periodic case to the periodic case is more
interesting to study for the Full-Kostant Toda lattice than the Toda lattice mainly
at the level of construction of the integrable system2. This explains the existence of
the large number of new variables in the phase space of the periodic Full-Kostant
Toda lattice (the dimension of the phase space of the periodic Full-Kostant Toda
lattice is almost twice than the non-periodic Full-Kostant Toda lattice). In other
words, the phase space of the periodic Full-Kostant Toda lattice is the phase space
of the non-periodic Full-Kostant Toda lattice in addition to the Lie subalgebra
formed by the strictly upper triangular matrices of sln(C).

For all the systems previously introduced on sln(C), there is natural manner
to replace sln(C) by an arbitrary simple Lie algebra g . Liouville integrability has
been proved for an arbitrary simple Lie algebra in the cases of the periodic and
non-periodic Toda lattices see [8], and in the case of non-periodic Full Kostant-
Toda lattice by Gekhtman and Shapiro [6]. The purpose of the present article is to
show the Liouville integrability of the periodic Full Kostant-Toda lattice for every
simple Lie algebra.

This article is organized as follows. To start with, we define the periodic Full
Kostant-Toda lattice and its phase space for every simple Lie algebra g in Section
2. More precisely, we construct this space as a finite dimensional affine subspace of
the loop algebra g[λ, λ−1] . This phase space is endowed with a Poisson structure in
Section 3. A celebrated theorem, called the AKS theorem (see [1, Theorem 4.37]),
implies that all the coefficients in λ of the ad-invariant functions on g[λ, λ−1]
commute, therefore this family is a good candidate to prove Liouville integrability.
In Section 4, by restricting this family to the phase space of the periodic Full
Kostant-Toda lattice, we state the main theorem: the integrability of the periodic
Full Kostant-Toda lattice on g , the proof of which will be separated in several steps.
The independence of the family of functions that we consider will be proved in
Proposition 4.8, with a help of a sophisticated result about regular sl2(C)-triplets
and ad-invariant functions established by Räıs [9]. But the most difficult point is
the computation of the rank of the Poisson structure on Tλ . This computation
will be done with the help of Maple for the exceptional simple Lie algebras and
the treatment of the four series of regular simple Lie algebra is completed with the
help of a detailed investigation of the root system of those. In Section 5, we finish
this study by presenting a conjectured generalization.

2We know that the integrable system of the periodic Toda lattice is constructed by adding
only a function in the integrable system of the non-periodic Toda lattice. On the other side, in
this article we show that the functions that construct the integrable system of the non-periodic
Full-Kostant Toda are not included in the family of functions that form the integrable system of
the periodic Full-Kostant Toda lattice.
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2. Definition of the periodic Full Kostant-Toda lattice on a simple
Lie algebra

In this section, we define the 2-Toda lattice on every simple Lie algebra.
Let g be a simple Lie algebra of rank ` , with Killing form 〈· |· 〉 . We choose
h a Cartan subalgebra with root system Φ, and Π = (α1, . . . , α`) a system of
simple roots with respect to h . For every α in Φ\{−Π,Π} , we denote by eα
a non-zero eigenvector associated to eigenvalue α and, for every 1 6 i 6 ` , we
denote by ei and e−i a non-zero eigenvector associated respectively to αi and
−αi . The Lie algebra g =

⊕
k∈Z gk is endowed with the natural grading (i.e.,

for every k, l ∈ Z , [gk, gl] ⊂ gk+l ) defined by g0 := h and, for every k ∈ Z ,
gk :=< eα | α ∈ Φ, |α| = k > , where |α| is the length of the root α , i.e.,
|α| :=

∑`
i=1 ai for α =

∑`
i=1 aiαi and we denote by β the longest root of g .

Recall that: 〈gk | gl〉 = 0 if k + l 6= 0. We introduce the following notation

g<k :=
⊕

i<k gi, g6k :=
⊕

i6k gi,

g>k :=
⊕

i>k gi, g>k :=
⊕

i>k gi.

The next definition gives back the definition given in Section 1 of the periodic Full
Kostant-Toda lattice on sln(C) when specialized to the case of g = sln(C) and h
is a Lie subalgebra formed by the diagonal matrices of sln(C).

Definition 2.1. The periodic Full Kostant-Toda lattice, associated to a simple
Lie algebra g , is the system of differential equations given by the following Lax
equation:

L̇(λ) = [L(λ), L(λ)−], (8)

where L(λ) = λe−β +
∑`

i=1(aihi + ei) +
∑

α∈Φ+
(a−αe−α + λ−1bαeα) is an element

of the following phase space Tλ of the periodic Full Kostant-Toda lattice

Tλ := λ−1g>0 + (g60 +
∑̀
i=1

ei) + λe−β (9)

and L(λ)− =
∑

α∈Φ+
(a−αe−α + λ−1bαeα).

3. Poisson structure on the phase space of the periodic Full
Kostant-Toda lattice

In the present section, we show that the periodic Full Kostant-Toda lattice is a
Hamiltonian system, with respect to a Poisson structure on Tλ , naturally obtained
as a substructure of a linear Poisson on the loop algebra g⊗C[λ, λ−1] , associated
to an R-matrix.

3.1. Poisson structure on the loop algebra g⊗C[λ, λ−1]. Let g̃ be the loop
algebra, namely the tensor product g̃ = g⊗C[λ, λ−1] , whose elements are sums

x(λ) =
∑

i∈Z xiλ
i,
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where finitely many (xi)i∈Z are non zero. We first endow g̃ with the unique bilinear
bracket C[λ, λ−1] , which extends the Lie bracket of (g, [· , ·]).
We construct a Poisson structure on the algebra of functions defined on the phase
space of the periodic Full Kostant-Toda lattice.
We introduce a grading on g̃ by defining the degree of λkeα , (α being a root of g
and k ∈ Z) to be |α| + (|β| + 1)k , where we recall that β is the longest positive
root of g .

We denote by g̃i the Lie subspace of weight i , which defined by:

g̃i := 〈λkeα such that |α|+ (|β|+ 1)k = i, for every α ∈ Φ, k ∈ Z〉.

Lemma 3.1. (1) For i = 0, g̃0 = h, for every i = −|β|, . . . ,−1, g̃i =
gi ⊕ λ−1gi+|β|+1 and for every i = 1, . . . , |β|, g̃i = gi ⊕ λgi−|β|−1 .
(2) g̃ =

⊕
k∈Z g̃k is a graded Lie algebra and g̃ admits the following vector space

decomposition:
g̃ = g̃+ ⊕ g̃−, (10)

where

g̃+ :=
⊕

i≥0 g̃i and g̃− :=
⊕

i<0 g̃i

are Lie subalgebras of g̃.

Let g̃∗ be the space of all linear forms on g̃ which are identically zero on
all (g̃i)i∈Z except finitely many of them. We notice that the space g̃∗ has the
following decomposition:

g̃∗ :=
⊕

i∈Z g̃
∗
i ,

where

g̃∗i := {ξ ∈ g̃∗ | ξ is zero on g̃j, for every j 6= i}.

Let 〈· |· 〉λ be the following non-degenerate, ad-invariant, symmetric form:

〈· |· 〉λ : g̃× g̃ → C
(X(λ), Y (λ)) 7→

∑
k∈Z 〈Xk |Y−k〉 . (11)

The bilinear form (11) gives an identification between g̃∗i and g̃−i , hence between
g̃ and g̃∗ . Moreover, the orthogonal complement of g̃i , for every i ∈ Z , is
g̃⊥i :=

⊕
j 6=i g̃−j .

Let F(g̃) be the symmetric algebra generated by the elements of g̃∗ (is a
subalgebra of the algebra of polynomial functions on g̃ and by construction is such
that the gradient of a function in a point of g̃ is in g̃). Then g̃ is equipped with
the following Poisson structure3, where for every F,G ∈ F(g̃) and every x(λ) ∈ g̃ ,
by:

{F,G}R̃(x(λ)) =
〈
x(λ) | [∇x(λ)F,∇x(λ)G]R̃

〉
λ
, (12)

where R̃ is an R̃-matrix of g̃ , defined by:

R̃ := P̃+ − P̃−, (13)

3because g̃∗ is equipped of the Poisson R̃ -bracket and g̃∗ ∼ g̃ .



Ben Abdeljelil 935

and P̃± is the projection of g̃ on g̃± . For every element x(λ), we denote x(λ)± :=
P̃±(x(λ)). In formula (12), ∇x(λ)F stands for the gradient of F at the point x(λ)
computed with respect to 〈· |· 〉λ .

3.2. The Poisson R̃-bracket on F(Tλ). The next proposition should be
interpreted as meaning that Tλ is a Poisson submanifold of (g̃, {· , ·}R̃), but the fact
that g̃ is infinite dimensional prevents us to state it in that manner. What makes
sense however is to show that there exists a unique Poisson bracket on the algebra
F(Tλ) such that the restriction map F(g̃) is a Poisson morphism. Indeed, since
this restriction map is surjective, to prove the existence of this Poisson structure,
it suffices to prove that the ideal I = 〈F ∈ F(g̃) | F ≡ 0 on Tλ〉 is a Poisson ideal
of the Poisson algebra (F(g̃), {· , ·}R̃).

