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Abstract. This is the second of our three articles showing that the Cauchy
Harish-Chandra integral maps invariant eigendistributions to invariant eigendis-
tributions with the correct infinitesimal character. In this paper, we define a
normalization of this integral for all real reductive dual pairs. Then we prove
that the normalized Cauchy Harish-Chandra integral maps orbital integrals to
orbital integrals for the pairs (U, 4, U1,1), (Op g, Spa(R)) and (Spy,(R),O1,2).
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Introduction

Let (é é) be a real reductive dual pair in a metaplectic group é\f) Let © be
the character of an oscillator representation of Sp Assume G’ is compact and let
(m,7") be two irreducible representations of G and G’ in Howe’s correspondence.
In these terms the First Fundamental Theorem of Classical Invariant Theory can
be written as the following equality of distributions

| lagBe1dg = 6.(9)

where ©, and O, stand for the characters of = and 7’. For a smooth compactly
supported function ¢ on G, the formula

= /éaﬁ(g)@(gg’)dg (0.1)

defines a smooth compactly supported function on G’ and

| 8@y = [ enaola)ds

The Cauchy Harish-Chandra integral (Chc) extends formula (0.1) to all dual pairs
with rank of G’ less or equal to rank of G. One of the goals of this project is to
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prove that this analogue of formula (0.1) provides a smooth compactly supported
function on G’. In this paper, we prove the existence of such function for the dual
pairs

(Upg» Ur1), (Opg, SP2(R)) and (Spy,(R), O12).

Also, we obtain formulas for C'hc both on the Lie algebra and the Lie group. These
expressions become explicit when combine with the description of Che done in [1].

Let W be a finite dimensional vector space over the reals, with a non-
degenerate symplectic form (, ). Let J be a positive compatible complex structure
on W, Sp(W) (resp. sp(W)) the symplectic group (resp. the symplectic Lie
algebra) associated to ( , ) and let x(r) = exp(27ir), r € R. Fix a Lebesgue
measure dw on W so that

| xGw o= 1.

The conjugation by J is a Cartan involution ¢ on sp(W) and the following formula
defines a Killing form « on End(W) and on sp(W):

k(z,y) = tr(zy) (x,y € End(W)).

Let
I%(I,y) = —m(@x,y) (Jf,y EEP(W))

This is a positive definite symmetric form. We shall denote by the same letter &
the restriction of the form & to any subspace of sp(W). The form & determines
a normalization of the Lebesgue measure on that subspace as follows. Let e;, es,
-, e, be a basis of that subspace, and let I = [0, 1] C R denote the unit interval.
Then
p(ley + Teg + -+ Iey,) = | det(&(e;, ex))| 2.

If we write u = uz, then

Mtz = tn/2[,b,~{ (t > O)

For any unimodular Lie subgroups F C E C Sp(W), the measure p induces the
left invariant Haar measure on E and a left invariant measure on the quotient
E/F, assuming it does exist. We shall denote these induced measures also by .
Let (G,G’) be a reductive dual pair in Sp(W) (see [8] for the definition) and
let g = Lie(G), ¢’ = Lie(G’). We assume that g and g’ are preserved by 6. Let H’
be a Cartan subgroup of G’ preserved by #. We consider the Cartan decomposition
of H : H = T'A’ where T (resp. A’) is the compact (resp. split) part of H'. We
consider the commutant A” (resp. A”) of A’ (resp. A”)in Sp(W). Then (A", A”)
is a reductive dual pair of Sp(W), see [10]. Let V. ={v € V'|a.v =v Va € A’}.
There exists a unique complement V’, of V! in V' such that the decomposition

V=V.aoV
is preserved by H'. As A” C H', we may consider

A/s” = {CL eA” | ay:, = ld}
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Then A" = A if and only if V], =0 and A" = A7 x {#id\v,} otherwise. There
exists a dense open subset Way of W such that the quotient A7 \Wj is a smooth
manifold. Define the measure p on the quotient A"\ Waw by

/ f(w) duw = / f(aw) dyu(a) du(A™w).
W AW ALY

Let

(W) = X(i(ww,w», (z € sp(W), w € W).

Recall [10, p. 302] the Cauchy Harish-Chandra integral on the Lie algebra:

chew(2' + z) = / Xore(w) dp(Aw) (2" e ™8 x € g).

Ag”\WAg/

Definition 0.1.  Define the normalized Cauchy Harish-Chandra integral by

chew(z' +z) = . chew(z + ) (2" e ™8 x € g).

-
(Ay\ H)

Let SB(W) the connected two fold cover of Sp(W) and let S*(W) the space
of tempered distributions on W. Recall [10, Theorem 2.8] Howe’s embedding

T :Sp(W) — S*(W).

For a subgroup P of Sp(W), let P be the preimage of P in é\ﬁ(W) We
recall the definition of the Cauchy Harish-Chandra integral on the group and define
an associated normalized integral.

Definition 0.2. [10, Definition 2.11] Let H' be a Cartan subgroup of G’ and
x’ € H™#. Then

—_— ~

Chew(2'x) = / T(z'z)(w)du(Aw) (ze@G).
A/s//\WAg”

Define

I\ 1 ~1 / ~
Chew(z'x) = MEVAND Chew(z'x) (zeG).
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Remark. Formally

1
Chew(x'x :—/ T(2'z)(w) du(AYw

]' / / / IZZaNG !/
= —— T(2'x)(h'w)du(Agh") du(H'w
p(AY\ HY) HAW i J AL\H () () di )i )

N /Hf\w T(a'z)(w) dp(H'w)

_ / / T(2'x) (gw) dyu(H'g) dp(Gw)
G\W i JHN\G!

-/ ( | 1) du(G’w)> du(H'g).
H\G \ JGW

Thus Chew looks like an orbital integral. We shall verify the corresponding precise
statement in a forthcoming article.

Let
SHW) — Sp(W), @+ 2 (0:2)
be the canonical surjective map. Denote by 1 the non-trivial element in the
preimage of 1 in Sp(W). Fix 9 € Sp(W) such that 2 = —1.
Formulas for a dual pair of type II

Let D =R or C. Let V, V' be two finite dimensional left vector spaces over D.
On the real vector space W = Hom(V’,V) @ Hom(V,V’) define a symplectic form

(,) by
(w,w') = tr(zy’) — tr(ya’) (w = (z,y), w' = (',y) € W), (0.3)

where tr = trpr. The groups GL(V) and GL(V') act on W by the post-
multiplication and pre-multiplication by the inverse, respectively. These actions
preserve the symplectic form (0.3). The pair (GL(V),GL(V’)) is a dual pair in
Sp(W) of type II, in the sense of Howe (see [8]). We assume that V' is a subspace
of V and consider a direct sum decomposition

V=Valu.
The above decomposition induces embeddings
L = GL(V") x GL(U) C GL(V),
n = Hom(U, V') C gl(V).

Let [ = Lie(L), and let K be the maximal compact subgroup of GL(V) fixed by 6.
We assume that our Cartan involution 6 preserves the subgroup GL(V’) x GL(U).
Let H' be a Cartan subgroup of GL(V’). We may consider the group H' as a
subgroup of Sp(W) in two different ways. We have:

H/ C GL(V/) a2 dual pair Sp(W)
H c GL(V') € GL(V) x GL(U) € GL(V) c?s & dual pair g, (W)
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Let H} (resp. Hj) denote the group H' as a subgroup of GL(V’) with respect
to the first (resp. second) inclusion above. Let b, = Lie(H}). Denote by &; the
restriction of the Killing form « to h,. Then

Kl(xay) = 2d1mR<V) trD/R(xy) for T,y € bl?
re(x,y) = 2dimg(V') trp/r(zy) for z,y € bs.

Let S(gl(V)) be the Schwartz space of gl(V). For ¢ € S(gl(V)) define the following
version of the Harish-Chandra transform of

1
:U/(K) Kxn

where z € [ and k.(z 4+ n) = k(z + n)k~".

Yn (2) = Y(k-(z +n))dp(n)dp(k),

Theorem 0.3.  Let H' be a Cartan subgroup of GL(V') and let ¢ € S(gl(V)).
Then, for any x' € h'™8, we have

\/§dim]R(W)

dimp(v) e

/[(V) Y(x) chew(z' + x) dp(x) =
/ / [det(ad(a’ + 1))l (g-(«' +y)) duy) du(g(Hy x GL()).
GL(V)/(HyxGL(U)) Jgl(U)

Corollary 0.4. We have the equality:

w (z)chew(z' + x)du(x)
g
\/§dimR (W)—dimg (n)

= (v U (92" + y)dp(y)du(g-HY).
/iy VY (K A L) /GL(V/)/H/1 /g[(U) ! '

Let § be the Dirac distribution on R supported at 0. For s # 0, we may
consider the pull-back of ¢ by the function det(.)+s. We denote this distribution
by d(det(.) + s). We can then prove the existence of the limit lim, o d(det(.) + s)
in terms of distributions (cf. equality (4.6) of [10]). We denote this limit by dodet.
The proof of Theorem 0.3 will use the following lemma:

Lemma 0.5. Let (G,G') = (GL,(D),GL{(D)) with D =R or C. Then

ﬁdimm W

cheyw = dodet.

. dimg V/
Vdimg W™ F

~ Let S(@i(V)) be the Schwartz space of @i(V) (see [9, p.450]). For ¢ €
S(GL(V)) consider the following function of x € L,

YH() = | det(Ad(x)0)[VE(2) (0.4)
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where

WE@) = [ w(k(an))dpu(n)du(k).

KxN

The function 4" is the Harish-Chandra transform of 1 (see [12] or Appendix A).

Theorem 0.6.  Let H' be a Cartan subgroup of GL(V'), o/ € H™® and €
C>*(GL(V)). Then

/G"L(v) (@) Chew(v'w)dp(x)
\/idlmR(W) dimg (n) / / L
N v ez (0z'y)y y)du(y)du(gH)),
dimp V/dlmR(V )N(K N L aLovym, Jaiw) ( ( ) ) ( ) ( 1)

where the function € takes values in {£1,=+i} and is defined in [1], Section 2.

Formulas for a dual pair of type I

Let V,V’ be two finite dimensional left vector spaces over D = R, C or H with
non-degenerate forms (,), (,)’- one hermitian and the other one skew-hermitian.
Let W = Hom(V’, V). Define a map

W — Hom(V,V’)
w — w*

by
(wv',v) = (V,w*v) (weW,veV, v eV).

Define a symplectic form (,) on the real vector space W by
(w,w') = trp/r(w*w) (w,w € W).

Let G C GL(V) be the isometry group of the form ( , ) with the Lie algebra
g C End(V). Similarly we have the isometry group G’ C GL(V’) of the form (,)’,
with the Lie algebra g’ C End(V’).

Recall the #—stable Cartan subgroup H' = T'A’ C G'. Let V., C V' be
the subspace on which A’ acts trivially, and let V. = V. be the orthogonal
complement of V/ in V'. Then V/ has a complete polarization

V; =X aVY (0.5)

preserved by H'. We assume that V. is contained in V and that (0.5) is also a
complete polarization with respect to the form (, ). Then

V=V.aU, U=V"
The above decompositions induce embeddings:

GL(X") x G(U) C G,
n’ = Hom(X',V)) @ Hom(X',Y')ng' C ¢,
n = Hom(X',U) @ Hom(X',Y)ng C g.
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Moreover, we have the following embeddings

\,X’ C G/ Cas a dual pair Sp(W),
x € GL(X') x G(U) C G.

