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Abstract. This is the first of our three articles showing that the Cauchy
Harish-Chandra integral maps invariant eigendistributions to invariant eigendis-
tributions with the correct infinitesimal character. Here we prove that all the
derivatives of the Cauchy Harish-Chandra integral are bounded.
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Introduction

Let (é, el ) be a real reductive dual pair in a metaplectic group é\f) Let © be
the character of an oscillator representation of é\f) Assume G’ is compact and let
(m, ") be two irreducible representations of G and G’ in Howe’s correspondence.
In these terms the First Fundamental Theorem of Classical Invariant Theory can
be written as the following equality of distributions

/é 69910 (g)dg’ = O(9)

where ©, and O, stand for the characters of = and 7’. For a smooth compactly
supported function ¢ on G, the formula

(g = / 6(9)0(99')dg (0.1)

defines a smooth compactly supported function on G’ and

/é 6, 7)¢(9)dg = / 0, (9)6(9)dg.

The Cauchy Harish-Chandra integral (Chc) extends formula (0.1) to all dual pairs
with rank of G’ less or equal to rank of G. One of the goals of this project is to
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prove that this analogue of formula (0.1) provides a smooth compactly supported
function on G/. A key step in this direction is to consider a similar question on
the Lie algebra.

More precisely, let f be a smooth compactly supported function on g, the
Lie algebra of G. Let H be a Cartan subgroup and h be its Lie algebra. The
orbital integral of f on b is

¢(2) = Ty () o f(g-w)dp

where x € ™8, m, /4 is the product of positive roots, g.z is the adjoint action of g
on z and djf is the canonical measure on the quotient space G/H. The functions
obtained this way are characterized (see [3]) by the following four properties

1. ¢ is smooth on h™8,

2. all the derivatives of ¢ are locally bounded on b (boundedness property),
3. ¢ is not necessarily continuous but satisfies certain jump relations (2.3),
4. the support of ¢ is bounded.

In this paper, we prove that functions obtained via C'hc satisfy the bound-
edness property. The forthcoming two papers deal with the remaining problems.
Let (G,G’) be one of the following dual pairs of type I:

(O2p+1,2: SP2n(R)), (SP2n(R), O2pi1.2¢), (O2p,29, 5P2n (R)), (Spgn(R), O2p24),
(UP7Q7UP',Q'>7 ( ;mﬁspp,q)v (Spp,q7 ;m) (02)
In particular, G’ is the isometry group of a form ( , )’ on a vector space V' over

a division algebra D = R,C or H. Let H C G’ be a compact Cartan subgroup,
with the Lie algebra §’. Let

V=Vie )V, (0.3)

j=1
be the decomposition into H’-irreducibles over D. Here V{ = 0 unless G’ =
Ogp+1,24, in which case H' acts trivially on V{ and dim(V[) = 1. There is a

complex structure J' on V' which belongs to §’. More precisely, the restriction
of J' to V| is zero and the restriction of J' to 22;1 V% is a complex structure.
Let J; = J;|V§ be the restriction of J' to V. Then, any element 2’ € §" may be
written uniquely as

7,L/
I Y
r = E x;J;,
Jj=1

where 2, € R. In particular n’ is the rank of G’. Let n denote the rank of G. We
shall always assume that n’ < n. Define the integer p as in [11, (1.12)]. Let 7y
be the product of the positive roots of h in g, with respect to some ordering
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of the roots. Recall the Cauchy Harish-Chandra integral chc, [11] (see (0.7) and
(0.8)).

Let h™& be the set of regular elements in §’. We denote by p a Lebesgue
measure on g.

Let P be a polynomial function on h'. If I # C, we make the following
assumption:

The degree of P in each variable 2%, 1 < j < n’, is less than p, and

if D # C then the function P is even in each variable 2, 1 < j <n'. (0-4)

The evenness of P is not needed until the proof of Theorem 1 in section 10.

Theorem 1. Let n' > 1 and let P be a polynomial function on b satisfying
(0.4). Then, for any constant coefficient differential operator D on b and for any

¥ e S(g),

sup
x' ep’res

D <P(x/)7rg/ (@) / che(@! + 2)(z) du@)) ’ < .

g

Moreover, the above quantity defines a continuous seminorm on S(g).

Theorem 1 holds also for the pair (Ogpi1.24+1, SPs,(R)), with n’ < p+g¢+1.
Since the group Ogp1,24+1 does not have any compact Cartan subgroups the proof
requires some additional notation. We explain the argument in section 11.

Since we do not expect the reader to be familiar with the notion of the
Cauchy Harish-Chandra integral, we offer a brief explanation and motivation for
Theorem 1.

with a non-degenerate symplectic form such that the groups G, G’ are mutual
centralizers in the symplectic group Sp Let sp(W) denote the Lie algebra of
Sp(W) and let

Recall that, given a dual pair (G,G’), there is a real symplectic space W
)
)

()
(W).

Xe(w) = exp(ig(:ﬁw,w» (x € sp(W), w e W).

Then, for any ¢ € S(W), the function

sp(W) o 2’ — /WX:,;/(w) o(w) dw € C, (0.5)

and all its derivatives, are bounded. In fact, the van der Corput Lemma, [16, page
332] (or the formula for the Fourier transform of a Gaussian, [6, Theorem 7.6.1]),
implies a precise description of the behavior of the function (0.5) as z’ tends to
infinity. This leads to the well known estimates for the matrix coefficients of the
oscillator representation, 7, section 8]. (See [10] for more details.)

Suppose the group G’ is compact. Then, for any ¢ € S(g), the formula

ow) = [rulw) v@)dute)  (wew) (0.)
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defines a Schwartz function ¢ € S(W), see [9, Section 6]. Thus, since X, i.(w) =
Xo (W)X (w), the function

wW) 3 = [ [rnalw) @) duta) du e . (0.7)

and all its derivatives, are bounded (and decay at infinity according to the van
der Corput Lemma). Hence, as explained in [11], the Cauchy Harish-Chandra
integral maps the character of an irreducible unitary representation of G’ to the
character of the corresponding (via Howe’s correspondence) irreducible unitary
representation of G.

Suppose the group G’ is not compact. Since the function ¢, defined in
(0.6), is G'—invariant, it is not integrable (unless ¢» = 0). Thus the above
arguments break down. In particular, the integral over W in (0.7) does not
converge. However, if we take the test function ¢ € S(sp(W)) then for every
z’ € sp(W) the formula (0.6) makes sense and defines a temperate distribution on
sp(W). Suppose 2’ is a regular element in a fundamental Cartan subalgebra b’ C
g’. Then, as shown in [11, Proposition 1.8], the wave front set of this distribution
is disjoint with the conormal bundle of the embedding g > z — 2’ + x € sp(W).
Hence, we may restrict this last distribution to g and thus give a meaning to the
formula (0.7). This is the Cauchy Harish-Chandra integral (corresponding to the
Cartan subalgebra b’)

h™e s ' — /vv /Xxurx(w)z/z(x) du(z) dw = /chc(:x’ + )¢ (z)du(xr) € C. (0.8)

g

The function (0.8) is not bounded, but it becomes bounded if we multiply it by
Ty sy, the product of all the positive roots. This is the essence of Theorem 1, which
is stronger than Theorem 1.13 in [11]. Our proof of Theorem 1 is a refinement of the
proof of Theorem 1.13 in [11] and is based on Stokes Theorem and a careful study
of the jump relations of the Harish-Chandra orbital integrals. Also, in Appendix
A we provide a short argument verifying the bounds and the jump relations for
the pair (U;;,U; ;) obtained previously in [1].

The second author wants to express his gratitude to the Université de
Poitiers for the hospitality and support during his visit in June 2003, when our
joint work began. We are also grateful to Abderrazak Bouaziz for several useful
discussions. We would like to thank Detlef Miiller for his interest in our work and
for an invitation to Christian-Albrechts-Universitat of Kiel in January 2004, where
some of the main ideas of this paper germinated. The first author wants to thank
the University of Oklahoma for its support during the academic year 2004-2005
where a part of this work has been done.
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1. Preliminaries

Let 6 be a Cartan involution on g. Let H C G be a compact Cartan subgroup
with the Lie algebra b, stable under 6. Let

g=tdp

be the Cartan decomposition corresponding to 6. Denote by A = A(h, g) the set
of roots of h¢ in gec. Thus

gc=bc® Y gca,

aeA

where gc, is the a-eigenspace for the adjoint action of hc on gc. Since b is
f—stable, so is each gc,. Since dim(geo) = 1, we must have either gc. C £c,
or gc,a € pc. The root « is called compact in the first case, and non-compact in
the the second case. Let A° C A denote the set of all the compact roots, and let
A" C A denote the set of all non-compact roots. Clearly, A is the disjoint union
of A¢ and A"™.
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For = € gc¢, let * denote the conjugate of = with respect to the real form
g C gc. Asin [13, (2.7)], for each root @ € A we fix elements H, € i, X, € gco
such that
Ha7 a] = 2Xo<7 [HayX—a] = _QX—OU
XayXfa] = Hom Fa = _Ha = H,a,
Xo=-X_, if a€ A"
X,=X_, if ae A"

Let

W(Hc) = Normalizerg.(bc)/He, and
W(H) = Normalizerg(h)/H.

Clearly, W (Hc) acts on h¢, and on the dual hi. Also, as we will see later, one
may assume that W (Hc) preserves h (and therefore also h*). Clearly, W(H) is a
subgroup of W (Hc).

Recall that two roots o and g are called strongly orthogonal (L) if

a#+fand a+ 5 ¢ A.

A set of roots is called strongly orthogonal if all the pairs of roots in it are strongly
orthogonal.
Fix a positive root system

T CA. (1.1)

Let ¢ = WNA° and let " = WNA". The group W (H) acts on A" and therefore
also on the subsets of A™. Let U7, denote the family of strongly orthogonal subsets
of U". Let A7, denote the family of all the subset of the form S U (-S), where
S € U%,. There is a bijection between A?, and V7, given by

AL 3SU(=S) = (SU(=8)NT e vl,. (1.2)
The inverse of (1.2) is
UrsS8S —SU(=S) e Al
For § € ¥}, let
[S]=WH)(SU(=8)))NV. (1.3)

Clearly, [S] € %, and U”, is a disjoint union of the sets of the form (1.3). Thus,
we have an equivalence relation on U?,, where [S] is the equivalence class of S.

Recall that for each o € ¥, we have the Cayley transform
cla) = exp(—i% ad(Xs + X_o)) € End(gce).

For S € v

st

let

c(S) =[] ele) (1.4)

a€eS
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and let
h(S) =g N c(S)(beo)-
This is a Cartan subalgebra of g, with the corresponding Cartan subgroup H(S) C
G, and the Weyl group
W (H(S)) = Normalizerg (h(S))/H(S). (1.5)
For any subset A of W, we put

bt ={z € h|a(z) =0 for all a« € A}.

Proposition 1.1.  [13, (2.16)] Every Cartan subalgebra of g is conjugate to
one of the form H(S). Two Cartan subalgebras H(S), h(S') are conjugate if and
only if [S] = [S']. Thus, the conjugacy classes of the Cartan subalgebras in g are
parametrized by the equivalence classes of the sets of the strongly orthogonal roots
i U,

Let
bs = c(S)7'(h(S)) C be. (1.6)
Then,
bs =bsNH%+ ) RH,. (1.7)
aES
Let

Asig = {a€Alalhs) CiR}=S'NA,
Asp = {aeAla(hs) SR},
Asc = A\ (Asir UAsg).
By the composition with ¢(S), the elements of Ag;g correspond to the

imaginary roots of h(S) in gc, the elements of Agr to the real roots, and the
elements of Agc to the complex roots. Let

ASig = {a€Asir|c(S)gca C tel,
Asig = {a€Asir|c(S)gca C pel-

As above, these are the sets of the compact roots and the non-compact roots for
H(S). Define the following subsets of the set W of positive roots:

Usir = VYNAgir, Ysr=VYNAsr, Ysc=VYNAsc,
‘I’fs,iR = ¥n Ag,iR: \Pg‘,iR =vn Ag,iR'

Let

Uirs = {a e Vs ir |a LS},
VS iRnst = {a e VSR | a)S},

where oS means that there exists § € S such that a and g are not strongly
orthogonal.
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Clearly, Vg is the disjoint union of Vg , and W§p . Recall, [13,
(2.61)], that

Wi = (17185 U (0 85\ §4).

Lemma 1.2.  For every a € Vg . there is exactly one o/ € S such that
o' La. Suppose G # Ogpi124. If the set VG i ., is not empty, then G is a real
symplectic group. Moreover,

VS ipnst = 10 € V| LS and there is exactly one o' € S such that a+a' € U"},

Proof.  The first part follows from [13, (2.61)]. Let G # Ogp112, and let
@ € VU5 g, Then «a is orthogonal to o' and a & ' are roots. Therefore, both
a and o are short roots, and « =+ o' are long roots. This can happen if and only
if g¢ is a complex symplectic Lie algebra (see (0.2)). Thus g = sps,(R) or sp,,.
By inspection, we see that W& . = 0 in the second case. Thus g = spy,(R)
and therefore the long roots o £+ o/ are not compact. Clearly, a + o’ € ¥. Since
[pc, pc] C tc, and since ge o C pc, we must have geo C €. Thus a € Ue. [

Definition 1.3.  Let § € ¥y, and a € Vg p. Let

SV S\ )U{a+dtUu{£(a—a)}NV ifac W iR onst>
SUa if € Ugip o

Here, and in the rest of this paper, S\ o/ =S\ {¢'}, SUa =SU{a} and
a’ is the orthogonal complement to «.

Lemma 1.4. /8, Proposition 6.72] Let S € W}, and a € V§;z. We have
SVaeVl and

Vsvar = Ysig N atU{B € VS ik | BLa and BLa}.

Let § € U, and let o € Wy p. The Cayley transform mapping h(S)c to
h(S V a)c, as in [3] is equal to

exp(—ig(c(S)Xa +¢(S)X o)) = e(S)e(a)e(S) ™. (1.8)

Indeed, if a LS then ¢(S) X1, = X1, and (1.8) coincides with ¢(a). If S, then
a € V¢ and

c(S)Xo = c(S) X0y = c(S) H(—=X4o) = —c(S)PX_o = —c(8)e(S)* X _o = ¢(S) X _,

where the last equation follows from the proof of Lemma 2.61 in [13].
Define

u(S,a) = c(SVa) He(S)e(a)e(8) He(S) = (S V a) te(S)c(a).
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This is the isomorphism of h¢ obtained via the composition of (1.8) with
c(SV a)~! on the left and ¢(S) on the right. Clearly, u(S,a) =1 if a € W .
Otherwise, u(S, ) is not trivial.

In terms of (1.7) define a linear map L = Ls : hs — hs by

Ls(z) —z ifz € hsN B,
€Tr) =
s x if v € BoesRH,.

Then, for a € A,

a€Agig ifandonlyif «aolLs=—q,
a€Agr ifandonlyif «olLs=aq,
a€Agc ifandonlyif «@olLs# —a and aoLs# a.

We shall write Lo instead of « o L for convenience.

Lemma 1.5.  Let C' = (—1)2l(Es¥sanYs0l - Then, for x € bs,

[1 at@) = ¢ I lato) (19)

[[e) = ¢ I] |38| I1 ‘Zgg'Hm(xﬂ, (1.10)
[[alz) = ()= [](~a@). (1.11)

Proof.  The equality (1.9) is verified in the proof of Lemma 9 in [5]. Clearly
(1.10) follows from (1.9). Notice that

(—¥)_sc=—Vsc.
Hence,

Ls((=9)-sc)) N (=(=¥)-sc) = (Ls(—=¥)-sc)N¥sc
= (—Ls¥sc)NV¥sc=—((Ls¥sc)N(—¥sc)).

Thus
[Ls((—=¥)-sc)) N (=(=¥)-sc)| = [(Ls¥sc) N (—=¥sc)l,

and therefore (1.10) implies (1.11). n
Definition 1.6.  For a subset A C A define the support of A
A={j=12,3,---,n|there is a € A such that a(J;) # 0}.

Lemma 1.7.  For any subset A C A, let

A =T] ’%‘

acA
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For B € Vg g, let e(V, S, 8) = (—1)2+2%% where

1 1
c = §|L$‘I’s,<c N(—¥Ysc)|, 2= Q‘LSVB\PS\/@C N(—=Ysvsc)| and
c3 = |{a € Vg |a(Hg) <0}

Let x € bs be semiregular, and such that 5(z) =0. Let t € R. Assume that

A(Wsvpr \ B)(z + tHg) = A(Wsvsr \ B)(). (1.12)
Then B+ tH)
s J&j .
A(\IJ‘g’R)(.ﬂﬁ)mE(\p, S, ﬁ) = A(lpg\/,g,R)(l' -+ tH/j) (113)

The assumption (1.12) is satisfied if

a(x +tHp) _ a(x)
la(z +tHg)| o)

(Oé S \DSVﬁ,R \ 5) (114)
The condition (1.14) holds if D =C, D =H, orif D =R, || =2 and SNE = 0.
IfD=R and |B] =1, then (1.14) holds if

B < @) for all € Vs, with 7] = 1. (1.15)

where T = x +tHpg.
Also, (=¥, =8, —p) = €(V, S, 3), and replacing (¥, S, 5) by (—-¥, -8,
—fB) and t by —t in (1.13), we obtain

(.Z' + tHﬁ)

|B(x + tHp)]

Proof.  Let ¥(8) ={a € Ala(Hz) >0, or a(Hpg) =0 and a € U}. This is a
positive root system adopted to 8 (as defined in [3, section 3.1]). In particular,

Usypir = VU(B)siz N B

Dividing the right hand side of (1.13) by the left hand side of (1.13), evaluating at
z and using the formulas (1.9) and (1.10), we get the following expression:

A(—Vsr)(x) €(U,S,8) = —A(—Vsysr)(x +tHp). (1.16)

8] 8]

(_1)03@ <_1)02 Hae\psv/ﬂg laf _ (_1)03@ HaE\I/SvB,RU‘I’SVﬁ,C e
g (== Hae\If&R ﬁ P HaE‘Ps,RU‘I’S,C ﬁ

= (4)%@@
p HO‘E\I’SVB,iRﬁ
|5‘ Hae‘l’(ﬁ)s,ml%\ . o

—_— )
B 1_[(346\11(/3)5,i]RﬁﬁL ﬁ a€ls g |a|

where Agp ={a € Ala(Hg) >0, alSand a # B}. Let sz denote the reflection
with respect to 5. The set Ag s is closed under the operation

a — —sp(a),
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which has no fixed points in this set. Indeed,

—sgla) = —a+ 2%5 = —a+a(Hg)p.
Hence, a LS implies —sg(a) LS. Also,
—s55(a)(Hs) = a(Hj) > 0.

If @ =—sp(a), then @« = —a + a(Hp)F, which implies that « is proportional to
5, a contradiction.
Thus, there is a subset Z C Ag 3 such that

Asg=ZU(—s3(2)), and ZnN(—s5(2)) = 0.
I1 _9___11 a —sg(a) )
a€As g |a| acZ <|a| | - 85(a>|
Notice that for o € Z,

a(z)(=sp(a)(z)) = a(z)(—a(r)) = |a(z)[,

because a(z) € iR. Hence,

Therefore,

This verifies (1.13). The rest is easy. [

Definition 1.8. Let § € V%, and let x € hs be such that 3(z) = 0, but
a(r) # 0 for all a € Wz \ B. We say that x is semiregular with respect to 3.

Let .
4(5) = {1 if 55 ¢ W(Hs),

2 otherwise.

If the Lie algebras s0q), 2, and spy,(R), have the same rank (n = p+q), we
may assume that they have a common fundamental Cartan subalgebra h, so that

A(b@; 502p,2q,(C) - A(b@u 5p2n(R)C)-

Then it may happen that two strongly orthogonal roots «, 5 € A(hc, 509, 24c) are
not strongly orthogonal in A(bhc, spa,(R)c).

Lemma 1.9.  Suppose G # Ogpt12,. Then

a5 = 2 if D =R and B is not strongly orthogonal to S in A(hc, span(R)c),
|1 otherwise.

[f G= OQ}H—LQq then

d(8) = {1 if B is a long root and fNS =0,

2 otherwise.
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Proof. If G is connected then we have the result by Theorem 4.19 of [2].
Otherwise, an explicit computation can be done. The result follows. [ |

Let
W(Hs) = ¢(S) "' W(H(S))e(S).

This is a subgroup of W (Hc), isomorphic to the Weyl group W (H(S)) defined in
(1.5). Let W(Asgr) € W(Hc) be the subgroup generated by the reflections with
respect to the elements of Agg. According to [13, (2.36)], we have

W(Hs) = Stabw(H) (S U (-S)) W(AS,R>

2.  Orbital integrals
Let x be a Killing form on g. Then

I%(l’,y) :—K}(Ql‘,y) ($,y€g),

is a positive definite symmetric form on g. We shall normalize the Lebesgue
measure i on g, so that the volume of the unit cube (with respect to &) is 1.

For any unimodular Lie subgroup E C G, the measure p induces the left
invariant Haar measure on E and a left invariant measure on the quotient G/E.
We shall denote these induced measures also by .

For v € S(g) and z € hs \ h?, define

bs(x) = [ olo) / (g - o(S)(x)) du(gH(S)),

acv G/H(S)

@) = [[la@ [ lg- elS) @) dulgHS))

acw G/H(S)
where ¢ - ¢(S) = gc(S)g™'. Let
Hstp = A(VsRr)Ys. (2.1)

This is the pull-back of the Harish-Chandra orbital integral of v, from §(S) to
bs via ¢(S). For € W&, © a semiregular element of hs with respect to 3, U
a neighborhood of z in hs \ h? and a function f:U — C, define

(F)o(e) = {f)my (@) = Jim flx +itHy) — lim (o —itH;),  (22)
whenever these limits exist.

Theorem 2.1.  (Harish-Chandra,[14],[3, Section 3.1]) Let 3 € Vs and x €
hs semiregular with respect to B. Then, for any w € Sym(hc), the symmetric
algebra of he,

(O(w)Hs)s(x) = €(V, S, B)id(B)0(u(S, B)(w)) Hevpt) (2). (2.3)

Moreover, the function Hst is smooth on the set bs '\ h¥8i= . The above relation
15 called the “jump relation”.
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Here he = hs @ ihs on the left hand side and he = hsyg @ ihsyp on the
right hand side. In particular, if € W5 ., then for w = iHg, O(w) = (iHp)
on the left hand side and d(w) = i0(Hpg) on the right hand side.

Proof. Let ¥(8) ={a € A|la(Hsz) >0, or a(Hg) =0 and o € U}. This is a
positive root system adapted to S. Therefore,

(O(w) (AT (B)s2)¥%)) s(x) = id(B)D(u(S, B)(w)) (A(T(B)s,z N #H)¢7) (x),
(see [3, (ii) of Section 3.1]). Notice that
U(B)sig N BT = Vsypr and U(B)sg = Vsk.
Furthermore, by (1.10),
A(Vsp)s = (—1)2tecn el A(Dg ) y°
and the same with the S replaced by SV . Also, it is easy to check that
A(Vsir) = (—1)lecvsilat)<0 A(W(8)s ).
Hence, the left hand side of (2.3) is equal to
(1) NSl () (A(Wsw)1°))s ()
= (—1)hsVsenCVsoltiotsa ol <0Hig(3)d(u(S, B) (w)) (A(Vsypm) ) (z),

which coincides with the right hand side. |

Corollary 2.2.  For N € N (the set of non negative integers), set

en(u) = Z —u™  (u€bse).

For ¢ € S(g), = € hg\f)qjg"“@, y €bs and N € N, let

(Hs)n(x +iy) = en(iy)(Hs)(z).

Let f € Vs and let © € bs be such that B(z) = 0, but a(x) # 0 for all
a€VUgsp\[. Then

(Hs¥)n)p(x +iy) = (¥, S, B)id(B)d(en(iy) Hsvsto(x)  (y=D y;J; € bs).

i¢S
Proof. We need to check that
u(S, By =vy. (2.4)

This is clear if LS. If SLS, then either G = Sp,,(R) (see Lemma 1.2) or
G = Ogpy1,2¢- In the first case 8 C S, which easily implies (2.4). In the second
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case we may assume that G = O3, S = {iJ5}, f = iJ; and y = y;J;. Then
SV B ={iJr +iJ3,iJt —iJ3} and

u(S, By = c(iJy +iJ3) " e(idy —iJ3) " e(iJ3)e(iJ5).
By a straightforward computation one checks that
u(S, 8)J1 = J,
thus (2.4) follows. ]

Lemma 2.3. /5, Lemma 11] Define a character €y of the group W (Hgs) by
AWsg)(s-z) [[ als-2) = eo(s)A(Tsz)(@) [[ alz) (s € W(Hs), x € s\ "),
acev acV

Then, €y is trivial on the subgroup W(Asg), and for ¢ € S(g),

Hs(s - x) = eo(s)Hsto(v) (s € W(Hs), z € bs).

In particular, the Harish-Chandra orbital integral, Hsv, is W (Asgr)—invariant.
Furthermore, if s € W(Hs) is the reflection with respect to an imaginary root,
then €y(s) = —1.

3. The Weyl Groups

Let (V,(, )) be the defining module for G. Thus G is the isometry group of
the form (, ) on the vector space V over D. Let H C G be a compact Cartan
subgroup, with the Lie algebra . Let

V=Vo@ ) V, (3.1)
j=1
be the decomposition of V into H—irreducibles over ID. Here Vy = 0 unless

G = Ogp+1,94, in which case dim(Vy) = 1 and H acts trivially on V. Recall the
decomposition (0.3). We may and shall assume that

V;=V, (1<j<n) (3.2)

There is a complex structure J on V, which belongs to h. (More precisely, the
restriction of J to Vj is zero and the restriction of J to Z?ZIVJ- is a complex
structure.) We may assume

Furthermore, we have the following orthogonal direct sum of symplectic spaces
W = Hom(V, V') =) > Hom(V;,V}).
=0 j'=0

Let J;=Jly,, 1<j<n.
The following lemma is well known and easy to check.
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Lemma 3.1. For 1 < j <n and 1 < j < n, there are invertible elements
n;; € Hom(V;, V)7 such that

NiriMg = 1, (3.4)
and, for u,v € Vj,

(U’U> Zf G:Sp2n(R) or O;na

(mjr.ju; My jv) = SO0, v, ,
I I W(U,U) Zf G = ng_gq, 02p+172qa Up,q or Spp,q'

J

Let ¥, denote the permutation group on n letters. Define an embedding
X = GL(V), 0:V; 30 = 16(j),;v € Vo)) (ce¥,,1<j<n). (3.5)

It is easy to see from (3.4) that by composing the injection (3.5) with the usual
inclusion GL(V) € GL(W), obtained via the pre-multiplication by the inverse, we
get the following embedding:

X, — GL(W)
o — (Hom(V;,V;)3w — wn;;y€Hom(V,),Vyr)), (1 <j<n, 1 <5 <nf).
(3.6)

Lemma 3.2. IfD =R or H, then there are elements 5; € GL(V,), 1 <j <n,
such that

§ij§;1 - —Jj,
2_J1 iID=R,
J —1 ifD=H.

and for u,v € Vj,

(5;u, 3,0) = (u,v) if G =022 Ogzpr124 07 Sp,,,
jUs Sj —(u,v) if G =Spy,(R) or O3,

Proof. This is straightforward via a case by case analysis. ]

For 1 < 7,7 <n define

ws;t ifD=R,
Let Zo = {0,1} with the addition modulo 2. Define an embedding
Zr — GL(W), 58

e : Hom(V;,Vy) 3w — 53 (w) € Hom(V;,Vy),

where € = (€1, €2, -+, €,) € Zy. By (3.7), we have 3, ; = 1. Thus (3.8) is a group

homomorphism. Recall that b C gl(W) via the follovx;ing action on W:

r(w) = —wx (we W,z ebh).
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For e € Z% and for 1 < j <n let

& = (=1), (3.9)

Corollary 3.3.  The groups %, and Z§ act on by wvia the conjugation as follows

g - (Z l’ij) = ijJU(j) (O' - Zn),
j=1 j=1

ezl = Y &ud; (€3
=1

j=1
In particular, the formulas (3.6) and (3.8) define an embedding
W (Hc) — GL(W),

where
Xn if D =C,
Y X Z5  otherwise.