Proposition 3.2. The phase space of the periodic Full Kostant-Toda Tλ inherits
an unique Poisson structure (F(g̃), {· , ·}R̃) such that the restriction map F(g̃)→
F(Tλ) is a Poisson morphism.

Proof. As stated before the proposition, we are left with the task of verifying
that the ideal I is a Poisson ideal with respect to the Poisson bracket {· , ·}R̃ .
According to Lemma 3.1, the affine subspace Tλ of g̃ can be described as follows:

Tλ :=
⊕

−|β|6i60

g̃i + f, (14)

where f :=
∑`

i=1 ei+λe−β ∈ g̃1 . The gradient at a point L(λ) ∈ Tλ of an arbitrary
function F ∈ I satisfies the following relation:

∇L(λ)F ∈
⊕

−|β|6i60

g̃⊥i = g̃<0 ⊕ g̃≥|β|+1, (15)

so that there exists x(λ) ∈ g̃<0 and y(λ) ∈ g̃≥|β|+1 , such that ∇L(λ)F = x(λ)+y(λ).
For an arbitrary function G ∈ F(g̃),

{F,G}R̃(L(λ)) =
〈
L(λ) | [(∇L(λ)F )+, (∇L(λ)G)+]− [(∇L(λ)F )−, (∇L(λ)G)−]

〉
=

〈
L(λ) | [y(λ), (∇L(λ)G)+]− [x(λ), (∇L(λ)G)−]

〉
= 0,

where, in the last line, we have used the fact that L(λ) ∈
⊕
−|β|6i61 g̃i is orthog-

onal to both [y(λ), (∇L(λ)G)+] (which belongs to g̃≥|β|+1 ) and [x(λ), (∇L(λ)G)−]
(which belongs to g̃<−1 ). The ideal I is then a Poisson ideal, which endows
(F(g̃)/I, {· , ·}R̃) with a Poisson R̃-bracket. Since the algebra F(g̃)/I is canoni-
cally isomorphic to F(Tλ), this Poisson R̃-bracket is an algebraic Poisson structure
on Tλ .

3.3. The periodic Full Kostant-Toda lattice is a Hamiltonian system.
We intend in this section to show that the periodic Full Kostant-Toda is a Hamil-
tonian system for this Poisson structure. But, a small difficulty appears here: the
function on F(g̃) that is the Hamitonian of this equation:

H(L(λ)) :=
1

2
〈L(λ) |L(λ)〉λ, (16)
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which is not an element of F(g̃). Fortunately, there exist elements of FH ∈ F(g̃)
whose restriction to Tλ is equal to the restriction of H , for instance the function

FH(x(λ)) :=
1

2
(〈x−1 |x1〉+ 〈x0 |x0〉+ 〈x1 |x−1〉) , (17)

where x(λ) =
∑

i∈Z xiλ
i . We define the Hamiltonian vector fields of H on Tλ

(or of any function on g̃ which satisfies the same property) to be the Hamiltonian
vector field (on Tλ ) of any of these functions (Hamiltonian vector field which does
not depend of the choice of FH , since by Proposition 3.2 the Hamiltonian vector
field of a function that vanishes on g̃ also vanishes on Tλ ).

Proposition 3.3. The Hamiltonian vector field on Tλ of the function H defined
in (16) coincides with the equation of motion (8) of the periodic Full Kostant-Toda
lattice.

Proof. This proposition is just a particular case of the Adler-Kostant-Symes
theorem [1, Theorem 4.37], up to the fact that we have to adapt it to the infinite
dimensional setting. By definition, the Hamiltonian vector field on Tλ of the
function H is the Hamiltonian vector field of the function FH introduced in (17).
Since the gradient of FH(x(λ)) at a point x(λ) ∈ g̃ is x−1λ

−1 +x0 +x1λ , we have
∇L(λ)F

H = L(λ) for every L(λ) ∈ Tλ ⊂ gλ−1 + g + gλ , so that

XH(L(λ)) =
1

2

[
R̃(L(λ)), L(λ)

]
=

1

2
[L(λ)+ − L(λ)−, L(λ)] ,

by definition of R̃ . Hence XH(L(λ)) = − [(L(λ))−, L(λ)].

4. The Liouville integrability of the periodic Full Kostant-Toda
lattice

As in Section 2, we choose g a simple Lie algebra, equipped with the Killing form
〈· |· 〉 , and h a Cartan subalgebra. Let P1, . . . , P` be a generating family of the
algebra of the ad-invariant polynomial functions on g , such that the degree of Pi
is mi + 1, for all 1 6 i 6 ` , where m1, . . . ,m` are the exponents4 of g (we notice
that m1 6 · · · 6 m` ). Each Pi extends on g̃ to a function P̃i with values in
C[λ, λ−1] , each of these functions is an ad-invariant function of g̃ with values in
C[λ, λ−1] , so each coefficient at λ is an ad-invariant function on g̃ with value in
C . Let F̃j,i be functions on g̃ , defined by:

P̃i(L(λ)) =
∞∑

j=−∞

λ−jF̃j,i(L(λ)), ∀L(λ) ∈ g̃. (18)

Remark 4.1. Let H be the Hamiltonian of the periodic Full Kostant-Toda
lattice, defined in (16) by:

H(x(λ)) = 1
2
〈x(λ) |x(λ)〉λ, ∀x(λ) ∈ g̃.

4The choice of the polynomials P1, . . . , P` is not unique but their degrees m1 + 1, . . . ,m` + 1
are constant for each simple Lie algebra g and satisfy the relation

∑`
i=1 mi = 1

2 (dim g − `),
see [4, Theorem 7.3.8].
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It is clear that H is homogeneous, ad-invariant of degree 2 = m1 + 1, therefore
we can take P̃1 := H .

The functions F̃j,i , for 1 6 i 6 ` and j ∈ Z , are ad-invariant functions on
g̃ . According to the AKS Theorem [1, Theorem 4.36], they should in involution for
the Poisson R̃-bracket {· , ·}R̃ . However, there is a technical issue here: strictly
speaking, one cannot apply the AKS theorem, since our Lie algebra is infinite
dimensional and, moreover, the functions F̃j,i are not in F(g̃) in general. The
conclusion the AKS theorem, however, holds, at least after restriction to Tλ .

Proposition 4.2. The restrictions to Tλ of the functions (F̃j,i), 1 6 i 6 `,
j ∈ Z, pairwise commute.

Proof. The proof is an adaptation of the proof of the AKS theorem. For all
1 6 i 6 ` , j ∈ Z , there exists a function F F̃j,i ∈ F(g̃) such that F F̃j,i and F̃j,i
coincide on Tλ . Moreover, although F F̃j,i is not ad-invariant on g̃ , we can assume
that at all point x(λ) ∈ Tλ : [

x(λ),∇x(λ)F
F̃j,i
]

= 0. (19)

For instance, the function F̃j,i ◦ pn , where pn is the projection of g̃ on
∑n

i=−n λ
ig ,

satisfies these conditions for n large enough.

Since for all possible indices F F̃j,i and F̃j,i coincide when restricted to the

Poisson submanifold Tλ , the Poisson brackets
{
F̃j,i, F̃k,l

}
R̃

and
{
F F̃j,i , F F̃k,l

}
R̃

coincide on Tλ for all possible indices, so that we are left with the task of proving

that
{
F F̃j,i , F F̃k,l

}
R̃

= 0 on Tλ . From now, the usual computation that proves of

AKS theorem [1, Theorem 4.36] can be repeated word by word:{
F F̃j,i , F F̃k,l

}
R̃

(x(λ)) =
〈
x(λ) |

[
∇x(λ)F

F̃j,i ,∇x(λ)F
F̃k,l
]
R̃

〉
λ

=
1

2

〈
x(λ) |

[
R̃(∇x(λ)F

F̃j,i),∇x(λ)F
F̃k,l
]〉

λ

+
1

2

〈
x(λ) |

[
∇x(λ)F

F̃j,i , R̃(∇x(λ)F
F̃k,l)

]〉
λ

= −1

2

〈[
x(λ),∇x(λ)F

F̃k,l
]
| R̃(∇x(λ)F

F̃j,i)
〉
λ

+
1

2

〈[
x(λ),∇x(λ)F

F̃j,i
]
| R̃(∇x(λ)F

F̃k,l)
〉
λ

= 0

where, in the last line, we have used twice (19).

Remark 4.3. There is therefore a large number of functions in involution that
are a goods candidates for the integrability of the periodic Full Kostant-Toda
lattice. It will be shown later that most of them are zero or constants and the
remaining functions give the exact integrability.
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In this section we will use some results that we give in the following lemma.

Lemma 4.4. Let g be a simple Lie algebra of rank `, h be a Cartan subalgebra
of g, Φ be a system of roots of g associated to h, (α1, . . . , α`) be a basis of Φ and
h1, . . . , h` be the corresponding to simple coroots. For every γ ∈ Φ, we choose eγ
a non-zero eigenvector of γ . Let

(x1, . . . , x`) ∪ (xγ)γ∈Φ

be the coordinates system on g given, for every 1 6 i 6 ` and every γ ∈ Φ and
for every x ∈ g, by: {

xi(x) = 〈hi |x〉 ,
xγ(x) = 〈e−γ |x〉 .