We denote H/1|x' (resp. H/2\X/> the group HTX, with respect to the first (resp.
second) inclusion above. Let W, = Hom(V.,U). We assume that the subgroup
GL(X") x G(U) C G is preserved by 6. It is convenient to introduce the following
constants:

[dimp (W) —dimg (We)+dimp (X')] - Sdimp H' o
V2 T ) \/ g.‘mD\Y, if h" acts trivially on W,,
I Nt 4/ dimp (V) * D Y
Y(V, V', X) =

ﬁ[dimR(W)fdimR(Wc)qLdimR(X’)] dimp(U) im]R(Hllv’c)

\/mdimm(xl) dimp (V)
{ (K N GL(X'))y2" = if U =0,

otherwise.

n(V,V',X) = (0.6)

Remark. Notice that b’ acts trivially on W, if and only if U = 0 or b’ acts
trivially on V.. This second property is equivalent to HTV, being finite.

Theorem 0.7.  Let ¥ € S(g). If V. = (0) and U = (0), then

| det(ad ')y /¢(x) chew(x' + x) du(x)

= (V,V, X)|det(ad z'),| P(g - 2) du(gHyx. )-

G/Hy

If v acts trivially on W, then

| det(ad ") | /@Z)(x) chew (2" + ) du(z)

A (VLVLX) /

G/(H} <G (U))

/(U) | det(ad(s" +y))alt(g - (2% + y))chew, (y) du(y)dp(g(Hyx x G(U))),

where chew, = 1 if W, = (0). Otherwise,

| det(ad o)y | /w(x) chew(z' + x) du(x)

=y(V,V', X /
G/(Hy

/ " | det(ad(z’ +y))alt(g - (2% + y)) chew, (2" + ) duy)dp(g(Hyy x G(U))).

1 xG(U))
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Corollary 0.8. If V. =(0) and U= (0), then

V.V X) o
e )| [ wio)chowte'+o)dn(e) = ZETd [ ulastintote)

Ix’

If b acts trivially on W, then

| det(ad )| / W(x)chow (@ + 2)du(z)
g
YAV
W /G o, Jaw Un (g2l + y)chew, (y)du(y)dp(gHyx.),
where chew, =1 if W, = (0). Otherwise

| det(ad ') y)| /@Z)(x)chcw(x' + z)du(x)

Y(V,V/, X!
Ev Yz xi /GL X / U (9.7 + y)chow. (2, + y)du(y)dp(gH ).

Theorem 0.9.  Let v € C=(G). If V. = (0) and U = (0), then

|det(Ad 2’ ™" — 1)y| /éw(x)Cth(:p’x)du(x)

’Y(Vavl7xl> . L / '
= — vy €(0)] det Ad(z)w| 2 (g% )dp(gHyx)
n(V,V', X) GL(X')/HY,,
If b acts trivially on W,., then
V, V' X 1
det(Adz' ™" — / )Ch d WV, VLX) 1) det Ad(z)w| 2
det(Adz/™ = 1)o] [ 0@ Chew(a/a)dp(r) = TGRSl det Ad(a'|

/GL(X’) JH!

where Chew, =1 if W, = (0). Otherwise,

/G N e u )" (g2l + y)Chew, (y)dpu(y) dp(gH) o).

X!

AV, V', X)
n(V, V7, X))

/G O @0 o) Chew, (o)) i),
U

| det(Adz'~" — n'|/¢ VChew(z'z)du(x) = (m’s)|detAd(g')nf|_%

/GL(X/) JH

where wi is the Harish-Chandra transform (cf. equality (0.4)).

!

Properties of C'hc for some dual pairs

We recall some notations used in [1]. Fix a Cartan decomposition g = ¢@p
and let h C ¢ be a Cartan subalgebra of g. Let ¥ be a positive root system



BERNON AND PRZEBINDA 623

for (gc,bc). Let U™ C W denote the subset of the non-compact roots and let
V¢ C U denote the subset of the compact roots. Let UZ, be the family of
strongly orthogonal subsets of U™. For each S € W% let ¢(S) € End(gc) be
the corresponding Cayley transform, [1, (1.6)], and let b( ) = gNc(S)(be) be
the corresponding Cartan subalgebra. Let hs = ¢(S)™'h(S) C he. Denote by
Usr C W the set of real roots for h(S), and let W5 C W be the set of the
non-compact imaginary roots.

If @ € sz and «a is not strongly orthogonal to S, then there is exactly
one o € S is not strongly orthogonal to a. Moreover, a + o/ € U™, Define

(S\)U{a+dtU{E(a—a)} NV,
if @ € U§  1s not strongly orthogonal to S;

SUa,
if o € Ug  is strongly orthogonal to S.

SVa=

Here S\ o =8\ {¢/} and SUa =S U{a}.
For a € W%z define the numbers ¢(¥,S,a) = £1 and d(a) =1 or 2,
as in Lemma 1.7 and Definition 1.8 in [1]. For a subset A C VU (— ) let

A(A) = HO&EA |g_‘ .
For v € Vs g let H, € hsya be the corresponding coroot. If ¢ : hs — C is
a function and z € bg, let

(B)al@) = (B)in, (2) = Jim $(x +itH,) — Tim 6(z — itH,)

whenever the limits exist.
For a function g*® — C and a set S € U7, define

Hsf(r) = A(Wse)(@) ] [ elx) (z € bs).

acV¥

Let Z(g) denote the space of all the functions f satisfying the following
three conditions:

(i) f is a smooth G—invariant function on g™,
(ii) All the derivatives of Hsf are bounded,

(iii) For each o € Ugg, each semiregular element = € hs with respect to a and
each w € Sym(hyc), we have

(O(w)Hs fa(z) = ie(V, S, a)d(a)d(c(S V a) e(S)c(a)w) Hsvaf ().

The space Z(g) contains the space of the (regular semisimple) orbital integrals
of the Schwartz functions on g, [3, Section 3.1]. Let Z(G) be the space of the
orbital integrals of the smooth compactly supported functions on é, [4, Section
3]. Similarly we have Z(g') and Z(G’).

Theorem 0.10.  Let (G,G’) be one of the reductive dual pairs (Upg, U11),
(Op.q: SPa(R)) or (Spy,(R),O12). Then che(y) € Z(g') for any ¢ € S(g).
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Theorem 0.11.  Let (G,G’) be one of the reductive dual pairs (U,,, U11),
(Op.q5Sp2(R)) or (Spy,(R),012). Then Che(y) € Z(G') for any i € CX(G).

This is immediate from Theorem 0.10, because the support of Chc(v) is
compact module the compact part of any Cartan subgroup, and hence compact.
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for an invitation to Christian-Albrechts-Universitat of Kiel in January 2004, where
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1. Proof of Theorem 0.3 for the dual pairs (GL,(R), GL;(R))
Here W = R" & R"T | ((u,v), (v/v")) = vu —vv' and J(u,v) = (vf, —uT),

(u,u' € R", v,v" € R"T). Furthermore, we have an embedding,

I, 0
R = g[l(R) 2T — (l’o —ZL'ITL) S ﬁpgn(R)

Thus,
k(z,y) =2nzy  (z,y € R =gh(R)),
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so that

du(a) =V2nda/la] (e € R* = GLy(R)),

where da is the usual Lebesgue measure on R. Similarly, we have

gMMBx%(ﬁ_&)Ew%ﬁ)
Thus,
z,y) =2tr(zy) (2,9 € gh(R)),
so that ,
du(a) = V2" dg/|det(9)]" (g € GL,(R)).
Let e; = (1,0,0,0,--- ,0)" € R". Then

/VV¢(w) dw = |57 i’/%/n/]R"T /GL1 p(kera,a™v) dv du(k) du(a),

where |S"71| is the Euclidean measure of the unit sphere in R™ and dv is the
usual Lebesgue measure on R"?". Therefore,

IS" 'l

key,v)dvdu(k
\/% § RnT¢ 1 ) /“L()

/ H(GLy (R)w) dyu(GLy (R)uw) =
GL1 (R)\W
For z € gl,,(R), we have

Xallhes,0) = (g oher, ), (ke )

= x({(zher, —v), (ker, 0)}) = x(gurke).

Since H' = A" = A” = GL;(R), we have chew(¢) = c/vhcw(@/z) and therefore

chew (V) = |Sn |\/\/_%/ /RnT/[ vxk‘el)d:vdvdu(k:)
|Sn V2" Es On (0 1) da
0 o 02

() )

VO (@) = [ ¢(k.a)du(k).

On

Let e; = (0,1,0,0,---,0)", e5 = (0,0,1,0,---,0)T,--- e, = (0,0,0,---,0,1)T.
Set V' =Re;, U=Rey ®Res @ --- B Re,. Then Hom(U,V') =n C gl,,(R). Let
K=0, and let N = exp(n). Our computation above shows that

5 1|W
2110,

where

chew (V) =

e / [, Pl det(ad(@)) | i) du(o)
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Notice that, since

T
50naz:(0 y)%zelz(O)BR”,
y 0 Y

K(z,2) = 2tr(z2") = 4y’y.

we have

Hence,

£(On)
%/L(Ol X Onfl)

= u(K/Stabk(e;)) = 2" S 1.

We may compute |S™ | from this formula, and obtain the following equation,

2" 1
chew = — K(n.z)| det(ad(z),)| du(z) du(n).
) \/ﬁu(olxonl)\/ﬁ("_”/N/gww( )| det(ad(z)n)] dia(z) dya(n)

Let L = GL;(R) x GL,—1(R) € GL,(R). Then, by Proposition A.1, we have

1
/Gan(R) #(9) dulg) = M(KOL)\/ﬁ(n_l) /N/K/Lﬁb(k‘nl) du(l) du(k) dp(n).

Thus,

27’L

h -2
chow(?) Vi Jan, )L

[, ¥lo- pldetadol du) antol)
gl(U
Therefore, in terms of Theorem 0.3 and the identification R = gl(V'),

(z)chew(z' + x) du(x) = / Y(x + 2'idy)chew(x) dp(x)
gl(V) gl(V)

on .
= / W(g.y + 2idy)|det(ad )| duly) du(gL)
N QL. (R)/L Jgi(U)

27’L
vn : "idy))|det(ad y)u| du(y) dp(gL
ﬁ/GanR)/L g[<u>¢(g (y + 2'idy))|det(ad y)a| du(y) du(gL)

PAK . .
- 2 / Dg.y + a'idy))|det(ad(y — o'idy)a| duly) du(gL)
Vv Jar, @)L al(U)

27’L
PR . / d d / | d d L ‘
\/ﬁ/GLn(R)/L g[(u)wg (2" +y))|det(ad(z" + y)a| du(y) dp(gL)

This verifies Theorem 0.3 for our pair. [ |

Proof.  [Proof of Lemma 0.5 for D = R.] Let R be equipped with the bilinear
form (z,y) — zy, (z,y € R), and let dz be the corresponding Lebesgue measure,
as above. We shall consider the Dirac delta § as a generalized function by

/R f(2)(z) dz = (0).
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Let G = GL,(R) and let g = gl,,(R). For any ¢ € D(g) supported in the set of
x € g*® such that det'(z) # 0, we have [ 1(z)d(det(z)) du(z)

=3 m /h | det(ad(z)qp)[6(det(z)) | ¢(g-x) du(gH) du(z),

G/H

where the summation is a maximal family of mutually non-conjugate Cartan
subgroups H C G, and |W(H)| is the cardinality of the Weyl group W (H). Up
to conjugation, only the terms corresponding to the Cartan subgroups of the form
H = GL(V’) x Hy, where Hy C GL(U), may be non-zero. A term like that will
occur |W(H)|/|[W (Hy)| times. Hence,

[ vl@btaet(a)) duta)
1
-3 i /g oy o 100401+ )l det(v)
» (g - (21 +y)) du(gH) duly) dp(z:)

= Z m /g[(v’) 6(z1) b | det(ad (21 +y))gs|| det(y)|

o Y(g - (21 +y)) du(gH) duly) du(x).