W(Hc) = {

Recall the character det : W(H¢) — {£1} of the Weyl group W (Hc),
defined by

det(c) = the sign of the permutation o € ¥,
det(e) = [[(-1)7, ez}
j=1
det(ce) = det(o)det(e). (3.10)

Definition 3.4.  Suppose n’ = n. Define a function
W(Hc)98—>y5€f]

as follows. If D =C and s =0 € ¥, let
Ys = znjsgnu s Do(Hom(v,.v;)) Jo()-
j=1
If D#C and s = o¢, with 0 € X, and € € Z}, let
Ys = Zn:sgnu ) >5(Hom(vj,vj)(f) Jo(j)-
j=1

If ' < n, then we enlarge the defining module (V',(, )’), by adding a space with
a non-degenerate form of the same type as (, )’, and define y, as above.

Here, by definition, sgn(.J , )y = 1 if the restriction of the symmetric form
(J, ) to U is positive definite, and sgn(J , )y = —1 if this restriction is negative
definite.



BERNON AND PRZEBINDA 515

The following three lemmas may be verified via a case by case analysis. We

omit the details.

Lemma 3.5.

Suppose G # Ogpi12,. Let f € A" and let sg € W(Hc) be the

corresponding reflection. Then

If a € A" and o

Let S €V, s e

Then

B(ysﬁs) = B(ys) (S € W(H(C))
NB =0, then

B(Ysas) = B(Ys) (s € W(Hc)).
W(Hc) and let y = ys. Define

S(y)={aeSlaly) #0 and anNS\ a =0}

S(y) = {a € Slaly) # 0}

unless G = Ogpoq. Moreover,

and

S\S(y)=8\S) (3.11)

Bl=2  (BeS\SW). (3.12)

Also, if BNS =0, then

For y € b

where J7,J3, -
W(Hc), let

Lemma 3.6.
S e v, define

S(y5ﬁ5> = S(Ys)-
and S € V7, let

prec(y) =Y Jiy) J;.

J¢s

»In

n

is the basis of b*, dual to Ji,Jo,---,J,. Also, for s €

Ys,s = pr§i (ys) (313)

Suppose G = Ogpy124. Let s € W(He) and let y = ys. For

S = {a,feV]|acV" eV alsaVpCS}

= {BesS|Bly) #0, pn(S\B) =0},

Sly) = S1US(y).

Then

and

Sa(y) ={P € S| B(prs\5+ (v)) # 0},

S(y)2{BeV| there is S" € VY, such that fEV, m, S=S'V B and B(prg.(y))#0}.
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If v € Usr and y(prs.(y)) # 0 then

(SV(y) =Sy u{r} (3.14)
Let
S3(y) =S(y)u{BeS|BN(S\B) # 0}
Then
S\S(y) = {BeS|By) =0, n(S\B) =0},
S\Sly) = S\S().
Bl = 2 forall B €S\ Ss(y). (3.15)

Notice by the way that

S1 = YUsr(short) \ S(short).

Lemma 3.7. Let B € Vi, BNS =0, sc W(He), B(ys) #0. Then
Ysgs,SvB = Ys, SV, (316)

Suppose G = Ogpy1.94. Then

) B(ys) if B is long,
Blyeas) = {—B(ys) if B is short.

A(Ysps) = alys) if ae¥, anpf=10,
S(ysﬁs) = S(¥s)

{aeS|laCS\a} if G=0g,, .

Let B € S\ S(y,). Then, by (3.12), we may write the support of 3 as,
B ={a(8).b(B)}. with 1< a(B) < b(B) < n.
Define the following function:
Bs:W(He) = {RC SU(=8)}, (3.18)
({£8]5 € (S\S(:)) N (S\S"), o7 (a(B)) < n’ and 57" (b(8)) < n'}

if G = Ogp24,
Bs(s)=q {£818 € S\ S3(ys), 07" (a(B)) < n’ and 67 (b(B)) < n'}
if G = Ogpt1,2¢
({818 €S\ S(ys), o7 (a(B)) <n'and o7 (b(B)) < n'} otherwise.
where s=0€ X, f D=C and s =o0¢, e € Z7, if D # C.
For R in the image of Bs, let W(R) C W(Hc) be the group generated by
all the reflections sg, f € R. If R =10, then W(R) = 1.




BERNON AND PRZEBINDA 517

The fiber Bg'(R) € W(Hg) is invariant under the left multiplication by
elements of W(R).
Indeed, let a € R and let s € Bg'(R). We need to check that

Bs(sas) = Bs(s). (3.19)

Let 0, € W(Hc) denote the transposition of the a(«) and b(«). Then s, = o, if
D =C, and s, = 04€q, for some ¢, € Z3, if D # C. Therefore,

(0a0)ta(a) = 07'b(a) and (0,0) 'b(a) = o ta(a). (3.20)

Hence, o € Bs(sqa5).

Let ﬁ € 8 \ S(ys), if G ?é O2p+1,2q7 and B & S \ SQ(ys), if G = 02p+1,2q‘
Suppose [ # «. By (3.12) and (3.15), |3] = |a| = 2. Therefore, since 8 L a, we
must have SNa = 0 or B = a. In the first case

(0a0)"'a(B) = c"'a(B) and (040)""b(B) = o~ 'b(B).

In the second case (3.20) holds. Thus, (3.19) follows.

Therefore, we may decompose the Weyl group W (H¢) into the disjoint
union of the fibers of the map Bs, and each fiber into the disjoint union of the
corresponding left cosets:

WHe) = U W(R)s. (3.21)
ReBs(W(Hc)) W(R)seW (R)N\W (He)
Bs(s)=R

If (G,G,) = (02P72q7Sp2n’(R)) or (Sp2n(R)702p+1,QQ)= define W(S,S) - Zg -
W (Hc) to be the subgroup generated by the reflections with respect to all the iJ},
with 1 < k < n’ and o(k) € 8”. Thus for § € W(s,S), o, # 1 may happen
if and only if 1 < k < n' and o(k) € §”. For the remaining dual pairs we let
W(s,S) = {1}. This leads to a refinement of the decomposition (3.21) into a
disjoint union of subsets:

WHe) = | U W(R)sW(s,S). (3.22)
ReBs(W(Hcg)) W(R)sW(s,S)eEW(R\\W (He)/W(s,S)
Bs(s)=R

4. Boundaries and orientations

Fix a strongly orthogonal set § € U7,.

Lemma 4.1.  Suppose G # Ogpi194. Let y = 2?21 y; Jj, with y; = £1. Then

# e {£1,0} (v € M), (4.1)
Proi(y) =y + #i[{a (v € U™ a(y) #0). (4.2)

If B € Wsip and B(prge(y)) #0, then B € V" and fNS = 0. (4.3)
In particular, 5LS.
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Proof.  Let aw € U". Then (up to a sign) —ia € {£2J*, £J £+ J;} for some
a # b. This, obviously, implies (4.1). The relation (4.2) is clear if —iav = 2.J7.
Suppose —ia = J; + Jy, with a # b. Then

ia(y) Yo + Ub

—Vif, =—
2

(Ja + Jb) - _ym]a - bebp

because the condition «a(y) = 0 implies y, = y,. Hence the right hand side of
(4.2) is equal to

Yy — yaJa - beb = Prol (y)
Similarly, we check the case —iav = J; — J;.

It remains to verify (4.3). Suppose € Vg and NS # 0. If 3NS
consisted of a single point then S could not be orthogonal to S. Hence we may
assume that § =i(J} + JJ) for some a # b, and i(J} F J) € S. Hence, prg.(y)
does not contain the terms y,J,, ypJo. Therefore B(prsi(y))) = 0, this is a
contradiction. We verified the following implication -

B € Vs and B(prs.(y) #0= NS =0.
By [8, Proposition 6.72],
(BeVspand NS =0) = e V"
Thus (4.3) follows. |
Similarly we have the following lemma.
Lemma 4.2.  Suppose G = Ogpt194. Let y € b such that y = Z?Zl y; Jj, with
yj =x1. Let € Vs .
1. If B is short, then BNS =10, and therefore B(prgi(y)) # 0.

2. If 8 is long and B(prs.(y)) # 0, then SNS = 0. In particular, 3 is strongly
orthogonal to S.

3. If B(y) #0, then pr&(y) —y+ @iHﬂ.

Lemma 4.3.  Suppose G # Ogpy194. Let y € b such that y =377 | y; J;, with
y; = £1. Define (as in Lemma 3.5)

S(y) ={aeS|aly) #0 andaNS\ a = 0}.
Suppose B € W" is such that fNS =0 and B(y) # 0. Then
(SUB)(y) =S(y)Up. (4.4)

Define
()|
2

acst)) e
Then, for  as in (4.4), x € bs, with 5(z) =0, and t € R,

iBy)
2

Mgy (x) = mm{ 1,

m(sup) () (T + tms(y) () Hg) = [t| msy)(z). (4.5)
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Proof.  The equality (4.4) is obvious. The left hand side of (4.5) is equal to
the minimum of

()] iB(y)
I; 5 @€ S(y); —|6(93+tm (@) 5 Hpg)| = [t| msy) (),
which, by (4.1), coincides with the right hand side. [

Lemma 4.4.  Suppose G = Ogpi194. For y = Z;;l y; J;, with y; = £1, and
for § € ¥, define S(y) as in Lemma 3.6, and let

msip(e) =minf 1.2 o)

aeS@me%5€8@X%W0} (c € bs).

Let 8 € W be such that B(prs:i(y)) # 0. Let © € hs be semireqular with
B(x) =0. Then, for t € R,

i3(y)
2

Msvp)y) (T + tmsey)(z) Hg) = [timsy) (7).

Proof. Suppose ( is long. Then

3 [0+ (@ 2| = Sty ()| P52 5001
~ thmsi ()| P82 = sty o),
because W = +1.
Suppose 8 is short. Then
B+ tmsiy () 22 10)| = ety o) |22 )

= [tlmse)(2)|B(y)| = [timsg)(z),

because |B(y)| = 1.

By definition, LS. Hence, f1S; (see Lemma 3.6). Thus fLS(y). In
other words, a(Hz) = 0 for v € S(y). Since, as we have shown in (3.14) that
(SVPB)(y) =S(y) U, the equality follows. [

Lemma 4.5. Let I = [-1,1] C R. For s € W(Hc) define the following
function (chain):

Css 1 xbso (t,x) = o+ it msy,)(T)yss € bs +il yss.
Then, for B € Vs, such that B(yss) # 0 and for x € bs with B(x) =0,

iB3(ys)
2

Css(t, ) = Cssvs(l, x + tmgy,)(x) Hg)  (tel).
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Proof. We compute:

Css(t,x) = x4 itmgsy,)(T)yss

i8(ys _ i8(ys).
= (z+tmsy,(z) 5(2y )Hﬁ) + it ms(y) (@) (Ys,s + @lﬂﬂ)
1B(ys ,
— (1} + tms(ys)(l’) (2y )Hg) + 1t ms(ys)(ZL’)y&g\/ﬁ
18(ys
= CS,SV[?(l?x_'_th(ys)(x) (Qy )HB>7
and this completes the proof. [ |
Let [Ji,Ja, -+, Ju] be the orientation of the real vector space . Define a
linear map cs : h — bhs by
cs(xr) = z for € bhsnh®,
cs(iH,) = H, for a€S.
Let
[CSJDCSJQu”' 7CSJn] (46)
be the orientation of hs. For € W§ , choose an orientation
[Jf’ Jg? T Jgfl]
of hs Nh? so that
[iHg, P, J5 - J° | = [esTi,csda, - csdy). (4.7)

For s € W(Hc), let [iyss, csJi,csd2, - -+, csdy] be the orientation of hs @ iRys.s,
and let
[in,Sv Jlﬂv JQﬂv T ‘]r[jfl]

be the orientation of hsNh?+iRy, s. Let us orient C, s(1xhs) via the identification
hs 2 — Css(l,2) € Cs5(1 X hs).
Further, let
bs—ips0 = {z €bhs| —iB(z) > 0},

bs—is<o = {z €bs| —if(x) <0},
bsp=0 = {z €bs|p(x)=0}.

Lemma 4.6. With the above notation, we have

I(Css(Ixhs,—ip>0)) = Css(I Xhs,p=0) —Cs,s(0xbs _ig>0) +Css(1 X bs _ig>0) (4.8)
and
I(Cs,s(I X bs,—ig<0)) (4.9)
= —Css(I X bsp—0) = Css(0 X bs,—ip<o) + Cs.5(1 X bs, —ig<o),

where the manifolds on the left hand side are equipped with the induced orientation
(see [15, p.5325]).
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Proof. = We shall check the sign by the first term on the right hand side of (4.8).
By definition,

Css(I X bs_ip>0) = Aityss+x| t €I, v €bs_ig>o}
= ityss +tgiHg+ x|t €1, t3>0, v € hsNh’}
n—1
= {—itgHg +ity,s+ Y ey [t€1, ts <0, t € R},
k=1

Since, by (4.7),

[iys,SchJhCSJQa"'7C$Jn] = [iys,SaiHB7J167J267"' Jﬁ ]

»“n—1

= [=iHg,iyss, J0,JE - TE ),

we see that the term Cy (I X hs g—o) enters with the plus sign. Similarly, we check
the sign by the first term on the right hand side of (4.9). The remaining four signs
in (4.8) and (4.9) are obvious. ]

Let §U% g the set of all functions v : W§,p — {£1}.

An analogous argument verifies the following lemma.

Lemma 4.7.  Let v € §V5p, € >0, and o € V5 . Define

bsye = {zebs| —iBx)y(B) > e B €V},
hS,’y,fi'y(a)aze = {ZL‘ S h8| - IB(QT)’V(/B) > €, 5 € \Dg,iR \ Q, —I()é(l’)’)/(()é) = E}‘

Then,

8(CS,S(IXbS,’Y,€)) - Z /Y(OZ)CS,S(IXhS,'y,fi'y(a)a:e)_Cs,S(OxhS,W,e)+Cs,S(1XhS,W,e)-

O‘E‘I’E,m

5. The chc as a rational function, for pairs (G, G’) with
G’ # Ozpi1,24

In this section, suppose G’ # Og,119,. We shall view the symplectic space W as
a vector space over C, by

iw = J'(w) (w e W).
Then
glc(W) = End(W)”,
gc = g+ J'g Cglc(W),
be = b +J'h Cgle(W),
CLc(W) = GL(W)”".

Let 2p; be the maximal dimension of a subspace of W (over R) on which the
symmetric form (J' | ) is positive definite. Let det : glc(W) — C be the
determinant. Recall the following proposition (see [11, (10.10)]).
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Proposition 5.1.  The distribution chew extends to a rational function of z' €
b and z € gc,
dimgp W
<_1)p+ 2
chew(Z' + 2) =
w ) det(z' + 2)

Let
3=9¢", Z=G", and
W (Hg, Z¢) = Normalizerz, (He)/He € W (Hg).

Lemma 5.2.  The Weyl group W(Hg, Z¢) acts trivially on the space
WY = "Hom(V;,V;)” CW.
j=1

Proof. In terms of section 3,

S if D= C,

WH,Z — /
(He, Zc) {znn,ng" if D # C,

where the group ,,_,, acts trivially on {1,2,--- n'} and the elements of ZS_"I
are viewed as elements of ZJ by the embedding

Zg_n/ > (617 €2, aen—n’) — (Oa 07 e 7Oa €1,€2," - aen—n’> € Zg
Clearly, the lemma follows. [ ]

Recall the positive root system W, (1.1). Let & = —W. Let ®(hc,3¢c) =
{a € ®|gc.a C 3¢} This is a positive root system of the roots of h¢ in 3c. Set

Ta/h = Ha, Ts/h = H a. (5.1)

acd acd(h,3)

Proposition 5.3.  There is a constant w, with u* = 1, such that, for any
polynomial P satisfying (0.4), 2" € b and z € b, we have

P(2")my jiy (2")chew (2 + 2)mg5(2)

imp W _ _
ux/id . Z sgn(s)P(S Le2)mym(s™h - 2)
|W(Hc, Zc)| det(z’ + Z)sW’J' ’

seW (Hg)

where the “sgn” is defined by
mays(5 - 2) = sgn(s) o (2).

This proposition is proved case by case in Appendix B (see Propositions
B.1,B.2,B.3 and B.4).
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6. The chc for pairs (G, G’) = (Sp,,(R), O2p11,2¢)

In this case

chew (2" + ) (6.1)

— ChCHom(v,vg)(xl + 1) - ChCHom(v,vg)L)(Il + ) (z' e h™8 € g),
where the product of distributions is well defined (see [11, (1.8)]). The distribution

ChCHom(V,Vé)(xl + x) = Cthom(V,Vé) (l‘)

is described (for example) in [11, Proposition 9.3]. From now on we assume that
V/+ # 0 and concentrate on the second factor in (6.1).

We shall view the symplectic space Hom(V,V{1) as a vector space over C,
by

iw = J'(w) (w € Hom(V,V{h)).

Let 2p, be the maximal dimension of a subspace of W (over R) on which the sym-
metric form (J' | ) is positive definite. (Since the restriction of J' to Hom(V, V)
is zero, the value 2p, does not change if we replace the W by Hom(V,V{1) in the

above definition.) Let det : glc(Hom(V,V{*) — C be the determinant. Recall the
following proposition (see [11, (10.10)]).

Proposition 6.1.  The distribution chcyomv,v,+) extends to a rational function
of 7 € by and = € g(Vyte,
(_1)p+ 2dimR Hom(V,V{+t)

det(z + 2)Hom(v,v; 1)

Cthom(V,VéH—)(’Z/ + Z) =

Let

3=9¢", Z2=G", and
W (Hg, Z¢) = Normalizerz.(He)/He € W (Hc),

as in the previous section.

Lemma 6.2.  The Weyl group W(Hg, Z¢c) acts trivially on the space
WY = " Hom(V;,V;)” € W.
j=1

This is verified by the same argument as Lemma 5.2.
Recall the positive root system W, (1.1). Let & = —W. Let ®(hc,3¢c) =
{Oé € (I)|9(C,a - 3@}. Set

Tg/p = Ha, T3/6 = H «.

aced acd(h,3)
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Proposition 6.3.  There is a constant u, with u* = 1, such that, for any
polynomial P satisfying (0.4), 2’ € b and z € he, we have

P(2 )1y iy (") chepomevvy 1) (2 + 2) g4 (short) (2)

u ZdimRHom(V’VéL) P(s™! - 2)myy(short)(s™" - z)
= - Z sgn(short)(s) :
AL ’W(Hc, Z(C)’ det(z’ + Z)SWW

SEW(Hc)

where gy (short) is the product of all the positive short roots, and the “sgn(short)”
1s defined by

Tg/n(short)(s - z) = sgn(short)(s) myy(short)(z).

This proposition is proved in Appendix B, Proposition B.5.

7. Convex cones and chc as the boundary value of a holomorphic
function

Fix S € ¥7,. Let
={¢eh”|{(H,) =0for all a €S},
t={¢eh |¢(J;) =0forall j€a, acS)
For a set C' C h*, let
C’={yehl&(y) >0forall £€eC\O0}.
Recall the moment map

W = b*, m(w)(x) = (z(w), w) (x €ebh, weW).

Lemma 7.1. Let s € W(Hc) and let

Iys = (SY N7y (s WH))°, (7.1)
Then
Tos = (S nn(sW"))e, (7.2)
I'is = {yebhl(y, >sW[7/ﬂZ]-e§H0m(Vj,V’) > 0}. (7.3)
Moreover,
Yss € s, (7.4)

where ys.s was defined in (3.13).
IfD=C and s=0 € %, then

nl

Tos= Y (0,003, (ue) Joi) + Z RJ,(;) + Z R/, (7.5)

j=Lo(j)¢S Jj=l0(j)€ j=n'+1

If D # C and s = o€, with 0 € ¥, and € € ZY, then

n/

Das= Y (0,003 s Jog) + Z RJ,(;) + Z RJ,;).  (7.6)

i=10(j)¢S j=l,0(j)esS j=n/+1
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Proof.  Clearly (7.2) and (7.3) are equivalent. Moreover, (7.5), (7.6) and (7.3)
imply (7.4). Also, (7.5) and (7.6) imply (7.2). Hence it will suffice to show that
(7.1) implies (7.5) and (7.6).
Suppose D = C. By Definition 3.4,
Th(a HOIH(V]-, Vj)) = [07 OO)J (ya)J* (4)

and, by Lemmas 5.2 and 6.2,

aWhl = Z ]) (Yo) J*

Therefore

and (7.5) follows.
Suppose D # C. Let 1 < j <n’. Then,

S(HOHI(Vj, Vj)(]) = HOm(VU(j); Vj)ej )

so that /
(W) = Y 10, 00) 5 (4s) i)
j=1
Hence,
St (sWY) = Z [0,00) 5y (Ys) T5 ()
j=Lo(j)¢s
and (7.6) follows. "

Lemma 7.2.  Suppose G’ # Ogpy19,. Let v € hs and let ' € . Then
ker(z' + z) = ker(z' + ¢(S)x) CW (7.7)

and for x reqular,
chew (2" + ¢(S)x) = chew(z' + ). (7.8)
If G = Ogpy1.94, then (7.7) and (7.8) hold with W replaced by Hom(V,V{y*).

Proof. Suppose G’ # Ogpt1,9,. Notice that for a root «a, the Cayley transform
c(a) = Ad(¢(a)), where

mozmmquwu&@mx%geuwy
Hence,

o(S) = Ad(&(S)), where &S8) =[] &a)

aeS
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Therefore,
ker(z' + ¢(S)z) = ker(&(S)(2' + 2)&(S) ™) = &S) ker(z’ + x) = ker (2 + z),

and (7.7) follows.
The left hand side of (7.8) is equal to

(—1)P 2dimR(W) 7y sy ()71 () :(_1)p+\/§dimR(W)Wg//h/(xl)ﬁg/b<$)
det(z" + ¢(S)z)w det(z’ + x)w

Y

which coincides with the right hand side.
The case G’ = Ogp11,2, is analogous. ]

As in section 2, the positive definite symmetric form &£ determines a
Lebesgue measure p on h(S). We transport this measure to hs via the iso-
morphism ¢(S) (see (1.6)).

Let
_ |Stabwan (S U (=5))|

ms = )
[W(H)[ W (Hs)]
so that for any 1 € S(g), we have the following version of the Weyl integration
formula,

(7.9)

/ (@) du(z) = 3 ms /h oy (2)5 () dpu(z). (7.10)

Sev?,
For s € W(Hc), define
msuﬁdime ) ,
mes(s) = Iﬂgf%%?&RSgH(S) G O (7.11)

msgn(shoﬁ)(s) if G’ = Ogpt19, and 0’ =p+q.

The constant u is as in Proposition 5.3 or 6.3. Recall that n’ is the rank of G’.
We denote by U(short) (¥sgr(short)) the set of all the short roots of W
(lIIS,]R)- Let

i U(short) if G' = Ogpi1.245
\j otherwise.

(and similarly for Wgr(short)) and let

To/y = Ha.

acl¥
Put for s € W(Hc¢), sgn(s) € {£1} such that
s8N (8)Tg/y © 8 = Tgyp.-

Theorem 7.3.  Let P be a polynomial on b satisfying (0.4), and let ¢ € S(g)
and and x' € h™e. If G' = Ogpi19, with p+q > 1, we can assume that the
symplectic space { , ) and the positive root system W are such that

<J, >Hom(V,V6) >0 and Iﬁ(]) <0 fO’I’ all B ev. (712)
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Then, for any dual pairs (G,G") (see (0.2)),

P(x')ﬂg//h/(x')/chc(x’—i—x) Z Z ms(s

g Sev, seW (He)

. P(s™ - (@+iy)mp(s - (@ +iy) =
yersljsrflyao /bs det(z' + = + iy) gy Al=Vor) (0 Hs(2)du(z),
(7.13)
where A(—‘i’s,ﬂg) = (—1)‘®3’R|A(@3,R) = Hae\i,s’R ﬁ

Proof. First, we verify (7.13). Suppose @ is compactly supported in a com-
pletely invariant open subset of g, which is disjoint with the singular support of
the distribution che(a’+ ). Then there is € > 0 such that for any S € U7, ,

|det(z' + x) o'l > € (z € supp ¢s, s € W(Hg)).

Hence Proposition 5.3 and (7.10) imply the formula (7.13) with y = 0, and hence
with y — 0.

Let € g be a semisimple element in the singular support of the distribution
che(z’ + .). Since this distribution is conjugation invariant, we may assume that
there is S € U7, such that h(S) is a fundamental Cartan subalgebra of g*. Let

L (07) = {0 € Wy | @)aca € g2} = {a € Wh a0 o) (&) =0},

This is a positive root system of non-compact imaginary roots of h(S) in gZ.
Schmid’s description of the Cartan subalgebras (see Section 2 of [13]) shows that
any Cartan subalgebra of g is G-conjugate to one of the form b(S), with

S=---((SVa)Vay) - Va, e (7.14)

where {ay, a9, -+ ,ai} C v iR(gi”) is a strongly orthogonal set. We shall denote

by W7 (g%) the set of all the strongly orthogonal sets which occur in (7.14). In
particular, we have

S28  (Sely(e"). (7.15)

Since the element 2’ + & € sp(W) is semisimple, the restriction of the
symplectic form ( , ) to ker(z’ + &) C W is non-degenerate. Furthermore, as
checked in [11], the restriction of the pair (G*, G') to ker(z' + ) is isomorphic to
the direct sum of the pairs (U,,, Uy), with the appropriate p and ¢. Let U C g°
be a slice through 7, see [17, I, page 26], such that

ker(z' + z) C ker(2' + ) (xel).
From now on, we assume that
supp ¥ C G -U. (7.16)

Let 3(g%) denote the center of g®. Then 3(g* Define

)’ker(xur:?;) C b’ker(xur:?:)'

= {y € 3(95:) | (y, >ker(m/+5;) >0 and y|ker(xl+a})l = 0} (717)
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where ker(z'+2)t C W is the orthogonal complement of ker(z’ + ), with respect
to the symplectic form. Then, by [11, (9.3)], the left hand side of the equation
(7.13) coincides with

i P () /G - / che(a + @ +iy) | det(ad () g2
U(g - =) dp(x) du(gG®). (7.18)

The formula (1.11) shows that for x € g,

|7Tg/h(x)’2 = Mo (¥) g5 () = mepp(x ‘\I]S ¥ H azr
aev

Hence, by combining Proposition 5.3, (7.15) and [4, Theorem 1.5], we see that
(7.18) coincides with

im Y Y mals /P(S1-<w+iy))ﬂ5/h(_81'(w+iy))

~ ! !
Vs Um0 O ) e det(z" + 2 + iy) ywo

(~=D)Ms#lys(2)du(z). (7.19)

In order to shed some more light at the situation recall that we have the
following decompositions

W = ker(z' + 7) @ ker(z’ + 7)*,

g =49 |ker(a:'+5c) Do |ker(:c'+5;)l’

g =0100m 3 Do,
where each g7 is isomorphic to some u,, ., 1 <i < m. Let g7,_,
and let

- g“ker(muﬂaL

h;=h(S)ng; (1<i<m+1).
Then )
HS)=b1 Db @ Dby @ b1,

where
b Ch (1<i<m)

is an elliptic Cartan subalgebra of g¥. Moreover,

m+1

\I]?t x U \Ijst gz

is a disjoint union, where for 1 < i < m, the U7 (g¥) is the set of all the strongly
orthogonal sets of the positive non-compact (imaginary) roots of h; in g7 and
U7 (gl 1) contains S. In particular for any such root a the support o has two
elements and the function det(z’ + z)~! is locally integrable over the subspace

(Z CJ]) Nbsva-

JEa
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We may repeat this argument adding more roots. Hence, the condition (7.16) on
the support of ¢ implies that for each S € ¥, (g?),

det(2’ + ) 14s(z) is locally integrable over (Z (CJj> Nbhs.