Let P a homogeneous ad-invariant polynomial on g of degree m+ 1.
(1) The polynomial P is a linear combination of the monomials of the following
form

xγ1 . . . xγkxp1 . . . xpj , (20)

where p1, . . . , pj ∈ {1, . . . , `} and such that:{
k + j = m+ 1,∑k

i=1 |γi| = 0.
(21)

(2) Let i1, . . . , ip ∈ {1, . . . , `} and γ1, . . . , γq ∈ Φ, where p, q ∈ N. If

m+ 1− (p+ q) +

q∑
i=1

|γi| < 0 or

q∑
i=1

|γi| > 0 (22)

then, for every y ∈ h⊕ g1 ,〈
dp+qy P, (hi1 , . . . , hip , eγ1 , . . . , eγq)

〉
= 0. (23)

Proof. (1) Every homogeneous polynomial of degree m + 1 is a linear com-
bination of monomials of the form (20) with k + j = m + 1. We need to show
that when this polynomial is ad-invariant, the second condition of system (21) is
satisfied for every monomial that appear in its decomposition.
Let h ∈ h be such that αi(h) = 1 for every i = 1, . . . , ` . We define a linear vector

field ãdh on g by:

ãdh[F ](x) := 〈dxF, adh x〉 = 〈∇xF | adh x〉 ,
for every F ∈ F(g) and every x ∈ g . On the one hand, for every γ ∈ Φ

ãdh[xγ](x) = 〈adh x | e−γ〉 = γ(h)xγ(x) = |γ|xγ(x)

while ãdh[xi] = 〈adh x |hi〉 = 0, for i ∈ {1, . . . , `} on the other hand. These two
properties imply

ãdh[xγ1 . . . xγkxp1 . . . xpj ] =
k∑
i=1

ãdh[xγi ]xγ1 . . . x̂γi . . . xγkxp1 . . . xpj

= (
k∑
i=1

|γi|)xγ1 . . . xγkxp1 . . . xpj . (24)



Ben Abdeljelil 939

Since P is an ad-invariant polynomial, ãdh[P ](x) = 〈adh x | ∇xP 〉 = 〈h | [x,∇xP ]〉
= 0. Therefore, according to (24), the sum

∑k
i=1 |γi| vanishes for each monomial

appearing in the decomposition of P .
(2) If p + q ≥ m + 2, equation (23) holds automatically, because the degree of
P is m + 1. We assume for p + q 6 m + 1, the first point of the lemma implies
that, for every y ∈ g and every homogeneous elements z1, . . . , zm+1 ∈ g with∑m+1

k=1 |zi| 6= 0, 〈
dm+1
y P, (z1, . . . , zm+1)

〉
= 0. (25)

Let i1, . . . , ip ∈ {1, . . . , `} and let γ1, . . . , γq ∈ Φ. Since the function

y 7→
〈
dp+qy P, (hi1 , . . . , hip , eγ1 , . . . , eγq)

〉
,

is homogeneous of degree m + 1 − p− q , according to Taylor formula, it is equal
to

y 7→ 1

(m+ 1− p− q)!
〈
dm+1
y P, (hi1 , . . . , hip , eγ1 , . . . , eγq , y

m+1−p−q)
〉
.

By restricting to h⊕ g1 , this last function is a linear combination of monomials of
the form

xa11 . . . , xa`` x
b1
α1
. . . xb`α`

where
∑`

k=1(ak + bk) = m+ 1− p− q . The coefficient in the decomposition of P
of the above monomial is

1

(m+ 1− p− q)!
〈
dm+1
y P, (hi1 , . . . , hip , h

a1
1 , . . . , h

a`
` , eγ1 , . . . , eγq , e

b1
α1
, . . . , eb`α`)

〉
.

According to (25), this coefficient vanishes if

q∑
i=1

|γi|+
∑̀
k=1

bk 6= 0.

Since
∑`

k=1 bk ∈ {0, . . . ,m+ 1− p− q} , all the coefficients vanish if one of the two
conditions (22) is satisfied.

Proposition 4.5. For i = 1, . . . , `, the restriction of P̃i to Tλ is given by

P̃i(L(λ)) =

mi∑
j=0

λ−jF̃j,i(L(λ)) + λ c δi,`, ∀L(λ) ∈ T (λ), (26)

where c is a non-zero constant.

Proof. Since the degree of P̃i , for all 1 6 i 6 ` is equal to mi + 1, the
restrictions of the functions F̃k,i(L(λ)) (constructed in (18)) to Tλ vanish for every
1 6 i 6 ` and every −mi − 1 6 j 6 mi + 1 and

P̃i(L(λ)) =
∑mi+1

k=−mi−1 λ
−kF̃k,i(L(λ)).
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Let us show that F̃mi+1,i vanish on Tλ , for every 1 6 i 6 ` . Let L(λ) =
λe−β +X + λ−1Y ∈ Tλ , we notice that

P̃i(L(λ)) = λ−mi−1P̃i(Y + λ2e−β + λX).

Therefore the coefficient of degree −mi − 1 is

F̃mi+1,i(L(λ)) = Pi(Y ).

Since Y is an element of g>0 , it is nilpotent. This implies, according to [4, Theorem
8.1.3] that P (Y ) is zero for every P an Ad-invariant polynomial on g .

Let us show that the functions F̃j,i , for all j strictly lower to −1 vanish
and that the function F̃−1,i vanish except for i = ` , in which case it is a constant
function. The extensions x̃i and x̃γ , for every 1 6 i 6 ` and every γ ∈ Φ to g̃ ,
of the coordinate functions (xi, xγ, 1 6 i 6 `, γ ∈ Φ) on g defined in Lemma 4.4
have restrictions to Tλ given by:

xi, 1 6 i 6 `, (type I)
x−γ, if γ ∈ Φ+\β, (type II)
x−β + λ, if γ = β, (type III)
λ−1yγ + 1, if γ ∈ Π, (type IV )
λ−1yγ, if γ ∈ Φ+\Π, (type V )

(27)

here yγ stands for xγ for any γ a positive root. Then, for each Pi an Ad-
invariant homogeneous polynomial on g of degree mi + 1, the restriction to Tλ of
its extension P̃i on g̃ is a combination of monomials of the following form

xp1 . . . xph ,
×
x−γ1 . . . x−γp ,
×
(x−β + λ)l,
×
(λ−1yαj1 + 1) . . . (λ−1yαjk + 1)
×
λ−1yδ1 . . . λ

−1yδq ,

(28)

where αj1 , . . . αjk ∈ Π, γ1, . . . , γp ∈ Φ+\β , δ1, . . . , δq ∈ Φ+\Π, l ∈ N et
p1 . . . , ph ∈ {1, . . . , `} and where the following conditions are satisfied: h+ p+ l + k + q = mi + 1 (C1),

−
∑p

i=1 |γi| − l|β|+ k +
∑q

i=1 |δi| = 0 (C2) .

Of course, it should be understood that if h = 0 or p = 0 or j = 0 or k = 0 or
q = 0, then in (28) the corresponding term is equal to 1.

The first condition simply comes from the fact that Pi is homogeneous of
degree mi + 1 and the second is a consequence of the first point of Lemma 4.4,
claiming that the Pi are homogeneous of degree zero with respect to the root
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weight.
Let us now show that the functions F̃j,i vanish, for every j strictly lower to −1.
For all 1 6 i 6 q the length of the root δi is lower than or equal to |β| = m` .
Furthermore, k is less than or equal to mi + 1, hence to m` + 1. But we can not
have k = m` + 1, because that implies h = p = l = q = 0 and contradicts the
second condition (C2). Therefore k 6 m` , and we obtain the inequality

S =

p∑
i=1

|γi| = −lm` + k +

q∑
i=1

|δi| 6 (1 + q − l)m`. (29)

The lengths of the roots γ1, . . . , γp are positive, and their sum S is positive (or
zero when p = 0). Hence l 6 q + 1. This implies that the monomials that make
up the restriction to Tλ of P̃i have at least l − 1 products of functions of type V
whenever they have l products of the functions of type III. This product contains
one and only one a term in λj for j ≥ 1. Since the other types (I-II-IV) are
polynomials in λ−1 , the restriction to Tλ of P̃i contains only a term in λj for
j ≥ 1, i.e., the restriction of the functions F̃j,i vanish for every j 6 −2.

We now show that the function F̃−1,i vanish except for i = ` in which case
it is a non-zero constant. It follows from (27) that a term in λ appears in the
monomials which compose P̃i that if l ≥ q+ 1. But we know that l 6 q+ 1, then
l = q+ 1. According to (29), this implies that p = 0, and that j = m` . Hence the
condition (C1) becomes h + 2q + 1 + m` = mi + 1, this in turn implies mi = m`

and h = q = 0, then l = 1. The monomials where the term in λ appears are
therefore the product of m` terms of the type IV with one term of the type III,
i.e., the product

(x−β + λ)(λ−1yαj1 + 1) . . . (λ−1yαjm`
+ 1),

where αj1 , . . . , αjm` are a simple roots. But the coefficient in λ appearing in this
case is constant.