Since du(x1) = v/2dxy, the above is equal to

ﬁzm /hu\det(ad(y)g/h)Hdet(y)I_l U(g - y) dp(gH) du(y)

G/H
1
3 / X /h | det(ad(y)ys) | det(v)

/L/GL<w> Wlgl-y) du{l GLIV') x Hu) dp(y) dpu(gL)

_ 5 / / | det(y) (g - ) dyu(y) du(gL),
G/L Jgl(U)

where, as before L = GL(V’) x GL(U). Thus

/ (x)8(det(x)) dy(x) = V3 / i / o, 140l (g ) dy) L)

9

We extend the measure ¢ o det by zero beyond the indicated subset of g. Then

dimp W
2" 2
chew = dodet = V2 sy 0 odet. (1.1)
v2n Vdimpg W
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2. Proof of Theorem 0.3 for the dual pairs (GL,(C), GL;(C))

Here W = C" @ C"T, ((u,v), (W/v")) = Re(v'u —vu’) and J(u,v) = (v, —u?),
(u,u’ € C", v,v" € C"T). Furthermore, we have an embedding,

Cogh(© 5z — (" 0 ) € apon(C) Copm(R).
0 —xI,
Thus,
k(z,y) = 4n Re(ry)  (z,y € C = gli(C)),
so that

du(a) = Vanda/|al (a € C* = GL4y(C)),

where da is the usual Lebesgue measure on C. Similarly, we have

g[n((C) >Tr — (g OT) € 5p2n(C) - 5p4n(R)

Thus,
k(z,y) = 4 Retr(xy) (z,y € gl,(C)).

Since dimg(gl,(C)) = 2n?,
du(a) = 4" dg/|det(g)|" (g € GL,(C)).

Let e; = (1,0,0,0,---,0)7 € C". Then

SZn 1|
d (k dvd d
/VV¢<w>w o L L L etkess.at oy duthy daal

2n 1
S \)R / / /G d(kera,a ) dv du(k) du(a).
n (CnT Ll

where |S?"7!| is the Euclidean measure of the unit sphere in C" and dv is the
usual Lebesgue measure on C**'. Therefore,

|52n 1|
\/ 4n n CcnT

/G S~ d(GL; (R)w) du(GL; (R)w) = p(key,v) dv du(k).

For = € gl,,(C), we have

Xallher, ) = x((@lker, ), (ker, ) = x(5 Relvaker))

|52n 1|4n / / /
chew (V¥ Re vakey)) dx dv du(k
wi) =5 s (vke,)) da do du(F)
|32n 1|4n 4"

2p(U )\/R Mp,n-1(C)

SZn 1 4n —n(n—1) 4n 0 0
e Lo (5 4) (0 0)) 1aettoauco)
(C(n nrT [n 1(@)

Y (0, ) de
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where

Vi) = | v(k.)du(k).

Un
Let es = (0,1,0,0,---,0)T, e5 = (0,0,1,0,---,0)T,--+, e, = (0,0,0,---,0,1)7.
Set V' =Ce;, U=Cey ®Ce3®--- P Ce,. Then n C gl,,(C). Let K = U, and let
N = exp(n). Our computation above shows that

|52n 1|4n —n(n— 1

chewly) = / /[N (n.)| det(ad(),)|? dyu(x) da(n).

. _—T .
unaz:(lt y)—)zelz(lt>9(cn,
y 0 (0
we have

. __T _- _T
f(z,2z) = Retr(2zZ") = 4 Retr (Z é/ ) ( ity ) = 4(t> + 27" y).

Notice that since

—y 0
Hence,
(Un)p(Uy) n—1 SIn-2 0n 2n—1on—1| @2n—1
— 2 = (K/Stab =4 2 ST = 27T 2T S
IR (K Stab(en)) = VAT VR s 520

We may compute |S?"~1| from this formula, and obtain the following equation,

2" p(Uy) K 2
B /N /g[(u)¢ (n.2)| det(ad(x),)[2 dpu(x) dpu(n).

Let L = GL;(C) x GL,,_1(C) C GL,,(C). Then according to Proposition A.1, we
have

1
/GLn((C) ¢(g) dulg) = (K ﬂL)\/i%_Q /K/N/L¢(k’nl) du(l) du(n) du(k).

Therefore,

CTLCW(¢) =

chew () = %% pKNLVZ"

/ ¥(g - y)| det(ad(y)n)|? du(y) du(gL).
GL,(C)/L J gl(U)

In our case H = G’ = GL;(C) and the group A” = R*. Hence, u(H'/A") =
2y/nm. Notice that U; in the preceding formula of chew is considered as a
subgroup of U; x U,,_y C GL,(C) thus ky, x, (z,y) = 4 Re(zy) and p(Uy) = 4.
Hence

1 on 1(Uy) on—2  2M—logp  4n
= KNL)WV2 & ~=-_-"" -
w(H /A /n (U x Uy,_q) a V2 Vnynron
Therefore,
4n
chew(v) = —/ / V(g - y)|det(ad y)a|* du(y) du(gL).
" JGL.(C)/L Jgi(V)

This verifies Theorem 0.3 for our pair. [ |
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Proof. [Proof of Lemma 0.5 for D = C.] Let C be equipped with the bilinear
form (z,y) — Rezy, (z,y € C), and let dz be the corresponding Lebesgue
measure, as above. We shall consider the Dirac delta ¢ as a generalized function
by

[ 1@3()ds = 7(0)
C
Let G = GL,(C) and let g = gl,,(C). For any ¢ € C.(g) supported in the set of

x € g which are regular, semisimple and such that det’(z) # 0, we have

/ b (2)3(det(x)) dp(x)

= Zﬁ/h | det(ad 2)qjs|*(det () | (g ) du(gH) dp(x),

G/H

where g/b is viewed as a real vector space, the summation is a maximal family of
mutually non-conjugate Cartan subgroups H C G, and |[W (H)| is the cardinality
of the Weyl group W (H). Up to conjugation, only the terms corresponding to the
Cartan subgroups of the form H = GL(V') x Hy, where Hy C GL(U), may be
non-zero. A term like that will occur |W(H)|/|W (Hy)| times. Hence,

/ (2)d(det(x)) dp(z)

9

- Z m /I(V’) b | det(ad(z; + y)g/h)|25($1 det(y))

o V(g - (v1 +y)) du(gH) du(y) dp(zy)

:Zm/ o, 200 | det(ad@ +9)e [ det(w)]

G/H V(g - (@1 +y)) du(gH) duly) du(zy).

Since dp(z1) = 4dxy, the above is equal to

1 ) »
03 iy L 1 der(aat)n P den ) [ ota ) dutath) dut

_ 1 o
=4[ gy L dettaatn Y den)
/ (gl - y) dp(l GL(V') x Hy) du(y) dp(gL)
L/GL(V")xHy
_ 2 .
-4 . / QPO ) duy) (oL,
where, as before L = GL(V’) x GL(U). Thus

/ (x)8(det(x)) dp(x) = 4 / i / o, 14t ) duy) dn)

g
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We extend the measure § o det by zero beyond the indicated subset of g. Then,
as in the case D = R,

dimRW
4n V2
chew = —dodet = —— 0 odet. (2.1)
4n V/dimg WY

3. Proof of Theorem 0.3 for the dual pairs (GL, (D), GL,.(D)), D =R
or D=C

An element z € g, or rather the pair (z,V), is called decomposable if and
only if there are two non-zero subspaces U’,U"” C V', preserved by z such that
V =U @ U". In this case we say that (z,V) is the direct sum of the elements
(z,U’) and (x,U"”). The element x, or (z,V), is called indecomposable if and
only if (z,V) is not decomposable. If z is semisimple then (z,V) decomposes
into a direct sum of indecomposables. Two elements (x,V') and (y,U) are called
similar if and only if there is an invertible linear map g € Hom(U, V') such that
y = g 'xg. A direct sum of indecomposable elements is called isotypic if and
only if all the indecomposable components are mutually similar. Two isotypic
components are of the same type if and only if the corresponding indecomposable
elements are similar.

Let z' be a regular element in a fixed Cartan subalgebra ' C g’ = gl(V’).
Let

V=VioVe---oV,
be the decomposition into z’—isotypic components. Recall the symplectic space
W = Hom(V',V) & Hom(V, V).
For 7 =1,2,--- 'm let
W; = Hom(V},V) @ Hom(V, V}),
ﬂdimR w;
\/mdimR Vi

Cj =

Since

W=W, Wy ®---a&W,,

is an orthogonal decomposition, the subspaces

sp(W;), sp(We) — (J # k)

are mutually orthogonal with respect to the form . Hence, the restriction of x
to each sp(W;) coincides with the corresponding bilinear symmetric form given
by the trace on sp(W;). In particular the normalized measure on W is the
product of the normalized measures on the W}s and normalized measure on
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>y (8l(V) + gl(V)) C sp(W) is the product of the normalized measures on the
al(V}) + gl(V)) C sp(W;). As shown in the previous two sections,

chew(z' + ) Hc] (det '+ l’)Hom(v’ V)> )

for x € g. In particular an element x € g belongs to the support of chey(z'+ ) if
and only if the semisimple part of = belongs to the support of chew (z'+ ). Suppose
x is semisimple and belongs to the indicated support. Since the generalized

function chew (2’4 ) is conjugation invariant, we may assume that x|\, = z’.

Then
V _ V/// EB UO V/// _ V//I @ V/I/ EB . EB VI//
- ) - V1 2 m)
where each (z, V') is isotypic of the same type as (z,V}), and Uy does not contain
any z— indecomposable components similar to any (z, V;), 7 = 1,2,--- 'm
Moreover,
"o\t 1" s

where the decomposition is preserved by x. Define 2”7 € g by

QSW|V/// _ [E|\/m, x///|U0 —0.

For a classical Lie algebra s, with the defining module V', and for a subset S C s,
let S, denote the set of all elements y € S such that for any eigenvalue A of y,
acting on V', || <e.

For € > 0 let U, be the set of all y € g% such that

y|V”’ (- l’”’|v/// + 9[(\/”/)?7 a,nd
d(eig(z" [yn), eig(ylu,)) > €

where d(eig(x"|ym),eig(y|u,)) is the minimum of |\ — A|, where X € eig(x” |ym)
and \ € eig(yly,)-

Lemma 3.1.  For all € > 0 small enough,

(a) x € U,;

(b) U, is G¥" — stable;

(c) if y1,y2 € U. and h € G are such that h -y, = yo, then h € G*
(d) det(ad(y)g/gn) # 0 for y € Ue.