JEa

Fix s and S asin (7.19). Let [ 57 =

{y € by, >swh’nker(z/+gz) > 0, y'ker(x'+gz)L =0, and J(y) =0 for all j € S}.

Then every element y € I'y s may be written uniquely as y = y; + y2, with
y1 € I's 5 and y2|ker(x/ va) = 0. Hence, as a generalized function of z € hs applied

to ¢S,

lim  det(z’ + 2 +iy),

yel'z, y—0

= lim det(a/ +x+iy)}

yel'z, y—0

= lim
y€l's s, y—0

= lim
yEFs,& y—0

= lim
yels s, y—0

det(z’ + x +iy) !
det(z/ + x +iyy) 7}

det(z’ + = +iy)

sWh’

det(z’ + x) sWh' nker (a/+a) L

det(z' + )7}

sWh’ ﬂkeI‘(:r’+x

sWh' nker (2/+) sWv' nker (a/+a) L

det(x + 1z +iya)

sWv' nker (2/+& sWh' nker (' +a) L

sWhH’"

Thus we may write the limit after the summation in (7.19), and replace I'; by
I's.s. Hence, by localization (see [17, I, page 18]) the equation (7.13) holds for an
arbitrary function ¢ € S(g). This completes the proof of (7.13).

For (7.13), we sketch the idea, without going into the localization details as
above. Let § € U7, and = € hs. Then, by Lemma 7.2,

che(a' + ¢(S)w) =chcromv,vy) (¢(S)T)chenomvvy 1y (2 4 ¢(S)z)

=chciom(v.vy) (€(S)T)cheaomv vy 1y (2" + ).

Let U ={i(J:r £ J)|1<j<k<ntuU{2J:|1<j<n}. Then
J k J

ChCHom(V \V/i ) (ZL’/ + C(S) )

j%ﬁ

x.
jgs !

=T

j€S| ‘7| ]%S i j€S(long)

onin= |S\

H% =

JES(short) |:L‘] |

= H KN 2 (yiStshort)
jeS(long) Li eS(lon, )|xj| jE€S(short) J
\S short)| H H
Lj j€S(long)

= 4ni—\§|+\s(long)|(_1)|5(shm~t)| H 1 . H —a(z)

:4”1_[

a€e¥(long) N

—a(z)

ae¥(long)

H —o(x)
a\x
aeS(long)

aeS(long)
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Hence,

chemomvvy ((S)z) - [ (—e(@)) - A(=Tsp)(2) (7.20)

ae¥(long)

= 4" A(—Vsr(short))(x).

Notice that in the formula (7.20) the symplectic form (, ) and the positive root
system W are linked together by the relation (7.12). Therefore, by Proposition
6.3,

) [ /@) - che(@’ + ¢(S)z) - [] (—elx)) - A(=Tsp) ()

o’ev’ acV
= chegomv,vy) (2 4 ¢(S)x) H (—a(z)) - A(—=Vsr(short))(x)
ae¥(long)
H O{ ChCHorn(V V’L)(x +C(S)$) (-OZ(IL’))
a’ev’ ae¥(short)
=4"A(—VYsg)(x H o/ (2') - chepomvvy ) (2 + c(S)z)me s (short) (z)
a’'ew’
: /L
U\/idlm]RHom(VNO )
=4"A(—-V¥ hort
A=W (short)) () s
P(s7t- hort) (s~ -
Z sgn(short)(s) (¢ dx)tﬂé/,h(s ort)s™ -z)
seW (He) S (I +‘r)sWh/

2n’—n|W(HC’ Z@)|

Z sgn(short)(s)

SEW(Hc)

P(s™! - x)m,p(short) (s~ - x)
det(z' + ) gy

A(=VUgsg(short))(x).

This, combined with the Weyl integration formula (7.10), implies (7.13). [

Theorem 7.4. Under the assumptions of Theorem 7.3, let z = x + iy, and let

() = ms(s) 2 A (o).

Then, for any 1 < j <n/,

o) (P (a) [ ehela + ot auto))

g

-3 > lw / Fows(2)0(s - J)(P(s™ - 2)Histb())dpa(x).

S y—>0
Sevn, seW(He) bs

Remark. Notice that the function Hs?y does not have to be smooth on hg.
However, it is smooth on the complement of the zero set of all the non-compact



BERNON AND PRZEBINDA 531

imaginary roots. The derivative

s - J)(P(s7" - 2)Hsth(x))

stands for the usual derivative on that set. In other words the integral is over
hs \ h¥Si rather than bs.

We shall prove this theorem via a case by case analysis in Appendix C.

8. Differential forms

Recall the symmetric form &, which determines the measure p. Define the
following n—form on the n—dimensional complex vector space h¢:

H R(J;, JNY2ATEd TS - - dJE

For § € U7, and for s € W(Hc), let
ns(s) = mg(s)it!. (8.1)
Let N € N. Define

P(s™! - 2)myp(s™! - 2)
det(z" + 2) o'

A(=Usr)(2)(Hs)n()v(z)  (8:2)

Vs,:(:’,S,N(Z) = 715(8)
where z € hs \ h¥SEYSik |y € hs, and 2 =z + iy.

Remark. Though the differential form (8.2) lives in the complexification of a
Cartan subalgebra of the Lie algebra of the group G, we are going to use it in the
context of a dual pair (G, G’), hence the distinction of the two cases G' = Ogp11.94

and G’ 7£ 02p+l,2q-

For a function f defined on a subset of h¢, and for a root § € W, let

(fvis ={Nsv,
where (f)g is the jump of f defined in (2.2).

Lemma 8.1.  Let 3 € Vi, with NS = 0. Suppose G # Ogp119,. Then

ms

= 2.
msvg
Suppose G = Ogpy1.94. Then
1 if S =0 and B is short,
m,
- S ={9+1 if S consists of long roots only, |S1| = 21, and [ is short,
SvB

2 otherwise.
(8.3)
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Proof. If G % Ogpt1.24, This can be easily proved using [13]. Otherwise, an
explicit computation can be done. u

Definition 8.2. Let € V%, NS = 0. Put

d(S, f) = d(B)

ms

mesvpa

Lemma 8.3.  With the notations of the previous definition, suppose G # Ogpi1.94.
Then
(s, p) = 2.

Suppose G = Ogpy194.- Then

(2l +1)2 if S consists of long roots only, |Si| = 21, and B is short,

d(S,5) =14 if S # 0 and is not as in the previous case, and (3 is short,
2 otherwise.

Proof. If G is a connected group then the results of [13] give a complete

description of the Weyl groups. Otherwise these groups can be described explicitly.

[ ]

Lemma 8.4. Fiz S € VY, s € W(Hc) and § € Vg, with NS = 0. Let
r € bs be semireqular with B(z) = 0. For y € hs \ b® set = = x +iy. Let
F=a+ 28, andlet §j =y 2L Hy, s0 that =3 +ij. fD=R and |5| =1,
assume that the element T € hsys satisfies the condition (1.15). Define

PG 2)g(s2)
det(z" + 2) v
Bliy)

Oen(TL Hy +19)(Hsust) () v(2). (8.4)

Tsa! SvB,aN(2) = Nsvp(s) (—Tsvpr)(E)

Then

(Vsar,s,8)8(%) (8.5)
—Ts,z' SVB,3,N(Z if B is a long root and G' = Ogpi1 .94,
= —d(S,0) {wm () el

B(;) Tsa svppN(2)  otherwise.

Proof.  Let G’ # Ogpy124. By Corollary 2.2, (8.1) and (8.2),

-1

P(s™ - z)myp(s™" - 2)
T T 2) o A(—VYsr)(z)

e(U, S, B) d(en(iy)) Hsvst(z) v(2).

(Vsars.n)p(z) = d(S, B) nsvs(s)

Since, by (1.16),
A(=Usvsr)(@)

B f( 0 (2)e(W, S, B),

|16(2)]
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the equality (8.5) follows.
Let G' = Ogpy1.94. By Corollary 2.2, (8.1) and (8.2),

Pls™ (571
det(z" + 2) v
(¥, S, 8) d(en(iy)) Hsvpt (z) v(2).

(Ve 5.)5(2) = d(S, B) nisus(s) %) A~ ws n(short))(2)

Since, by (1.16),

A(—Vsysr(short))(z)

_ JA(=Vsgr(short))(z)e(V, S, B) if § is a long root,
B —%A(—\I/&R(short))(x)e(\ll,S, B) if B is a short root.
The equality (8.5) follows. ]

Corollary 8.5.  With the notation of Lemma 8.4, let sg be the reflection with
respect to 3. Then,

(Vs ,s,N)8(85 - 2) = s81(85)(Vsps,07,5,n)5(2)-
Proof. Let G' # Ogpy1.24. The left hand side is equal to

P((sgs) " - 2)myn((s5s) " - 2)

ns(s) det(z' + 2),_ o A<_\PS’R)(851 )
(U, 8,8)id(B)0(en(isy" - y)) Hsvsb(sz' - ) (s - 2)
— ns(s5)sen(s5) P((sps)"" - 2)mym((sps) " - Z>A(—\IIS,R)(9:)

det(a’ + 2),, o
e(U, S, B)id(B)0(en(iy))Hsvp(x) v(z) det(sp),

by Lemma 2.3. Since, by (3.10), sgn(sg) det(sg) = 1, this coincides with the right
hand side. The case G’ = Ogp119, is entirely analogous. The difference is that

1 if 8 is short,

sgn(sg) det(sg) = —sgn(sg) = {_1 if 8 is long .

9. An application of Stokes Theorem

For a root a, let

5= {a if o is short and G = Ogp41 94, (9.1)

% otherwise.

For S € U7,, s € W(H¢) and 8 € S(ys) define

Tis(s) = {2 € s | 130)] < min{1, (@) o € S\ AL} Shs. 02
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Also, let
= U Tss(s)
BES ys)
If there is S € U7, such that
S=8VB, eV BNS =1, (9.3)
then
1B(ys
Ts.5) = {o -+ s o) |0 <1<y

The condition (9.3) holds, with Sz = S\ f unless G = Og,419, and f ¢ S. If,
in addition 8 € W¢(short) and there is a € U"(short) such that aV 5 C S, then
(9.3) is satisfied with S = (S\ (@ V 8)) V a. In the remaining cases (9.3) does
not hold.

Furthermore, for G’ # Ogp 4194, 2 € §™8, S € U7, s € W(Hc), 5 € Ysp,
v €bhsNb?, yebhs\b?, 2 =ux+iy and a non-negative integer N, set

Tsar,5,8,N (%) (9.4)

Pl - 2)myyls™ - 2)
ot o AR () ex () (Hst) (&) (),

where z5 = = + @H 5. Under the condition (9.3), the definition (9.4) coincides
with (8.4).

Theorem 9.1. Let n’ > 1, N € N and let P be a polynomial function on b’
satisfying (0.4). Then, for ' € h™8 and 1 € S(g),

P!y () / che(s’ + 2)(x) du()
. /SM v+ 3 Y / Ve

seW (H 0£Sew™, seW (He) Y Co.s (1 (05\Ts(5)))
D DY Z / ’/s,oc’,s,N — Tea! SB.N)
0#£Sev™, seW (He) BES(y Cs,s(1xTs g(s

YD / vy sy +E, (9.5)
s,s(Ixbhs)

Sewn, seW (He) ¥ €

where

( B .

Z Z / QWTs,x',s,ﬁ,N if G = Ogpi1,2¢
SeVvy, BeV s r(short),seW (Hc) Cs,5(1xTs,5(s))

E = .

Z Z 27—5,3»"737571\7 if G' = 02p+1,2Qa

Seu™, BeS(long),seW (He) ¥ Co.5(1xTs,5(5))
i8(ys)>0

0 otherwise.
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The relation (7.12) implies that £ = 0, if G’ = Og,+1. Also, if G’ is
compact, then
S(ys) =S (S eV, seW(He)). (9.6)

As we shall see in the next section, (9.6) implies that (9.5) is a smooth function of
. If G = Ogpy1, then E = 0 because there is no non-empty S. In fact, if G is
compact then U?, = () and therefore, as we shall see in the next section, (9.5) is a
smooth function of 2.
If G = Ogpt194, then (9.17) below, implies that for any s € W(Hc),
S eV and 5 €S8; (see Lemma 3.6 for the definition of S;),

B _ B
o1 Ts,x! S,8,N = — TSﬁS z',S,B,N -
Cos(1xTs 5(s)) 1Bl Capors(1xTs 5(s59)) |5l

Also, B(yszs) = —B(ys). Therefore,

RO ED VNS

SE\IJ?t BES: SEW(HC |ﬁ ys >0 .s S 1><T$ 5

5 s 5
S B T T e

Sevy, BeS1 seW (H

|Tsx’$,8N

Proof.  Notice that, in terms of the form v and the orientation (4.6), the Weyl
integration formula (7.10), may be rewritten as follows:

/g b@)du() = Y msid / Sy

Seun,

SHD DECELER Rl e
Sevr, bs

- ¥ m8i|8|<_1)|‘Ps,R|/ T AW s 1) (A(Ws g )50
Seun, bs

- Z msil® |/ g/ A(—Vsr) Hst v, (9.7)
Sevy,

where the second equality follows from (1.11). By combining (9.7), Theorem 7.3,
(8.1) and Lemma 4.7 with Stokes Theorem, [12, Theorem 16.1.6], we see that the
left hand side of the equation (9.5) coincides with

Z Z Z i (/cs,s(lxhsﬂ,g)ys’zlﬁ’]v

Sevy, seW(He) 7€3¥5 g
DRI s [ e |- (98)
,36‘112 R CS,S (IXhS,-y,fiB'y(B):e) CS,S(IXhS,’Y,E)

We see from Lemma 4.6 that

hm ’y(ﬁ)/ Vs,x’,S,N:/ <Vs,x’,$,N>B- (99)
=0 Cs,s(IxXbs  _igv(8)=c) Cs,s(Ixbs,p=0)

VESYS ik
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Since v is a form of top degree on the complex vector space h¢, the restriction of v
to any proper complex subspace is zero. In particular, if 3 € Vs p and 8(yss) =0,
then the restriction of v to Cs s(I X hs o) is zero. Therefore, Definition 3.4, (4.3)
and Lemma 4.2 imply that the integral on the right hand side of (9.9) is zero unless
B(ys) #0 and NS = (). Hence, (9.8) may be rewritten as

E E / Vsa! SN
Se\pnt SGW HC CS,S(IXhS)
+ > / (Vs s,N)8 — / Vs SN |-
Cs,s(Ixbs,p=0) Cs,s(Ixbs)

ﬁE\II" S,iR> /8 ys 760
ﬂms 0

Corollary 8.5 implies that,

/ (s} = = siss) | Vopsar s}
Cs,s(Ixbs s=0) 55Cs,s(Ixbs,5=0)
Hence,
/ (Vsar 5.N) 8
Cs,s(IXbs,g=0)
Z / <Vs,x’,S,N>B- (910)

SsEW (He) Cs 5~ SEN(ss )88Csgs.5)(IXbs 3=0)

seW (He)

Let © € hsp—o and let ¢ € [-1,1]. Then, by Lemma 4.5,

18(ys
C&S(t, J]) = C&Svg(l, T+ tmg(y5)<£€) /B(Qy >Hﬂ) (9.11)
For G = Ogp41.24, We have
1 if 3is 1
sgn(short)(sg) = it fis ‘ong,
—1 otherwise.
By Lemmas 3.5, 3.7 and (3.16),
SBCSBS,S(ta {L‘) (912)
_ Cssva(l,x — sgn(short)(sf;)tmg(ys)(x)%Hg) if G = Ogpt1,245
Cssvp(l,x — tmg(ys)(l‘>lﬂ(Tys)Hg) otherwise.

Let

Tsups(s) = {90 + tms(y,)(7) ‘iﬁ(st) = } '

We view vaﬁyﬁ(s) as a function of ¢ and z, with the ¢ varying from 0 to 1. We

put
L 1B(ys)
ST
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Then,
Cos(I X s p—o) = Cosva(l x Tgy; 5(s))
If G = Ogpt124, then

—SEN (short)(sg)eg. s
58Cs55.5(I X Bsp—0) = Cssva(1 X Tgvggg( A O)

If G 7é 02p+1,2q7 then

83635573(1 X f)g}ﬁ:o) = Cs,S\/B(l X TS\fgSB( ))

Let G/ 7£ 02p+1,2q- Then, by (911) and (912),

(Cs,s + 88Csss.5)(I X bs o)

_ Cs,svp(1 X Tsw /3( s)) + sgn(short)(sp)Cssvs(l X Tsyg, ,3( s)) if G = Ogzpi1,2,
C&Svﬁ(l X TS\/B ﬁ( )) + Cs,Svﬁ(l X TSVB 5( )) otherwise.

ThU_S, for G = Ozp+1’2q,

(Cs,s + 88Css5.5)(I X bs o)
_ Cs,svp(1 X T;vﬁ 5( s)) + Cs,svp(l X Tsyg, B( s)) if B is long,
2C,svs(1 X Tdy5 5(s)) if 3 is short.
For G # Ogpt12g and G’ # Ogpi1,24,

(Cois + 5Cas5.5) (I X s p=0) = Cssvp(l X Ty 5 5(5)) + Casvp(l X Tgy 5 5(5)),

and for G' = Ogp11.9,

(Cs.s — sgn(short)(sp)ssCsys.s) (I X bsp—o)
= Cosvp(1 X T3 5(s)) — sgn(short)(sg)Cssvp(1 X Tgyg5(s)).

Furthermore,
Blx + tms,) () Hp)
|B(z & tms(y,)(x) Hs)]

Notice that if D = R and |3| =1 then the elements of the set Tsyg (s) satisfy the
condition (1.15). Hence, by Lemma 8.4, if G = Ogp11,2, and S is long, then

= sgn(=+t).

/ <Vs,x/,S,N>B (913)
(Cs.s+55Csgs,5)(Ixbs,p=0)

= / <Vs,x’,S,N>B+/ (Vs ' SN)B
Cs,S\/B(lXT

SV, 3( s)) Cs,svp(1xTg, SVB, ,3(3))

B B
= o7 Wsar S.N)g — o VsarsN)p
Cs SVB(IX SV, 3)) ‘/8‘ CS,Svﬁ(lXT SV8, B(S |/6|

B
- <V5;E’SN>,6’
Cs,s5va(1xTsvp g(s)) |5|

= —d(S,8) / T2 SVB,3,N'
Cs,svp(1xTsyga,5(s))
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if G = Ogpt12, and S is short, then

/ (VsarsN)p = 2 / (Vsars.N) 5 (9.14)
(Cs.s+55Csgs,5)(IXbs,p=0) Cs,svp(l ><T5v5 5(s)
54
= 26,8,3/ o (VsarsN)
Cs,svp(IXT, 5\/5 5(5)) ‘ﬁl
= —2d(S,B)eps / T SVB,BN-

Cs,svp(IXT, S\/BB —(s))

if G # O2p+1,2q and G, ?é 02p+1,2q, then

/ <Vs,m’,S,N>6
(Cs,5+54Csgs,5)(Ixhs g=0)

= / (Vs s,n) 8 + / (Vs s,N) 8
Cs Svﬁ(lx SV8,8 () Cs,S\/ﬁ(1><T SV8, 5(5))

B B B
= o (VsarsN) B — T (Vs s.N) B
Cs SVB 1><T ) |5| CS,SV5(1XT SV, 5(5 |/8|

SvB, ,3

B
- <Vs:r SN>,B
Cs,svp(1xTsvp,p(s)) |5\

= _d<87ﬁ)/ Ts,x! SVB,8,N 3 (915)
Cs,svp(IxTsvp,p(s))
lf G, = 02p+1,2q7 then

/ <V57x/’57N>5 (916)
(Cs,s =S8N (short)(sp)ssCs gs,5)(IXbs,3=0)

-/ (v} = sen(short)(ss) [ (Ve 5}
CS75\/[3(1 ><T

s\/g ﬁ(s)) Cs S\/ﬂ(lx S\/ﬁ ﬁ(s))

B
= €ps / m(’/s,x’,&fvhi
Cosvs(IXTES (s))

+eg ssgn(short)(sp) /

s
_<Vs,x’,$,N>67
Cs,S\/,('}(1><T \/Bﬂ(s |ﬁ|

€8s sz svﬁ(lXTSvB,8(3))<l/5’m/’S’N>ﬁ if 3 is long,
£ (Vs sn)p  1f B is short,

fCS svs(IxTsva,s(s)) 18]

= d(87 ﬁ) {6675 fcsysvﬁ(lXTSVﬁyﬁ(s)) Ts,x’,Svﬁﬁ,N lf B 1S longa

= Je, sus1xTsvs po) o Svp g If B is short.

Suppose, G # Ogpy19, and G’ # Ogpi194. Then, by (9.10), (9.15), Lemmas 8.3
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and 3.5,

Z Z /Ss(fxbszz 0) U&I/’S’NM

Sevy, seW (He), BEVE
Blys)#0, BNSHD

- _Ts7xl7svﬁ7ﬁ7N
SEV, seW (He), By ¥ CoSVE (IxTsvp,p(s))
ys)£0, BNSAD

= E / —Ts,2',SVB,8,N 5

0ASEWT, seW (He) BEeS(ys) ¥ Cosvs(1XTs,5(5))

Em

and (9.5) follows. Suppose, G’ = Ogp11.9,. Then, by (9.16), Lemmas 8.3 and 3.5,

> > / (Vsarsv)8

SEWn, seW (He), Bew , 7 Co.s(IXbs,6=0)
B(ys)#0, BNSHD

- Z Z / —Ts,2' SVB,B.N
Cs,svp(1xTsyvg,p(s))

Sev, seW (He), BEV p(short)
B(ys)#0, BNSH#D

+ Z Z €8,s / Ts,z! SVB,8,N
Cs,sva(1xTsvp,5(s))

SeVy, seW(He), BEVY ;(long)
B(ys)#0, BNSH#D

= Z Z Z / —Ts,2',S,8,N»

0£SeUT, seW (He) BeS(ys)” Cos(1xTs,5(5))

s 2 /cs,susz,B(s)) e SN

0£SEWT, sEW (He), BES(ys)(long)
iﬂ(ys)>0

and (9.5) follows. Suppose, G = Ogpt12,. Let S and S be as in (9.14) (In
particular, § is short). Then,

/ Ts7x/7$V57/87N (9‘17)
Cs S\/ﬁ(1>< SV3, [j(s))
55Cs,5va(1xTay 5 5(5))

— _/ 7—555,1’,8\/5,6,N
Cs S\/,B(1>< SV3, [3( ))

_/ TsBs,x’,S\/B,ﬁ,N;
ngs,S\/ﬁuXT SV, ,3(555))

because, by Lemma 8.4 and Corollary 8.5,

TS,IE,,S\/ﬂ,ﬁ,N © 86 = _TSBS,Z/,S\/B,,B,N7
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and, by definition,
56Cs.svp(1 X Tdyg 5(5)) = Cssvp(l X Tgyg.5(5)) = Cspssvp(l X Ty 5(585)).

Hence,

E / Tsx' SVB,8,N = — E / Ts,x',SVB,B,N
Cs,svp IXTS\/B 8 (s)

seW (H seWw(He) ¥ Cs.sve(1xTsy 5 5(5))
SO that
/ 7—37:0/78\/57:871\] (9‘18)
sEW (He) Cs S\/ﬁ(1>< SV8, 3( s))
SGW (He) Y Cs.sva(1xTsvp,p(s))
Hence,

Z / Ts,x' ,SVB,8,N

seW (Hc), iB(ys)>0 Cs,svp(1xTg, svs,5(5)

- Z / Ts,x! SVB,8,N

sEW (He), iB(ys)<0 ¥ Cs:sva(1xTsyg 5(5))

: : / Ts?m,’SV/BMB’N
eWw (He) Y Cs.sva(1xTsvp,5(s))

- Z </CS S\/ﬁ(lXT

seW(HC) iB(ys)<0 SVB,8

Z / Ts,2' ,SVB,8,N

seW (He) Y Cs.svs(1xTsvp,p(s))

/ ;
N Z Ts,a! SVB,8,N
Cs,sva(1xTsyp,5(s)) ’ﬁ|

seW (Hg), iB(ys)<0

Then, by (9.13), (9.14), (9.18) and Lemma 8.3,

Z Z / (Vsars.N) 8

SEWT, seW (He), BeWs ¥ Co:8 (1XDs,5=0)
B(ys)#0, éﬂSﬂ)

d(S
— Z Z —%/ Ts,x’,SVﬁ,B,N
Cs,sv(1xTsvg,5(s))

Sevy, seW (Hc), /BGWEJRUOW)
B(ys)#0, BNS#D

d(S, B) /
+ _ TS,(D/;SVﬂaB:N
Z Z 2 Cs,svp(1xTsvp,p(s))

Sev?, seW (Hc)
BEVE p(short)

B(ys)#0, BNSHD

8
+ d(S. 8 / B
22 SB) ) oro oy JA S

Sevy; seW (He),BE VS iy (short)
iB(ys)<0, BNSH#D

N)I»—t

Ts,a! SVB,8,N T /
() Cs,svp(1x Ty,

Ts,x/,SVﬁMB’N
SV, 5(5))
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-y v | ot S5

SEWT, seW (He) BES(ys)(long) ¥ Cs:sve(1xTsvi,p(s))

- Z Z (‘81’ + 1)/ Ts,x',S,8,N (919)

Sewr,, S(short)={B} seW (Hc) Cs,s(1xTs,5(s))
+ Z 2(‘81|+1)/ |g|7-sx ,S,8,N
Sewn,, S(short)={8} seW (Hg),i8(ys)<0 Cs,s(1xTs,5(s))

D YD SRS VY reson (920

Seun,, S0, S(short) seW (He) BeSinwe(short) ¥ Cs.s(1xTs,5(5)

s
SR >R S SENEY N e

Sevn,, S1#0, S(short)=0 se W (Hc) BeS1NTC(short),iB(ys)<0

If S and f are such that SNW"(short) = {5} # 0, (9.19), then there are elements
s; € W(Asr), stabilizing Usg such that

Sl = {Slﬂngﬁa"' 7S|31\6}' (921>

If S and g are such that g € & N V¢(short), (9.20), then there is an elements
s1 € W(Asr), stabilizing Vs such that

s18 € ¥ (short) and s16Vv 5 CS. (9.22)

Let us assume, for the purpose of the argument, that ¥ is ”standard”, as in
Theorem B.4. We may assume that in any case, (9.21) or (9.22), s; € %, is a
transposition. Then, by a straightforward computation, for any s € W (Hc),

SiS(ys) = S(ys> - S(ysis)‘

5iTsp(s) = {si-a|a € bs|B(x)] < min{La(x)| |o € S(y:) \ £}
= {webs|IBs;"a) <min{l|a(s7 o) o € S(y) \ £}
= {2 €bs|lsiB(x)| < min{l |50(2)| o € S:) \ 51}
= { o €bs||siB)| < min{L, |a(x)] |5 "0 € S(y.) \ B}}
= { o €bs|lsiB)] < min{L|a(x)| | € 5:5(us) \ 5:6}}
= Tsp8(si9).