Most of the functions F̃j,i, 1 6 i 6 `, j ∈ Z are identically zero (or constant)
after restriction to Tλ . For the remaining functions, we introduce the following
notation.
Notation: We denote by F̃λ the family of the restriction of functions F̃j,i to Tλ ,
for every 1 6 i 6 ` and every 0 6 j 6 mi , i.e.,

F̃λ := (F̃j,i, 1 6 i 6 `, 0 6 j 6 mi). (30)

We can now give the main result of this article.

Theorem 4.6. The triplet (Tλ, F̃λ, {· , ·}R̃) is an integrable system.

Proof. According to the definition of integrability in the sense of Liouville
(see [1, Definition 4.13]) to prove Theorem (4.6), we must show that:

(1) F̃λ is involutive for the Poisson R̃-bracket {· , ·}R̃ .

(2) F̃λ is independent on Tλ .
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(3) The cardinal of F̃λ satisfies

card F̃λ = dim Tλ −
1

2
Rk(Tλ, {· , ·}R̃). (31)

The proofs of these three points are given in respectively Proposition 4.2, Propo-
sition 4.8 and Proposition 4.12, the latter two propositions being given in the next
two subsections.

4.1. The family F̃λ is independent on Tλ . We use an unpublished result
of Räıs [9], which establishes the independence of a large family of functions on
g× g . We stated this result below and refer to [3, Section 1] for a proof.

Theorem 4.7. Let P1, . . . , P` be a generating family of homogeneous polyno-
mials of the algebra of Ad-invariant polynomial functions on g. Let e and h be
two elements of g, such that e is regular and [h, e] = 2e.
For every F ∈ F(g), and every y ∈ g, we denote by dkyF the differential of order
k of F at y . Denote by Vk,i , for every 1 6 i 6 ` and 0 6 k 6 mi , the elements
of g defined by:

〈Vk,i | z〉 =
〈
dk+1
h Pi, (e

k, z)
〉
, ∀z ∈ g, (32)

where, for every x ∈ g and k ∈ N, xk is a shorthand for (x, . . . , x) (k times).
(1) The family F1 := (Vk,i, 1 6 i 6 ` and 0 6 k 6 mi) is linearly independent;
(2) The subspace generated by F1 is the Lie subalgebra formed by the sum of the
all eigenspaces of adh associated with positive or zero eigenvalues.

We now show the independence of the differentials of the family of functions
F̃λ defined in 30 in a particular point of Tλ (which implies the independence of
the family F̃` because its elements are polynomials).

Proposition 4.8. The family of functions F̃λ is independent on Tλ .

Proof. Let h ∈ h , such that [h, e] = 2e . We first prove that F̃λ is independent
at the point L1(λ) := λe−β + h+ e+ λ−1e .
We compute the differential of the function P̃i (valued in C[λ, λ−1]) at the po int
L1(λ). Let a(λ) := A+ λ−1B ∈ TL1(λ)Tλ =

⊕
−|β|6i60 g̃i , we have the equality:
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〈
dL1(λ)P̃i, a(λ)

〉
=

〈
dh+(1+λ−1)e+λe−β P̃i, a(λ)

〉
=

mi∑
j=0

λj

j!

〈
dj+1
h+(1+λ−1)eP̃i, ((e−β)j, a(λ))

〉
=

〈
dh+(1+λ−1)eP̃i, a(λ)

〉
+

mi∑
j=1

λj

j!

〈
dj+1
h+(1+λ−1)eP̃i, ((e−β)j, a(λ))

〉
=

〈
dh+(1+λ−1)eP̃i, A

〉
+ λ−1

〈
dh+(1+λ−1)eP̃i, B

〉
+

mi∑
j=1

λj

j!

〈
dj+1
h+(1+λ−1)eP̃i, ((e−β)j, A)

〉
+

mi∑
j=1

λj−1

j!

〈
dj+1
h+(1+λ−1)eP̃i, ((e−β)j, B)

〉
. (33)

To go from the first to the second line, we have used the fact that the polynomial
P̃i has degree mi + 1 (therefore its differential is of degree mi ).

Since A ∈ g60 , it is of the form A =
∑`

i=1 aihi +
∑

γ∈Φ+
aγe−γ . Since

for 1 6 j 6 mi the integers, respectively mi + 1 − j − 1 + j| − β| + |hi| and
mi + 1 − j − 1 + j| − β| + |e−γ| , which are smaller or equal, respectively to
−j − m`(j − 1) and −j − m`(j − 1) + |e−γ| are strictly negative. According
to the second item of Lemma 4.4, therefore:

mi∑
j=1

λj

j!

〈
dj+1
h+(1+λ−1)eP̃i, ((e−β)j, A)

〉
= 0. (34)

Moreover, B ∈ g>0 is of the form B =
∑

γ∈Φ+
bγeγ . By using again the second

item of Lemma 4.4, we deduce that:〈
dh+(1+λ−1)eP̃i, B

〉
= 0. (35)

Using Equations (34) and (35), (33) becomes:

〈
dL1(λ)P̃i, a(λ)

〉
=
〈
dh+(1+λ−1)eP̃i, A

〉
+

〈
mi∑
j=1

λj−1

j!
dj+1
h+(1+λ−1)eP̃i, ((e−β)j, B)

〉
.

(36)
We denote by H̃j,i the function defined on g× g by:

P̃i(X + λ−1Y ) =
∑mi+1

j=0 λ−jH̃j,i(X, Y ), ∀X, Y ∈ g× g.

We clearly have:

P̃i(X + (1 + λ−1)Y ) =
∑mi+1

j=0 λ−jH̃j,i(X + Y, Y ).

We notice that on g× g>0 ,
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(1) The function H̃mi+1,i(X + Y, Y ) = Pi(Y ) = 0;

(2) The differentials of H̃0,i, . . . , H̃mi,i at point (h + e, e) do not depend on the

variable Y , because according to (35),
〈
dh+(1+λ−1)eP̃i, B

〉
= 0,∀B ∈ g>0 .

These two points imply that

dh+(1+λ−1)eP̃i =

mi∑
j=0

λ−j
∂H̃j,i

∂X
(h+ e, e), (37)

where
∂H̃j,i
∂X

, for every 1 6 i 6 ` and 0 6 j 6 mi , stands for the differential of H̃j,i

with respect to the first variable. Using Equation (37), Equation (36) becomes:

〈
dL1(λ)P̃i, a(λ)

〉
=

mi∑
j=0

λ−j

〈
∂H̃j,i

∂X
(h+ e, e), A

〉

+

mi∑
j=1

λj−1

j!

〈
dj+1
h+(1+λ−1)eP̃i, ((e−β)j, B)

〉
. (38)

Since L1(λ) is an element of Tλ , according to Relation (26),

dL1(λ)P̃i =

mi∑
j=0

λ−jdL1(λ)F̃j,i. (39)

By using Equations (38) and (39), we conclude that

mi∑
j=0

λ−j
〈
dL1(λ)F̃j,i, a(λ)

〉
=

mi∑
j=0

λ−j

〈
∂H̃j,i

∂X
(h+ e, e), A

〉

+

mi∑
j=1

λj−1

j!

〈
dj+1
h+(1+λ−1)eP̃i, ((e−β)j, B)

〉
. (40)

It suffices therefore to prove that
∂H̃j,i
∂X

(h + e, e) are independent as linear forms
on g60 .

Let h′ = h+ e , since e =
∑`

i=1 ei is a regular element of g and [h′, e] = e ,
according to the first point of Theorem 4.7 the family of linear form on g

∂H̃0,i

∂X
(h′, e), . . . ,

∂H̃mi,i

∂X
(h′, e) 1 6 i 6 `, (41)

is independent. These linear forms are given by the gradients Vk,i, for 1 6 i 6 `
and 0 6 k 6 mi , that belong to the space E spanned by the eigenspaces of
positive eigenvalues of adh′ (see the second point of Theorem 4.7). But the space
spanned by the eigenspace of positive eignvalues of both adh and adh′ coincide
with g≥0 . Therefore the restrictions to g60 of the family (41) remain independent.
As a result, the differentials of the family of functions (F̃k,i, 0 6 i 6 mi, 1 6 i 6 `)
are independent at the point L1(λ) and therefore F̃λ is independent on Tλ .
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4.2. The exact number of functions. According to Equation (30), the car-
dinality of F̃λ is related to the exponents mi of g , 1 6 i 6 ` , as follows

card F̃λ =
∑̀
i=1

(mi + 1). (42)

According to the classical relation
∑`

i=1mi = 1
2
(dim g−`) (see [4, Theorem 7.3.8]),

Relation (42) implies that card F̃λ = 1
2
(dim g + `). Moreover, since the dimension

of Tλ is equal to dim g , the relation below is satisfied

card F̃λ = dim Tλ − 1
2

Rk(Tλ, {· , ·}R̃)

if and only if Rk(Tλ, {· , ·}R̃) = dim g − ` . We need therefore to prove this last
equality, which shall be done in Proposition 4.12 below.