"

Remark. Part (d) implies that the map
GxU, — g
(9:9) — gy

is a submersion, and (c) shows that the fiber of the above map is equal to

117

{(gh™" h-y); he G}

Thus
G Xgor Ue = G - Ue.
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Proof.  Parts (a), (b), (c) are clear. We shall verify (d). Notice that
g = @al(V)")" @ gl(Uo)
j=1

and

g=g"&P"al(V}) & PHom(V!", V/') & Hom(Ug, V") & Hom(V", Up),

j=1 i,j=1
]

where the left superscript indicates the anticommutant:
Y ={yeY; yr=—xy}.
Hence

|det (ad(y)g/o)

det ( ad(y)

DoV D Hom(v;//,v;")@Hom(uo,V///)@Hom(vw,uo)) ‘
j=1

i,j=1
i#]
= H det (ad(y)mg[(vyl)) H ‘det (ad(y)Hom(V;u’V;,,))‘
j=1 i,j=1
7]

|det (ad(y)Hom(UO’VW)H |det (ad(y)Hom(Vm,Uo))‘ .

The action of ad(y) on “gl(V}’) coincides with 2 times the left multiplication by
y’v;!- Hence,

‘det (ad(y)zg[(\/;//)> ‘
is a non-zero constant multiple of a power of

‘det (ad(x’%'g[(v;») ) ’

which is non-zero, by the regularity of x’.

Since
eig(ylver) Neigylvw) =0 (@ #j),
we have
det (ad(y)Hom(vgﬂ,v;”)) #0 (i1 #7).
Similarly

|det (ad(y)Hom(UO’Vm))l |det (ad(y)Hom(V///7U0)>| 7é 0. |

For y € U, we have
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[T 65(det(z’ + v)tomev: v))
j=1
m , m , -1
=1[9 (det(x + y)Homw;,v;“)f) 11 ’det(x + Y)eHom(v; V)
=1 =1
m -1 1

H ‘det(f —+ y)Hom(V;,Vgl)) |det(ﬂf, + y)Hom(V/,UO) )
jik=1
7k

where all the vector spaces Hom( , ) are over R. Thus

m

H 0 <de‘3(37/ + y)Hom(v;.,V)> = H J <det(x’ + y)Hom(vj',v;.”)z>
=1 =1

’ det <ad(y) "

-1
@ “Hom(V},VY") B Hom(V;-,Vg/)@Hom(V’,UO))
j i h=1
i#k

Jj=1

For each j, §'[v; € End(V}) is isomorphic to R or C, as a field and of dimension
dimp V;- over R. Let

W = Hom(V/, V)" & Hom(V/, V'),
Then

GL(V))* = H'jv,, GL(V!)* C Sp(W;)*
is a dual pair. Moreover, since

T zl

our symmetric bilinear form on sp(W¥) coincides with the restriction of the form
from sp(W). Hence, for y € U,, du(y\\/;_u) is the same as the measure for the pair
(GL(V})" = H'lv;, GL(V}')"). Let

i \/§dimR W;”

J \/mdimRV; '
Then according to (1.1) and (2.1), for y € U, and for all j,

1 -1
5(det(x/ + y)HOm(V;.,V;”)) = C—x ChCW;; (I, + y) ’det(ac/ + y)‘"‘Hom(V;,V;”)
J

Hence,

m
1
chcw(x’ + y) = H ng ChCV\/;_c (SL’/ + y)
j=1
-1

det <x’ + y) N N
@ “Hom(V},VY") @ Hom(V},V;")@Hom(V',Uo)
=1 4, k=1
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Define z” € g by
14 "
2"y = xlyn, 2" lvgu, = 0.
Then

1

— Pal(V)* @ gl(Uy) and <g> @ gl(V))" @ gl(V")") & gl(Uy).

=1

Also ,
(GL(V/)")" = GL(V)* x GL(V/)".

As we have shown in Sections 1 and 2,

/ U(y)chews (2" +y) dp(y)
gl(Vy)®

dimg V/
:C§1/2 dlmRV; / /
QL") /(@LV )" Jgi(vyr)e

W9+ (@'l +y)) duly) du(g(GLVT))™).

det (ad(ac/ + y)Hom(V"j,V}’)z)

Furthermore,
m : img V; \/§dlmR W
H cjy/2 dimg V; = : T
j=1 vV dlm]D) V
Moreover,

-1

‘det (ad(x +y)m

EBIHom(V’ v’”) EB Hom(V’ Vi)@Hom(V/, uo))

i
J#k

det (ad(x +Y) m

det (ad(l‘l -+ y)g/gxm) ‘

det (ad(x' + y)g[(U)/g[(U)z") ‘ ‘ det (ad(x' + y)Hom(U,V/)) ‘

Let 1 € S(g) be supported in the set of the G—orbits passing through U,.. Then
our computations show that

@ Hom(V/, V”/)“> ‘

/w(x)chcw(m/ + x) du(z)

g

= [ o L 00 RN ] et ) ) (oG
G/G® z

imp W
\/§d R / /
- e V7 V(g - (2 +v)) ‘ det (ad(z’' + y) »
dimp VAR G /(G J (ga'"" )" ( gl(U)/gl(V) )

"

)7)

det (ad(2’ + ) Hom(uv’ )‘ du(y) du(g(G”
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dlm]R w

dlmRV / / Qb(g ) (l -2 + y))
V/dimp V G/L JGL(V')/GL(V)*' Jgl(U)
| det (ad(z’ + y>Hom<u,w>) | du(y) dp(1(GL(V'))) du(gL).

Since GL(V')* = H', we see that we have for every ¢ € S(g),
\/§dim]RW
\/mdim]}g 4
Lol [l 0 )] det(ad(s + ) da(y) duit) di(sL)
G/L JGLv)/m Jgiu)

/w(x)chcw(:r’ + ) du(z) =

This verifies Theorem 0.3.

Proof.  [Proof of Corollary 0.4] We denote by Dqr,u) the Weyl denominator of
the Lie algebra gl(U) (see equality (A.2) for the definition). The Weyl integration
formula for the Lie algebra gl(U) implies the following equality:

/GL(V)/H’ GL(U) /[(U) | det(ad(z" + y)w)|(g.(2" + y))du(y)du(g(H) x GL(U)))

- Z ’WGL W (bu)| Jy DGL W)l det(ad (@’ +y)w)l

/ (g2 + y))dpu(g(H x H))du(y).
GL(V)/H’ xHy

Corollary A.4 implies that the above is equal to

1
\/idimR(n/)'u(K ﬂ L)

Un(9.(&" + y))du(g(Hy x Hy))dpu(y)

Z !WGL 0] DGL(U)(y)

/GL(V’) xGL(U)/H’ xHy
1

= \/QdimR(n/)u(KﬂL) /GL v /H,/ Un (g2 +y)dp(y)p(gH,)

img (h’)
1 dimD(V) / / K , )
= T dma(w : U (g-2"+y)dp(y) pu(gH,).
V2 g Ay | dimp (V) GLv/m Jaiu)

If we notice that dimg(h’) = dimg(V’), then the formula of Corollary 0.4 follows
from Theorem 0.3. u

4. Proof of Theorem 0.7

In the proof of Theorem 0.7, we shall encounter a delicate point which we would
like to explain here. Let b, = b’|y,. There are two inclusions:

Ji: bl — gand js : b, — gl(V)
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defined by

nE@)W +u) = 2 (2" epl, v eV, uel),
Jo(@) (V' +u) = 2"V (@ epl, v eX, ueU+Y).

Furthermore, there are the obvious inclusions:

g — sp(Wy),
gl(V) = sp(Wy),

S

where W, = Hom(V{,V). Let b ; = j;(h,). Thus

;,1 — Sp(WS)a
be = sp(Wy).

We denote by H{; the corresponding subgroup of Sp(W). Let, for the moment,
Kki(r,y) = k(z,y) for z,y € b, with i =1,2. Then

Ki(w,y) = tr (l’y)Hom(v;,v;)R = 2dimp(V}) tr @«U)End(x')]R ’
R2 (‘Ta y) = tr (Iy)(Hom(X’,X’)EBHom(Y/7Y’))R = dlmD(V;) tr (l‘y)End(X,)R ’

Thus
ko(z,y) =2 'ki(z,y)  (z,y €D)). (4.1)

Let p1 and py be the corresponding measures on HY ; and Hf , respectively. Then

1 /
dpia() = Wdﬂl@) (z,y € by).
The pair of groups (GL(X"), GL(V)) is a dual pairs of type IT in Sp(Wy). In the
third equality in (4.3) we shall apply Theorem 0.3 to this pair, but we have to be
careful about the measures involved. We shall only need the case dimp(X') =1,
D =R or C. Let u denote the measure on GL(V), the subgroups and the quotients
of it, as in Theorem 0.3. Then

/[(V) Y(x) chew(z' + x) du(x)

\/ﬁdimR Ws )
S L — / 5(det(a’ + ) (x) dp(x)
dimp Wi al(V)

\/§dimR WS

- ) [ F) duty) duto(it, x GL))
dimp (V) GL(V)/(,xGL(U)) Jgi(U)

where F(y) = | det (ad(z’ + y)uomux)) [¢(g - (2" +¥)). (4.2)
Let us equip the group H;; x GL(U) with the measure y; ® p1, keep the same

measure 4 on GL(V), and let i denote the corresponding measure on the quotient
GL(V)/(H,; x GL(U)). Then, by (4.1),

dii(g(H,, x GL(U))) = V2" du(g(I,, x GL(V))).
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Then (4.2) is equal to
diInRWS
2 impg (X’
V2 dimz (X)) Ve R(X)/ / | det (ad(2’ + ¥)Homux))|
dinp (V) GLV)/(H, , xGL()) Jgi()
(g (2 +y)) duly) dip(g(Hy , x GL(U))).

Notice that the quotient measure in (4.3), denoted by g there (for natural
reasons) is fi.
Recall the notation and the assumptions of Section 4. Let

Vi=ViaeVyd---aV,

be the isotypic decomposition with respect to z’. Then each V’ has a complete
polarization

Vi =X Y]
preserved by H'. For j =1,2,--- ,m let
W; = Hom(V}, V) @ Hom(V, Vj),
\/idimRWj
/iy W,

Cj:

Notice that
W =W, & Hom(V., V)

is an orthogonal decomposition. Since
W, =W; Wy @ --- W,
is an orthogonal decomposition, the subspaces

sp(W;), sp(Wi)  (J # k)

are mutually orthogonal with respect to the form k. Hence, the restriction of
to each sp(W;) coincides with the corresponding bilinear symmetric form given by
the trace on sp(W,). In particular the normalized measure on W is the product
of the normalized measures on the W/s and on Hom(V(, V).

Similarly, the normalized measure on A” C Sp(W) is the product of the
normalized measures on the A”’ NSp(W;), and the normalized measure on H'|y, C
Sp(Hom(V},V)) is the product of the normalized measures on the H'|y, NSp(W;).
Hence, for z € g,

chew (2’ + ) = chew, (3" + ) chenomv vy (2" + @),

chew, (' + x) = H ¢jo(det(z" + ) Hom(X].V) )-

j=1

Notice that the measure p(H'|v,) used to define the chcpom(vr,v) is different than
the corresponding measure (denote it by py(H'|v,)) of H'|y, used to define cheyw, .
For z,y € End(V.) let

K(7,y) = trp/r(zy)
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where we view x and y as elements of End(Hom(V.,V)), and let

ky(z,y) = trp/r(zy)
where we view z and y as elements of End(W,). Then
dimp V
dimp U

- dimpg (H'|\/ )
dimp V ¢
p(H vy) =4 Qo U py (H'

An element z € g belongs to the support of chew (z'+-) ( = supp(chew, (2'+-))) if
and only if the semisimple part of x belongs to the support of chew(x'+-). Suppose
x is semisimple and belongs to the indicated support. Since the generalized
function chew(x’ + -) is conjugation invariant, we may assume that z|y = 2.
Then

li(l’,y): Iiu(l’,y).