Moreover,

P((s15)"' - 2)myp((s18) " - 2) 4
det(2’ + 2),, gwv’ AlV-sr)(s1 - 25)
Den(is;" - y)) Hsto(s; - a)v(s; - 2)
P((s15)"! - 2)myp((s18) " - 2)
det (2’ + 2),, g’ Al=T-sx)(z5)
d(en(iy)) Hsp(z)v(z) det(s;)

Tsis,m’,S,siﬁ,N(Z)a

Tsw’SﬂN( _1 Z) = TLS(S)

= ns(s;s)sgn(s;)
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because

815( )

sl-_l-x—l—

Blsit-y)
2

and sgn(s;)det(s;) =1 for G = Ogp11,94- Hence,

/ Tsa' S,BN = / Tsis,a’,S,5:8,N
Cs,s(1xTs 5(s)) 5iCs,s(1xTs,5(s))

= / Ts;is,x!,S,s:8,N
Csis,S(IXTS,siﬁ(siS))

Hﬁ =5; (ZE Hszﬂ) = Si_l “Ts;Bs

so that

g / Ts,x!' S,3,N = § / 7-57$'7575i57N‘
seW (He) ¥ Cs.8 (I1xTs g(s)) seW (He) Y Cs.8 (1xTs s,(s

Therefore, if 5 is as in (9.19), then

|81’ + 1 Z / Ts,x' S,B,N = Z Z/ Ts,a',S,8:8,N 5

seW (He) ¥ Co.s(1xTs,5(s)) seW(He) s Y Cos(1xTs,s;5(s))

and if (3 is as in (9.20), then

2 Z / Ts2',S,6,N = Z / Tsa',S,8,N

seW (He) ¥ Cs.s(1xTs,5(s)) seW (He) ¥ Cs.5(1xTs,5(5))

+ E / Ts,x!,S,s18,N»

seW (He) Cs,s(1xTs s, 5(5))

and (9.5) follows. [

Suppose G = Ogpy194 or G = Ogpy19,. Let & € U7, and let f €
Usr(short) if G = Ogpi194, or B € S(long) if G' = Ogpt19,. Recall that

Eﬁ,s - |II8((yg Define

{S € W(H((j) | €8,s = ].} if G/ = 02p+1,2q7
—1}  if G = Ogprrag.

—
m
=
-
e
By
=
w

Il

It is easy to see that
BNBs(s)=0 (s € W(Hg)).

Hence, W (Hc)s is the union of the fibers of the map
Bs : W(H(c) — {P cSu (—S)}
Therefore, as in (3.21), we have a decomposition into the disjoint union of sets :

WHe)s= | U W (R)s. (9.23)

REBs(W(He)s) W(R)sEW (RN (He)
Bs(s)=R

By combining Theorem 9.1 with the decomposition (3.22) of the Weyl group
W (Hc) we obtain the following Corollary:
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Corollary 9.2. Let n’ > 1, N € N and let P be a polynomial function on b’
satisfying (0.4). Then for ' € h’™¢ and ¢ € S(g),

Py (@) [ chela’ + 2)6(w) du(o)

g

= > [
Csp(1xb)

seW (Hg)

—+ / ﬂs,x’,S,N
Z Z s,.s(1x(hs\Ts(s)))

0£S€U™, ReBs(W(He)) W(R)sW (s,S)EW (RN\W (He)/W(s,S) €

+ Z Z Z / (Vsa/ SN — Tsa! S,8,N)

0£SeWw”, ReBs(W(He)) W(R)SW(SS) W (He)/W (s,5) ¥ Co.s (1x(Ts,5(5)))
(y )

- Z Z Z / dﬁs,x’,S,N
s,5(Ixbs)

SeWT, ReBs(W (He)) W(R)sW (s,8)eW (R)\W (He) /W (s,5) Y €
+E,

where

ﬁs,x/,S,N = E Vysé,x!' S,N» %s,x/,S,B7N = E Tnsé,x',S,8,N
neEW(R),6eW (s,S) neW(R), €W (s,S)

and E is as in Theorem 9.1. Moreover,

E=) 2. D 2

SeVy, BeVgsr(short) ReBs(W(Hcg)g) W(R)seW(R)\W (Hc), Bs(s)=R

B . .
/ 22 Tsa! S,8,N if G = 02p+1,2q7
C,s(1xTs 5(s)) 1B

E=D> 2 2.

Sevy, BeS(long) ReBs(W(He)g) W(R)sW (s,S)eW (R\\W (He)/W (s,S), Bs(s)=R
/ Q%S,m’,S,B,N Zf G/ = 02p+1,2q-
5,5 (1xTs 5(5))

Proof.  This follows from Theorem 9.1, (3.18) and (9.23). One only needs to
notice that

Tsp(nsd) =Tsp(s) (B €S(ys) s € W(He),n € W(Bs(s)), 6 € W(s,S)).

10. Proof of Theorem 1

We retain the notation of Corollary 9.2. Clearly, Theorem 1 follows from Theorem
7.4, Corollary 9.2 and Proposition 10.1 below.
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Proposition 10.1.  Fiz an element s € W (Hg). Then

/ Vs a! 0,N
Cs,0(1xb)

Suppose ) #= S € U7, Then, for all N € N large enough,

sup
2’ €p/res

< 0o (N € N). (10.1)

sup / Vs sN| < 00, (10.2)
z'eh™8 | JCy s(1x(hs\Ts(s)))
and
sup / (1;375,;/7371\7 — %s,x’,S,ﬁ,N) < 0 (ﬁ c S(ys)) (103)
z'ehe. | JC s(1x(Ts,5(s)))

For any § € V7, and for all N € N large enough,

/ dl}s,x’,S,N
Cs,s(Ixhs)

If (G,G’) = (Spon(R), Ogpt124), B € S(long) and iB(ys) > 0, then for N large

enough,

sup
! eh/reg

< 0. (10.4)

sup
x' e h/reg

< 00. (10.5)

/ Ts.0!,S,8,N
Cs,s(1xTs g(s))

If (GaG/) = (02p+17QQ7Sp2n’(R))) U \IJS,R(ShOTt) and Z/B(ys) < 0, then for N
large enough,

sup
:E/ c h/reg

< 00. (10.6)

/ o B -
o1 Ts,x',S,8,N
CS,S(1XT$,6(S)) ’/B|

Moreover, the above quantities define continuous seminorms on S(g).

Lemma 10.2.  For a root « let & be asin (9.1). Let 0 #S € W7, let 5 € S(ys)
and let s € W(Hg). Then

min{L, [B()[} = msp)(r) (¢ € Tsg(s)), (10.7)
hs \Ts(s) = {zebs|la(z)| >1 forall o€ S(ys)}, (10.8)
msy(z) = 1 (v €bs\Ts(s)), (10.9)
Ir—mx,| > 1 (x € s\ Ts(s), a € S(ys), r € R), (10.10)
Sz, > |B(z)]  (z€bs, a€pP). (10.11)
(Here Sz = 3(z) stands for the imaginary part of the complex number z.)
Before proving this lemma, we have to prove the following statement.
Lemma 10.3.  Let x1,x9,--- ,x, > 0. Suppose
x> min{l,z, | b # a} (a=1,2,3,---,n). (10.12)
Then

Ty >1 forall a=1,2,3,--- n. (10.13)
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Proof. Indeed, if (10.13) were not true, then there would be an a such that
z, < 1. By (10.12), we must have

z, > min{x, | b # a}.

Let us denote the right hand side of the above expression by x.. But, again by
(10.12),
x> min{xy, | b # c},

which is impossible. Thus the lemma follows. [ ]

Proof. [of Lemma 10.2] The equality (10.7) follows from (9.2) and the definition
of the function mg(y,) in Lemmas 4.3 and 4.4. We see from (9.2) that

b\ () = { 2 € s

(@) > min{L |a(@)]; @€ S\ 6}} |

Hence, Lemma 10.3 implies (10.8). Clearly (10.9) follows from (10.8).
Let a € S(ys). Then there is 8 € S(y,) such that a € 3. Therefore, we

may assume that § = 2iJ}, g =iJ or f =i(Jf+ J;), for some a # b. In the
first two cases, 3 3
r— x| = |r +iB(z)| = [B(2)],
and both (10.10) and (10.11) follow. In the second case, suppose 8 = i(J — J),
for some a # 0. Then iHg = J, — Jp, so there are u,v € R such that
r=u(Jy+ Jp) —iw(J, — ) + 7,

where Z. = 0 for all ¢ ¢ {a,b}. In particular,

T, =u—iv and |v| = ()
2
Thus
T Y
which verifies (10.10) and (10.11). [

Lemma 10.4. Let f be a smooth function, defined in a neighborhood of a point
xo 1n a finite dimensional real vector space. Then, for each mon-negative integer
N there is a constant const(f, N) such that for any vector y, any vector x and
any real number b, with |b| <1 and xo + bx in the domain of f,

[0(en(iby)) f (o + bar) — Oen(bx + iby)) f(xo)| < const(f, N) [b]¥ .
Proof. By Taylor’s formula

[0(en(iby)) f (o + bx) — Olew (bx))(en(iby)) f(wo)| < consty(f, N) b,

Thus the left hand side of the inequality in question is not greater then

const(f, N) [I**" + |0(en (bx))d(en(iby)) f (o) — d(en (bx + iby)) f (x0) |-
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But
|0(en (bz))(en(iby)) f(z0) — d(en(bx + iby)) f (o)
bx)™(iby)™ bx)™ (iby)™
= 3( > ! ?m!<n!y) - ! )m!(n!y) )f(xo)'

0<m,n<N 0<m,n; m4+n<N

= |0 ( Z (b:v)T:'(;_l‘)y)”) f(zo)

0<mnN<m+n
xmyn
9 (m!n! > f(zo)

> b
Hence, the inequality follows, with const = const; + const,. [ ]

IA

< consty(f, N)|b|N .

0<mn<N<m+n

The following lemma is known and may be deduced from the proof of
Theorem 3.1.15 in [6].

Lemma 10.5. Let f be a smooth function defined on an open set U C R%. For
a non-negative integer N, let fn be the extension of f to U + iR? as defined in
Corollary 2.2. Then for any holomorphic function F defined in a neighborhood of
U we have

d(iv)N+1

d(F fndz)(u + itv) =tV F(u + itv) (-T

) f(w) dt du,

where v =u, y=tv, t ER, z =x +iy and dz = dx +idy. (Here the evaluation
at a point stands for the pull-back of the differential form via the indicated map.)
Hence, for a positive number m,

d(iv)N+t

d(F fxdz)(u+ itmv) = (tm)V F(u + itmv) (— N

)f(u)mdt du.
Proof.  [of Proposition 10.1] Notice that, with (ys)s(j) = J;;(¥s),

[det(z’ + Cop(L ) gwr | = [ 125 £ (o) +1W)ei)| = [ [iws)own| = 1.

1<j<n’ 1<j<n’
Hence,
1
det(z' + Csp(1, ) gy
is bounded as, a function of z € h. Thus part (10.1) follows. Also, since the

function mg = 1, it is easy to see from Lemma 10.5 that (10.4) holds in the case
S = (. Thus, from now on, we assume that S # (). Let

S\ Ss(ys) if G = Ogpt1,2q,
Salys) = 4 (S\S(ys)) N (S\S") if G = Ogp2q 01 G’ = Ogpi1,2,
S\ S(ys) otherwise,
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where S3(ys) is as in Lemma 3.6. Then, by (3.11), (3.15) and (3.18), we have the
following decomposition of S into a disjoint union of sets:

S(y) U (S1y) \ Bs(s)) UBs(s) i G # Oz
S"US(ys) U (54(%) \ BS(S)) UBs(s) if G = Ogpay.

Let z = Css(t,x). If D = C and s = 0 € ¥, define (according to the above
decomposition)

A, 2) = [T @) = 2og) = itmsp.) (@) (Ws)ew))

1<<n,0(4) ¢S

B(S, g;” z) = H (:L’; — ZL‘U(]’))

1<j<n’,0(j)€S(ys)

C(s,2',2) = H (QJ; N xf’(j))

1<j<n’,0(j)€S4(ys)\Bs ()

D(S, x’7 z) = H (I; — xg(j)).

1<j<n/,0(§)€Bs(s)

If D#C and s = oe, with 0 € X, and € € Z%, define

A(s, 2, z) = H (SC; — € To(j) — ith(ys)<I)€j(ys>a(j)>
1<5<n/,
a(§)ES
[I (13)]‘%7(1/)(93; — &To(j)), if G # Ogp,24,
B(s,2',2) = TUIET ) . )
IT igj<w, (@)= &Gao)), i G =02
o(j)€S"US(ys)

C(s, o', z) = H (x; — €jTy(j))
1<j<n/,
o(3)€S4(ys)\Bs (s)
D(s, 2, z) = H (2 — &20(5)),
1<j<n’,
a(j)eBs(s)
and let
[T 1<j<w, (@)= &ao) if (G, G') = (Spa,(R), Ogpr1.24),
B/(S I’l Z) _ o(5)eS(ys)\S”
[T i<jcw, (@) = €703)), i (G, G') = (Ogp2¢, SPa (R)),
a(3)E€S(ys)
B"(s,2',z)
= H (2 = €4(j)), if (G, G") = (Ozp2q, SPay (R)) 01 (Spy,,(R), Ogp11.29)-
1<j<n’,
o(j)es”

For the remaining pairs set

B'(s,2',2) = B(s,2',2) and B"(s,2',2) = 1.
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Then B(s,2’,z) = B'(s,2',2)B"(s,2’, z) and
det(z’ + Cos(t, ) gy = 1" A(s, 2", 2)B(s, ', 2)C(s, 2, 2) D(s, 2, 2).

Let
E(s,a',z) = Z _ det(n)

)
v ey 157 2)

By (3.12) and (3.15), each element § € S;(ys) may be written uniquely (up to a
sign) as
B =i(Jyp) + €(B)I5a)),
where a(8) < b(f) and €(8) = £1. If D = C, then €(8) = —1.
Since Bs(s) C Su(ys),

D(s,a',2) = H (x;fl(a(ﬂ)) - xa(ﬁ))(xirl(b(ﬂ)) — Ty(g))
BEBs(s)NY
if D=C, and
D(s,a’,z) =TI (@hria) = éo i) Tae) @ a)) — Eot008) @)
BEBs(s)NW¥

if D # C. Moreover, in both cases xyg) = —€(3)Tq(3) -
The reflection sg acts as follows

s8(Ja(p)y — €(B)ois) = Jais) — €(B)Jus),
ss(Jagp) + €(B) Jop) = —Jaip) — €(B)Jua),
sgde = Jo for c ¢ {a(B),b(B)}.

Hence,

sp(iu(Jus) + €(B)Jos)) + v(Jas) — €(B)Ju(s)))
= —iu(Ja) + €(B) o) + v(Ja) — €(8) Jos))-

Thus

(55 - @)a(s) = Ta(8)
so that, for D # C,

1

(xfy—l(a(g)) — (s x)a(ﬁ))(x;—l(b(g)) — (56 T)u(s))
1

(o-1(a(sy) ~ Tat6)) (T
) —

— Ta(g))

(5(8))
1
(@1 58)) — Ta(8) (Th-1(a(g)) — Ta(d))
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Furthermore, det(sz) = —1. Thus, there is a constant € (V) = %1, depending on
the choice of the positive root system W, such that

E(s,2',2)=a(¥) ][] ((/ _ 1

- —
BeBs(s)nw \ Lol (a(B) Za(8)) (To15(8)) ~ Talp))

1
(Ifr-l(b(m) - xa(ﬁ))(x;—l(a(ﬁ)) N Ea@)) ’

if D = C. Similarly,

E(s,2,z) = e1(V) I e rwen(—eor0e))eB) 11

BEBs(s)NWY BEBs(s)N¥

<(€o—1(a<ﬁ)>$;—1(a(,@)) — Za(8)) (—€o-106(8) €(B)T,-1(45)) — Ta(s))

1
(—€o-10608)€(B) 2515y — Ta(8)) (€01 (a(8) Ti-1(a()) ~ fam)) '

it D# C. Let
1

E// / —
(87 xT ) z) 66{/‘/2(8’8) B”(Sd, I/, Z)

and let .
Q(2) = P(s' - )Ty (s 2) A(—Tsg)(2).

Since the terms
P(s7 - 2)yn(s™ - 2)

A(s, 2!, z)B(s, ', 2)C(s, 2/, z)
are invariant under the substitutions s — ns, n € W(Bg(s)) and the terms

n(s)P(s™ - 2)Typ(s™! - 2)
A(s,a!,z)B'(s,2',2)C (s, 2, 2)

are invariant under the substitutions s — sd, § € W(s,S) (here is the only place
where we use the evenness of P), we have

ﬁs,:c’,S,N (Z)

_ nS(S)i s NE"(s 7' 2 . (s
- A(va/’Z)B(va,>z)c($,l’/,z)E( T )E ( L )Q( )(H3¢>N( ) ( )

Similarly, we have

Toarspn(2) = A(s, o z)gis(ss)vi’_;C’(s T z)E(S’a:/’Z)E//(S’m/’Z)Q(Z)
BUs) _ Blys)
Oen (=5 Hp +ims(,) (2)tys.s)) (Hs)) (@ — ——Hg)v(2), (10.14)
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and hence

Ds,x’,S,N(z) - 7”:s,x’,S,ﬁ,N(Z)
ns(s)i—

—-n

— E / E/l /
A(S7x/7Z)B/(S7x/7z)c<3)x/7Z) (871; ’Z) (S’x 72)62(2)

(0102~ D "2 1y 4 s (o)) ()

i) v

The terms
1 1

A(s,2',2z)" B(s,2',2)
are bounded on Cs s(1 x (hs \ Ts(s))), by (10.9) and (10.10). The term

1
C(s, 2/, z)

(10.15)

is absolutely integrable (with respect to the variables which occur in it), and the
integral does not depend on z’.
Since,

1 1
E'(s,x',z) = 1T , + (10.16)
Tj T Lo(j)

/
. — Lq(q
1<j<n’, o(j)es” i el

H 2
- 12 NEE
1<izn, opese T T 1Eo0)
the integral of E"(s,x’,2) with respect to the variables z,(;), o(j) € 8", is finite
and does not depend on z’.
The part of the integral corresponding to

E(a',2)Q(2)(Hsh)n(2)

is bounded, for the N large enough, by Proposition A.1 if I # R and Proposition
A5 if D =R. Hence, (10.2) follows.

Similarly, for 8 € S(ys),

/ (Vsar SN — Tsa! S,6.N)
Cs,s(1x(Ts,5(s)))

ns(s)i™" 1 1 , , )
= E(s,2',2)E" (s, 2, 2)
/Cs,s(lx(Ts,ﬁ(S))) A(s,a',2) B(s, 2/, 2) Cs(s, 2/, 2) ( JE'(

B(ys)
2

Hi + ims(y. (@) tys.s)) (Het) (o — (y”Hm) y

((Hs¢)N(2) — d(en( 5

(10.17)

Notice that in the formula (10.17),

(Hs¥)n(2) = d(en(ims(y,) (2)yss)) (Hs)(x).
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Thus Lemma 10.4 implies

B(ys)
2

_ Blys)

(Hst)(z) — Olen(22 :

( )| , (10.18)

Hp + ims(y,) (7)ys.s)) (Hst)) (2 Hp)|

< const

where the constant const depends on N and . Thus, by (10.7) and (10.11), the

term
1 1

A(s, o', 2) B(s,2',2)’
when multiplied by (10.18), is bounded for N large enough. By combining this

with (10.15) and Proposition A.1, we see that (10.3) follows.
We shall apply Lemma 10.5 to the following situation.

e R?is identified with the span of J,, a ¢ S by R¢ >z — Za¢5 Ty, €D
(d=n—|S]) -

e U is the complement of the zero set of the non-compact imaginary roots

of hs in U;

e [ is the restriction of the function

to U;
e f is the restriction of the function Hsy(x) to U;
o M =msy,)(T), V="yss.

Notice that mg,,)(x) does not depend on the variables z,, a ¢ S. Furthermore,

dl}sx’SN
Cs,s5(Ixbs)

1 1
/bs/ tms(y,) A(s,x’,Cs,s(t,aj)) B(s,a2',Cs s(t,x))
E(s,2',Css(t,x))E"(s,2',Cs5(t, x))

C(s,z ,Csvg(t, x))
YN+

Q(Cos(t, x)) G%) Htb (0)ms(y.)(x) dt da(w)|

By (10.11), the term

N 1 !
(tmsy,) (7)) A(s, 2!, Css(t, @) B(s, o', Cos(t, x))
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is bounded for N large enough. The term

1
C(s,2',Cs5(t,))

is absolutely integrable, and the integral does not depend on z’. The term

E(2',Css(t,x))

leads to a bounded integral via Proposition A.1 if D # R and Proposition A.5 if
D = R. Hence, (10.4) follows.

Consider the integral (10.5). In the formula (10.14) let = € Ts3(s). Then
v(z) = v(z). Moreover, by (10.7),

< 10

1<j<n’,0(§)ES

1

R 1
A(s, 2!, 2)

=67 + Ty + imind1, 1B(=)}|

(10.19)

The set S(ys) \ 8" consists of roots of the form n = iJ;  +iJy,, a(n) < b(n),
which vanish on ys. In these terms

nes(ys)\SN7071Q,¢~{1727'“ 7nl}7
o(j)en1<i<n’

1 1
) o1(a(y) T Lalm) €o=16m)To-1(p()) T Tam)

1
B'(s,2', 2)

!
Lj — €iTa(j)

. (10.20)

[1

nes\S", ‘_6"‘1(“(")
U_lﬂg{1727"' ,TLI}

where (24(3;)) > min{1, 18(x)[}.
Since

1
0

we see that

1y p1
[ e

By combining (10.16), (10.19)-(10.21), we see that the integral of

dudv dy < 0 (10.21)

-1 |U2 U2|

(k,1=0,1,2,---).

1 1

14 /
’A(s,x’,z) B’(s,x’,z)E (5,2, 2)

with respect to the variables which occur in this product, over Ts s(s), is finite
and bounded independently of 2’. This combined with Proposition A.1, as in the
argument concerning previous cases, verifies (10.5).

Consider the integral (10.6). Let us rewrite the formula (9.4) as

B(z) _ Fispn(z)
—‘ﬁ(z)‘Ts,x’,S,,B,N(Z) - det(x’ + Z)SW*J'
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with 2 = C,s(1,x) and x € Tsg(s). Notice that

Fs’$7g7N(85 . Z) = F57375’N(2) and T3,5(55’5) = Tgﬁg(s).

Hence,

/ 2—7
sz’ S,B8,N
Cs,s(1xTs g(s)) ’/ |

1 1
N + FS,S, , zZ)viz).
~/T.s,ﬂ(s) <det<xl + Z)sWh/ det(m’ + s - Z)st/> B N( ) ( )

Moreover,

1 1
(det(m’ + 2) g’ + det(a’ + sg - Z)swh’>
# 1 DY / f—
det(ar’—i—z)swh/ if é M {17 27 y 1 } (Z),

2x 1 . ’ o
ool Llisisn b gy 1 120 <n, B={o(b)}.

In the second case, o(b) € S(ys) and the function

21,
2% + |25 ) 2

is absolutely integrable with respect to the variable (), and the integral can be
dominated independently of z’. Furthermore, (10.19) holds and

[S(zo(y)| 2 min{L, [B(z)[}, (A <j<n, o(j) € Sys), v € Tsp(s)).

Hence, as before, (10.21) implies (10.6). [

11. The pair (O2pt1,2g+15SP2,(R)), with n’ < p+q+ 1.

In this case the defining module V for G has the following orthogonal direct sum

decomposition
V=V, eV, (11.1)

where G(V;) is isomorphic to O7; and G(V”) is isomorphic to Ogpo,. Let h” be
an elliptic Cartan subalgebra of g(V”). Let h = g(V1)@b”. This is a fundamental
Cartan subalgebra of g. We retain the notation and the identifications (3.1) -
(3.3).

Every Cartan subalgebra of g is conjugate to one which preserves the
decomposition (11.1), and two such are G—conjugate if and only if they are
G(V")— conjugate.

Let ¥(V”) be a system of positive roots of h” in g(V")c, ¥"(V") C (V")
be the subset of the non-compact roots and W7 (V") be the set of the strongly
orthogonal subsets of W"(V”). Let ¥ be a system of positive roots of b in g¢
such that, if we extends each root in W(V") by zero to g(V;), then U (V") C V.
In order to simplify the notation we shall write ¥”, for W7 (V).
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There is a complex structure J; on V; and for any & € V¥, an element
¢(S) € GL(V¢) such that
E(S)Vl’(c — Vl,(C; 5(8) {é: {é,
8(V1) = RE(S)iN1e(S) ™,
Ad(&(S)|gv)e) is the Cayley transform for S and g(V”),

Let ¢(S) = Ad(¢(S)) € GL(gc) and let H(S) = g(V1) ® H”(S). Define

hs = c(S)7' (h(S)e) N
Then
hs = RiJ, & b%
and
che(z' + ¢(8)z) = che(z' + 2) (2" € §™8 2 € hs).

Define the Harish-Chandra integral Hst as in (2.1). Then, Proposition 5.3 carries
over without any change. One sees form (7.9) that

1 a(V")
= — d 11.2
ST ey ys o™ (11.2)
IV 1 1
S 205"1/2)218" . 1.3 -5 (|S”| — 1) 2ppl24q!’

where, as in (3.17), §" = {a € S|a € S\ a} and &' = S\ §”. In particular,
Lemma 8.1 holds. Theorems 7.3 and 7.4 carry over with the I'; s defined as in
(7.6). The rest of the proof requires minor modification which essentially amount
to a reduction to the subalgebra g(V”).

Appendix A.