The rank of {· , ·}R̃ on Tλ
We show here that there exists ` independent Casimirs on Tλ and there exists
a point L0(λ) of Tλ , such that the rank of the Poisson structure at this point is
dim Tλ− ` = dim g− ` , which proves that the rank of the Poisson structure on Tλ
is dim g− ` .

Proposition 4.9. The functions F̃m1,1, . . . , F̃m`,` , defined in (26), are Casimirs
for the Poisson R̃-bracket {· , ·}R̃ .

We use Lemma 4.10 below to show Proposition 4.9.

Lemma 4.10. (1) For every 1 6 i 6 `, Z(λ) =
∑

k≥0 λ
kZk ∈

∑
k≥0 λ

kg and
Y ∈ g>0 , we have:

F̃mi,i(Z(λ) + λ−1Y ) = 〈dY Pi, P60(Z0)〉 ,

where P60 is the projection of g on g60 ;
(2) At every point of Tλ , the gradients of the functions F̃m1,1, . . . , F̃m`,` are in g̃+ .

Proof. (1) We denote, for every k ∈ N and every X(λ) ∈ g̃ , by (X(λ))k the

k -tuple (X(λ), . . . , X(λ)) and for every P̃ , by dkP̃i the kth differential of P̃i .
The Taylor formula of P̃i at point Z(λ) + λ−1Y is given by:

P̃i(Z(λ) + λ−1Y ) = λ−mi−1P̃i(λZ(λ) + Y )

=

mi+1∑
j=0

λj−mi−1

j!

〈
djY P̃i, (Z(λ))j

〉
. (43)

Recall from (18) that the function F̃mi,i is the coefficient of degree −mi in λ of
the polynomial P̃i . Since Z(λ) ∈

∑
k≥0 λ

kg , Formula (43) gives:

F̃mi,i(Z(λ) + λ−1Y ) =
〈
dY P̃i, Z0

〉
= 〈dY Pi, Z0〉 . (44)
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The polynomial 〈dY Pi, Z0〉 is homogeneous of degree mi + 1, of degree mi with
respect to the variable Y and of degree 1 with respect to the variable Z0 . For all
Y ∈ g>0 , ∇Y Pi belong to g≥0 hence:

〈dY Pi, P>0(Z0)〉 = 0,

where P>0 is the projection of g on g>0 . Therefore, Equation (44) becomes

F̃mi,i(Z(λ) + λ−1Y ) = 〈dY Pi, P60(Z0)〉 ,

where P60 is the projection of g on g60 .
(2) Let X ∈ g60 , Y ∈ g>0 , L(λ) = λe−β + X + e + λ−1Y ∈ Tλ and let
Z(λ) ∈ g̃≥1 . We recall that an element Z(λ) in g̃≥1 has the following expression
Z(λ) =

∑
k≥0 λ

kZk , where Z0 ∈ g≥1 and Zk ∈ g for all k > 0. According to the
first point of the lemma

F̃mi,i(L(λ)) = F̃mi,i(L(λ) + Z(λ)), ∀Z(λ) ∈ g̃≥1.

The above equality implies〈
∇L(λ)F̃mi,i |Z(λ)

〉
λ

= 0, ∀Z(λ) ∈ g̃≥1.

This implies that the gradient of F̃mi,i at every point of Tλ is in g̃+ .

We now prove Proposition 4.9.

Proof. Let G ∈ F(Tλ) and let L(λ) ∈ Tλ , we have
{
F̃mi,i, G

}
R̃

(L(λ))

=
〈
L(λ) | [∇L(λ)F̃mi,i,∇L(λ)G]

R̃

〉
λ

=
〈
L(λ) | [(∇L(λ)F̃mi,i)+, (∇L(λ)G)+]− [(∇L(λ)F̃mi,i)−, (∇L(λ)G)−]

〉
λ

=
〈
L(λ) | [∇L(λ)F̃mi,i, (∇L(λ)G)+]

〉
λ

=
〈

[L(λ),∇L(λ)F̃mi,i] | (∇L(λ)G)+

〉
λ

= 0,

where we have used the result ∇L(λ)F̃mi,i ∈ g̃+ (see item 2 of Lemma 4.10) to

justify the transition from second to third line and the fact that F̃mi,i is an ad-
invariant function on g̃ to obtain the last line.

Corollary 4.11. The rank Rk(Tλ, {· , ·}R̃) of the Poisson R̃-bracket on Tλ is
less than or equal to dim g− `.

Proof. According to Proposition 4.9, for every i = 1, . . . , ` , the functions
F̃mi,i are Casimirs for the Poisson bracket {· , ·}R̃ . Therefore we need to show
that these functions are independent on Tλ . For this, it suffices to prove that
the differentials with respect to the variable X of F̃mi,i , for 1 6 i 6 ` are
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independent. According to the first point of Lemma 4.10, for every 1 6 i 6 `
and every L(λ) = λe−β + e+X + λ−1Y , where X ∈ g60 and Y ∈ g>0 , we have:

F̃mi,i(L(λ)) = 〈dY Pi, X〉 .

Then the partial derivative of F̃mi,i with respect to X at the point L(λ) is equal
to

∂F̃mi,i
∂X

(λ−1Y +X + e+ λe−β) = dY Pi. (45)

In particular, at the point L(λ) = λe−β + e + X + λ−1e , (where e =
∑`

i=1 ei and
X ∈ g60 is arbitrary), Equation (45) becomes:〈

∂F̃mi,i
∂X

(λe−β +X + e+ λ−1e), A
〉

= 〈dePi, A〉 , ∀A ∈ g60 ∩ TL(λ)Tλ.

Since e is regular element of g , according to the theorems of Kostant [7, Theorem
9] and [8, Theorem 5.2], the differentials of the family (P1, . . . , P`) are independent
at e . Moreover, since e ∈ g≥1 , the restrictions to g60 of this family are also inde-
pendent because their gradient are in g≥1 . Therefore the family (F̃m1,1, . . . , F̃m`,`)
is independent on Tλ .

Proposition 4.12. The rank Rk(Tλ, {· , ·}R̃) of the Poisson R̃-bracket on Tλ
is equal to dim g− `.

According to Corollary 4.11, to show Proposition 4.12 it suffices to find a
point L0(λ) ∈ Tλ where the rank of the Poisson structure is dim g−` . We start by
stating Lemma 4.13, the proof of which is a direct computation describing explicitly
the Poisson structure of Tλ . Notice that, although Tλ is an affine subspace of g̃ ,
the Poisson structure obtained by restriction to Tλ is linear.

Lemma 4.13. For all i = 1, . . . , ` and all α ∈ Φ+ , let xi, x−α, yα be the
coordinates functions on Tλ , defined at every point L(λ) = λe−β + e+X + λ−1Y
of Tλ , where X ∈ g60 and Y ∈ g>0 , by:{ 〈xi, L(λ)〉 := 〈hi |X〉 ,

〈x−α, L(λ)〉 := 〈eα |X〉 ,
〈yα, L(λ)〉 := 〈e−α |Y 〉 ,

The expression of the Poisson R̃-bracket on Tλ is given, for every 1 6 i, j 6 `
and every α, γ ∈ Φ+ , by:

{xi, xj}R̃ = 0,
{xi, x−α}R̃ = α(hi)x−α,
{xi, yα}R̃ = −α(hi)yα,
{x−α, x−γ}R̃ = ηα+γNα,γx−α−γ,
{x−α, yγ}R̃ = ηγ−αNα,−γyγ−α,
{yα, yγ}R̃ = 0, where

(46)

ηα =

{
1, if α ∈ Φ+,
0, otherwise,

and Nαγ = ±(p+ 1), with p := max{n | γ − nα ∈ Φ}.
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We now show Proposition 4.12.

Proof. Let b1, . . . , b` be non-zero constants and let

L0(λ) :=
∑̀
i=1

(1 + λ−1bi)ei + λe−β. (47)

According to (46), for every 1 6 i, j 6 ` , the Poisson R̃-bracket at the point L0(λ)
is given by:

{xi, xj}R̃ = 0,
{xi, x−α}R̃ = 0,

{xi, yα}R̃ =

{
−cjibj if α is a simple root αj,
0 otherwise,

{x−α, x−γ}R̃ = 0,

{x−α, yγ}R̃ =

{
Nα,−γbi if γ − α is a simple root αi,
0 otherwise,

{yα, yγ}R̃ = 0,

(48)

where (cij)16i,j6` is the Cartan matrix of g . We denote by γ1, . . . , γdim g−`
2

the

positive roots of g and we choose the indices such that |γ1| 6 |γ2| 6 · · · 6 |γdim g−`
2
| .

It will be convenient to denote by (z1, . . . , zdim g) the system of coordinates given
by: 

zi = xi, 1 6 i 6 `,
z`+k = x−γk , 1 6 k 6 dim g−`

2
,

z(dim g+`
2

+j) = yγj , 1 6 j 6 dim g−`
2

.

By using the formulas of system (48), one establishes the matrix

M = ({zi, zj}R̃)16i,j6dim g

of the Poisson R̃-bracket computed at the point L0(λ) given in (47). We obtain
a matrix of the form

M =

(
0 −ΛT

Λ 0

)
, (49)

where Λ is the following block diagonal matrix of size 1
2
(dim g− `)× 1

2
(dim g+ `)

Λ =


Λ0 0 0

Λ1
...