Hence,

vL)-

V=V"aUy, V'=V"'oV' e -V
- ) - Y1 2 m)
where each (z,V]’) is isotypic of the same type as (z,V), and Uy does not
contain any z-indecomposable components similar to any (x,V}), j =1,2,--+ ,m.
Moreover,
Vi =V, @ V] (j=1,2,---,m),
where V7 is orthogonal to V' and the decomposition is preserved by . For each
j, let
"o~ "
Vi =X/ DY;
be the complete polarization preserved by x. Let
"o~y " s
X! =X, @ X} (1=1,2,3,---,m)
X/,/:XII/,+X,2/,+"'+X/TZ7 Y/,/:Y,III+Y/2,/+"'+Y:$-
All these spaces are z—invariant, and the V7 might be zero. Define 2" € g by
Q?/”|Vm _ x’V/“, x///|uo —0.
For € > 0 let U. be the set of all y € g*" such that
y’x/// S .T”/|x/// + g[(X”’)f, and
d(eig(z" |x), eig(ylu,)) > €.

Hence, Lemma 3.1 holds.  Notice that

m dimg X;. ﬁdimm W

HC]'\/Q dlmeg = T

j=1 Vdimp V-
As in Section 3, we check that

m

H 0 ( det(2’ + ?J)Hom(x;,V)> = H 0 ( det(z’ + ?J)Hom(x;,x;“)w)

Jj=1 Jj=1
-1

det [ ad(y) m m
@ “Hom(X} X7")® @ Hom(X) X} ")®Hom(X’,Uo+Y"")
i=1 k=1
ik
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Notice that

‘ det <ad(y)g/(zjgt(xg”)w(Uo))) ‘

2

- ‘ det <ad(y)Hom(X”’,U0)+Hom(X’7Y”)+Hom(X’,Y’)ﬂg—&—Hom(X”,Y”)ﬂg)

‘ det ( ad( )Zm Hom(X’” X”’)) ‘

J,k=1

and that

‘ det (ad(y)(zj QI(X;-”)"FB(UO))/(ZJ- g[(X;”)z-l-g(Uo))) ‘ = | det (ad(y)27 zg[(X;//)) '

Hence, by a straightforward computation

‘ det (ad(x’ + y)g/gzm) ‘

= ’det (ad(x +y)m

-1

m
@ Hom(X}, X")& D Hom(X;,Xg’)@Hom(X’,Uo—i-Y”’))
J=1 j7k:1

‘ det (ad(x +y)m EBHom(X’ x”’)z) ‘

det (ad@' + y>Hom(X”,X’)—i—Hom(X’,U0+Y”)+Hom(X’,Y’)ﬂg)

-1

’ det <ad(3:/ + y)g(U)/g(U)z) ’ ’ det (ad(x’ + y)Hom(X@Y,)mg,)

= ’ det (ad(a:’ + y)Hom(xgu).;_Hom(x/’Y/)ﬂg) ‘

-1

det ( d(ZE, + y)HOm(X’,Y’)ﬂg/)

‘det (ad(m'+y) (U)/a(U) )‘

Define z” € g by

ZL'”|V// = .ZU|V//, [EH|V//J_ = 0.
Then

= @g[(x;”)x @ gl(Up), and

= P(al(X)” @ gi(X))") @ gl(Up).

Jj=1
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Let ¢ € S(g). Assume, supp(¢)) C G - U.. Then

m

[ trhen. dute) = [ TTe( derts’+ o )l (o)

\/§dim]R Ws 1
dimp X’ / / al! / o't
‘ det(ad(x’ + y)Hom(X’,U)+Hom(X’7Y/)ﬁg)|

| det(ad(@’ + y)gu) /gu))
U(g- (@' +9)) duly) dp(g(H |x x G(U)™"))

det (ad (x/)Hom(X’,Y’)ﬂg’ )

\/ﬁdim]R WS
det (ad (x,)Hom(X’,Y’)ﬂg’ )

—1
dimp X’ / /
/1 dimgp V - G/ (/| xG(U)) Ja(U)

| det(ad (2 + ) Hom(x'.u)+ Hom(x y)ng) [ (9 - (2" +¥)) du(y) du(g(H'|x X G(U)gi-?))

This verifies the part of Theorem 0.7 corresponding to the case V., = 0.

/

Notice that for y € U,, such that y restricted to X' is conjugate to x
restricted to X', we have

—1/2
\/—dimR Hom(VL.,V%) /

Cthom(V’C,V’S) (ZE, + y) =V2 det(x' + y)Hom(vc,vg)

1
\/§dimR Hom(VL.,V%)

det(ad(2") Homx,v1))

Furthermore,

W =W, ® Hom(V.,V.) & W...

Assume that U # 0 and H'|ly, is not finite. Then,

/chcw(x’ + x)(z)dp(x)
g
chetomv,vy (¢ + )

1
= [ chew, (2 + 2)———
oot

Cf}TCHom(V’c,U)(x/ + ) (x)dp(r)

Hly ) —
— [t o'+ 2 o+ )+ 2 o))
g e
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1
det(ad(2") Homx y)ng')

\/§dimR Wy
dimR X’
\/ % dlm]D) \
po(H've) —

/ / |det(ad (2" + ¥) Hom(x,U)+ Hom(x',y)ng) | —=<~cherom(vy v (2'+y)
G/ (H ]y xG(V)) J g(U) p(H[vr)

chew, (2" +y)¥(g - (2" +y)) duly) du(g(H'|[x x G(U)))

dimg X’ o,
Srdimpy o HAV)

|det(ad(x’)Hom(X/7y/)mg/)]‘1 |det(ad($l)Hom(X/7V’c))|_1

/ / |det(ad (2" + ¥) Hom(x,u)+ Hom(x,Y)a)| CACHom(v,,u) (& + Y)
/(' xG(U)) Jg(U)
(g - (2" +y))du(y) du(g(H |x x G(U)))

dimg Hom(V/,V)+dimg Hom(V/,V%) -
\/§ dlm]]]) u

dimpg X’ :
\/m R dimp V

|det(ad(x’)H0m(X/7y/)mg/) - }det(ad(aj/)Hom(X’,V’C))|_1

dimg (|, )

/ / |det(ad(x, + y)Hom(x',U)-i-Hom(X’,Y’)mg)| C]’LCHom(V’C,U) (l’/ + y)
G/ 'y, xG(U)) / g(V)

V(g - (2" +y)) duly) du(g(H'|x x G(U))).

Suppose §’ acts trivially on W,.. Then,

/ chew (@ + 2)b(2)du(z) — / Chew, (@ + 2)hesomen (@ + 2)0(x)du(z)

g g

— /chcws(:v' + x)cheomve, vy (7)Y (x)dp(x)
g
Hence, we are applying the case V. = 0 to the function chcuom(v, vy(2)9(z) and
continue the computation as follows, keeping in mind that the measures on G,
H'|lx € G and G/(H'|x/) are different in these two cases. If U =0 then

/chcw(x/ + x)(z)dp(x)
g
dimp H’ imp Hom(V’. imp Hom(V’.
R ETRY, R \/id » Hom(V,,V)~+dimg Hom(V/,,V)
= N / dimp X’
dimp V/, /—% dimy V R
-1 -1
|det(ad(2)somp yng) | |det(ad(z ) momex vr) )| //( | )w(g-(ﬂﬁ'))d#(g(H'|x’))-
G/(H!|ys

If U # 0 then the same argument applies.
This verifies Theorem 0.7 for our function ¢ with the support contained
in G-U.. Since G - U, is a completely invariant neighborhood of an arbitrary
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semisimple point in the support of our distribution, the formula holds for any
function ¢ € S(g).
The proof of Corollary 0.8 is the same as the proof of Corollary 0.4.

5. The conjugacy classes in an ordinary classical Lie group

Let G be an ordinary classical Lie group, with the defining module V and the Lie
algebra g. An element g € G, or rather the pair (g,V), is called decomposable if
and only if there are two non-zero subspaces V', V" C V| (which are orthogonal if
G is of type I), preserved by ¢ and such that V = V' @ V”. In this case we say
that (g,V) is the direct sum of the elements (g,V’) and (g,V”). The element g,
or (g,V), is called indecomposable if and only if (g,V) is not decomposable.

Let G’ be another ordinary classical Lie group with the defining module V'
and the Lie algebra g'. Let ¢’ € G’ and let ¢ € G. We shall say that the two
elements (g,V) and (¢',V’) are similar ((g,V) ~ (¢',V’)) if and only if the two
groups G, G’ are of the same type and there is a linear bijection gy : V — V' (an
isometry in the type I case) such that ¢’ = goggy'. In particular, if G = G/, (and
therefore V.= V'), then (g,V) is similar to (¢/,V) if and only if ¢ and ¢ are in
the same G-orbit. For simplicity we shall use the following notation:

gh=ghg™"  (9,h€G),
G.S={ghlgeC, heS (SCQ).

Let g € G and let g = gsg, be the Jordan decomposition of g, [11, II, page 26].
Then g, = exp(z,), where z,, € g is nilpotent.

Let m = ht(x,,V) denote the height of x,. (This is the smallest non-
negative integer k such that 2% # 0, but z%*! = 0.). When convenient, by the
height of (g, V) we shall understand the height of (z,,V). One says that (g,V) is
uniform if and only if ker(z") = z,(V). In this case let V = V/ker(z,) and for
v eV, let 7=wv+xz,(V) € V. With this notation set §(v) = g(v), and if G is the
isometry group of a non-degenerate form 7, let 7(w,v) = 7(u, 2" (v)); u,v € V.
Then 7 is a non-degenerate form on V, and § preserves this form. Furthermore,
the element (g, V) is semisimple. We shall refer to it as to the semisimple element
attached to (g,V).

Theorem 5.1. /2, Proposition 2 and 3] The similarity class of a uniform
element (g,V) is uniquely determined by ht(g,V) and by the similarity class of

(9. V). If (g,V) is indecomposable then it is uniform, and (g, V) is indecomposable.
Any element (g,V) is the direct sum of indecomposables.

The element (g,V) is said to be isotypic (or V is isotypic with respect to
g) if (g,V) is the direct sum of mutually similar indecomposable elements. The
number of these elements is called the multiplicity of (g,V), and the similarity
class of any one of them, the type of (g,V). We see from Theorem 5.1 that the
similarity class of an isotypic element is determined by its height, its multiplicity
and the type of the semisimple element attached to it.
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Corollary 5.2.  [2] Let g, € G. Let

Vzvl@vz@...

be the decomposition of V into isotypic components with respect to g, and let

V=V Vi@

be the decomposition of V into isotypic components with respect to g'. Then g and
g are in the same G-orbit if and only if, up to a permutation of indecies, (g,V;)
is similar to (g,V’) for all j. In particular the G-orbit of g is determined by the
number of isotypic components of (g,V) together with the height, the multiplicity
and the type of the semisimple element attached to each of them.

Lemma 5.3. /2, Table A, p.360] The following is a complete list of semisimple,
indecomposable elements (g,V) for g in an ordinary classical Lie group of type 1.

(i) D=R

(a) T-symmetric; V=Ruv; e — 1 € R; g(v) = ev; eig(g) = {€}.

(b) T-skew-symmetric; V= Ru® Rv; e — +1 € R; g(u) = eu, g(v) = ev;
eig(g) = {e}.

(c) V=Ru®Rv; 7(u,u) =7(v,v) =0, 7(u,v) =1; a € R\ {0,£ — 1};
g(u) = au, g(v) =a 'v; eig(g) = {a,a™'}.