Let R?™ree = {g" = (2}, 2, xb, 2, -+ ,al, al) |z}, # xf, k=1,2,--- ,n}, and let
Ctr={z=x+iye Cly = 3(z) > 0}. Let S(C") the Schwartz space on C"
considered as a real vector space.

Proposition A.1.  For any constant coefficient differential operator D with
respect to the variable ¥ € R?*™*8  the formula

1
su D R 21, 29, 2
I,,,GRQIi,reg ’ /(C+ H < 2k — xk; (Zk‘ - x%)) Qb( b n)

dxidydzadys - - - da,dy,|

defines a continuous seminorm on the subspace of S(C™) of the functions ¢ in-
variant under the transformations z, — Zp, k=1,2,--- ,n.

Remark. Though we shall need the above result only with D = 1, it seems
natural to include the general case for completeness.
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For € > 0 define
DF={zeC|S(2) >0, |2| <€}

For v € R\ {0} and z € C\ {£wv} define

£.(2) 1 1 1

w\Z) = 5° — - — .
2i\(z—v)(Z+v) (z4v)(z—0v)

For any two non-negative integers «, 8 let

bap(z) = 2°2° + 2P (z € C).

Lemma A.2. [Ifa+p€2Z+1, then

N fo(2)Pap(2) dx dy = 0. (A.1)
Dl
Suppose o+ 3 € 27. Then, for |v| <1,
Fu(2)us(z) drdy = (~1)*n?sgn(e) v+ + 3 e, (A2)
Df k=0

where

4(—1)* i , 1 1
- —1
o 2k+1—a—ﬁ;( ) 26+1+0¢—B+2b+1—a+5
18 a bounded sequence.

Proof.  The set D is invariant under the map z — —Z. Since

fo(=7Z) = fuz) and ¢os(=7) = (=1)"Pdas(2), (A.3)

the equation (A.1) follows.
From now on we assume that a + € 2Z. Notice that for » > 0,

folrz) =r72f2(2) and fo,(2) = —fu(2),

so that
follvlz) = sgn(v)[v| 72 f1(2).

Hence,

/ Fo(2)bap(2) dudy = / £o(1012)6a5((10]2) [o]? da dy
D, DY

= sgn(v)vo‘+ﬁ/+f1(z)¢aﬁ(z) dx dy. (A.4)
Dl
Let € > 6 > 0 and let a,b € Z. Integration in polar coordinates shows that

3 / 220 dedy =0, if a—0be 2Z, (A.5)
DI\Df
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and
6a+b+2 o 5a+b+2 )
S/ 292 da dy = , it a—be2Z+1. (A.6)
D+\D+ a + b + 2 a — b
Furthermore, by considering the geometric series for ﬁ and for T one checks
that
fo(2)da5(2) (A7)
Za,bzo U—a—b—Z(_l)b-i-lg(Za-i-angrﬁ + Za+ﬁ3b+a) if |Z‘ < ’U’
Za,bzo Ua+b(_1)b%<za—a—1zﬂ—b—l 4 Zﬁ—a—lga—b—l) if |Z| > ’U|

Hence, by applying (A.5) and (A.6) with § =0 and € = p, we see that

0<p<1, p—1

bs+2b+a+5+2 1 1
= =2 1
0<p<11rnp—>1 Z Z +2b+a+6+2(s+a—ﬁ+s—a+ﬁ>

b=0 1<s€2Z+1

b+s s+2b+a+,3+2 1 1
DD ¥
3—|—2b—|—a+ﬁ—|—2 —s+a—-—pF —s—a+p

b=0 1<s€2Z+1

B (—1)" 1 1
B _42 Z s+26+a+6+2(s+@—5+s—a+ﬁ)' (A-8)

b=0 1<s€2Z+1

Similarly, (A.7) implies that for |v] <1,

[y BNy
DY\D}L,

= lim / fo(2)ba(2) dx dy
DI\D}

lv|<p<l, p—|v|

B . 2(—1)° 1 1
B Z v+ba+b—a—6(a—b+a—ﬁ+a—b—a+ﬁ)

a,b>0;a+be2741

a+pB—a b(—l)b 1 1
. 21i a+bp
|u|<p<l11£l—>\\ ZU a+b—a—p <a—b+a—ﬁ+a—b—a+6>

a,b>0;a—be2Z+1

. 1 1
= > v mz(_l)b(n—2b+a—ﬁ+n—26—a+ﬁ)

0<ne2Z+1

) 1 1
_ QBE E
4sgn(v)v®” 5+2b—o¢—5(s—l—a—ﬂ—i_s—oﬂ—ﬁ)'(A'g)

b=0 1<se2Z+1
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Notice that (for n odd)

n— 1 !
(=1) b(n—Q(n—bH—Oé—@+”_2(”_b)_a+ﬁ)

:(_1)b( 1 N 1 )
n—2b+a—F n—-2b—a+p

Hence, with n =2k + 1,

- 1 1
Z<_1)b <n—2b+0z—ﬁ+n—2b—a+ﬁ>

i 1 1
kb
Z <2b—|—1—|—a—ﬁ 2b+1—a+ﬂ) (4.10)

Furthermore,

- (—1)° 1 1
a bz: 2. s+2b+a+ﬂ+2(s+a—ﬂ+s—a+ﬁ>

0 1<s€27+1

baﬁl 1 1
- Z Z +Qb—a—ﬁ<s+a—ﬁ+s—a—l—5)

b= a—i—,B—i—l 1<s€2Z+1

)b 1 1
- Z Z s+2b—a—ﬁ(s+a—ﬁ+s—a+5)

b=a+p+1 1<s€2Z+1

Therefore

—1)° 1 1
Z Z s+2b+a+ﬁ+2 (s+a—ﬁ+s—a+6>

0 1<s€2Z+1

)b 1 1
a Z Z s+2b—a—6(s+a—ﬁ+s—a+ﬁ>

b=0 1<s€2Z+1

a+f b 1 1
- _Z Z +2b—a—6(s+o¢—ﬁ+s—a+ﬁ>

b=0 1<s€2Z+1
a+

1 o T2
= -2 > s+2b—a—5s+a—5:_(_1) 1 (A.11)

b=0 s€2Z+1

because, by Plancherel’s Theorem for the Fourier series,

1 1 [% ifa=0
562Z+1SS+2a 0 otherwise.

Clearly, (A.4), (A.8), (A.9), (A.10) and (A.11) imply the lemma. n
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Proof.  [of Proposition A.1] For N € N and z € C, Taylor’s formula ([6,
(1.1.7)’]) reads:

¢(z) = (A.12)
A(1)°(i , v O(1)20(i)®
%; (;J) xw4—§;( /ﬁ —1) (;J)wmmﬁx

Let Dy ={z € C||z| < 1}. For A C C let 14(z) be the indicator function of A
(equal to 1 for z € A and 0 for z € C\ A). Put z = = + iy and define

TV V6(2) = 1oy, (2)0(2)
T Vo) = 1py () S O ) ey

alb!
a,b>0;a+b<N
1 WAl b
LY6G) = 1n(z) > (N / (1- W“W%tz) dt) .
a,b>0;a+b=N 0 a.0:
so that
¢ =TS o+ TN Do+ TN Vg, A13)
Since
B S I S S
(Z_U>(7+U)_2x Z—v Z+v )
we have
1
——— ¢(2) dz dy
/Ix>¢1§ (z —v)(Z+v) (2)
1 1
= —3§¢z+v dxdy+/ —8N¢Z—v)dxdy_
/”3+U|> 1 2(x+v)z ( ) jo—v|> 25 2(r —v)z (

1
Thus, since 5 5 >0,

1
sup ajv/ —  ¢(2) dr dy| < oo. A14
o2 | s G=0)EF ) A1
Also,
1
sup 81])\7/ —————— p(2)dr dy| < oco. A.15
BN s GmoGE 0 O (419

On the other hand,

1 1 1 1
(z—v)Z+v) \z—v Z+v)Z—-z2+20

Therefore,
1
aN/ dx d
C e GGy W
B 1, n 1
B /C+ za” (E—z—|—2v¢(2+v)> de dy
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so that

sup
o[>

N ——————l—————- z s 0.@)
o’ /@ e dy‘< . (A.16)

Since, |2%°| < |2|**® and since Nfol(l — t)N=1dt = 1, we have

9(1)*0(i)"
alb!

T Vo) <Y Y sup

a,b>0;a+b=N weD,

ow|. )

By combining (A.14), (A.15), (A.16), (A.17) with Lemma A.2 and the fact
that, by the assumption that ¢(Z) = ¢(z), the Taylor expansion (A.12) may be
expressed in terms of the ¢, g, we see that foreach N =0,1,2,---,and o =0, 1,2,
the formula

¢ (¢) = sup
vERX

N [ fTVe() dmdy'
Cc+

defines a continuous seminorm on the space of the Schwartz functions on the real
vector C, invariant under the transformation z — Z. In particular, by (A.13),

sup
vERX

o [ 1ot o] < 0+ dV10) +45(0) <

For a Schwartz function ¢ on the real vector space C" and for o € {0,1,2}" let

TN (21, 20,0+, 20) = Tc(flv) ® Téév) ® - -Tcgf)qﬁ(zl,zQ, e Zn)

«

Then
o= ), TN
ae{0,1,2}"
Hence, for non-negative integers Ny, No,--- , N, and ¢ as in Proposition A.1,

oM oN: - o /(c+) H Jor(26) d(21, 22, -+, 2n) dwrdyrdzodys - - - dpdys,
" k=1

< Y @M edP e ™ () <oo (A8)
ae{0,1,2}n

Let 2} = ug + vy and let 2} = uy — v;. Then

- 1
/<<c+> H N ((zk —a7,)(Zk — x")) Pla 2y o 2n) dmrdyndimadyy - Ay
" k=1 k k

= / (H ka(zk)) O(z1 + ur, 20 + U, - -+, 2y + up) drydyrdzadys - - - dz,dy,.
(CH)™ \ =1
(A.19)

Clearly, (A.18) and (A.19) imply Proposition A.1. ]
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For a complex valued function F' defined in a neighborhood of zero in R
define the jump at zero by

(F) = lim F(v) — lim F(v),

v—0+ v—0—

whenever the limits exist.

Proposition A.3. Let ¢ € S(C) be such that ¢(z) = ¢(Z). Then, for any
non-negative integer k,

OF | fu(2)6(2) dxdy) = =70 ¢(0).
Cc+
Proof. It is clear that
@ [ o) dedy) =0
CH\Dj
Let N > k. Then, (A.17) implies that

0 [ 1T 0l dody) =0

Hence

@ [ fodrdy = @5 [ £ 0t do )

Therefore it will suffice to show that
0 [ F00(2) dady) = ~70005(0) (A.20)

By (A.1), the left hand side of (A.20) is zero if a+ 8 € 2Z+1 (and so is the right
hand side). Suppose « + 5 € 2Z. Then, (A.2) shows that

O [ F0ns(c) dudy) = (1)L (sgno)e )

_(Cq)etia? 2kl ifk=a+p,
0 otherwise.

Also,

O as(0) = 0 ((y)* (=)’ + (i)’ (=iy)*) ly=o
[~k itk =a+ 8 €2z,
B 0 otherwise.

Thus, the equality (A.20) holds and we are done. [
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Corollary A.4. Let ¢ € S(C) be such that ¢p(z) = ¢(Z). Let

/fv dxdy (UGR\O)

Then 3
(9)(0) = —2m2¢(0).

Proof.  Since, f,(2) = —fu(2),

op(v) =2 [ fi(2)¢(2)dzrdy.
Cc+
Thus, the Corollary follows from Proposition A.3. [ |

We shall also need a fact similar to Proposition A.1, but with fewer assump-
tions.

Let V be a finite dimensional vector space over R and let A C V*
be a finite set such that no two elements of A are proportional. Let VA4 =
{z € V|there exists a € A such that a(z) =0}. We shall say that a function
¢ € C°(V \ V4) is a Harish-Chandra Schwartz function with respect to A if and
only if for every constant coefficient differential operator D on V and for every
polynomial function P on V,

sup |P(x)D¢(x)| < oo, (A.21)
zeV\VA

and for every connected component C' C V' \ V4 the restriction of D¢ to C' extends
to a continuous function on C', the closure of C' in V. (Notice that this extension
is a rapidly decreasing function on C.) We shall denote by HCS(V \ V4) the
space of all the Harish-Chandra Schwartz functions with respect to A and equip
this space with the topology induced by the seminorms (A.21). Our definition is
motivated by a theorem of Harish-Chandra concerning his orbital integrals, see
Theorem 23 on page 23 and the proof of Proposition 10 in the Appendix of part I
of [17]. Let C*T ={z € C| Re(z) > 0,3(z) > 0}.

Proposition A.5. By the following formula, setting dp = dxdydxedys - - - dx,dy, ,

1
/C++ HJ( (2r — 73,) (Zk—x'é)) (21,22, 2n) dpt

we define a continuous seminorm on the subspace of HCS(C"\J;_,{z € C"| Re(z) =
0}) of the functions ¢ such that for any 1 <k <n

¢(Z) = {gb(z/) ile = (Zlv"' s Zhy "t 7271):

sup
! €R2n,reg

_d)(zl) ZfZ/ = (Zla"' 7_Z_k’7"' 7Zn)-

Lemma A.6. Let ¢ € L®(CT)NLYCT). Then, for t € R,

1
/ ! dv dy < (/ —dxdy+1)<|r¢uoo+u¢u1>.
c+ |

z+t z\<1|‘

¢(2)
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Proof. The left hand side is equal to

1 1
/ —qﬁ(z—t)‘ dq:dy—l—/ —¢(z—t)' dx dy
l2|<1 | # 2|>1 | #
< / rdady [ ol [ joe— o] dedy,
|z|<1 | ‘ |z]>1
which is dominated by the right hand side. |

Lemma A.7. Let ¢ € L*(CT)N LY (C*). Then, for u,v € R,

[C+, |zfu|>% or y>—

V2

1
(z—u—v)(Z—u+v)

< ﬂ(/z|<lﬂdxdy+1) (16 oo + 11 6 1.

¢(2)

dx dy

Proof. Notice that

<z—u—v)1(z—u+v> - 2(331—u) <z—i—v+z—i+v)

1 1 1
22—y \z—u—v Z—utv)

Hence, the left hand side is less than or equal to

V2 1 1
— _ dz d _— drdy | .
' (/ o) dedyt [ o) da y)
Therefore the inequality follows from Lemma A.6. [ ]

Lemma A.8. For any u,v € R,

/ 1
|z—u|<1,2>0,y>0

(z—u—0)Z—u+w)
Proof. The left hand side is less than or equal to

/ 1
|z]<1

(z—v)(Z+0)
We may assume that v > 0. Then,

|| |z < mlf$>0
z—v||z—v] T | L if 2 <.

|z+0]

|z —ufdovdy < 2f‘z|gﬁﬁdxdy.

2> dx dy. (A.22)

Hence, (A.22) is less than or equal to

1 1
/ dx dy+/ dzx dy
|z]<1,2>0 |z —v| |z]<1,2<0 |Z + |

1 1
< / dxdy—i—/ d:cdy—Z/ dx dy.m
|z— U|<\/"Z—U‘ |z+v|<Vv2 ’Z+U| |z|<V/2 ‘Z|
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Lemma A.9. Let Di(u) ={z€C; |z—u|<1}. ForueR, N=0,1,2,...,
and ¢ as in Proposition A.5 define

e
1 wAr b
= 1n(2) Z (N/ (1- t)N_Ich(u +12) dt) (x — u)“yb.
a,b>0;a+b=N 0 a.0:
Then
a \b
755 Vo) < 1p, )z —uM Y swp E)(l)_@(l)¢<w> .
" ™!
a,b>0;a+b=N

Proof. This follows from the fact that
|(z —u)*y’| < |2+

and

1
N/ (1—t)N"tdt =1.
0

By combining Lemmas A.8 and A.9, we deduce the following corollary.

Corollary A.10.  For ¢ as in Proposition A.5 and any u,v € R,

1 (2-1)
T. dz d
/(C++ (z—u—v)(?—u—i—v) 2,u ¢(Z) xray
1 a(1)*a(i)®
< 2/ —dx dy Z sup %(ﬁ(w)'
|Z‘§\/§ |Z| a,b>0;a+b=2 weCt albl
Lemma A.11.  For any a,b > 0,
sup / fo(z —u)(x —u)™y’ do dy| < co.
u€R, v>0 |JCH+ND1(u)

Proof. Notice that
2yv

|z — 02|z + v]?

fo(z) = —

Hence, for v > 0,
[fo(2)] = = fu(2).

Therefore,

/ Fo(z — )z — w)y da dy\ < / oz — Wl — uly dedy
C++ND1 (u) C++ND1 (u)

/ —fo(z — u) du dy
CH+AD: (u)
= / —fo(2) dz dy
|z|<1,x>u,y>0
[ —hGydeay
|z|<1,y>0

IN

IN
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Thus, the lemma follows from Lemma A.2 and (A.15). u

Proof.  (of Proposition A.5) The quantity we are trying to estimate coincides
with the integral (A.19), which, by (A.3), is equal to

/ (H Jo, (2 — uk)) d(21, 22, -+, 2n) drydyrdxedys - - - drpdy,  (A.23)
(CH)™ \k=1

n

= T £oc (o — we)

(CHn=1 L

/ (fv1(2’1 - Ul) - fm(—2_1 - Ul))¢(zla 22y ,Zn) dx dydzodys - - - dv,dy,

/++<fv1(zl - U1) - fvl(zl + ul))¢(21: 22yttt 7Zn) dx dydxadys - - - dvpdyy,
C

/ H Jor (e = u) = fo (26 + i) - 021, 22, -+, 20) daadyy - - - dwndys,
CHHm Ly

_ Z/ Hékka —Gen) - Bz, 7 20) dandys - drady,
C++)n

se{£1}n

= / / H&fka 2k) - G(z1+01u, -, Zn Ot ) dy - - dyy.
Ct+—81u1 C

se{£1}n T —bnun =y

Taylor’s formula (A.12) implies that, for n = 1, (A.23) may be rewritten as

/ 3fo(2)o(2z + du) dxdy (A.24)
serzyy ) (€ =8w\D1(0)

OO
- /(WM)HDI(O)MU@) > A 50 4ty

de{£1} a,b>0;a+b<1

5 / 51() 3 (2/01(14)%3(01@(5%&)%):5

se{x1} 7 (CTT=8wND1(0) 4 p>0.0-+b=2

Let

TO,6,u,v¢( ) - 1((C++ ou)\D1(0 ( )dfv( ) (Z + 5“)7
af(\b
Tytl(2) = Lo (@ 0£,(2) S DO 5oy

a,b>0;a+b<1
)*0(i)°

T2 6uv¢( ) =1 (CH++— 5u)ﬂD1(0)< )5fv(2) (2/0 (1 — t)mT(ﬁ(&U +t2) dt) x
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We see from (A.24) that (A.23) is equal to

Z Z / Tor b1, ® @ T spunwn (21,7 5 20)
(CHH)m

se{£1}" ae{0,1,2}"
dry - - dy,. (A.25)

Lemma A.7, Corollary A.10 and Lemma A.11 imply that for n = 1 there is a finite
constant C' independent of u,v,d and ¢ such that

/C+ Tosup®(2) dx dy| < C(|| ¢ [loe + 11 ¢ 1), (A.26)
a(1)29(i)°
[ o] <c ¥ s [PUE o),
et ab>0atb<t WECT T @0
a(1)29(i)®
/ T2,5,u,v¢(z) dIZ' dy S C Z sup %QXU))’ )
cr a,b>0;a+b=2 weCH aov:
The proposition follows from (A.25) and (A.26). ]

Appendix B.
In this appendix, we choose a positive root system W’ such that
rw = 1
o' evw’
and a positive root system W such that
Tg/h = H (—a)
acV¥
and compute the rational function

Ty 1ty (2) gy (2)

det(z’ + 2)w (2" € b, 2 € be) (B

for all dual pairs (G, G’) with G’ # Ogp119,. In the case G’ = Og, 41 2, We compute
the quantity (B.1) with the W replaced by Hom(V,Vy*), and 7y by my/s(short)
- the product of the positive short roots.

The constant u of Propositions 5.3 and 6.3 is equal to

u=(—1)P*u", (B.2)

where u” is defined below (see (B.7), (B.11), (B.15), (B.19) and (B.22)).
From now on, P is a polynomial function on h¢ satisfying the condition
(0.4).

The pairs (G,G") = (U, g, Up ) with p' +¢ =n"<n=p+q.
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Theorem B.1.  Suppose

U = {iJi —iJy|1<j<k<n} and (B.3)
Vo= (i i 1<j<k<n}

Let o I
u/ _ (_1 n (n271)+n(n271) in (n271)+’ﬂ(’ﬂ2*1) —’I’L,TL‘
Then
T o /(Z/)ﬂ' /h(Z)
P / g /h g B4
() det(z’ + z)w (B4)
P(zau),--- ) Zo(n')) Hk< (20() = Zo(k))
n/<j<k<n
= sgn(o .
’Zn v gezz Hj:l(zé' — Zo(j))
Moreover,
mm(z) = ] (=D(z —ia), (B.5)
n'<j<k<n
det (2" + 2)\ww HI 2 — %), (B.6)
7=1
and
u' = (—1)" (B.7)

Proof. In this case

[T (z—iz)- II (=1)(0z —iz)

Ty (2)mam(2)  1<i<h<n 1<j<h<n

detl(= + 2)w LT — =)
(/1) n(n—1) n(n—1) 11 (ZQ'—Z;/Q)' [T (z—2)
iz (=)= iz igj<k<w 1<j<k<n

i [T T (2 — =)

Therefore, by partial fractions, the left hand side of (B.4) is equal to
vo-y o Plagy, o am) T (g —2mw) T (27— 2)

Z (1) = wu 1<j<k<n/ 1<j<k<n
= w5 — 20) ITims Tk k) (i) = 20)
where the summation is over all injections ¢ : {1,2,--- ,n'} = {1,2,--- ,n}. Let

us choose an element o € ¥, so that o(j) = ¢(j) for all 1 < j <n'. Then

Therefore,

[T (2 —2) [T (2e() = 2om)

1<j<k<n 1<j<k<n

n' n - n' n Sgn(a),
Hj:l szl,k#b(j)(’zt(j) — 2k) Hj:l Hk:l,k;&j(%(j) - sz(k))
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where the ‘sgn’ is the character of the group 3, defined by
H (20(j) — Zo(k)) = sgn(0) H (25 — 2k).
1<j<k<n 1<j<k<n

Let us write ux = 2,() for simplicity. Then,

II o —z2w) I (Zew) — 2om)
1<j<k<n/ 1<j<k<n

T i ki (o) — Zor9)
T (uwy—u)- II (w—we) [T (wj—we) [I (uj—w)

1<j<k<n’/ 1<j<k<n/ 1<5<n’ n/<j<k<n
_ n'<k<n
[T (uy—uw)- TI (uwe—uy)- TT (wj—ug)
1<j<k<n’ 1<j<k<n/ 1<j<n’
n'<k<n
n/(n'—1)
= (=) > H (20(j) = 2o(k))- (B.8)
n’'<j<k<n
Hence,
' Pz, samy) I (g —2mw)  T1 (5 —2)
1<j<k<n/ 1<j<k<n
1 (2 = 2) IT (z6) = 2)
1<5<n/
1<k<n
k#u(7)
(_1) n (n271)
= o ; . P(Za(l), s ,Za(n/)) H (Zg(j) — Za(k)) . SgIl(O’) (B.9)
Hj:l (Zj - Za(j)) n'<j<k<n
Let n € ¥,, be such that n(j) = j for all 1 < j <n’. Then
Zo() = Zong) (L <G <)
and

IT Gotr—2w) = I (zonty = zonw) sen(n).

n'<j<k<n n’'<j<k<n
Thus the quantity (B.9) is invariant under the substitution ¢ — on. Hence (B.4)
follows.

Furthermore, (B.5) follows from equations (5.1), (B.6) and Lemma 5.2, and
(B.7) from (B.2) (B.4) and Proposition 5.1. n

The pairs (G, G’) = (Spy,(R), Ogp24) and (Sp,.,, O3,,) with p+¢=n' <n =r+s.
Theorem B.2.  Suppose

U o= {ifj £iJp|1<j<k<npuU{2iJ;|1<j<n}and
Vo= (i i 1< j<k<n}.

Let

nn=1) ., . _
5 nnl n

u' = (=1)
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Then
P(Z/>7T9//h/<zl)7r9/h(z) _ ul
det(2’ + 2)w | X Z5T|
Pz, %)) 1 (20)® = 2em?) - 11 2€()%()
/ —_— A. .
o€, KLY 1§gn/<2j Ejza(]))
(B.10)
Moreover,
()= [ (G2 =Gz J] (—2iz),
n'<j<k<n n'<j<n
det(z" + 2)\ HI Z — 25),
J=1
d
an B n,(n/_l)-‘,—n’
u'=(=1) 7 (B.11)

Proof. In this case

Ty 1y (2)ma/p(2)
det(z' + 2)w
y .EK (i) = (iz)*) - - EIK ((iz)* = (iz1)?) - TTj_1 (—2iz))

H?l:1HZ:1i( ;= )(Z/ + )
(1) [T GF=22) TI (5 —2) 1= (2%)

_ 2 | 1<j<k<n/ 1<j<k<n =t

Therefore, by partial fractions, the left hand side of (B.10) is equal to

P(ZL(1)7 ' ’Zb(n’)) I1 (Z?(j) - Z?(k))' [T (2" =22 11— 2%

j=1
1<j<k<n’ 1<j<k<n

H (6<])ZL ) — 52k> ’
1<j<n’,1<k<n

6=%1, (k,0)#(«(4),6(5))

where the summation is over all injections

{1,2,---,n'} 35 <= ((5),6() € {1,2,--- ,n} x {£1}.

Let oe = (0,€) € ¥,,xZ§ be such that o(j) = «(j) and €, =6(j) forall 1 < j <n'.
Then

11 (0(5)zu) — 0zk) = 11 (€20(j) = O€kZo(h))-

1<j<n’, 1<k<n 1<j<n’, 1<k<n
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Hence,

H1§j<k§n(zj2 — %) H?:l 22;

[l Ilk=t Tsmia, eor900) (00 2000) — 02)
[Li<jcran(Zot® = 2om®) - 1= 26520

sgn(oe), (B.12)
HJ e Tl +1, (kaek);é(ge])(eyza — 0€kZo(k))

where the ‘sgn’ is the character of the group X, x Z} defined by

II Gow® 2w [12%0 =senlee) I * -2 H 2.

1<j<k<n

j=1 1<j<k<n
Let u; = €;2,(j). Then,
[T Zot)® = 2om?) - 11 26200 [T (u®—w?)- JI 2u
1<j<k<n 1<j<n _1<j<k<n n'<j<n
I1 (€520() — 0€rZo(r)) [T II (u?—w?