. . .
...

0 Λm`−1 0

 , (50)

where the 0 aligned vertically at right end of the matrix represents a single column
and not a group of columns, and Λ0 . . . ,Λm`−1 are matrices whose expressions shall
be given later.

Let B =

 b1 0
. . .

0 b`

 and C = (cij)16i,j6` be the Cartan matrix of g ,

we have Λ0 = BC . We recall that{
dim g0 = dim g1 = dim g−1 = `,
dim gm` = 1,∑m`

i=1 dim gi = 1
2
(dim g− `).
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We denote by di the dimension of gi and we denote, for k 6= 0, by (γ1, . . . , γdk) a
basis of roots of g of length k , (β1, . . . , βdk+1

) a basis of roots of g of length k+1.
By definition Λk is the following dk+1 × dk matrix:

Λk =

 Xyβ1 [x−γ1 ] · · · Xyβdk+1
[x−γ1 ]

...
...

Xyβ1 [x−γdk ] · · · Xyβdk+1
[x−γdk ]


T

. (51)

To show Rk(L0(λ), {· , ·}R̃) = dim g− ` it is necessary and sufficient to prove that
the rank of matrix Λ is 1

2
(dim g− `). In turn this is equivalent to show that first

the rank of Λ0 , is ` and that every matrix Λk , for 1 6 k 6 m`−1 is of rank dk+1 .
(1) The Cartan matrix is invertible, and assuming that b1, . . . , b` are non-zero, the
matrix Λ0 = BC is invertible also so that the rank of Λ0 is ` .
(2) We recall that, for every 1 6 i 6 dk and for every 1 6 j 6 dk+1 , we have:

Xyβj [x−γi ] =

 N−βj ,γibp, if βj − γi is a simple root αp,

0, otherwise.

Let 1 6 j 6 dk+1 . For every βj , there exists a index i ∈ {1, . . . , dk} and a index
F (i, j) ∈ {1, . . . , `} , such that:

βj = γi + αF (i,j).

This implies that:

Xyβj [xγi ] = N−βj ,γibF (i,j).

By construction, the above constant N−βj ,γi is non-zero and equal to 1. We prove,
for each simple Lie algebra, for b1, . . . , b` are all non-zero, the rank of the matrix
Λk is dk+1

5, for every k = 1, . . . ,m` − 1.
(a) To prove the result for the classical simple Lie algebras of g of type A`, B`, C`
and D` , we fix an order on the roots of the same length. Then we show that the
matrices henceforth obtained have the required rank.

Case A` : Let g be the simple Lie algebra of type A` and let α1, . . . α`
be the simple roots of g . We choose to arrange the dk = ` − k + 1 roots of
length k of g in the following (lexicographic) order γ1 = α1 + · · · + αk, γ2 =
α2 + · · ·+ αk+1, . . . , γ`−k = α`−k + · · ·+ α`−1, γ`−k+1 = α`−k+1 + · · ·+ α`, and the
dk+1 = ` − k roots of g of length k + 1 in lexicographic order, which gives the
array below where all the decompositions of a root of length k + 1 as a sum of a
simple root with a root of length k and we have, for every 1 6 j 6 `− k ,

βj = γj + αk+j = γj+1 + αj. (52)

5We will verify that the integer dk+1 depends on the choice of the simple Lie algebra g and
of the parity of k and it is written as a function of ` and k .
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The matrix ΛT
k , defined in (51) is of the form:

ΛT
k =



bk+1 0
b1 bk+2

b2
. . .
. . . . . .

. . . b`
0 b`−k


. (53)

By removing the last row of ΛT
k , we obtain a lower triangular square dk+1 × dk+1

matrix Γk , which is of rank dk+1 since bk+1, . . . b` are all non-zero. This implies
that the rank of Λk is dk+1 = `− k .

Cass B` : Let g be a simple Lie algebra of type B` and let (α1, . . . , α`) a
basis of simple roots of g . The positive roots of g have the following expressions

{
λi = αi + · · ·+ α`, 1 6 i 6 `,
λi − λj = αi + · · ·+ αj−1, 1 6 i < j 6 `,
λi + λj = αi + · · ·+ αj−1 + 2(αj + · · ·+ α`), 1 6 i < j 6 `.

To establish the rank of the matrix Λk , we need to discuss following the parity
of k . For k even, we choose to arrange the dk = ` − k

2
roots of g of length k

in lexicographic order (lexicographic with respect to (λ1, . . . , λ`)), to wit γ1 =
λ1 − λk+1, . . . , γ`−k = λ`−k − λ`, γ`−k+1 = λ`−k+1, γ`−k+2 = λ`−k+2 + λ`, . . . , γ`− k

2
=

λ`− k
2
−1 + λ`− k

2
+3, γ`− k

2
= λ`− k

2
+ λ`− k

2
+2 and the dk+1 = ` − k

2
roots of g of

length k + 1 in lexicographic order, which gives the array below where all the
decompositions of a root of length k + 1 as a sum of a simple root with a root of
length k have been indicated on the right column:

β1 = λ1 − λk+2 =

{
α1 + γ2,
γ1 + αk+1,

...
...

β`−k−1 = λ`−k−1 − λ` =

{
α`−k−1 + γl−k,
γ`−k−1 + α`−1,

β`−k = λ`−k =

{
α`−k + λ`−k+1,
γ`−k + α`,

β`−k+1 = λ`−k+1 + λ` =

{
γ`−k+1 + α`,
α`−k+1 + γ`−k+2,

...
...

β`− k
2
−1 = λ`− k

2
−1 + λ`− k

2
+2 =

{
α`− k

2
−1 + γ`− k

2
,

γ`− k
2
−1 + α`− k

2
+2,

β`− k
2

= λ`− k
2

+ λ`− k
2

+1 = γ`− k
2

+ α`− k
2

+1.

In view of the previous array, the matrix ΛT
k , defined in (51) takes the following
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form:

ΛT
k =



bk+1

b1
. . . 0
. . . . . .

b`−k−1 b`
b`−k b`

b`−k+1 b`−1

b`−k+2
. . .
. . . . . .

0
. . . b`− k

2
+2

bl− k
2
−1 b`− k

2
+1



.

We notice that ΛT
k is a lower triangular square dk+1×dk+1 matrix. Its determinant

is a product of a finite number of bi , therefore it is non-zero (we recall that the
b1, . . . , b` all different from zero). This implies that the rank of ΛT

k is dk+1 = `− k
2

.

For k odd, we arrange the dk = ` − k−1
2

roots of g of lengths k in
lexicographic order, to wit γ1 = λ1 − λk+1, . . . , γ`−k = λ`−k − λ`, γ`−k+1 =
λ`−k+1, γ`−k+2 = λ`−k+2+λ`, . . . , γ`− k−1

2
−1 = λ`− k−1

2
−1+λ`− k−1

2
+2, γ`− k−1

2
= λ`− k−1

2
+

λ`− k−1
2

+1 and the dk+1 = ` − k−1
2
− 1 roots of g of length k + 1 in lexicographic

order, which gives the array below where all the decompositions of a root of length
k+ 1 as a sum of a simple root with a root of length k have been indicated on the
right column:

β1 = λ1 − λk+2 =

{
α1 + γ2,
γ1 + αk+1,

...
...

β`−k−1 = λ`−k−1 − λ` =

{
α`−k−1 + γl−k,
γ`−k−1 + α`−1,

β`−k = λ`−k =

{
α`−k + λ`−k+1,
γ`−k + α`,

β`−k+1 = λ`−k+1 + λ` =

{
γ`−k+1 + α`,
α`−k+1 + γ`−k+2,

...
...

β`− k−1
2
−1 = λ`− k−1

2
−1 + λ`− k−1

2
+1 =

{
α`− k−1

2
−1 + γ`− k−1

2
,

γ`− k−1
2
−1 + α`− k−1

2
+1.

In view of the previous array, the matrix ΛT
k , defined in (51) takes the following

form:



952 Ben Abdeljelil

ΛT
k =



bk+1 0

b1
. . .
. . . . . .

. . . b`−1

b`−k−1 b`
b`−k b`

b`−k+1 b`−1

. . . . . .

0
. . . b`− k−1

2
+1

b`− k−1
2
−1



.

By removing the last row of ΛT
k , defined in (51), we obtain a lower triangular

square dk+1 × dk+1 matrix Γk which is of rank dk+1 since bj is non-zero for all j .
This implies that the rank of Λk is dk+1 = `− k−1

2
− 1.

Case C` : Let g be a simple Lie algebra of type C` and let (α1, . . . , α`)
be a basis of simple roots of g . The expressions of the positive roots of g are{

2λi = 2(αi + · · ·+ α`−1) + α`, 1 6 i 6 `,
λi − λj = αi + · · ·+ αj−1, 1 6 i < j 6 `,
λi + λj = αi + · · ·+ αj−1 + 2(αj + · · ·+ α`−1) + α`, 1 6 i < j 6 `.