(d) V= Ru@ Rv; 7(u,v) = 0, 7(u,u) = 7(v,v) = £1; £ € R\ 7Z;
g(u) = cos(&)u — sin(&)v, g(v) = cos(&)u + sin(é)v; eig(g) = {er¢}.

(e) V =Rus & Ruy @ Rvy & Rog; 7(us,uj) = 7(v5,v;) =0, (4,5 =1,2),
T(up,v1) = T(ug,v9) = 1; £ € R\ 7Z, a > 0; g(uy) = a cos(&)u; —
a sin(&)us, g(vi) = a™t cos(&)vy —a™ ! sin(€ )v2, g(uz) = a cos(& )u1 +

) =

a sin(&)uy, g(ve) = a™t cos(&)vy +a~t sin(&)vy; eig(g) = {atle™€}.
(f) V= Ru @ Ru; 7(u,u) = 7(v,v) = 0, 7(u,v) = 1 = —7(v,u);
§ € RA\Z; g(u) = cos(§u — sin(§)v, g(v) = cos(§u + sin(§)v,;

eig(g) = {e*}.

(ii) D=C

(a) v=1; T-symmetric; V = Cv; e — £1 € R; g(v) = ev; eig(g) = {¢}.

(b) v = 1; 1-skew-symmetric; V = Cu @ Cv; ¢ — £1 € R; g(u) = eu,
g9(v) = ev; eig(g) = {e}.

(¢c) v# 1; 7-hermitian; V = Cv; a € C, |a|] = 1; g(v) = av; eig(g) = {a}.

(d) o = 1; V= Cud Cv; 7(u,u) = 7(v,v) = 0, 7(u,v) = 1; a €
CA\{0,£1}; g(u) = au, g(v) = a”"v; eig(g) = {a*'}.

(e) v #1; V=Cud®Cv; 7(u,u) = 7(v,v) =0, 7(u,v) =1 = 7(v,u);
a€C, la] #1; g(u) = au, g(v) = v(a)"'v; eig(g) = {a,i(a)™'}.

(i11) D =H (here +#1 preserves C C H)
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(a) V=Hv; e—+1 €R; g(v) =ev; eig(g) = {e}.

(b) V=Hv; a€C, |a| =1, a# *1; g(v) = av; eig(g) = {a*'}.

(¢) V =Hu®Ho; 7(u,u) = 7(v,v) =0, 7(u,v) =1; a € C, |a|] # 1;
g(u) = au, g(v) = 1(a)"'v; eigg) = {a™,1(a)*'}.

Lemma 5.4.  [2, Table A, p.360] The following is a complete list of semisimple,
indecomposable elements (g,V) for g in an ordinary classical Lie group of type I1.

(i) D=R

(a) V=Ruv; e—+1 € R; g(v) =ev; eig(g) = {€}.

(b) V=Rov; ec R\ {0,£1}; g(v) = ev; eig(z) = {c}.

(c)V=RudRv; £ € R\7Z, a > 0;9(u) = acos(§u — asin({)v,
g(v) = a cos(&)u + a sin(&)v; eig(g) = {ae™®}.

(ii)) D=C

(a) V=Cuv ; e—=+1€R; g(v) =ev; eig(g) = {e}.
(b) V=Cuv; aecC\{0,£1}; g(v) = av; eig(g) = {a}.

(11i)) D =H (here +# 1 preserves CCH)
(a) V=Hv; e—+1 €R; g(v) =ev; eig(g) = {e}.
(b) V=Huv; ac C\{0,+—1}; g(v) = av; eig(g) = {a,(a)}.

By inspecting the lists of Lemmas 5.3 and 5.4, we deduce the following
corollary :

Corollary 5.5. Let G be an ordinary classical Lie group with the defining
module U. (If G is of type 1, then G is the group of isometries of a form T
on U.) Let g,¢' € G, and let V,V' C U be two subspaces such that the elements
(9,V) and (¢',V'") are indecomposable and semisimple.

If (9,V) and (¢',V') are not similar, then either eig(glv) Neig(g’|v) = 0
or eig(glv) = eig(¢'|v/) and the group G is of type 1, the form T is hermitian and
the restrictions of 7 to V and V' are definite of opposite signatures.

In particular, if g preserves a non-zero isotropic subspaces of V, then (g,V)
and (¢', V') are similar if and only if the sets eig(glv), eig(g'|v) have a non-empty
intersection:

(9,V) = (¢, V') if and only if eig(glv) Neig(qg'|v) # 0.

A slice through a semisimple point of G.

Let G be an ordinary classical Lie group, with the Lie algebra g. Fix a
semisimple element g € G. Let 3 C g denote the centralizer of g. Let Z C GY be
the subgroup which acts trivially on the center of 3. Let r C g be the range of
1 —Ad(g). Set

7' ={z€eZ| det(1 —Ad(g)). # 0}.
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This is a GY-invariant subset of Z, closed under taking the inverse. Let ¢ > 0 and
3e ={y € 3||\| < e for all eigenvalues A of y}.

Define
Z.=gexp(3), Ge=G.2Z, (e >0). (5.1)

Theorem 5.6.  [11, II, p. 37] The sets Z. are G9-stable. For all sufficiently
small € > 0, we have the following:

(i) Z. is an open subset of 7', and the map 3 > y — g exp(y) € Z. is an
analytic diffeomorphism;

(i) If h € G and h.[Z])N Z. # D then h € GY;
(111) If 21 C 2. is GI-invariant and closed in 7, then G.Z; is closed in G;
(iv) If 0 < € <€, then Cl(Zs) C 2Z,;

(v) There is € > 0 such that the family Go, 0 < € < €, is a basis for the
completely invariant open neighborhoods of g in G.

Let G be an ordinary classical Lie group with the defining module V.
Suppose
V=VaU

is a direct sum decomposition, which is orthogonal in the type I case. The above
decomposition induces the obvious embeddings

G(V) x G(U) € G(V) =G; g(V) D a(V) Cg(V) =g.

Lemma 5.7. Let g € G be a semisimple element which preserves V' and U. If
G is of type I, assume that V' has a complete polarization V' =X @Y’ preserved
by g. Then, with the notation (5.1), there is € > 0 such that for any € €]0, €|

(9G(V)) NG = G(U)[(9G(V)) N Zd].

Proof. Obviously, for any ¢ > 0, the right hand side is contained in the left
hand side. We shall find ¢ > 0 such that the left hand side is contained in the
right hand side.
Let
Vi=VieoV,d---

be the decomposition of V' into isotypic components with respect to g. For j > 1
let U; € U be an isotypic component with respect to g, of the same type as V7,
if it exists. If not, set U; = 0. Let Uy C U be the sum of all the other g—isotypic
components of U. Set V; =V @ U;, j > 1. Then

V=Uy@V,®Vo® - (5.2)
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Let € be the minimum of all the numbers

In(IXATD] (N € eiglgly,), A € eiglgly,), @ # 45 i,j > 1)
(XA DI (N € eiglgly,), o € eig(glu,); @ > 1) (5.3)

where the In stands for the natural logarithm.
An arbitrary element of the set (¢gG(U)) NG looks as follows

gh = go[92], (5.4)

where h € G(U), z € exp(3e) and gy € G. In particular, for each j > 1,
V contains an gz-isotypic subspace W; such that (gz, W;) is similar to (g,V}).
Since gz commutes with g we have

WJI@WJQVZ@WJQUO

i>1
Let B. C C be the disc of radius €', centered at zero. For i > 1,

eig((92)lw;nv.) C eig((gz)lv.) C eig(glv,) exp(Be) = eig(glv:) exp(Be).

Moreover,
eig((92)lw,nv.) € eig((92)lw,) = eig(glv;).
Thus
eig((92)|lw,nv,) € (eg(glv;) exp(Be)) Neig(glv:). (5.5)
Similarly
etg((92)lw,nu,) € (€ig(glu,) exp(Be)) Neiglglv,). (5.6)

By (5.3), the set (5.6) is empty, and the set (5.5) is non-empty if and only if i = j.
Therefore, W; C V; for all j > 1.

Thus, after conjugating gz by an element of G, which preserves the decom-
position (5.2), we may assume that gz preserves V} and U;, and that z\vj/ =1,
j > 1. Hence z € G(U).

Let U(h) € U be an gh-isotypic component. Suppose (gh,U(h)) is of
different type than any of the (gh,V}) = (g,V}), j > 1. Then by (5.4) there is an
(gz)—isotypic component U(z) C U such that (gh,U(h)) is similar to (gz,U(2)).
Suppose (gh,U(h)) is of the same type as (gh,V}). Then, again by (5.4), there
is an gz-isotypic component U(z) € U such that (gh,V} + U(h)) is similar to
(92,V5 +U(2)). Then, by Corollary 5.2, (gh,U(h)) and (gz,U(z)) are similar.
Thus each gh—isotypic component of U is similar to some gz—isotypic component
of U. Since the roles of h and z may be reversed, we see that (gh)|y and (g2)|u
are in the same G(U)-orbit. [
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6. Proof of Theorem 0.6

The distribution |Chc|.
Let X be a finite dimensional vector space over the division algebra D = R,
C or H. Consider a direct sum decomposition

X — X/@X”,

where dimp(X') = 1. Let Q € GL(X) be the parabolic subgroup preserving X”.
The Levi factor of Q is isomorphic to GL(X’) x GL(X"). Let 6_; € D'(GL(X))
be the Dirac delta at —1 € GL(X’). Define the following distribution (generalized
function) on GL(X):

Che(g)] = Indg" (5, @ 1)(9) (9 € GL(X)).

(See the Appendix A for the definition of an induced distribution.) This is a
positive Borel measure. In terms of Lemma 13.1 in [10], we have

[Che(g)] = | det(g)]/?6(det(g + 1)) (g € GL(X)), (6.1)

if D=R or C. If D = H, then the distribution on the left hand side of (6.1) is the
restriction of the one on the right hand side via the embedding GL(X) C GL(X|¢),
where X|¢ stands for X viewed as a vector space over C C H. Sometimes it will be
helpful to include the vector space X in our notation and write |Chex| for |Che|.

Let V,V’' be two finite dimensional vector spaces over D and let X =

Hom(V', V). The groups G = GL(V) and G’ = GL(V’) act on X as follows
g(z) =gz, g'(x) =2g " (9 €G z€X g €G). (62)

Hence we have the embeddings G,G’ — GL(X). Let 6 be a Cartan
involution on GL(X) which preserves both G and G’. Let H = T'A’ C ¢
be a standard Cartan subgroup, with the compact part T" and the vector part A’,
as in [12]. Let

Vi=VioVyd--- (6.3)

be the decomposition into H'—isotypic components.

Definition 6.1. For i/ € H™®, set

|Chew(g)] = [Chex(Wg)|
=TT Idet( g)uomvy "2 5 (det(Bg + Ditomvsv) ) (9 € GLIX)).

j21

By Proposition 1.8 in [10], the above product of distributions is well defined.
The formulas (6.2) and the preceding formula imply that

supp(|Chew|) = {g € G|eig(g) Neig(=h'lv;) # 0 for all j > 1}. (6.4)

This set is empty if dim(V’) > dim(V). Hence, from now we assume that dim(V’) <
dim(V). In particular V contains a subspace of the same dimension as V'. We
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shall identify such a subspace with V'. Let U C V be a complementary subspace,
so that
V=Vl (6.5)

For h' € H™® let I, € D'(G’) denote the orbital integral
() = [ (gH) dulgh) (6.6)
G/ /Y

Let Q be the parabolic subgroup of G preserving U.