1<j<n’,1<k<n 1<j<n’1<k<n
o==%1, (k,0¢x)#(5,¢5) k#j

Hence, by (B.8),

[T —w®) I (u®—w?) - I1 2y

1<j<k<n/ 1<j<k<n

n/<j<n
[T ID (u?—w?)
1<j<n/1<k<n
k#j

n/(n'=1)

=(-1) =z I G’ —zw®- T 2¢%0)

n'<j<k<n n'<j<n
Therefore,
1
B.13
T &= 0)eg) (B13)
1<5<n/
P(zqay, sz [ Ghy =24 11 (52 =22 11 2%
1<j<k<n’ 1<j<k<n 1<j<n
I II [1 (6(4)2u(j) — 0zk)
1<j<n/ 1<k<né==£1, (k,0)%((5),6(5))
n/(n'—1)
(=1) >
- P<ZO' 1) y Ro(n! )
I (z; —E200) (1) (n')
1<5<n/
T Gowy®=zew™) - ] 26i200) - sen(oe).
n/<j<k<n n'<j<n

Let np = (n, p) € X, X Z% be such that n(j) =7 and p(j) =0 for all 1 < j <n'.
Then

H (zg( za(k H 2€;24(5))

n' <j<k<n n'<j<n

= I Gont)> = zenw”) =TI 26:00)2enis) - sennp).

n' <j<k<n n/<j<n
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Thus the right hand side of (B.13) is invariant under the substitution e — onep.
Hence (B.10) follows. The rest is straightforward. [

The pairs (GaG/) = (02p72qasp2n’(R)) and (O;n),Spns), with r+ s =
n<n=p+q

Theorem B.3.  Suppose
U={iJ;i +iJy|1<j<k<n}

and
\If':{iJ;‘ﬂ:iJ,ﬂl§j<kz§n'}U{2iJ;|1§j§n’}.
Let (1)
u = (_1)Tfn’n in’.
Then
Ty /(Z/)ﬂ' /h(Z)
() det(z' + 2)w ( )
, P(ZU(1)7 o 7ZU(TL')) H (’23(]) B Zg(k:))
u n'<j<k<n
- Y s N
[Zonpr X Zy |U€€2nng [Tj=1 (2} = €20(5)
Moreover,
()= ] ((2)° = (20)),
n/<j<k<n
det(z' + 2)yw = le—zj
7=1
and o
n (n' —1
W = (—1) (B.15)

Proof. In this case

/

[I () = ()7 - [T= 225 TT (%) = (i20))

Ty iy (2)a(2)  1<i<h<n 1<j<k<n
det (2’ + 2)w [T T Thi(2) = 20)iC2) + 24)
A1) mn1) 22— 2 w9 22 — 22
B (_1) (2 1)+ (2 1) in 1§j1<_l[€§n’( j k) Hj—l 7 lgjgcgn( J k) (B 16)
(=1)n I I T (25 = 200 (25 + 2x)
Therefore, by partial fractions, the left hand side of (B.14) is equal to
)T
II (5 —=0()zu)
1<5<n’
Plzgyamy) T Gy =2l 11 200)ag - 1T (5" —a®)

1<j<k<n’ 1<5<n’ 1<j<k<n

I1 (0(7)20i) — Oz) ’

1<j<n’,1<k<n
6==1, (k,0)#(¢(4),6(5))
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where the summation is over all injections

{1,2,---,n'} 37 = (()),0(7)) € {1,2,--- ,n} x {£1}.

Let oe = (0,€) € ¥,,xXZ}§ be such that o(j) = «(j) and €, =6(j) forall 1 < j <n'.
Then, as in (B.12), we check that

[T (-2

1<j<k<n

IT 11 IT  (60)zy) —0z)

1<j<n’1<k<n 6==+1
(k,6)#((5),6(4))

[T o)’ — 2o

1<j<k<n

= — — - sgn(oe),
II II IT  (Ezog) — 0ékzowm) )

1<j<n/1<k<n  d=+1
(k,0éx)#(5,€5)

where the ‘sgn’ is the character of the group %, x Z defined by

H (201" = 200)") = sgn(0e) H (2% — 27).

1<j<k<n 1<j<k<n

In particular sgn is trivial on the subgroup Z%. Then, by (B.8),

H1§j<k§n’(zb2(j) - Z?(k)) ‘ H;L=1 2(5(]’)2@) : H1§j<k§n(zj2 - 2k2)
I1 (0(9) ) — O2k)

1<j<n’, 1<k<n

=(=-1) > H (22() — 25 - sgn(oe),
n'<j<k<n
Therefore,
I1 (Z?(j) - Z?(k)) - I1 200z - I1 (2% —a?)
1 1<j<k<n/ 1<j<n 1<j<k<n
[T (= —00)z) I1 (6(4)2 ) — Ozr)
1<5<n’ 1<j<n’, 1<k<n
0==+£1, (k,8)#(¢(5),6(4))

n/(n'—1)

(-1)™

(fo(j) - Zi(k)) -sgn(oe). (B.17)

/

H?:l(zj - é\]‘ZU(J'))n/<j<k§n

Let np = (n,p) € ¥, X Z% be such that n(j) =7 and p(j) =0 for all 1 < j <n'.

Then
II G’ =2m)= I Gop’ = zonw)®) - sennp).

n/<j<k<n n/<j<k<n

Thus the quantity (B.17) is invariant under the substitution oce — onep. Hence
(B.14) follows. The rest is straightforward. n
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The pairs (G, G’) = (Ogpt1,24, SPon (R)) wWith n' <n=p+gq.
Theorem B.4.  Suppose

U={iJ; £ig|[1<j<k<njU{iJ;|1<j<n} and
V= (i i [1<j<k<n}U{2J|1<j<n}.

Let i)
u“:(—l) 5 n'ni—n
Then
P(Z/)Wg’/h’(zl)ﬂg/f)(/z) _ u'
det(z/ 4+ 2)w 1S X Z57 |
P2y, s 2om) 11 (22— 250) - 11 ézomr)
Z sgn(ae) ) n/<j<k<n n/<k<n (B 18)
€L, KLY II?:I(Zé __éjZUQJ>
Moreover,
()= [ (G2 =Gz [ (—iz),
n/<j<k<n n'<j<n
det(2 + 2)y HI z — zj),
7=1
and ) o
' =(=1)"7=2 . (B.19)

Proof. In this case
Ty iy (2)7g/0(2)
det(z' + z)w

1 (=) = ()2 TS 2iz - T (G2)* = (20%) - TT (—iz))

1<j<k<n’ 1<j<k<n
! . - / -
H?:1HZ=1'(Z§' — 2p)i (z’- + 2) - H?:l |z;-
IR T ()T

I 1<j<k<n’ 1<j<k<n
(=) [T T (2 = 2) (2] + 21)

Therefore, by partial fractions, the left hand side of (B.18) is equal to

>
2n/(_1)n (n271)+n(n271) .

n’/(n/—1) ,

2V (—1)" 7w
ZH? 1(Z —0(J)z0))

P(ZL(I)v : 7ZL(n')) H1§j<k§n’(ZL2(j) - Z?(k)) ‘ H1§j<k§n(zj2 - Zk2) HJ 175
11 (0(9)2) — ) ’

1<j<n’, 1<k<n
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where the summation is over all injections

{1,2,---,n'} 55 <= (u(4),0(5) € {1,2,--- ,n} x {£1}.

Let oe = (0,€) € £, XZ§ be such that o(j) = ¢(j) and €; = 0(j) forall 1 < j <n'.
Then
H1§j<k§n(zj2 — 2,7 - H?:l Zj
H?:l ITiz Hé:il, (k,é);é(L(j),zS(j))(5(j>zb(j) — 02y)
i<jcnen(Gotn® = 2om?) - Tljm1 €200)

H;:l [Tios Hé::l:l, (k,(sék);é(j,éj)(éjzo'(j) — 0€r2o(k))

sgn(oe),

where the ‘sgn’ is the character of the group 3, x Z7 defined by

n

I Geo)® = 2w - [[é%0 =senloe) [ =% -2 -]]2

1<j<k<n j=1 1<j<k<n j=1

Hence, by (B.8),

[T Go?—z2w? 11 (-2 1%

1<j<k<n’ 1<j<k<n
H?:1 HZ:1 H(s:ﬂ, (k,&);é(L(j),(S(j))(5(j)zb(j) — 0zy,)
[1 (zi(j) - Zg(k)) -1 (23(]’) - Zg(k)) : H;L:I €j%a(j)

1<j<k<n/ 1<j<k<n

= — - - sgn(oe)
Hj:l ITi- H(S:j:l, (k,é)#(b(j),é(j))(ejsz(j) — 0€kZo(k))
1§j1<_][€§n/( o(4) U(k)) 1§j1;[k§n( o(5) a(k)) H3_1 j*o(d)
= sgn(oe)

H?:1 szl,k;zéj(’z?r(j) - Zg(k)) ’ H;'L:1 2€jza(j)
—n! n/(n/—l) N
= 27" (—-1) = H (2o(j)” = Zo(r)’) - H €20(j)88n(ce).  (B.20)

n/<j<k<n n’<j<n

Let np = (n, p) € X, X Z5 be such that n(j) = j and p(j) =0 for all 1 < j <n'.
Then the quantity (B.20) is invariant under the substitution ce — onep. Hence
(B.18) follows. The rest is straightforward. n

The pairs (G, G’) = (Spy,(R), Ogpt1,24) With p+g=n' <n.
Theorem B.5.  Suppose
U={iJ; iy |1<j<k<njuU{2iJ;|1<j<n}

and
\If’:{iJ;iiJ,ﬂl§j<k:§n'}u{ijj’.‘|1§j§n’}.
Let

n(n=1) ’

u/ — (_1)72 nn ITL .
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Then
p , ﬂg//h/(zl)ﬂ'g/h(s}wrt)(z) — u’ - X B.21
() det(zl+z)Hom(V,V6l) 208, <y ( :
P(zg(1),"':za(n/)) /<‘I—<[k< (z§<j>—z§<k))
n h t ‘ / —= =
Yoeex, wzg S81(short)(oe) [ —r%00)
Moreover,
;5 (short)(z) = H ((i)* — (i2)%),
n'<j<k<n
det(2' + 2)\ Hl % — 2j);
J=1
and !(n'+1)
n (n"+1
W' = (_1)f' (B.QQ)

Proof. In this case

Ty 1y (2') g (short)(2)
det(2’ + 2)Hom(v.v 1)

1 (=) = (=2 - Thmyizp - T ((i29)* = (2)?)

1<j<k<n/ 1<j<k<n

H?:lHZ:ﬂ(Z;‘ - Zkﬁ(%’ + 21

This expression is equal to 2" times (B.16). Hence, (B.21) follows from Theorem
B.3. [ |

Appendix C.

In this Appendix, we prove Theorem 7.4, via a case by case analysis. We shall
denote by ¥ the standard positive root system, as in Appendix B. Always, S will
stand for a strongly orthogonal subset of U™ and s for an element of the Weyl
group W (H¢). Furthermore,

¥ eph™ rebhs, yeh, z=zx)=z+Iiy. (C.1)
Let
fus(z) = ms(s)P(s™" - 2)Tym(s™" - 2),
det(z' + 2) o = ﬁ — &20(j)) (¢, =1 if D=C),

Fros(s) = det(ifj(j)swA(—xifs,w»

Fs,a:’,S(Z) = F57x/75(2’)/P(8_1 : Z)
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We shall normalize the Killing form « so that

In the proof we shall use the following consequence of the Fundamental Theorem
of Calculus:

/R\O@(l)f(x) dr = o F(@)de = —(f)1(0), (C.3)

where f: R\ 0 :— C is a differentiable function of bounded support such that the
limits

(£1(0) = Jim f(z) — Tim f(~2)

z—0t

exist. Since we may think of f as of a compactly supported distribution on R, we
shall write the formula (C.3)

/ a1 () (0), (C.4)

Furthermore, by combining (C.4) with Leibniz rule, we see that for any smooth
function ¢ : R — C

/a( )p(x dm—/@ dm—/gzﬁ z)) dz(C.5)

[ o6 @) d = =o0)(n(0)

Here the singularity at 0 may be replaced by the singularity at any other point in
R. This will be frequently combined with the ”jump relation” (2.3).

As in the proof of Theorem 7.3 we shall appeal to a partition of unity and
thus consider two cases. Either 1) is compactly supported in a completely invariant
open subset of g, which is disjoint with the singular support of the distribution
che(z'+ ), or 9 satisfies the condition (7.16). In the first (non-singular) case,
we take y = 0 in (C.1). In the second (singular) case, y € I'; as in (7.17). In
both cases % is a smooth function of z in an open neighborhood of the

et(z/+2),Wb
support of .
Let 1 < j <n'. Then

1 1

o(J! = O(—€;Jy(; )
( ])det(x’ + 2) gt (=6 (J))det(m’ + 2) ot

Hence,

(S} (Fow s(2)Hst(x))

= (020 gt 5 ) Fes(AC Ts) M),

Let ¢ be the restriction of m to x — 25(j)Jo(j) + RJy(;) and let f be the

swh’

restriction of f,s(2)A(—Vsg)(z)Hs(x) to the same set. Since f,s is constant



576 BERNON AND PRZEBINDA

on T — Te()Jo) + Ry and A(—Vgsg) is locally constant on this set, (C.5)
implies that, in terms of Theorem 7.4,

o) (P (o) [ ehels’ + 2)i(a) du(w)) =D+ B,

g

where, in the non-singular case,

D = Z hsa( Jo() Fow s (2)Hs(z)) du(z), (C.6)

E- 3 / 8 ()T (P57 ) Hsth () (),
and in the singular case
D gm > /h —&1Jo(3) (For s (=) Hst(2)) dp(a), (C.7)
B o=, /Mm 5 ()06 7o) (P 2)Hs(a)) dpu()

- i B s(2)0(6, Jugy) (Ps™ - a)Mst(e) dp().

S\h‘l’g,iR yels s,y—0

The argument for the equality (C.7) is as in the proof of Theorem 7.3. In any case,
let

D= [ Ot (P o) M (0)) o). (©3)
S,s 7 hs

Since, by Corollary 3.3, s - J; = €;J,(;), the proof of Theorem 7.4 will be
complete as soon as we show that

D=0. (C.9)
The pairs (G,G') = (U, 4, Uy ) with p'+¢ =n' <n=p+q.
Here
Ut ={e, —e |1 <a<p<b<n},
where e, =iJ! for c € {1,--- ,n}.

Lemma C.1. Let c€ {1,2,3,--- ,n} \S. Then

[ DI F s M) )
==X ) [ Pl M) dua).

newn nNS=~0,cen
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Proof. Let n = e, — e, so that iH, = J, — J.
We begin by computing the determinant of the map

bs :RiHnGBbgﬂb" ) itHn+u—>tJa+u€ bs.
Since

[)3 = R(Ja + Jb) D R<Ja - Jb) SY hJ;’Jga a’nd
hs = RJ,©RJ, @b’

it will suffice to compute the determinant of the map

t(Ja + Jb) + S(Ja - Jb) —tJ, + S(Ja — Jb),

which is easily seen to be %

Notice that the map

n()
n(Je)

hsNh’e 52 — — J.+x €hsnh”

is a well defined linear bijection. Thus, for x € hs N h’e and for t € R,
F(Je, J) V2t dp(x) = du(t. + x)
= ap((t+ Ty g )

n(Je) n(Je)
= L 2,0
ol n()
= éﬁ(lHn,lHn)/ dt dp(— 77(JC)JC—Fx).
Since, &(iH,,iH,)"? = \/_H(JC,J)%,WG see that
_ L @) It
dﬂ($)—\/§dﬂ( n(Jc)JC+ ) €hsnNhe. (C.10)

Since Vg = {n € ¥"|nNS = 0}, Theorem 2.1, (C.2), (C.4), and (C.10) show
that

(T (P s (2 Hst()) dia(x)
_ /b » / s (28, + ) M (2(t. + 1)) dt dp(z)

_ . 77( ) . _M ) )
e @/w s B gy e O gy e ) )

= — Z \/— - st’S( ( ))<H$¢>Jc( ) (ZL')

nevn nNS=0,cen



578 BERNON AND PRZEBINDA

Notice that,
(Hso) s (x) = JI(iHy) (Hs)im, (7).

Furthermore, by Theorem 2.1,
(Hs)in, (x) = ie(¥, 8, n)Hsynth(x).

But Lemma 1.7 implies €(V,S,n) = 1. Hence, the lemma follows. [

Lemma C.2. Let n €S and let c €n. Then,
| DU Fus M) i) = ey [ Fusny () du)

Proof. First we will show that

O(Hy)(Foar s(2)Hsp(x)) du(x) = \/§/h . )Fs,ch\n(Z)%slﬁ(I) dp(x).

(C.11)
Indeed, by (C.2), &(H,, H,)"? = /2. Moreover, Usr = S. Therefore, the left
hand side of (C.11) is equal to

bs

V3 / / O(H,) (Fyws(2(tH, + 2))Hs:(tH, + z)) dt dp(x)
hsNphn
5 Jos D) s\ )

b det (' + 2(2))

-1
W)Hn () Hs(z) dp(x).

Lemma 8.1 shows that

fs,S(Z) _ 1
det(a’ + z) o 2

Furthermore,
-1
(70w, (2) = —2.
il
Hence, (C.11) follows.
If n=-e,—ep, let n°=e, +e,. Then n° e W\ Vs g Hence, Theorem 2.1
implies
: O(iHpe)(Fow s(2)Hsto(x)) dp(z) = 0. (C.12)
S
where iH,c = J, + J,. Moreover,

J. = 5J;(.H )(H,) — iH,.). (C.13)
Clearly, Lemma C.2 follows from (C.11), (C.12) and (C.13). n

Consider the non-singular case. The quantity (C.8) may be written as

D = Dy + D, (C.14)
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where

Dim 3 [ Ot (Pl Hs(a)) dia)

S,s,0(j)gs 7 hs

and

Dy= > N—=Jo() (Fow s(2)Hsto(x)) du(x).

S,s,0(j)es s

We see from Lemma C.1 that

D, = Z ﬁeg(j)(Hn) /hsﬁb" Fy 2 s(2)Hsugth(x) du(z),

S,smevn nnS=0,0(j)€n

and from Lemma C.2 that

Dy = Z _ﬁeﬂ(j)(Hn) /hsﬁb" Fy o s\n(2)Hs(x) dp(z).

S,smeS,o(j)en

Clearly, D; + Dy = 0.

In the singular case the S varies over U7, (g”) and the s over the complex
Weyl group of g&. Thus the same decomposition (C.14) holds. Indeed, it suffices
to realize that

0 =g & B Uy, g, B gl (R) @ --- @ gl (R),

so that
lI]Zt j Ulpst gz U {S}

Thus (C.9) follows.

The pairs (G,G’) = (Sp,,, 05,,) with n' <n =p+q.
Here
Ut ={e,te|l<a<p<b<n}

and
S= {6a1 + 5161)17 €as + 526627 oy C6ay + 5mebm}a

where a; # a; and b; # by for k # j, and
Hence, the proof of (C.9) is almost identical to the proof in the (U, ,, U, ) case.

The pairs (G,G’) = (03,,5p,,) with p+q¢=n"<n.
Here
U ={e,+ep; 1 <a<b<n}

and
S — {eal + eb176a2 + €b2, e 7€am + ebm}'
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Thus, as before, the proof of (C.9) is almost identical to the proof in the (U, 4, Uy o)
case.

The pairs (G,G’) = (Spy,(R), Ogpi1,24) With p+ g =n' <n.
Here
={e.t+e|l<a<b<n}U{2.|1<c<n}

and
S ={ea, T €bys€ay + €y, ey Ca, +ep, } U{2€,2e0, - ,2¢.,}

Lemma C.3. Let ce {1,2,3,--- ,n}\S. Set v =2e. so that iH, = J.. Then

O(iH, ) (Foo s(2)Hst(x)) du(x) =

bhs

o /b Foar 50 (Y Hsunth(@) du(e)——= 3" /hh Frr (2 Hisunto(a) du(x).

sMbY \/i neW™ (short),
nNS=0,7Cn

Proof.  Since an analog of (C.10) holds in this case, the left hand side coincides
with

/b - / OGH,)(Fya s (2(tiH,, + ) Hsto (tiH + x)) dt dp(x)

— _/b . Fows(z)(Hs¥)inm, (x) du(z)

n(z) @)
x /h( (oS +-)) (s, (~ D +.3) d)
nNS=0,yCn
= _/h‘ - Fs,m/,S(Z) <,H51/}>iHv (SC) dﬂ(l‘)
- Z \}— v FS@’,S(Z(ZL‘)MH‘S@ZJ%HV(ZE)du(fﬂ). (C.15)
esbacs

Let x € hs be semiregular with respect to 7. Then, Lemma 1.7 shows that

A(=Usp)(2)e(V, 8, 7) = A= (Vsvyr \ 7)) (2)-

But, 3
A(=Vsr)(7) = A(=Usr)(2)A(=Ysr(long))(z),

and
A(=(Tsvyr \ 7))(@) = A(=tWsvyr) (2) A(= (Ysvqr(long) \ 7)) (@).

However,

A(=(Vsvyr(long) \ 7)) (z) = A(=((§V~)(long) \7)))(x)
= A(=S(long))(x) = A(=Vsr(long))(x).
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Thus )
A(=Vsp)(@)e(V,S,7) = A(—Vsyyr)(@).

Hence, by Theorem 2.1 and Lemma 8.1,

Fs,x’,S(Z)<H5w>iHy(l') = Fs,x’,S(Z)iE(\Ija’SaV)HS\/'yw(x) (C16)
= 2iF57m/73v7(2)H3\/7¢($).

Similarly,
6(\117877]):1 (UE@”,QQQZQ),

and since iH, and iH, are in the same connected component of hs M b7,

(Hs)in, (2) = (Hs)im, (x) = 1e(V, S, ) Hswn(z) = iHswnt(2).(C.17)
Clearly, (C.15), (C.16) and (C.17), imply the lemma. n

Lemma C.4.  Under the assumptions of Lemma C.3, suppose y(y) = 0. Then

S b P (et dule) 0.
hsMhY

seW (He),0(j)=c

Proof.  As an element of the Weyl group W (H¢) = £, x Zj, the reflection s,
with respect to v, may be identified with an element € € Z%, such that

ée=1 for k#c¢ and ¢, = —1.

Recall that s = ge. Hence

1

sys = o(0 €0)e,

and therefore

A

(07 'eo)e); = (07 e0)s8; = €opy)éj = —¢5,

if 0(j) = c¢. Thus it will suffice to show that

F51$'75\/W(z) = FSWS,I/,SV’Y('Z>‘ (018)

Notice that mgy,(sys) = msy,(s). Furthermore,

det(a’ +2), g = i@ Fer0z) - [] i) = &ze):
1<j<nl o (j)e

But for x € hsny,
Ze = Te + iy, = 0.

Hence,
/ o /
det(z’ + 2), g = det(z’ + 2) guyw

and (C.18) follows. ]
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Lemmas C.3 and C.4 imply that in the non-singular case the following
formula holds:

=€ Js()) (Foar s(2)Hsp(x)) du(x)

S.s,0(j)¢s s
IGJ

= X ] Res@Hsn@) o). (C19)

S,smeV™ (short),
nmS 0,0(5 )en

In the singular case, if v(y) # 0 then ¢ belongs to |-, U7 (g7). Hence the
support condition (7.16) implies that the first integral on the right hand side of
the equation of Lemma C.3 is zero. Thus (C.19) holds too.

Lemma C.5. Let ce€ S and let v = 2e.. Suppose v € S. Then

O(Hy)(Fow s(2)Hst(x)) du(x)

bhs

- > Ve[ Fos(2) A (B55\ m)) () Hsunth(e) diu(z).

/ !
ne¥s r(short) hsNp” det(w + z)sWh

Proof. The left hand side is equal to

/h h/& Fyws(2(tHy + 2))Hsy(LH, + ) dt dp(x)

b

snpy det(z/ + z(— ))H +2)) g

WE‘PSR n(H)#0

A= (s \m) (0t )
0, i) @)
(i (s H b M (0 ) )

- Z _% /‘]sﬁhn det(isizi )) A(_<®S7R \ 77))(5(3)

neWs r,m(Hy)#0 ) swv”

<|‘7’|7>H7 (2)Hst(x) dp(w),

which coincides with the right hand side because

_y o
<W>Hv(fc) = —2n(H,).

Lemma C.6. Letn=-e,+e, € V", n°=e,—e, € V¢ and let § = 2e, € V™.
Suppose n,n° € Ysr and n(y) =n(y) = 0. Then, the map

hgﬂh”CBx%sﬂ-begﬂh" (020)
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s a linear bijection and

fs,s(2(sp - )
det(z' + z(s5 - @) v’

A(= (s \ 1) (55 - 2)Hst(s5 - 2)
)
det(s/ + 2(2)),

A(=(Tsp \ 7)) (@) Hstp(w). (C.21)
Proof. Since

sgrdy=—Jp and sg-Jy =—Jy  (bAV),
(C.20) is clear. Also, since no sg =1°,

A(=(Wsr \n))(s5 - 2) = A(=(Tsz \ 1)) (@).

By Harish-Chandra
Hsh(sg - x) = Hsp().

Furthermore, by definition,

fss(z(sp-2)) = [s.s5(2(2)) = fops.5(2(2)),
and
det(a + 2(s5 - @)y = det(a’ + 2(2)),, v

Thus (C.21) follows. n

C

Lemma C.7. Let v = 2e., n = e, + ¢, 1
Suppose v,m,n° € Ysr. Then,

> o Lo T A~ (52 \ ) (o) ) du(o)

/ !
seW (He),o(j)=c ' 2) gwp

c fS,S(Z)
+ n (H’Y) bsb7° det(x’ + Z)wa'
- > ) [ Jos®) A (s \ ) (@) Hswle) dula).

seW (He),o0(j)=c hsnhn® det(x’ + Z)SW‘J'

A (s \ 1)) (@) Hsth(a) du(z))

Proof. Let us abbreviate I, and I, for the integrals on the left hand side
of the equation (C.7). Then, with 8 = 2e, I,y = I5,e, by Lemma C.6. As in
the proof of Lemma C.4 we check that if o(j) = ¢, then

(0 spo€); = &m°(H,).
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Thus the left hand side is equal to

Z én(Hy) Ly + Z €n° (Hoy) Ls e

seW (He),o(j)=c seW (He),0(j)=c

= Z €ilsy + Z € (Hy) Ls e

seW(He),o(4)=c seW (He),o(4)=c

= Y (0ol t DL & (H )y

seW (He),0(j)=c seW (Hc),0(j)=c

— 2: 260 (H) Lo pe,
sEW (He) 0 (j)=c

which coincides with the right hand side. |

Lemma C.8.  Suppose n=¢,—¢e, € Vs and n C S. Let
(a,b)={a+1,a+2,---,b—2,b—1}.
Then
E(W,S,U) _ (_1)\(a,b)08(long)\.

Proof.  Let a € U§ be such that a(H,) # 0. The a = 1 and therefore
a(H,) =2. Thus
{a € Vs p|a(H,) <0} =0.

Hence, Lemma 1.7 implies that

(W, 8,n) = (—1)61+C2, (C.22)
where
1
cT = 5‘\1137(; M (—LS\If‘g,(d, (C23)
1
cp = §|‘I’svn,<cﬂ(—stn‘Ifs,<c|-

Notice that

LS = H Sg - H S8- (C.24)

BEYS g, BCS BEY (long), SNS=0

Hence,

e. if c € S(long),
Ls = —e. ifc ¢ §7 (025>
eo  if there is 3 € W§p such that {c,d} = B C S.