To compute the rank of the matrix Λk , we discuss following the parity of k . For k
even, we choose to arrange the dk = `− k

2
roots of g of length k in lexicographic

order, to wit γ1 = λ1−λk+1, . . . , γ`−k−1 = λ`−k−1−λ`−1, γ`−k = λ`−k−λ`, γ`−k+1 =
λ`−k+1 + λ`, γ`−k+2 = λ`−k+2 + λ`−1, . . . , γ`− k

2
−1 = λ`− k

2
−1 + λ`− k

2
+2, γ`− k

2
= λ`− k

2
+

λ`− k
2

+1, and the dk+1 = ` − k
2

roots of g of length k + 1 in lexicographic order,

which gives the array below where all the decompositions of a root of length k+ 1
as a sum of a simple root with a root of length k have been indicated on the right
column:

β1 = λ1 − λk+2 =

{
α1 + γ2,
γ1 + αk+1,

...
...

β`−k−1 = λ`−k−1 − λ` =

{
α`−k−1 + γ`−k,
γ`−k−1 + α`−1,

β`−k = λ`−k + λ` =

{
α` + γ`−k,
γ`−k+1 + α`−k,

β`−k+1 = λ`−k+1 + λ`−1 =

{
α`−1 + γ`−k+1,
γ`−k+2 + α`−k+1,

...
...

β`− k
2
−1 = λ`− k

2
−1 + λ`− k

2
+1 =

{
α`− k

2
+1 + γ`− k

2
−1,

γ`− k
2

+ α`− k
2
−1,

β`− k
2

= 2λ`− k
2

= α`− k
2

+ γ`− k
2
.
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Therefore the matrix ΛT
k , defined in (51) has the following form:

ΛT
k =



bk+1

b1
. . . 0
. . . . . .

. . . b`−1

b`−k−1 b`
b`−k b`−1

b`−k+1
. . .
. . . . . .

0
. . . b`− k

2
+1

b`− k
2
−1 b`− k

2



.

We notice that ΛT
k is a lower triangular square dk+1×dk+1 matrix. Its determinant

is a product of a finite number of bi , therefore it is non-zero. This implies that
the rank of ΛT

k is dk+1 = `− k
2

.

We consider now the case where k is odd. The dk = `− k−1
2

roots of g of
length k are ordered by lexicographic order, to wit

γ1 = λ1 − λk+1, . . . , γ`−k−1 = λ`−k−1 − λ`−1, γ`−k = λ`−k − λ`,
γ`−k+1 = λ`−k+1 + λ`, γ`−k+2 = λ`−k+2 + λ`−1, . . . ,

γ`− k−1
2
−2 = λ`− k−1

2
−2 + λ`− k−1

2
+2, γ`− k−1

2
−1 = λ`− k−1

2
−1 + λ`− k−1

2
+1,

γ`− k−1
2

= 2λ`− k−1
2
,

and the roots dk+1 = `− k−1
2
−1 of g of length k+ 1 in lexicographic order, which

gives the array below where all the decompositions of a root of length k + 1 as
a sum of a simple root with a root of length k have been indicated on the right
column:

β1 = λ1 − λk+2 =

{
α1 + γ2,
γ1 + αk+1,

...
...

β`−k−1 = λ`−k−1 − λ` =

{
α`−k−1 + γ`−k,
γ`−k−1 + α`−1,

β`−k = λ`−k + λ` =

{
α` + γ`−k,
γ`−k+1 + α`−k,

β`−k+1 = λ`−k+1 + λ`−1 =

{
α`−1 + γ`−k+1,
γ`−k+2 + α`−k+1,

...
...

β`− k−1
2
−2 = λ`− k−1

2
−2 + λ`− k−1

2
+1 =

{
α`− k−1

2
+1 + γ`− k−1

2
−2,

γ`− k−1
2
−1 + α`− k−1

2
−2,

β`− k−1
2
−1 = λ`− k−1

2
−1 + λ`− k−1

2
=

{
α`− k−1

2
+ γ`− k−1

2
−1,

γ`− k−1
2

+ α`− k−1
2
−1.
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Therefore the matrix ΛT
k defined in (51) takes the following form:

ΛT
k =



bk+1 0

b1
. . .
. . . . . .

. . . b`−1

b`−k−1 b`
b`−k b`−1

b`−k+1
. . .
. . . . . .

. . . b`− k−1
2

+1

0 b`− k−1
2
−2 b`− k−1

2

b`− k−1
2
−1



.

By removing the last row of ΛT
k , we obtain a lower triangular square dk+1 × dk+1

matrix Γk which is of rank dk+1 since bj is non-zero for all j . This implies that
the rank of Λk is dk+1 = `− k−1

2
− 1.

Case D` : Let g be a simple Lie algebra of type D` and let (α1, . . . , α`)
be a basis of simple roots of g . The positive roots of g are

{
λi − λj = αi + · · ·+ αj−1, 1 6 i < j 6 `,
λi + λ` = αi + · · ·+ α`−2 + α`, 1 6 i < `,
λi + λj = αi + · · ·+ αj−1 + 2(αj + · · ·+ α`−2) + α`−1 + α`, 1 6 i < j < `.

As in the case of B` , to calculate the rank of the matrix Λk we study separately
the cases where the integer k is even and odd. Let us start with the case k is
even. We arrange the dk = `− k

2
roots of g of length k in lexicographic order, to

wit: γ1 = λ1− λk+1, . . . , γ`−k−1 = λ`−k−1− λ`−1, γ`−k = λ`−k − λ`, γ`−k+1 = λ`−k +
λ`, γ`−k+2 = λ`−k+1 +λ`−1, . . . , γ`− k

2
−1 = λ`− k

2
−2 +λ`− k

2
+2, γ`− k

2
= λ`− k

2
−1−λ`− k

2
+1,

and the dk+1 = `− k
2

roots of g of length k+ 1 in lexicographic order, which gives
the array below where all the decompositions of a root of length k + 1 as a sum
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of a simple root with a root of length k have been indicated on the right column:

β1 = λ1 − λk+2 =

{
α1 + γ2,
γ1 + αk+1,

...
...

β`−k−1 = λ`−k−1 − λ` =

{
α`−k−1 + γ`−k,
γ`−k−1 + α`−1,

β`−k = λ`−k−1 + λ` =

{
α`−k−1 + γ`−k+1,
γ`−k−1 + α`,

β`−k+1 = λ`−k + λ`−1 =

{
α` + γ`−k,
γ`−k+1 + α`−1,
γ`−k+2 + α`−k,

β`−k+2 = λ`−k+1 + λ`−2 =

{
α`−k+1 + γ`−k+3,
γ`−k+2 + α`−2,

...
...

β`− k
2
−1 = λ`− k

2
−2 + λ`− k

2
+1 =

{
α`− k

2
−2 + γ`− k

2
,

γ`− k
2
−1 + α`− k

2
+1,

β`− k
2

= λ`− k
2
−1 + λ`− k

2
= α`− k

2
+ γ`− k

2
.

Then the matrix ΛT
k defined in (51) takes the following form:

ΛT
k =



bk+1

b1
. . .
. . . . . .

. . . b`−1 b`
b`−k−1 0 b`

b`−k−1 b`−1

b`−k b`−2

b`−k+1
. . .
. . . b`− k

2
+1

b`− k
2
−2 b`− k

2



.

The matrix ΛT
k is a square matrix and we verify that

det ΛT
k =

∏`−k−1
j=2

∏ k
2
i=2 b`−jb`−i det

(
b`−1 b` 0
b`−k−1 0 b`

0 b`−k−1 b`−1

)
.

Therefore det ΛT
k = −2b`−1b`b`−k−1

∏`−k−1
j=2

∏ k
2
i=2 b`−jb`−i , which is non-zero. We

then deduce that the rank of ΛT
k is dk+1 = `− k

2
.

We now consider the case where k is odd. The dk = ` − k−1
2

root of g of
length k are ordered in lexicographic order, to wit:

γ1 = λ1 − λk+1, . . . , γ`−k−1 = λ`−k−1 − λ`−1, γ`−k = λ`−k − λ`,
γ`−k+1 = λ`−k + λ`, γ`−k+2 = λ`−k+1 + ``−1, . . . ,

γ`− k−1
2
−2 = λ`− k−1

2
−3 + λ`− k−1

2
+2, γ`− k−1

2
−1 = λ`− k−1

2
−2 + λ`− k−1

2
+1,

γ`− k−1
2

= λ`− k−1
2
−1 − λ`− k−1

2
,
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and the dk+1 = `− k−1
2
−1 roots of g of length k+ 1 in lexicographic order, which

gives the array below where all the decompositions of a root of length k + 1 as
a sum of a simple root with a root of length k have been indicated on the right
column:

β1 = λ1 − λk+2 =

{
α1 + γ2,
γ1 + αk+1,

...
...

β`−k−1 = λ`−k−1 − λ` =

{
α`−k−1 + γ`−k,
γ`−k−1 + α`−1,

β`−k = λ`−k−1 + λ` =

{
α`−k−1 + γ`−k+1,
γ`−k−1 + α`,

β`−k+1 = λ`−k + λ`−1 =

{
α` + γ`−k,
γ`−k+1 + α`−1,
γ`−k+2 + α`−k,

β`−k+2 = λ`−k+1 + λ`−2 =

{
α`−k+1 + γ`−k+3,
γ`−k+2 + α`−2,

...
...