Theorem 6.2.  We have
‘Chch" = Il’ldg([_h/ X 1) (h/ c leeg).

Ezplicitly, for ¥ € D(G) and b’ € H™®,

/ Che(l )9 (g) / » /G y —1Yha) dpi(ha) dp(hy GLU)),

(6.7)
where —h' is viewed as an element of G' C Q preserving the decomposition (6.5)
and acting as the identity on U.

Proof.  Consider an element g € supp(|Chcy|). Let
V=V eVodVioVa®---

be the decomposition V into isotypic components with respect to ¢, indexed in
such a way that (in terms of Theorem 5.1) (g, V) is of the same type as (—//, Vi),
for each j > 1. By Corollary 5.5 and by (6.4), this is possible.

Let g = gsexp(z,) be the Jordan decomposition of g. For each j > 1 there
is a subspace W; C V; such that

V, =W, ®z,W; ®a2W; & - -
and (g, V;) is similar to (gs, W;). In particular dim(W;) = dim(V;). Let
U — "'+V—1"‘VO‘f‘Z(anVj‘f'xin‘f‘”')-
Jj=1

Then U’ is g-invariant and dim(V/U’) = dim(V’). In particular there is go € G
such that U’ = goU. Hence, g;'ggo preserves U and the resulting endomorphism
of V' =V/U is conjugate to —h'.

We recall that the parabolic subgroup Q is equal to MAN, with MA =
GL(V")GL(U). We have just shown that

supp(|Chew|) = G.[(=H)GL(U)N] = KGL(V).[-K]GL(U)N],  (6.8)

which, by Proposition A.5, coincides with the support of the distribution on the
right hand side of (6.7). Since both distributions are positive Borel measures, and
are G-invariant, this verifies the theorem 6.2 if V' = V.
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By Harish-Chandra’s Method of Descent, it will suffice to consider the
distribution |Chep (z)] = |Che(h'z)|, * € G in an arbitrary small completely
invariant open neighborhood of a point in the support of |Chcp/|. We shall need
some additional notation.

Let h” be the centralizer of h' in sp(W). Clearly b” C a”.

From now on we assume that V' is a proper subspace of V. Let ¥ €
C.(G.L’). Then Proposition A.7 implies

/ (Che(Hg)|¥(g) du(g) = / / (Che(t hyhy)|| det(Ad(huhy) — 1),]
G  JGL)

| det(Ad(hlhg)n>|_1/2\I/L(h1h2) d,u(hg) d,u(hl) (69)
Notice that for hy € GL(V') and hy € GL(U), with det(Ad(hihs) — 1), # 0,

= |ChCHom(V/,V) (h/h1 hs)|
- H | det(h,hlh?)Hom(V}V)|1/25(det(h'h1h2 + Dtom(v:,v))

Jj=1

= H (‘ det(h/hq)Hom(V;.,V/) det(h/ha)Hom(V;-,U) ’1/2

Jj=1
(5(det(h'h1 + 1)Hom(V;.7V’) det(h/hz + 1)Hom(V;,U)))
= H ’ det(h,hl)Hom(V;7V/) |1/25(det(h’h1 + ]-)Hom(V; ,V’))

j>1
[T 1 det(hha)ttomvs 02| det(A'hs + 1) tomvr,v) |~
j>1
= ’Cthom(V’,V’)<h/h1)H det(h'hg)Hom(V/’U)|1/2| det(h’h2 + 1)Hom(V’,U) |71
= |Cheomv vy (W' hi)|| det(Ad(h’hg)n|1/2| det(Ad(h'hy) — 1), 7%,

where n = Hom(V’,U) is the Lie algebra of the group N, and the last equation
follows from our formula for the case V' =V, considered previously. Clearly, (6.9)
and (6.10) imply Theorem 6.2.

We have shown so far (see Proposition A.5 and equality (6.8)) that the
two positive invariant Borel measures which occur in (6.7) agree on G™&. In
order to complete the proof it will suffice to show that these measures vanish on
G\ G™8. Proposition A.8 implies that this is indeed the case for the distribution
IndS(I_;y ®1). Hence we need to show that

/G (Che(H g)|¥(g) du(g) = / (Che(h'g)[¥(g) du(g),

reg

for ¥ € D(G). We shall use an argument parallel to the proof of [10, Lemma
7.10].

In order to complete the proof, we shall use an argument parallel to the
proof of [10, Lemma 7.10]. As in [10, Section 7],

GL(X)" = GL(Hom(V,, V) x GL(Hom(V,, V) x ..
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The restriction of |Che| from GL(X)A" to GL(X) exists and is given by

(Che(gige, -~ )1 = ] ] Idet(g;)]"/26(det(g; + 1)), (6.11)

Jj=1

where g; € GL(Hom(V;,V))H/ and d(det ---) is as in [10, equality (5.10)] depend-
ing on the field §’|v/. Furthermore, the distribution |Chcy| coincides with the
pull-back of the distribution (6.11) via the embedding

G>g— hgeGLX)Y, (6.12)

Thus the preceding formula holds with the determinant having values in the field
[)’|Vj/. Let go € G be a semisimple element in the support of |Chey|. Let

V=V, ®&V,®dV33D---

be the decomposition of V into isotypic components with respect to gy. Recall
the decomposition (6.3). Each Hom(V}, Vi) is a vector space over the field b'|v;.
As such it is either isotypic with respect to the action of gg or is the direct sum
of two different isotypic components. The second possibility occurs if and only if
D # C and both fields b’ |V;_ and g%|y, are isomorphic to C. In any case we shall
write

Hom(V}, Vi) = Hom(V}, Vi) © Hom(V7, Vi),

keeping in mind the possibility that the second summand might be zero. Further-
more

G = GL(V1>90 X GL(Vz)go NEEE
GL(x)H/U{QO} — H GL(Hom(V;7 Vk)l)a
gkl
and the embedding (6.12) restricts to
G% 5 g — Wg e GL(X)HViool,

We may arrange the indecies so that

det(h'go + Dtomvivy), = 0 forall j,and
det(h'go + 1)H0m(V;7Vk)l # 0 forj#k, or j="Fkandl# 1. (6.13)

Let Z. be a completely invariant open neighborhood of gy in the set of regular
elements of G%, so small that the second condition in (6.13) holds with the g
replaced by g € Z.. Similarly, let Z!, be a completely invariant open neighborhood
of h'go in the set of regular elements of GL(X)"{90} 50 small that for each g € Z/,

and for each j at most one of the determinants det(g)Hom(V; vy, is zero. Then the
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restriction of the distribution (6.11) to Z!, may be written as

H (H | det(g)Hom(v:, Vi), |1/2 (5(H det(g + 1)Hom(V9,Vk)l)>

j k.l k.l

= H (Z \ det(g)Hom(V;,Vk)l‘l/Q d(det(g + 1)rom(v,vi),)

J k,l

H | det(g)Hom(V;.,Vk/)l/ 11/2] det (g + 1)Hom(v;.,vk,)l, |~
(K1) #(k,D)

Hence, assuming Z. is small enough, we have for g € Z,

[Che(lg)| = H(Z|det(h’gmom(v;,vk)lW?6<det<h'g+1>Hom<v;.,vk>l>

j k.l

H |det(h'g)Hom(v;.,vk,)l, 11/2| det(R'g + 1)H0m(V;’Vk’)l’ |~!
(k') # (k1)

As we can get the same formula for the left hand side of (6.7), we deduce Theorem
6.2. |

The Cauchy Harish-Chandra integral for a pair of type II, as an induced
distribution.

Let W be a symplectic space over the reals. Let é?)(W) be the metaplectic
group. For any subgroup E C Sp(W) let E be the preimage of E under the
covering map Sp(W) 3 g — g € Sp(W). (see (0.2)).

Let W =Xa@Y bea complete polarization and let Z C Sp(W) be the
subgroup preserving both X and Y. Set

GL(X) = {(g,n) € GL(X) x C*|n* = det(g)}.

This is a double cover of GL(X) under the map (g,7) — ¢. Let w denote the
oscillator representation of Sp(W), with the distribution character ©, as in [5] or
[10]. By considering the Schrédinger model of w associated to the polarization
W =X@Y, asin [5, Lemma 2.17|, we deduce the following lemma:

Lemma 6.3.  The restriction map
Z > g — glx € GL(X) (6.14)
lifts to a group isomorphism
Z3 g (glxn) € GL(X), (6.15)
where
o)

=n(g) = M| det(g|x)["/* if det(g — L)w # 0.
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In terms of Lemma 6.3 define
e(g) = (9€2) (6.16)

Then ¢ is a character of Z, with values in the group {z € C| 2% = 1}. Moreover

O(g)
1©(g)]

The function on the right hand side of (6.17) is well defined on QBC(W) C §§(W),
the domain of the Cayley transform ¢, and clearly does not depend on the polar-
ization W = X@ Y. Notice also that this function does not extend to a continuous
function of the whole metaplectic group, because it is not constant.

We shall identify Z with GL(X) via (6.14), and Z with GL(X) via (6.15).
In these terms, by [10, Lemma 13.1], the Cauchy Harish-Chandra integral for the
group é\i(X) is given by the following formula

e(g) = (g € Z, det(g — 1)w # 0). (6.17)

Che(g) = Chew(g) = €(9)|Chex(g)] (g € GL(X)). (6.18)

Consider a dual pair of type II, (G,G’) € Sp(W). We may assume that the
groups G, G’ preserve X and Y. Thus G,G’" C Z. The restriction (6.14) maps

G, G’ isomorphically onto a dual pair in GL(X). Recall the Cartan subgroup
H' = T'A’ C G'. The formula (6.18) implies

Chew(g) = €(9)|Chex(g)] (9 € A”),
where A” C 7 is the centralizer of A’ in the symplectic group Sp(W). Hence,
Chew(R'g) = e(W'g)|Chex(Bg)] (W € H™8, g€ G). (6.19)

As we have seen in Section 6, the distribution (6.19) is zero if dim(V’) > dim(V).
Hence, from now on, we assume that dim(V’) < dim(V) and use the notation of
Theorem 6.2. As in (A.3) we have for U € D(G), the Harish-Chandra transform

UL (1) = | det(Ad(h),)|/>UE (1)

with

W0 = [ [ vkl duyants) (€T

where NO, the identity component of N is the unipotent radical of Q

The Levi factor of the group Q is equal to G/ GL(U) = L. Furthermore,
G' N GL(U) = {1,1} where 1 is the nontrivial element in the preimage of the
identity.

Lemma 6.4.  We have for any ¥ € D(é) and any B’ € H™#,

/ Che(g)|¥(g) diu(g) / » /G . UE (hy (01 ho) dpu(ha) dpu(haHY).  (6.20)
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Proof. Let U an open set of G such that ¢/ and U are canonically isomorphic
and U € D(G) such that supp(¥) C U. We consider than the function ® € D(G)
such that U(z) = ®(z) for € U and ®(z) = 0 for 2 € G\U. We have the
relations

TE(]) = 20%(1) forl € L

and
/IZ /ﬁ WL (k. (hn)) dpa(k) dpa(n) = /K /N O™ (k.(hn))du(k)du(n) for h € L

We deduce that the formula (6.20) is verified for ¥ and with partition of unity,
we deduce the formula for all functions. [

By combining Lemma 6.4 with (6.19), we deduce the following theorem:

Theorem 6.5.  We have the equality

Chep = E(h’) Indg(e(ah/))[(ah,) ® 6) (h, c ﬁ/reg).