For a root «, we shall write @« > 0 if a € ¥ and a < 0 if a € —V. It is easy to
see that

{aeV]iann#0,s,a <0} ={ea—ec|a<c<biU{ec—e|a<c<b} (C.26)
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Since Lgsy, = Lss,; = s,Ls, we see from (C.24), (C.25) and (C.26) that

(UscN(—Ls¥sc)) \ (Wsvnc N (=LsvnVsvnc))

= {aeVsclann#0,a ¢ Vsy,c, Lsa < 0}
U{ae¥sclann#0,ac ¥sy,c, Lsa < 0,5, < 0}

= {acV|ann#0,anS(long) # 0, Lsa < 0}
Uf{ae¥lann#0,a\(Slong) Un) # 0, Lsa < 0,s,a < 0}

= {aeV¥|ann#0,anS(long) #0,s,a < 0}
UfaeVlann#0,a\ (S(ong) Un) # 0, Lsa < 0, s,a < 0}

= {ea—ela<c<beceS(long)tU{e.—e|a<c<b e S(long)}
U{es—ecla<c<beceS(short),d < b}
U{ec—ep|a<c<bceS(short),a <}
U{e.—ep|la<c<becé¢ S}t

Therefore,

(Ws,cN(=Ls¥s.c))\ (YsvnecN(=LsvyWsvne))| = 2/(a,b)NS(long)|+|(a, b)\ S|
+ {c € (a,b) N S(short) | < b} + [{c € (a,b) NS(short) | > a}|. (C.27)

Similarly, (‘IJS\/n,(C N (_LSVn\IjSVn,C» \ (\IJS,(C N (—LS\IIS’(C))

= {aeVUsclann#0,a € Ysyye, Lsa > 0, s,a < 0}
= {e,—e.la<ec<bcg S}

U {es—ec|a<c<bceS(short),d > b}

U {e.—epy|a<c<b,ce S(short),a > c'}.

and therefore,

|(Wsvne N (=LsvgYsvne)) \ (Vs N (—=LsVsc))l (C.28)
= |(a,b) \ 8| + [{c € (a,b) N S(short) | > b}| + |{c € (a,b) NS(short) | ¢ < a}|.

We see from (C.23), (C.27) and (C.28) that

2¢1 — 2¢9 = 2|(a,b) N S(long)| (C.29)
[{c € (a,b) N S(short) | < b} — |{c € (a,b) NS(short) | > b}

[{c € (a,b) NS(short) | > a}| — |{c € (a,b) NS(short) | < a}|
2|(a,b) N S(long)| + 2[(a,b) N S(short)|

— 2[{c € (a,b) N S(short) | > b}| —2[{c € (a,b) N S(short) | < a}|
2|(a,b) N S(long)| + 2[(a,b) N S(short)| (C.30)
— 2{c € (a,b) NS(short)| >bord <a}

= 2[(a,b) N S(long)| + |{c € (a,b) N S(short) |a < ¢ < b}|.

I+ +

\_//\\_//\

Notice that the number of the ¢ € S(short) such that a < ¢ < b is even. Hence,
(C.29) and (C.22) imply the lemma. ]
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Lemma C.9. Letn= eqtep €W and let n° = e, —e, € V. Suppose 2e, € S
and 2e, € S, so that n,n° € Ysr. Then, for v € bhs semireqular with respect to
,,,IC
2fs,s(2(x))
det(@ + 2(2)) yr

A(=(Ysr(short) \ 1°))(x)
=e(V,(S\ (V) Vn,n°) Fa (s\@vmeyvn(2(2))-
(Since NV n° ={2e4,2e,} C S, the difference S\ (nV n°) makes sense.)

Proof. Notice that

2fs,s = fss\avne)va- (C.31)
Furthermore,
= ¢ _ —a(z)
A=Tse\ 1) (@) ectsparo w
_ o 3 —a(z)
ALY vy (@) Tlact g evns o
~ —a(z) ~ —a(x)
_ HO&E‘I’&M&#TIC@#W la(z)] Hae‘ys(long),R’O‘#”c’a#" ()|
N ~ —a(z) ] —a(z)
Haews\(nvnc)yﬂg la(z)] Hae‘l’s(long)\(nvnc),lR ()]
—a(z) a(z)
H |a(z)] 11 ()]
aE\I’S(long),R’ aE\I}S(lOn!J)ﬁR’
a#n° an,ann#0 an© an,aMm#)

Notice that the roots a which occur in (C.32) are of the form

eqate. or egxe. ifb<ec,
a=<e.Lte, or e,te, ifc<a,
eate. or e.te, ifa<c<b,

where ¢ € S(long).
Let yr = ex(z). Then y, = vy, y. € R and (C.32) is equal to

I Ya—Ye Y —Yr | 1T Ve~ Ya Ye—Yp
2 2 __ .2 2 2_y§|

b<c,ce€S(long) |ya yc' ‘yb yc’ c<a,ceS(long) ‘yc ya’ |yc

0 ve—yl Yt —up
2| |y2 — 7|

a<c<b,ceS(long) |ya yc| |yc

LRI E e

b<c,ceS(long) |ya yC| c<a,ceS(long) |yc

II v

a<c<b,ceS(long)

_ (_1) [(a,b)NS(long)| )

Since ((S\ (nVn9))Vn)(long) = S(long) \ {a,b}, (C.33) coincides with
(U, (S\ (nVn))Vnn), by Lemma C.8. n
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In the non-singular case y = 0, so the condition 7n(y) = n°(y) = 0 of
Lemmas C.6 and C.7 is satisfied. This condition is also satisfied in the singular
case, because n,n° € Wspr implies

N (U‘Ift o )

and hence n(y) = n°(y) = 0. Thus, by combining Lemmas C.5 - C.9, we obtain
the following formula

S Ot (P (e Hst) di(a)

S,s,0(3)€S(long) bs

= > — V2 (o)), (S\ (0 V 1%)) V )

S,s,0(5)eS(long); 776(115’]1@0\1/"

| Paisiylel@)Hvla)) dute).(C.340)
hsNhn
Lemma C.10.  Let n € S(short). Then

O(Hy)(Fy,s(2)Hsto(2)) dp(a) = V2 Fiar s\n(2(2) ) Hsto () dpu(z).

bs hsnhn

Proof. Since &(H,, H,)'/? = \/2, the left hand side is equal to

V2 /h N / O(H,) (e s (2(tH, + @) Hstb(tH, + ) dt dia(a)

_ fos(2(tH, + x)) r )
= ﬂ/hsmbn/a<Hn)(det ZL”—}-Z(tH +l_))SW[)/A( \I]S\n,]R)(tHn—F )

( (tH ) Hs(tH, + x))) dt du(z)
3 fs5(2(x))
= 22| e A Tena) (@Mt (@) due).
Since,
fss(2) ~ 1
det(:v’j— Z) ot A=Wy (r) = EFS’x/’S\"(z)’
the equation follows. [ |

Lemma C.11. Letn€V¥sp, n CS. Then

O(iHy)(Fya s(2)Hst(x)) dp(z)

bs

93U, S.) / Py (2(2) Hsvyh () d(z).

hsNh7?
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Proof. By Theorem 2.1, Lemma 1.9, (C.5) and (2.3), the left hand side is equal

to
\/5/ / O(iH,)(Fs o s(2(itH, + x))Hs(itH, + x)) dt dp(x)
hsNp7
= —V2 Fiow,s(2(2))(Hs)in, (x) du(z)
hsnh
— VB[ Fus(a@)i2e(T, S,n)Hsut(2) du(x),
hsNp?
which coincides with the right hand side. [ |

Since, for 7 = e, + e, n° =€, — e, and o(j) € n,

~

) c. . :
—€Jo() = 2_]| (Hy = 1°(Jo))iHye)

Lemmas C.10 and C.11 imply the following formula

Z =€ Jo()) (Fsar.s(2)Hs(x)) du(z) (C.35)
S,s,0(7)€S(short) bs
= Y hp | Pas(@Hs) du@)

S,s;neS(short),o(j)en

. S VB S () / P s(2)Hsvar (@) dpa(z).

S,s;neS(short),o(j)€n LR

Clearly, (C.19), (C.34) and (C.35) imply (C.9).

The pairs (G, G’) = (Spy,(R), Ogp9,) With p+g=n' <n.

Here U™ and S are as in the previous section, and the following statements
(which hold in both the non-singular and the singular case) may be verified the
same way as the corresponding statements there.

Lemma C.12. Let c€ {1,2,3,--- ,n}\S. Put v =2e.. Then

/ OH,) (Fow 5 (2)Hsto(x)) dp(z)

bs

- Josl) (Wi \ 1) @) M) di(a)
bspr det(

x' + Z)SW”/

- S ) Pl Heup(e) dute).

newn(short) nNS=0,yCn
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Lemma C.13. Let c € § and put v = 2e.. Suppose v € S. Then

/h O(H, ) (Fyw s(:)Hs(2)) dps(x)

fos(2)
5 /M i s A(=(Tsp \ 1) (@) Hst(x) dp(z)

x' + z)sWh/

oy e [ Jos () (L (W \ m)) (@) Hsto() dia(a).

/ /
neY s r(short) hsb” det(m + z)swb
Lemma C.14. Letn=-e,+e, € V", n°=e, —¢e, € V¢ and let f = 2¢, € V™.
Suppose n,n° € Ysr and n(y) =n(y) = 0. Then the map
hbs Nh" > 1 — sgs € hsN b (C.36)

15 a linear bijection and

fos(2(s5 - 2))
det(z' + 2(s5 - @) v’

A(=(Ysr \n)(sp - 2)Hs (s - x)
_ [ess(z(@))
det(z’ + 2(2)),, v

A(=(Vsr \ 1)) (@) Hst(2). (C.37)

Proof. This is similar to the Lemma C.6, except that
A(=(Tsr \n))(s5 - 2) = —A(=(Vsr \ 7)) ()

and
fos(2(sp - 7)) = fss(2(2)) = = fsps.5(2()).

Thus the negative signs cancel and the lemma follows. ]

Lemma C.15. Letn=-e,+e, € V", n°=e, —e, € V¢. Suppose 2¢e,,2¢, € S,
so that n,n° € Usr(short). Then for x € hs N,

fs,S (Z)
det(z" + 2) o'

A(=(Wsr\1%)) (2)=€(¥, (S\(1 V1)) V 0, 0°) Fsar (\(pvme) v (2())-
Lemma C.16.  With the notation of Lemmas C.13 and C.1} we have

> () [ e )@ s o)

seW (He),0(j)=c

o) [ A s ) ) dute)

=Y o) / fas(e) 4 (s \ 1)) (o) st () dia(a)

c / /
seW(Hc),0(j)=c bsnb” det(m +Z)3Wh

— S (i) /h o (P, (S\ (nVn))Vnn)

s€W (He),0(j)=c
Fs 2 (s\(pvme)va (2(2)) Hs(z) dp(z).
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Lemma C.17.  The following formula holds:

3 /a(—@-JUm)( Fowr 5(2)Hsto(2)) dp(z)

S,s,0(j)€S(short) bs

=Y g [ R Heb@)dut)

S,sne8(short),o(j)en \/§ hsnhn

N S VB S () / P s(2) Mt (2) dia().

S,s;neS(short),o(j)en bsMb®

We see from Lemma C.12 that

Z —&Jo () (Fyar s(2) st () dp(z)

S,s8,0(5)¢S
/ fS,S(Z)
hsmb €o(4) det :L' _'_ Z) Wh’

(= (Tsvae, J>R\2eao )) (@) Hsvze, ;1 () dp(z)
DY \/— /hsﬁh’? Fs . s(2)Hsun () du(z).  (C.38)

S,s;neP™ (short),
o(j)ennnS= @

Sso’ ¢S

Furthermore, Lemma C.13 implies

> a( €ido(i)) (Foar s(2)Hstp(x)) dp(z)

S,s,0(j)€S(long)

= Z —i¢; / fss\2e, (%)
S,si0(j)€S (long) bsnne() det(z’ 4 2) g
A(=(Vsr \ 260())) (2)Hstp(2) dp(z)
* Z _\/Eéjnc(Ja(j))E(\I’, (S\ (nV 1)) Vn,n)

S,s;0(3)€S(long)

/hsﬁb"“ Ey ar (s\(vneyvn (2(2) ) Hsto(z) du(z).  (C.39)
Lemma C.17, (C.38) and (C.39) imply (C.9).
The pairs (G, G’) = (Ogp11.24, SPo (R)) with n’ <n =p+q. Here
Ut ={e,te|l<a<p<b<n}U{e|p+1<c<n}
and the strongly orthogonal set S is as in one of the following cases

{eas vy, e, T epsCay + 01160, €ap + Omes, | (C.40)
{eal + €byy " 5 Eq + €5 €ariq + 5l+1€bz+17 T Capy + (5mebm} U {ebm+1}7 (041)
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where a; < p < b;, p <bpny1, 6; = *1, and [ or m could be equal to zero.

The proofs of some of the following statements are similar to the proofs of
the corresponding statements in the (Sp,, (R), Ogpi12,) case. In such situations
we skip the details.

Lemma C.18.  Suppose c € {1,2,3,--- ,n}\S. Let v =e., so that iH, = 2J..
Then

: O(iH,)(Fow s(z)Hst(x)) dp(z) = A+ B,

where
~2(S.9) oy Toti gy AL (Vs \ D)) s ) i),
A= Zf,y € \IIS,i]R7
0 otherwise,

B > 2VAn(H,) [ Fs(Heuni(o) du(o)

776‘1/”70677 USQV(W)
ﬂﬂ§=@7

and d(S,~y) is as in Lemma 8.3.

Corollary C.19.  The following formula holds

8( € 0(]))( Fows(2)Hsy(x)) du(r)

S,80(5)¢S

N fs,S(Z)
= Z 2i€; / det(z/
hsNhY

x4+ z ’
S,5;7€¥s r(short),y={o(4)} )swh

A(=(Ysr \ 7)) (@) Hsp(x) dp(z)
T Z \/_60(])( )IGJ /hsﬂhn sx’S( )%Svn¢( )) (I> (042)

S,s;neWn (long),nNS=0

Proof. By Lemma C.18, the left hand side is equal to

S s [ el A\ ) () di)

x4+ z
SsEVE i, (24 2)
NS=0,y={c(4)}

s V()i [ Funs(@)Hsn(@) duto), (C43
S,s;n€¥™ (long), hsnh?
nNS=0
because hs N h" = hsy, NHh7. Let S be as in (C.40). Assume first that
S = S(long), v € ¥"(short), yNS = 0.

Let f € Vgy,r(short) \ 7. Then v — /8 is a real root. Let w = ws denote the
corresponding reflection. Then,

Yow = 67 U}2 = 17 w(hS\/w) = bS\/'ya w(hS\/v N hﬁ) = hS\/'y N h’y'
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Let (7 — B)pos € ¥ be either v — 8 or § — ~, depending which of the two roots is
positive. Notice that for x € hsy-,

H alw-x) = H ax) H alw - x)

Q€U gy g0y A€V sy r,aN(yUB)=0 €V sy raN(YUB)#D,azy
and that
[T aw o) = G- Bhulw )+ Ha)bw-)
a€V¥syqy R,
an(yUB)#0,ay
H alw - x) H a(w-x) = —(v—B)pos(@)(y+ B)(x)y(2)
a€¥sy, r(long), a€¥ sy~ r(long),
any#£0,ang=0 any=0,ang#0
H a(x) H alz) = — H a(x).
a€¥syq,r(long), €W sy r(long), a€Vsyy R,
any=0,an B0 any#0,an8=0 an(yuB)#0,a#p

Thus,

A(=(Wsvyr \ V) (w - 2) = —A(=(Ysvyr \ 5))(2).
In the non-singular case y = 0. In the singular case S(y) = 0 for any § €
Usyq r(short). Hence,

/ detfs,svv(z(x;) A(=(Ysvyr \ 7)) (@) Hsv ¥ (z) du(z) (C.44)
hsnbh™

(@' + 2(2))

/‘; - detfs,SV’Y(Z(w . «T)) A(_<\IJSV7,R \ ’Y))(’LU . $)H8V'yw(w . LL') d,u(x)

(@' + 2(w - 2)) gy

/h — fus,svy(2())

svyNhP det ((E/ + Z(l’) wsWbH’

(—A(=(Ysvyr \ 9))(2) Hevyt(x) dp(z)

/h nps detfw&svv(Z(x : ‘A(_(\PSV%R \ ﬁ)>(37)7‘13vv7/1(9€) du(z).

(@' + 2(2) )y sw
Furthermore, by Lemma 8.3,
d(S,7) = 2|VYsy,r(short)|.
Hence, (C.44) shows that
S e [ et
s€W (He) y={o(4)} bsv~b7 WO

A(=(Wsvyr \ 7)) (@) Hsv () du(x)

. N fwgs,S\/w(Z(x))
= E |€j2l5’3 /
hsvyNbA det(x + Z(w))wgswh/

SEW (He) SEW sy, 2 (short) f={o(})}
A(=(Vsvyr \ 0) (@) Hevy o (2) dp(z). (C.45)

If S = S(long)V 3, g€ U(short), v € We(short), yNS = ), then we also proceed
as above. Since, d(S,~) = 4 in this case, (C.45) holds. Finally, we replace SV =
by S and deduce that (C.43) coincides with the right hand side of the equality of
Corollary C.19. [ |
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Lemma C.20. Let n € VUsg(long). Assume that for every ¢ € 1, e, €
Usgr(short). Let s =c0e € W(He) =%, X Z3. Define € € Z by

g|g = -1, é|{1,2,3,---,n}\g = 1.(see(3.9))

Then
€= —((0c""€0)e);  (a(4) €m), (C.46)
é(hsNb") =bsN b7, (C.47)
/ Fowr s(2)Hsth(z) dpu(z) = / Fry o s(2)Hsth(2) du(a), (C.48)

hsnhm hsNh?
o [ Pl Hsv(a) duta) (C.49)
hsNh?
= —((0_1&7)6)}/ Fes o s(z)Hs(@) dp(z) — (o(j) €n).  (C.50)
hsnp”
Proof. Notice that in both the non-singular and the singular case we have

ec(y) =0 for c €.
Suppose o(j) € 1. Then

A~

(07" e0)e); = (07 e0)&; = €ny)és = =&

This verifies (C.46). Since ¢ € W(Hs) and h7 = h7°¢, (C.47) follows. Also, by
Harish-Chandra,

/ Fs,x’,S(Z(x))HS¢(x) dﬂ(l‘) = / Fs,z/,3<z(€ ’ $))H5w(€ ’ QZ') dﬂ(fﬂ)
hsNh hsnh7

= [ Fursle(E m) st (a) dte)

Since,
A(=Vsp)(E- 1) = A(=Vsp)(2),
we see that
Fops(z(€-x)) = Fe o s(2(2)).
Thus (C.48) follows. Clearly (C.46) and (C.48) imply (C.50). ]

Lemma C.21.  Let v € Usg(short). Then

b O(Hy ) (Fiars(2)Hst(2)) dp()

fs,S(Z)
_ 4 /M T A(=(Wsp \ 7)) (@) Hst(x) du(z)

x + Z)st/

s vy [ B @) st ) duto).

/ /
n€V s r(long),n(H~)#0 bsMb™ det(a’ + 2) s



594 BERNON AND PRZEBINDA

Proof. The left hand side is equal to

/b / O(H, ) (B s (2(tH, + 2)YHs(tH, + 2)) dt du(z) 2
2[;WﬂkﬂfjiiwwAv4w&R\v»@x||> (s (x) dua)
PR af e
A=W \ ), ) (T, (L, s (I, +0) o),
which coincides with the right hand side, because of (C.10). =

Lemma C.22. Let v € Usgr(short), n € Ysg(long) NV°, n(H,) #0. Then,
there is § € W(Hg) such that

nose ¥sgr(long) N¥", nos(H,) #0, (C.51)

and for x € bg,

fss(2(3 - 7))
det(z' + 2(5 - ) gy

A(=(Vsr \ 7)) (5 2)Hs(5 - x)

_ faas(e(@)
det(a’ + 2(2)) sy

A(=(Vsr \ 7o s))(x)Hsi(z). (C.52)

Proof. In case when S is as in (C.40),

We{eapebp”' 7€alaebl}
and n =e, e, with u,v € {eq,,ep,, -+, €q, €} and p < v.

In case when S is as in (C.41),

Y € {ealaebu"' 7€aluebl7€bm+1}

and n =-e, *e,, with p,v € {eq,, €, ;€q, €, €p,,, } and p < v.
Our assumptions on v and 7 place them in one of the following cases:

Y= €a; N = €q; Tt €q; (
Y = €a, 1= Ca+ e (
Y= €a; 1= €a; — €q (
Y =€q; N = €a; — Cq; (C.56
V=€ = eyt Gy, (
v =ey 1= ey T e, (
Y =€y 1= €y — €y (
(

Y= €p; T = Cp; — Cb,
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where a; < a; and b; < b;.
Let

¢ = ea, — €y, incases (C.53), (C.55), (C.57), (C.59)
"~ lea —es, incases (C.54), (C.56), (C.58), (C.60)

~—

and let

S¢ otherwise.

. {—35 in cases (C.56), (C.59)

Then & € s and s¢ € W(Hs) is the a;j,b; (or a;,b;) transposition, 5 € W(Hg)
and (C.51) holds. Also, det(s) = —1. Hence,

fos(2(5- 1)) = = fass(2(2)). (C.61)
Since in both the non-singular and the singular case e.(y) = 0 for ¢ € 7,
det(z' + 2(5 - ) o = det(x’ + 2(2)) s’ - (C.62)

Furthermore,
Hs(5 - x) = Hsh(). (C.63)

Notice that the only roots in Wsg \ & which become negative under the action of
S¢ are

Caj, — €c, € €py, < < by,

k

where k =1 or j. Since, the number of these roots is even,

AWsr \ §) ose = A(Usk \ §).

Since § o s¢ = =, we have
A(\IJS,R) e} 85 = —A(\I’57R).

Since the cardinality of the set Usp is even, the last equality implies

A(\I’S,R) o 55 = —.A(\IIS’R). (C64)

Hence,
A(Uspr \n)ose = —A(¥sr \ 10 S¢). (C.65)
Clearly, (C.61) - (C.65) imply (C.52). |

Lemma C.23.  Suppose n=e,+0e, € V5 p, 0 =+1, n CS. Then
(W, S,n) = —6(—1)/@NNTszlshort]

Proof.  Let a € Vg be such that a(H,) # 0. Then a = 75, so {a €
Vs g; a(H,) <0} =0. Therefore

6(@7 87 T]) - (_1)61_627
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where ¢; and ¢y are as in Lemma 1.7. Notice that

LS = H Sg - H Sg-

BG‘I’EJR, égé BG\If(sho'rt), gﬂé:@

Hence,

€e if c € Usg(short),

—e. ife ¢ S,

e if e, —ex € Uiig, or e — €. € Vg g,
—€¢ if €cter € qj%,iR’

Ls =

and Lsy, = Lss, = syLs.
For a root a we shall write a <0 if o € =W and a >0 if o € V.
Suppose 1 = e, — e,. Then

{ae¥lann#0,sya <0} ={es —e.la<c<bfU{e.—ep|a<c<b}).
Therefore, with the notation &' = {a € S(long) |a NS\ a = 0}, we have

(UseN(=Ls¥sc)) \ (Ysvye N (—LsvyYsvpc))
{aevianny#0,anNYsgr(short) #0, Lsa <0}

U {ac¥lann#0,an (Ysr(short)Un) # 0, Lsa < 0,s,a <0}
= {acV|lann#0,anVsg(short) #0,s,a <0}
U {ae¥lann#0,an (¥sr(short)Un) # 0, Lsa < 0,s,a < 0}
= {es—e.la<c<bce Ysgr(short)} U{e.—ep|a <c<b,ce VUsgr(short)}
U {e,—ela<ce<bee(SVn), Lsle, —e.) <0}
U {e.—ep|la<c<bee(SVn), Ls(e.—e) <0}
U {e.—e]a<c<bed¢S}.
Hence,

(Vs cN(=LsVs,c) \WsvycN(—LsvyVsvnc))| = 2|(a, b)) Vs r(short)|+|(a, b)\S]
+{c € (a,)N(SVn)|es—Ls(e.) < 0}+{c € (a,b)N(SVn)|Ls(e.)—e, <0}

Similarly,

(Ysvnc N (=LsvnVsvnc)) \ (Ysc N (=Ls¥sc))
{aeviann#0,a\ (Ysg(short)Un) # 0, Lsa > 0,5, < 0}
{ea —ecla<c<b e (Usgr(short) Un), Ls(eq — e.) > 0}
{ec—epla<c<bcg (Vsr(short) Un), Ls(e. —ey) > 0}

= {e,—e.la<c<bc¢ S}

{ea —ecla<c<bece(SVn), e — Ls(e) >0}
{ec—eyla<ec<bee(SVn), Ls(e) —e, > 0}.

C

C C
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Therefore,
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[(Vsvpc N (—Lsvy¥svnc)) \ (VscN(=LsVsc))|
= (a,b)\ S|
e € (a,0) N (SV 1) |en— Ls(ee) > 0}

+
+ {c€(a,b)Nn(SVn)|Ls(e)—e, >0}

2c1 —2¢o = |(Vsc N (—Ls¥Usc)) \ (Ysvye N (—Lsvy¥Ysvnc))l
[(Wsvne N (=Lsvy¥svnc)) \ (Tsec N (—Ls¥sc))

2|(a,b) N Wsr(short)]

H{c € (a,b)N(SVn)|Ls(e) — e, >0}

{c e (a,b)N(SVn) e — Ls(e.) >0}

{c € (a,b) N (SVn)|ea— Ls(ec) > 0}

{c € (a,b) N (SVn)|Ls(e) — eq > 0}

2|(a,b) N Usg(short)| + 2|(a,b) N (S V)|

2/{c € (a,b)N(SVn)|e,— Ls(e.) >0}

2l{c € (a,b)N(SVn)|Ls(e.) — e, >0}

2|(a,b) N Usg(short)| + 2|(a,b) N (S V )|

2|{c € (a,b)N(SVn)|e,— Ls(e.) >0, or Ls(e.) —e, >0}

2|(a,b) N Wsr(short)]
2l{c € (a,b)N(SVn)|e,— Ls(e.) <0, and Ls(e.) — e, < 0}.

Notice that e, — Lg(e.) < 0 implies that Ls(e.) = ey for some ¢ # c¢. Thus
ey — Ls(e.) < 0 and Ls(e.) — e, < 0 happens if and only if a < ¢ < b. Therefore,

the number

He € (a,b)N(SVn) e, — Ls(e.) <0, and Ls(e.) — e, < 0}

is even. Hence the lemma follows.

Suppose 1 = e, + ¢,. Then

{ae¥|anny#0,s,a <0}

= e ep}U{este] b < ctU{epte] a < c}U{e, —ecla < c}U{e, —e.| b < c}.