β`− k−1
2
−2 = λ`− k−1

2
−3 + λ`− k−1

2
+1 =

{
α`− k−1

2
−3 + γ`− k−1

2
−1,

γ`− k−1
2
−2 + α`− k−1

2
+1,

β`− k−1
2
−1 = λ`− k−1

2
−2 + λ`− k−1

2
=

{
α`− k−1

2
−2 + γ`− k−1

2
,

γ`− k−1
2

+ α`− k−1
2
−2

The matrix tΛk , defined in (51) has the following form:

tΛk =



bk+1

b1
. . .
. . . . . .

. . . b`−1 b`
b`−k−1 0 b`

b`−k−1 b`−1

b`−k b`−2

b`−k+1
. . .
. . . b`− k−1

2
+1

b`− k−1
2
−3 b`− k−1

2

b`− k−1
2
−2



.

By removing the first row of ΛT
k , we obtain a upper triangular square dk+1× dk+1

matrix Γk which is of rank dk+1 since bj is non-zero for all j . This implies that
the rank of Λk is dk+1 = `− k−1

2
− 1.

(b) For the exceptional simple Lie algebras G2, F4, E6, E7 and E8 , we check the
result by a direct computation on the software Maple. We give the program Maple

that completes the proof of Proposition 4.12. We restrict ourself to the Lie algebra
E6 (for the other types, we use the same program with a adapted vector R).

When g is the simple Lie algebra of type E6 , the cardinality of the set of
positive roots of g is N := 36. We suppose that the elements of Φ+ are indexed by
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lexicographic order. To each α of Φ+ , we associate a row vector R[i] := [a1, . . . , a6]
such that α =

∑6
j=1 ajαj , where α1, . . . , aλ are the simple roots.

with(linalg):

N:=36:

rank:=6;
R[1]:=[1,0,0,0,0,0]: R[2]:=[0,1,0,0,0,0]: R[3]:=[0,0,1,0,0,0]:

R[4]:=[0,0,0,1,0,0]: R[5]:=[0,0,0,0,1,0]: R[6]:=[0,0,0,0,0,1]:

R[7]:=[1,0,1,0,0,0]: R[8]:=[0,1,0,1,0,0]: R[9]:=[0,0,1,1,0,0]:

R[10]:=[0,0,0,1,1,0]: R[11]:=[0,0,0,0,1,1]: R[12]:=[1,0,1,1,0,0]:

R[13]:=[0,1,1,1,0,0]: R[14]:=[0,1,0,1,1,0]: R[15]:=[0,0,1,1,1,0]:

R[16]:=[0,0,0,1,1,1]: R[17]:=[1,1,1,1,0,0]: R[18]:=[1,0,1,1,1,0]:

R[19]:=[0,1,1,1,1,0]: R[20]:=[0,1,0,1,1,1]: R[21]:=[0,0,1,1,1,1]:

R[22]:=[1,1,1,1,1,0]: R[23]:=[0,1,1,2,1,0]: R[24]:=[1,0,1,1,1,1]:

R[25]:=[0,1,1,1,1,1]: R[26]:=[1,1,1,2,1,0]: R[27]:=[1,1,1,1,1,1]:

R[28]:=[0,1,1,2,1,1]: R[29]:=[1,1,2,2,1,0]: R[30]:=[1,1,1,2,1,1]:

R[31]:=[0,1,1,2,2,1]: R[32]:=[1,1,2,2,1,1]: R[33]:=[1,1,1,2,2,1]:

R[34]:=[1,1,2,2,2,1]: R[35]:=[1,1,2,3,2,1]: R[36]:=[1,2,2,3,2,1]:

#We define a procedure to calculate the length of a root X

long:=proc(X)

sum(X[k],k=1..nops(X))

end:

#We construct a list containing the roots of the same length

lis:=proc(i)

local k, list;

list:=[];

for k from 1 to N do

if long(R[k])=i then

list:=[op(list),R[k]]

fi

od

end:

#Relation between a root i of length k and a root j of length k+1

a:=proc(k,i,j)

local l,res,dL;

res:=0:

dL:=lis(k+1)[j]-lis(k)[i];

for l from 1 to rank do

if dL=R[l] then res:=b[l]

fi;

od;

res

end:

Gammas:=proc(k)

matrix(nops(lis(k)),nops(lis(k+1)),(i,j)->a(k,i,j))

end:

# We verify if the rank of the matrix Γk (that is ΛT
k in the proof of
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# Proposition 4.12) is the number of roots of length k.
verif:=proc(k)

if nops(lis(k+1))-rank(Gammas(k))=0 then 1 else 0

fi

end:

K:=1;

for i from 1 to long(R[N])-1 do K:=K*verif(i)

od:

if K=1 then print(OK)

else print("pas OK")

fi;

OK

5. A conjectured integrable system

We believe that the periodic Full Kostant-Toda lattice and the periodic Toda
lattice are two extremes cases of a string of integrable systems, that we now present.
In Proposition 3.2, we have shown that Tλ is a Poisson submanifold of g̃ , using
the fact, stated in (14), that

Tλ :=
⊕

−m`6i60

g̃i + f,

where f :=
∑`

i=1 ei + λe−β ∈ g̃1 . The same argument shows that T (k)
λ :=⊕

06i6k g̃−i + f is a Poisson submanifold of g̃ for all k = 1, . . . ,m` .

By construction, the phase spaces T (m`)
λ and T (1)

λ are the phase spaces of
the periodic Full Kostant-Toda lattice and the periodic Toda lattice respectively.
Since the differential equation associated to the Hamiltonian 1

2
〈x(λ) |x(λ)〉λ is

Liouville integrable in the two extreme cases, it is natural to ask whether it is
Liouville integrable for all k .

More precisely, it is natural to ask whether the following differential equa-
tion is Liouville integrable for all k = 1, ...,m` :

L̇(k)(λ) = [L(k)(λ), L(k)(λ)−],∀1 < k < m`, (54)

where L(k)(λ) is an element of the phase space

T (k)
λ := λe−β + h +

∑
16j6k

g−j + λ−1gm`+1−j (55)

and L(k)(λ)− is the strictly lower part of L(k)(λ).

Example 5.1. When g is sln(C) and h is the subalgebra of diagonal matrices
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of sln(C), an element L(k)(λ) of T (k)
λ has the following form:

a11 1 0 . . . 0 λ−1a1,n−k+1 . . . . . . λ−1a1,n
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . λ−1ak,n

...
. . . . . . . . . 0

ak+1,1
. . . . . . . . .

...

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0

0
. . . . . . . . . 1

λ 0 . . . 0 an,n−k . . . . . . . . . ann


. (56)

Notice that these differential equations are those that appear in [10], for formal
solutions are given.

For the family of functions that give the Liouville integrability, there is
again a natural candidate, given by the restriction of the family (F̃i,j, 1 6 i 6
`, 0 6 i 6 m`) to T (k)

λ . Again, several of these restrictions vanish or are constant.
It seems that the following families of functions:

F̃ (k) = (F̃j,i, 1 6 i 6, 1 6 j 6 E(k
mi + 1

m` + 1
)

admit a restrictions to T (k)
λ which are independent. At least, we have been able

to check, with Maple, that these restrictions are independent for sln(C) with
n = 2, . . . , 7, and for the Lie algebras Bn for n = 2, . . . , 6 for all possible value
of k . For all the previous cases, we have also verified, by using Maple, that the
rank Rk(T (k)

λ , {· , ·}R̃) = dim T (k)
λ − 1

2
Rk(T (k)

λ , {· , ·}R̃) of the restricted Poisson
structure satisfies the third item of Definition 1.1, which establishes the Liouville
integrability. We therefore think that this should be always true.

Conjecture 5.2. The triplet (T (k)
λ , F̃ (k)

λ , {· , ·}R̃) is an integrable system.

The first difficulty is that, for 1 < k < m` , it is not possible any more to
find in the phase space of T (k)

λ points where we can apply Theorem 4.7 of Räıs: we
therefore probably have to find a suitable generalization of this result. It is very
likely that we have to use a point of the form

L0(λ) = λe−β + e+
∑̀
i=1

bihi +

dk∑
i=1

aie−γi + λ−1

dm`+1−k∑
i=1

cieηi ,

where γ1, . . . , γdk are the dk roots of g of length k and η1, . . . , ηdm`+1−k are the
dm`+1−k roots of g of length m` + 1− k . Also, it is not clear to see at which point
one should compute the rank. It is even far from being easy to guess which ones
of the functions F̃ (k)

λ are going to be Casimir functions. It is clear that only the
functions F̃

E(k
mi+1

m`+1
),i

may be Casimirs functions, but some of them are not. For
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instance, for k = 1, only one of them (for i = `, j = k ) is a Casimir function,
while for the periodic Full Kostant-Toda, all the functions Fmi,i for i = 1, . . . , `
are Casimirs (by Proposition 4.9). For generic values of k , the behavior seems
at first to be quite random. For instance, in the case g = sln(C), n = 7 and
k = 2, respectively k = 3, (cases where the Liouville integrability can be proved
by Maple), the Casimir functions are F3,1, F6,2 , respectively F2,1, F4,2, F6,3 .
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