Therefore,

(VscN(—Ls¥Ysc)) \ (Ysvnc N (—Lsvy¥svnc))
= {acVsclann#0,a ¢ Vsyyc, Lsa < 0}
U {Oée\I/37cﬂ‘llgv,77c|gﬂﬂ7é@,lz5&<0,Sn0é<0}
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Hence,

+ o+ o+

+

Also,

(Vs
2 + 4/(b,
[{ce(
[{ce(
[{ce(
[{ce(

c Cc cC |

C C
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{a eV |aCn Lsa <0}

{aevw |gﬂﬂ_§£ 0,aNW¥sr(short) # 0, Lsa < 0}
{aeVianny#0,a\ (Wsr(short) Un) # 0, Lsa <0, s, < 0}
{emeb}

{aeviann#0,anN¥sgr(short) # 0, spa < 0}
{aeviann#0,a\ (Ysr(short)Un) # 0, Lsa <0,s, <0}
{emeb}

{ea +e.|b<c,ce VUsgr(short)} U{e, +eca < ¢, c € Ysr(short)}
{ea —ec|a <c,c € Usr(short)} U{e, —eq;b < c,c € Usg(short)}
{ea+eclb<c,cgStU{ey+esa<cc¢ S}

{ea —elb<c,cgd StU{e,—eb<c,cé¢ S}

{ea+ec|b<cce (S\/n)’,eb—LS(ec) >0}
{ev+e.la<ec,ce(SVn) e, — Ls(e.) >0}

{es —e.la<c,ce (SVn), e+ Ls(e.) > 0}

{es —e.|b<c,ce(SVn), e, + Ls(e.) > 0}.

Ls¥s,c)) \ (Wsvnc N (—Lsvy¥svyc))l

N VUsgr(short)| + 2|(a,b) N Usr(short)| + |(a,b) \ S| + 4|(b,n] \ S|
(Svn) ey — Ls(ee) > 0}

b) U (b,n]) N (S Vn)'|eq — Ls(ec) > 0}

a,b) U (b,n]) N (SVn)|es+ Ls(ec) > 0}

;] N (SVn) |e,+ Ls(e) > 0}].

(=
n]
;)N

a,

b
(
(
b

(Wsvye N (—Lsvy¥svpc)) \ (Tsc N (—Ls¥sc))
{aoeVUsclann#0,a € Ysy,c, Lsa > 0, 5,00 < 0}
{acV¥lanyg 75_@,@\ (Usr(short)Un) # 0, Lsa > 0,5, < 0}
{ea+ec|b<c,cd Usr(short)Un, —e, + Ls(e.) > 0}

{ev +ecla<eccg Usgr(short) Un, —e, + Ls(e.) > 0}

{ea —ecla < c,c g Vsr(short) Un, —e, — Ls(e.) > 0}

{ev —ec|b<c,c¢ Usg(short)Un, —e, — Ls(e.) > 0}

{ea —ecla<c<byc¢S}

{ea+e.lb<c,ce(SVn),—e,+ Ls(e.) >0}
{ev+e.la<c,ce(SVn),—e,+ Ls(e.) >0}

U {ea—€c|a<C,CE (‘5\/77)/7—617—[/8(6(:) >0}
U {ey—e.lb<c,ce(SVn),—e, — Ls(e.) > 0}.
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Therefore,
|(Wsvie N (=Lsvy¥svnc)) \ (sc N (—Ls¥sc))|

= |(a,b)\ S|
+ Hee (b,n]N(SVn)le,— Ls(e) < 0}
+ Hee ((a,b) U (b,n])N(SVn)|es— Lslec) < 0}
+ e € ((a,b) U (b,n]) N (S Vn)|es+ Ls(e:) < 0}
+ Hee®nN(SVn) e + Ls(e) <0}

Hence,

21 —2c5 = |(UscN(=Ls¥sc)) \ (Ysvnc N (—Lsvy¥svyc))l

— [(Wsvne N (=Lsvn¥svnc)) \ (Yse N (=Ls¥sc))]

= 2+2|(a,b) N VUsgr(short)| + 4|(b,n] N Vs r(short)|

+ A4[(b,n] \ S}H +2[(b,n] N (S V)|

— 2{ce (b,n]N(SVn)| — e+ Ls(e.) > 0}]

— 2{ce (b,n]N(SVn)| —es— Ls(e:) > 0}

+ 2[((a,0) U (b,n)) N (S V)|

— 2{ce((a,b)U(b,n]) N (SVn)| —eqs+ Ls(ec) > 0}
— 2{ce((a,b)U(b,n]) N (SVn)| — e — Ls(ec) > 0}

2+ 2|(a,b) N Usr(short)| + 4|(b,n] N Vs gr(short)| + 4|(b,n] \ S}
2l{c e (byn]N(SVn)|e,— Ls(e.) > 0,e, + Ls(e.) > 0}

2l{c € ((a,b) U (byn]) N (SVn)|ey+ Ls(e.) >0,e, — Ls(e.) > 0}
= 2+2|(a,b) N Usg(short)| + 4](b,n] N Vs (short)| + 4|(b,n] \ S}|
2l{c € (a,b) N (SVn)|ey+ Ls(e.) > 0,e, — Ls(e.) > 0}

2l{c € (b,n]N(SVn)|e,— Ls(e.) > 0,e, + Ls(e.) > 0}

2l{c € (b,n]N(SVn)|e,+ Ls(e.) > 0,e, — Ls(e.) > 0}

+ o+

+ o+ o+

The following two sets are disjoint

Svn)y={eatec(Svn)}, (Svn) ={e.—e.€(SVn)},

and their union coincides with (S V7). Thus,
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+ o+

+ o+ + o+ + o+

+ o+ o+ o+ o+

+ o+ o+ o+

Therefore,

BERNON AND PRZEBINDA

[(Ts,c N (—Ls¥sc)) \ (Ysvpc N (—LsvyVsvnc))]

[(Wsvnec N (=Lsvy¥svnc)) \ (Tsc N (—Ls¥sc))

2+ 2[(a,b) N VUsr(short)| + 4|(b,n] N Ysgr(short)| + 4|(b,n] \ S}|
2l{c € (a,b) N (SVn), ep+ Ls(e.) > 0,e, — Ls(e.) > 0}

2{c e (b,n]N(SVn), e, — Ls(e.) >0,e, + Ls(e.) > 0}

(

2[{c e (b,n]N(SVn), e+ Ls(e.) >0,e, — Ls(e.) > 0}]

2+ 2|(a,b) N Usg(short)| + 4|(b,n] N Vs r(short)| + 4|(b,n] \ S}

n] N ( )y + ew > 0,e, — eu > 0}]
n]ﬂ(S\/n);,eb—eC/ >0,e, + ew > 0}
a,b)N(SVn) ,ep+es >0, —ex >0}
n] N ( ) ,ep —ew >0,e, + e > 0}
n] N ( ) ey +es >0,e, —ex >0}

[\]

+
~
—
L

=
~

N Usr(short)| + 4|(b,n] N Ysgr(short)| + 4|(b,n] \ S}
)N(S V), b<

c1 — ¢y =1+ |(a,b) N Vs gr(short)| + 2m,

for some integer m. Hence, the lemma follows. ]

Lemma C.24. Let S beasin (C.41), b =byi1, v =€y, N = €4, +0€p, § = %1,
and § = ey, —e,. Then Sose € U7,

hS N b"] - bSosé N hnu (066)
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and for x € hsNh7,
A(=(Vsr \n))(@) = €(¥, 8 0 s¢ \ 7, n)A(— Vsos\n.r ) (2)- (C.67)
Proof. Recall that & = {a1,b1, - ,a;,b}. For c € S§; let
1 if 1 ifb
=1, U0 dg=q LT
-1 ifec<a, -1 ife<b.

For simplicity we shall write

: .oa b " x
azsblfandonlylf|?|—|b| (a,b e R™).
Let ' = e4, — 0ep. Then A(—(Vsr \7))(z)
= ] (@) (C.68)
a€¥s r,a#n
= I (—a@) - (—ew (@) (=) (=1 () (—a(x))
ety
= =6 I (ce@)-(=n'@)- [ (-a@).
b

Notice that

{a € Usgr(long)|ann =0}
={ep e, [p,veS\{an,bit,p<viU{e, ey |pe S \{ar},u<bi}
U{ep, e, |veS \{bh}, b <},
{a € Usg(short) [ann =0} ={e,|p € S\ {ai}},
Sose\n = {eq,—dep, =1, eayten,, -+, e ten, €a s F0111€5,, 1 s €anT0mEh,, €b

so that
quos&\n,R = {Oé < \I]S,R |Q N n= @} U {77/}

Thus,
[T (@) (—7(@) = A(=Vsosorz) (). (C.69)

OLE\I/SJR,QQQ:@
Moreover, since 2 = 7,
II (@) = ]I do@, —a)ee@;—22)  (C.70)

a€Vs r(long), ceS1\a1
aMn#d,a#n
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Since
\IJSOSE\%R(ShOTt) = {by,as, by, -+ ,a;, b},

we see that
(a1,0) N S; = (a1,b) N Wsoso\nr(short),

and therefore, by Lemma C.23,
—O(= DI = (W, S 0 5¢ \ 1, 1). (C.71)

The equality (C.66) is obvious because hs = bhsos.. The equality (C.67) follows
from (C.68), (C.69), (C.70) and (C.71). ]

Lemma C.25. Let S be as in (C.40), v = e,, N = €q + de,, 6 = £1,
E=ep —ep, 1<j<I. ThenneSosg,

bs (b7 = bses, N7, (C.72)
and for x € hsNh7,
A(=(Wsr \ 1)) () = (¥, S 0 5¢ \ 0, ) A(=(Vsose\n,r)) (2)- (C.73)

Proof.  For c € §; \ {ay,b;} let

e(c):{l if a1 <c, 6,(C>:{1 it b; <e,

—1 if c<ay, -1 if e¢<b;.

Let ' = e+ a — dep,. Then A(—(¥sr\7n))(x)

= I o (C.74)

a€V¥s R, ae¥s r(long),
ann=0 ann#D,a#n

= =0 ] (-a(@)- (=) (—a(z)).

acV¥s g, aeV¥;s g(long),
ann=0 ann#0,az#n

Notice that

{OJG\I’S,R’QQQ:@}
={e, Ty {pmv eS8 \{an, b}, u<viu{e, pe S\ {a,bi}},
Sose\n

/
= {ea, Fer, =0, eayEep,, -, eq, 0, s e ey, €apy F0141€h, 7 €an TOmEs,, |

so that
Usosc\nk = {0 € Usplann=0}U{n'}. (C.75)
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Thus,

[ (a@) (—7'@) = A= Tsosne) (@): (C.76)

aE\IJSV]R,QHQZ(B

Moreover, since xil = :c%j, we have as in the previous lemma,

—5 1T (—a(z)) (C.77)

ac¥ s r(long),ann#0,a#n

= =0 ] el -2 (e)(p, —x2)

ceS \{a1,a5}

= =0 [ 00 = o118 — (0, S0 5\ o).
ceS;\{an,bs}

The equality (C.72) is obvious because hs = bsos.. The equality (C.73) follows
from (C.74) - (C.77). ]

Lemma C.26.  The following equality holds

> 0 (Fars(e) Mt (@) du(o)

S,5;0(j)€V s r(short) bs

- Y JosC) A (W52 \ ey @) Mt (@) di)

sne) det(z’ 4+ 2)

Sso(j)e¥snlshort) P
V2.,
+ ) _7263'60(1')<Hn)/ Fow s(2)Hsuyt(x) dp(x)
S,s,ne¥n(long),SNn=0 hsnh7

+ Z —\/§i€jeg(j)(Hn)e(\I’,S,77)/ Fow s(z)Hsvn(z) dp()
S,smeVE g (long),nCS hsr0”
2
by e (Hew. S | Fas@Mani(o) du(o)

2
S,5mEVE 2 NCS b5

Proof. By Lemma C.21 the left hand side is equal to

S i [ B A e\ ) s )

/ !/
S,5;0(3)€V¥s r(short), T Z)Swh
e
. ss(z
LY Vaem,) | S5 () A (g \ ) () Hsth(x) dua(a)
b5 det(z’ + z) W'
S,s;ne¥ s r(long), S $

T=Co(j)
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N s.S 2
= E —2|€j/ det(jst”‘i(z)) /A(—(\PS,R\V))@)%S@D@) dp(z)
8,50(f)€¥s g(short), hst? SW
T=€s(4)

+ Z —\/§i€j’y(Hn)/ fosl2) A(=Vs\,r)(2)Hsp(z) du(z)

! !
S,s;neS(long), bsMb det(m + Z)SW{J
nN(SE\m=0,y=¢5 ;)

R fs,SZ

by V) [ B A (e \ ) (o) o)
S,s;mne¥ s r(long), hsnbh? sWhH

ﬂg\llsyﬂg(short),'y:eo(j)

By applying Lemma 8.3 to the second sum after the last equality we get

3 . fis(z
—2i6 / det(z’ i(;) A= (Wsr \ 7)) (@) Hsth(2) du()
§.5:0(4)€ Vs p(short), s SW
Y=€o ()

2
-+ Z _\/T_igjea(j)(Hﬂ) /hsmhn Fs,$’,S(Z)HSVﬂ¢(x) dM(JZ)

S,smeV” (long),

nN(S)=0

N fsS(Z>

+ Vit () [ Bt A (Bsa \ m) @ Hs0(e) du)

S,s;neé(long), ’ ! hsﬂhn det(l’ +Z>8Wh/

NnC¥s r(short),y=e, ;)
EPN fsS(Z)

—~ —2ie; : — (¥ d

> 6 | S A e \ ) () di)

S,5;0(j)€V s r(short),
T=C€o(5)

V2.
i 2 ~g 6ot (Hn) / Fow s(2)Hsun(z) dp(x)
S,s;n€¥™ (long), hsNp?
10(S)=0

CY Veny () / Fas0) A (g \ ) () st () ()

det(z’ + z /
S,smeVE g (long), hsnp? ( )sWh
NnCVs r(short)

FY Ve [ SO A\ )@ et o) duta).

det(z’ + 2 /
S,5mEVE R (long), hsNhn ( )sWh
nCVs r(short)

By Lemma C.22 the above is equal to
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‘a fsS(Z)
—2I€; . A(—(T H d
()Z() /hh T A~V \ 7)) M (o) )
Y=¢€o(5)
/3
+ ——5 €€ (i) (Hy s, Hasvn
Z 2|€e()( )/hsﬁh" s(2)Hsvyt(x) dp()

S,s;neW™ (long),

nN(S)=0
P fs S(Z)
+ Y —2\/§|ejea(j)(Hn)/ - A(=(Tsg \ n)(2)Hst(z) du(z)
S,smeTE g (long)\S, hsnp? det(x + Z)sWh’

nCVs r(short)

s e [ LSO\ @) due)

det(z’ + = /
S,s;meS(long), bsnh” ( + )SWh
nC¥s r(short)

Now we apply Lemmas C.27, C.28, 8.3 and obtain

A fs, z
> | Tl +”) A(~ (Vs \ 7)) (@) Hst() dp(z)
§.8:0(4)€ s p(short), hsro SW

T=€s(3)

b o) [ FusHsnile) o

S,smev™ (long),

nN(S)=0
+ Z —2\/_|€]eg(j ( ) (\I/ S 77)/ sx’S( )HSVn¢( ) ( )
S,smE\Ilg.’l bsMb
ncsS
“a fs,S(Z)
+S,s;n§(long;\/§lejeg(j) <H77> /hsﬂbn det(«T/ + Z)sWh’ A(_(\IJ&R \ n))(x)st(x) d'“@j)’

EQ\I!‘g’R(short)

which, by the previous argument, coincides with the right hand side. |

Lemma C.27.  Let n € S(long) with nN(S\n) =0. Then

/h (H,) (Fas(2)Hsto () du(a)

—2v3 Los ) 4wy Hst(e) dute).

bsnpn det (T 4 2) gy

Proof. The left hand side is equal to

/b h / O(H, )Py s (2(tH, + @) /Hstb(tH, + ) dt dyu(x)v/2

= fs,S(Z([E))
- /hsﬂh" det( A(=(Usy)) (@) Hsto (@) dp(a) V2,

'+ 2(x)) w
which coincides with the right hand side. [ |
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Lemma C.28.  Let n € Vg withn CS. Then

JOH) (P (Y Hs0(@)) ()= — 2B, S.1) [ Froe e s (0) (o).

bs hsnhn

Proof. The left hand side is equal to
/ / OGH,)(Fys(2(iHy + )Y st (itH, + 7)) dt du(z)v/2
hsnhn
_— / P s(2)(Hst)im, dp()v/2
hsNhn
= [ Fsle)2e(, S s (o) du(o) V.
hsnhn

which coincides with the right hand side. [ |

Corollary C.29.  The following equality holds

3 [ 060 (P sl Hst)) di(a)
S,simeS(long),o(j)€n,nN(S\n)=0 bs
V2
— —l€j——€5(; H s,x’ H \
3 e 2o ,7>/W S(2) vt (x) du(x)

S,smeW (long) nNS=0

Y Ve ><\Ifsm/w Frm (2 Hsunth() du(a).

S,sme¥s gMCS

Proof. If id, = J, +9dJy and iH,y = J, —6J, , where § = £1, then for
c € {a,b},

1
Jo= 5 (2 (H,)iH, + J:(Hy)iHy).

Hence, if n € S, nNS\n=10 and ¢ = o(j), then

a<_€jJ0(J’)>— (iHn)ia(H) j , (iHn’)a(iHn/)-

2 :J) 9 “old)

Thus Lemmas C.27 and C.28 show that the left hand side is equal to

“ A fsS(Z)

—|e-\/§eU-H/ : A(—=V s\ r)(2)Hs(x) du(x
S,s,ne;(long), ’ (])< 77) bsMp7 det(z’ + z(z)) v ( SWR)( JHs (@) dp(z)
nN(S\n)=0

fY Ve ><wn>/w Fiw (2 Hounth() du(a).

S,sneVy gnsS

Lemma 8.3 shows that the first sum coincides with the first sum on the right hand
side of the equation of the corollary. [ |
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We see from Corollary C.19, Lemma C.27 and Corollary C.29 that (C.8) is
equal to

> VB H)AUS G [ P Hsbla) dula)

S,smEVE 5 NCS hsnb7
But Lemma C.20 shows that the above sum is zero. Hence, (C.9) follows.
The pairs (G, G’) = (Ogp 24, Spoyy (R)) with n' <n =p+ ¢q. Here
Ut ={e, e[l <a<p<b<n}
and the strongly orthogonal set S looks as follows
{eas vy, - e, T ep €0, + 014160, s €ap +Omen, . (C.78)
where a; < p < b;, 6; = 1, and [ could be equal to zero.

Lemma C.30. Let c€ {1,2,3,--- ,n}\S. Then

— > ~

new” nNS=0,cen

olby) [ sl Hount (o) ()

5

Proof.  Asin (C.10) we check that

(o) = (-2

J.+ ) (x € bs N h7).

Also, by Theorem 4.44 in [2],
(W, S8,n) =1.

Hence, the left hand side of the equation we are trying to verify is equal to

/f, e /8 Fyws(2(tde + 2))Hs (L) + x)) dt du(z)

n(z)

mjc + ) dp(x)

_ | Fas 2 g ) st -
hsﬂh"

newn, nﬂS 0,cen 77(J )

1 ..
= = Z /bsmhnFs,x/,s(z(gc))(HSWiH,,(%)du(x)ﬁjc(lHn)

newn nNS=0,cen

. ..
- /bh o5 2 0) st () ()2 T (). .

newn, nﬂS 0,cen
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Corollary C.31.  The following equality holds:

a( € o)) (Foars(2)Hstp(x)) dp(z)

S,5;0(5)¢S

= Y S [ Fues(e)Hsni(e) dule).

S,smevn nNS=0

Lemma C.32. Let n € Vs, 1 C S, s =o0¢€ € W (Hg). Define € € 73 C
W(Hc) by )
ely =1, €z npg =1 (see(3.9))

Then, if o(j) € n,

gj/h Fy o 5(2(2) ) Havnth () dﬂ(ﬂf):—((a_lga)ejj/h Fes o 5(2(2)) Hovmib(x) dp(z).

snp7 snpn

This is verified the same way as Lemma C.20. Let &' = {n € S|nnNS\n = 0}
and let 8" =S\ &, as in (3.17).

Lemma C.33. Letce S". Then

O(Je)(Fowr s(2)Hst(x)) du(z)

bhs

= Y i [ B @mse) du)

n€Ws r,M(Jc)#0 hsNb” det(m’ + Z)sWh’

Proof. The left hand side is equal to
i/h o / I(—iJ) (Fyw s(z(t(=iJ,) + 2))Hso(t(—iJ,) + z)) dt dp(z)
— Z / foss (3= 5555 (=) + @)

eV sl hsnp’e det(z! 4+ z(— ﬁ( iJ.) + 1))

A(—ws,R\n))(—%(—m)+a:><—|”|> a1 })<—uc> +)
()
Hat(~ (<100 + ) dute)

S e SLRIE

neEYs k,n(Je)#0 hsnh? det v+ 2 x))sWh/
(=2)n(—id) Hs(x) du(x%,

which is equal to the right hand side. [ |
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As in the case of the pair (Ogpi1.24, SPoy (R)), we verify the following two
lemmas.

Lemma C.34. Letc€ 8", n€ UspN¥® and c € n. Then, there is an element
s € W(Hs) such that

nosc VYsrN¥Y" and ce€nos.

Moreover, for x € bs,

fss(2(5.2))
Tt + 2(5.2)) g

A(=(Vsr \ 1)) (5.0)Hs(5.2)

__ Jus(z(@)
det(z’ + 2(2)) sown

A(=(Vsr \ 7o 8))(z)Hs(x).

Lemma C.35. Let S be as in (C.78). Let 1 < j <1 and let n = e, * e,
¢ =ep —ep,. Then

bs N H" = hsos. N H”
and, for x € hsNh",

A(=(Tsp \m)(@) = A(=Tsosc\n) (2)e(T, S 0 s¢ \ n, 7).

Corollary C.36.  The following equality holds:

=€ Js()) (Foar s(2)Hsp(x)) du(x)

S,sio(j)es” 7 hs

=Y VRS [ Fns(o)Hant(@) du(o)

S,smeVy pnCS bsnb

n 3 —igeg(j)(ﬂn)e(q:,s,n)ej/ Foars(2)Hst () du(z).

S,sMEWE nCS bsMb

Proof. By Lemma C.33, the left hand side is equal to

> —eae )| B A e\ ) ) Hav o) dita).

/
S,sme¥s r.o(j)es” nsniyn 4et(2” +2) o

Lemma C.34 shows that the above is equal to

> 2oy LSO\ ) @) duo

e det(z' + 2) ywo

S,smEV 5 \S" b
. fss(2)
£ Ve ()| S A (s \ ) ) () ()

S,s;nes”
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By Lemma C.36 this coincides with

5 2vBeaty (Hy el . S\ ) I8 (g 0) (@) Hst(a) du(w)

s det(z 4 2)

S,s;nes” b
fs,S z
23 By (H)ew S\ LI awg ) s dio)
S,s;neS” hsnhn A€ (iIZ’ + Z)sWh/
This is equal to the right hand side by Lemma 8.3. [ ]

Lemma C.37.  Suppose n € Vi;z and n € S. Then

O(iHy)(Fea 5(2(x)) Hstp () dp(z)

bs

_ / —2V2ie(W, 8, 1) Fa 5(2(x)) Humo(z) du(x).

bsnpn

Proof. The left had side is equal to
/ / O(H,) (Fyw.s(2(itHy + z))Hs(itH, + x)) dt du(z)V2
bsnpn

— _/ Fy v s(2(x))(Hs)im, () dp(x) V2

bsnpn

- / o 5(2(2)i26(¥, S, ) Hounth () da(2)V/2,

bsnpn

which is equal to the right hand side. [ |

Lemma C.38.  Suppose n € §'. Then,

O(Hy)(Fi o 5(2(2) Hsp(2)) dp(z) = V2F, w.5\(2(2))Hst () dp(z).

hs hsmm

Proof.  Since &(H,, H,)"? = /2, the left had side is equal to

/h / s (2(tHy + 2) Hs(tH, + @) dt dyu(x) V2

B /h det(fSS( A A (W \ ) ) L), (2 M) )2

z' + Z(x))swr;/ |77’
= [ Pl 2 Hs )V

which is equal to the right hand side. u

For some a < b, let n™ =¢, + ¢, and n~ = ¢, — ey.
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Lemma C.39.  Suppose n* €S, n~ ¢S, nt =n", o(j) €n*. Then

A

€; . )
o (Hyr + Ja(j)(Hn’)'Hn’)

_éj JU(j) = %

and

h =€ Jo(j)) (Fsar.s(2(7))Hst(2)) dp(z)
- = P () )

+ €j\/§in_(—iJJ(]—))e(\I’,3,n_)/ Fsws(2(x))Hsvy-0(x) du(z).

hsnh™

Proof. This is clear from Lemmas C.37 and C.38. [

Similarly, we have the following lemma.
Lemma C.40.  Suppose n~ € S, n* ¢S, n* =n~, o(j) €n*. Then

A

R €. N
—€5Jo(j) = —gj('Hw = Jog (Hy= ) Hy-)

n

and

N =€ Jo()) (Foar s(2(2) Hsto(x)) dp(x)

bhs

— Va8, ) / Py (=) Hisun () dia(a)

hsnpnt

€.

_ ﬁiT]_(—iJa(j))/h - Fo s\ (2(2)Hs(x) dp(z).

Corollary C.41.  The following equality holds:

=€ Jo(i)) (Foa s(2)Hsb(x)) dp(x)

S,sia(j)es’ ”hs

~

= Z —ﬁieg(j)(Hn) Asmhn sq;’S( ),HS\/nw( ) ( )

8,5me¥” nNS=0

+ > eji\/iea(j)(Hn)e(\I/,s,n)/ Fiowrs(2)Hsunt () dp(z).

S,smEWE .mCS bsMb
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Proof. The left hand side is equal to

Z %/f) Ayt FS7I'75\W+ (2)Hst(z) du(z)

S,smteSm=¢S,0(5)en™

+ Z i€;V20 " (—iJy(j))e(P, S, n7) /hsmhn‘ F o s(2)Hsyy-0(2) dp(x)

S,snteSn=¢S,0(j)en™

+ Z i€j\/§e(\11,8,77+)/ Fow s(2)Hsvgrp(x) dp()
S,sint¢Sm—eS,o()en sy
€. _, .
; > i) /h P (o) duto)
snpn

St ¢Sm—eS,o(j)en™

A

- Y Sty / Fo sv0(2)Hsto(x) dp(a)

S,smeS’a(j)en bsMb

N S GiVEN(ide)e(T, S 1) /hh Py () Hsunt() dpa(x),

S,smeVG ip,0(7)ENSS
which is equal to the right hand side. u
Notice that we may rewrite the quantity (C.6) as D = Dy + Dy + D3, where

Dim 3 [ 0-&dy) (Fuwse Hst(a)) du(a)

S.sio(j)gs s

D2 = Z 8(_é]‘]0(]))( Sac’S( >%S¢( )) (:E)

S,s;0(5)es” bs

Dim Y [ 0-&dy) (Fuws(eHsvla) dulz).

S,s;0(5)eS’ bs
Thus, we see from Corollaries C.31, C.36 and C.41 that
D+ Dy + D5

- Y el )ews | Pes(e) Mot (a) dua),

S,8meVS n,nCS bsMb7

which, by Lemma C.32, is zero. This verifies (C.9).
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