Here Iy € D’(G’)J's the orbital integral defined as in (6.6). Explicitly, for
U e D(G) and W € H™®,

[ Chetttg)e(g)dut) =) [ [ c(ohha)UE s (00 ) d(h) d ()
G '/ JGL(U)

7. Proof of Theorem 0.9

Consider a dual pair (G,G’) C Sp(W) of type I. We consider the notations of
Section 4. Let Q" € G’ and Q C G be the parabolic subgroup with the Lie
algebras ¢’ and q. Then M’A’ = GL(X)G(V.) and MA = GL(X)G(U). Let

X = Hom(X',V) & Hom(V., X"),

Y = Hom(Y’,V) & Hom(V.,Y’),

W,=XaY, W,=Hom(V,,U).

Then the restrictions of the symplectic form to both W, and W, are non-degenerate
and X, Y are isotropic subspaces. Furthermore

W=W, W, (7.1)

is an orthogonal direct sum decomposition. We may and shall assume that the
Cartan involution # is such that,

fn = Hom(V, X") ® Hom(Y’, X') N g,
6n’ = Hom(V., X") @ Hom(Y', X') N g

Any element g € Sp(W), which preserves the decomposition (7.1), may be written
as

g = GsYe;,
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where g acts trivially on W, and g. acts trivially on W,. We identify g,
with its restriction to W, and g. with its restriction to W,.. In these terms,
gs € Sp(Ws) C Sp(W) and g. € Sp(W.) C Sp(W). Furthermore any element
g€ é\f)(W) may be decomposed as

9 = 9sYc, (72)

where g, € éB(Ws) and g. € éE)(WC). The decomposition (7.2) is unique up to
simultaneous multiplication by 1.

Since the groups L and H' preserve W, and W., we shall use the notation
(7.2) for the elements of L and H’. Recall the character e of the stabilizer of X

and Y in §[/>(Ws) defined in (6.16). For i/ € H™® let R, = W|x . We view I as an
element of GL(X') C Q preserving the decomposition (6.4) acting as the identity
on U. Set H, = GL(X') " H’. The generalized function
o (mu) = e(hmug) Lop (m)Chew, (hue) — (m € GL(X), uwe G(U))  (7.3)
does not depend on the decomposition (7.2) of m and w.
Theorem 7.1. We have the equality
ChCW’h/ = | det(Ad(@l)n/)‘_l/zl det(Ad(ﬁl_l) — 1)n’)|_1 Indg(vh/),

where b’ € H'™ Explicitly, for ¥ € D(é),
/éOth(h’g)‘I’(g) dp(g) = | det(Ad(R)w)|~?| det(Ad(R' ™) — 1) )| e(R))
/ / Nug)Chew, (Roate) UE (b (—R.)w) dp(u) dp(hHL).  (7.4)
GL(X')/H,

Proof.  Let L' ={l € L| det ((Ad(l) —1),) # 0}, as before. Consider first the

case

supp(¥) C G.L. (7.5)
Then, by Proposition A.7,

/éCthh’g)\I’(g)du( ) /Ch6w(h')|det(Ad() D)o)l| det(Ad(D)a) 720 (1) dpu(1).

For [ € i, we have
Chew(R'l) = Chew, (WL Chew, (HL1L).
If h = mu, where m € GL(X') and u € G(U), then m, = m and

Chew(W'mu) = Chew, (himug)Chew, (hLu.)
= e(h,muy) |Chex(hmuy)| Chew, (heue)
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where u, is the restriction of v to X’. Hence, we need to show that

|Chex (homau)| = C| det(Ad(R)w)|Y?] det(Ad(R) — 1)w)| "
Iy (m)| det(Ad(mu) — 1))| 7" | det(Ad(mu), )2 (7.6)
But,
|Chcx(h;mus)| = |Cthom(X/7V)(h/mu)||C’th0m(V/C7X/)(h/m)|. (77)

Furthermore, in terms of the following decomposition
Vi=VieV,d---,

where V; are the H'—irreducible modules of V., we get

’ChCHom(X’,V) (h'mu)] = H <’ det(h mu)Hom X’ ‘ /25(det(h/mu + 1)Hom(X;.,V))>

jz1
— H <] det(h/mu)Hom(x;,X/) |1/2] det(h/mu)Hom(x;,U)\l/ﬂ det(h’mu)Hom(X;7\(/)\1/2 X
Jj=>1
5(det(h’mu + 1)Hom X/.,X’ det(h'mu + 1)Hom X’.,U) det(h’mu + 1)Hom(X’.,Y’))>
=11 (| det (H'm) tomx: x| /26 (det (H'm + 1) sompx: x )) | det()rtomx 0y /2%
j>1
‘ det(h'm)Hom(X/7y/) |1/2‘ det(h'mu + 1)Hom(X’,U) |71| det(h’m + 1)Hom(X’,Y’) ‘71

= L (m)| det(R")itomexr,uy| | det (B'm)omx v /2

| det(h'mu + om0y det(B'm + 1) omxr.yn|

= Iy (m)| det(Ad(mu))mom(xr.u)|"*| det(Ad(R)) Hom(x y/)ng |'* X

| det(Ad(m))Hom(x’, v mg|1/2| det(Ad(mu) — 1)Homx/,u)|~ Iy

| det(Ad(h') = Domec,yyng |~ det(Ad(m) — 1) aompxr v1yng ™ (7.8)

where the fourth equality follows from Theorem 6.2. Moreover, by Lemma 6 (c)
in [10],

|C’hCH0m(V/C7x/)(h/m)| = |@(D) @(Dh’m)|
= 24mHomVeX)| dot(h'm) som(vrx) || det(R'm + 1) somevy x|~

Hence

I (M) |Chemiompvxy (B'm)| = Ty (m)27im(Hom(VeX0)
|det(Ad(h/)Hom(Vé,X’))’1/2| det(Ad(h') — 1)Hom(Vg,X’)|71- (7.9)

Clearly, (7.7), (7.8) and (7.9) imply (7.6). Thus, the theorem holds for ¥ as in
(7.5). We have the decomposition

V=XaX)aeUa (Y aY).
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Let Q; € G be the parabolic subgroup with the Lie algebra q;. Then L; =
GL(X" 4+ X")G(Up). Let L] = {l € Ly | det(Ad(h) — 1) # 0}. Suppose

supp(¥) C L. (7.10)

Then, by Proposition A.7,

/é Chew(W'g)¥(g) dp(g) (7.11)

Ly

_ / Chew(H')| det(Ad(R) — 1), || det(Ad(R)a, )| ~/2 WL (1) dpu(h)

Let

X! = Hom(X', V) & Hom(V/, X' + X",
Y! = Hom(Y’,V) & Hom(V,, Y’ +Y"),
W! =X'aY! W!=Hom(V,Up), (7.12)

and let ¢! be the character of the stabilizer of X! and Y! in Sp(W!), defined in
(6.16). This is an extension of the character e, which occurs in (7.3). Let h € L.
Then

Chew(W'h) = Chews (hlahg)Chows (hahe)
= El(h;1h51)|ChCXl( glhsl)‘ChCW‘%( Iclhcl), (713)

where h = hgaha is the decomposition analogous to (7.2) for W = W! & W! and
similarly for A’.
Let g = ma @ as dny C gl(X' + X”) be the parabolic subalgebra preserving
X". Then
my B a; = gl(X') @ gl(X") and
n, = Hom(X',X").

Let Qo C GL(X'+ X") be the parabolic subgroup with the Lie algebra ¢ defined
in (7.14). Asin (7.7) we have

(7.14)

|Chcx1 (h;1h51)| = |ChCH0m(x/7v)( /81h31)||ChCHom(V’C,X’+X”)(hi;lhsl)|- (7.15)

As in (7.8) we check that

|Chestompoyy (b)) = Indgr " (14 @ 1) (hlxsx)
’ det(h/h)Hom(X’,U0+Y’+Y”)|1/2‘ det(h/h + 1)Hom(X’,U0+Y’+Y”) ’71. (716)

Furthermore,

[Cheromvyxxn (R )| = Col det(R'B)som v, xe+xn |2
| det’ (B + D)nomvexxm| ', (7.17)
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_ odim(Hom(V%,X'+X"
=92 c

where Cy . Hence,

| Chesomxe vy (R b ) | 1Cheomve xrxm (R st )|
= Indgr (1, @ 1) (hlxxe)
| det(2'R) som> (x ug 1y -1y |2 det (BB + 1) som(x ugtyr 1y |
|C hetom(v x+x) (R st )|
= Indg" (L, @ 1) (hlxsxr)
| det (W' h)tromxyr+yn | ? det (W' h + Dttomx vy~ | Chetomv, xxn (R st )|
| det (7' somx,ug) | 2] det (BB + 1) om(xr.ug) | "

= () Indg;(xurx") (th| det(h/)Hom(X’,Y’)EBHom(V’C,X’) ’1/2
| det(A' + 1) Homx.y")eHom(vx) |~ © | det(A)omex vy /2] det(h' + 1) tomexr vy
| det (R Yom(vex|"?| det(h’ + 1) omvexn | ™) (Alx4xr)
| det (7' somx,ug) | 2] det (BB + 1) tom(x:.ug)| "

= Cy | det(Ad(R')w)|"/?| det(Ad(h') = 1)w| ™"
IndGr ™ (1 | det (R Yomox yngl 2] det(R + 1) tomexr.yngl "
® | det (7 ) ttomexrym)| 2] det (R’ + 1) momexym| ™
| det (R ) stom(vsxn|"?| det(h’ + 1)gomvexen | ™) (Alx4xr)
| det (7' somx,ug) | 2] det (BB + 1) om(x: ug) | "

= C | det(Ad(h)w)|V? det(Ad(R) — 1)w| ™"
Indg (I, @ | det(h Ystomevexen || det(h + 1stomv x|~

| det(Ad( ) stomx o) tomperyng) |2

\det(Ad( ) — 1)Hom(X”,Uo)@Hom(X”,Y”)ﬂgD(h|X’+X”)
| det(Ad(h)y, |'/? det(Ad(R) — 1),,|7L (7.18)

Let ng = Hom(X", Up) @ Hom (X", Y”) N g. Then by (7.13)-(7.18),

Chew(W'h) = €' (K, hg )Cy | det(Ad(R)w)|'/?
| det(Ad(R') — 1)w| ™| det(Ad(h)y, |2 det(Ad(R) — 1)y, |~
Indgr " (g, @ | det(h Yomevexen |2 det(R' + Dpomcvixen| !
| det(Ad( )n,)| V2| det(Ad( ) — 1)n3]) (h|xr4x7)Chew: (Rhe).  (7.19)
The space ng is the nilradical of the parabolic subalgebra g3 C g(U) preserving

Y”. Let Q3 € G(U) denote the corresponding parabolic subgroup. Then Q3 =
GL(X")G(Ug)N3, where Nj is the unipotent radical.
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By combining (7.11) and (7.19), we see that

/GChcw(h’g)\If(g) dpg) = Co | det(Ad(H))|'?| det(Ad() — )|~

/ / / mhgho) )I—h’s (m)
GL(X") J GL(X") JG(Uop)

| det(h'ha)Hom(vr x) yl/2| det(h'hy + 1) omovr x|
| det(Ad(hoho)w, )| Y2 | det(Ad(hohg) — 1)y, |

Chettom(vrug) (Pl ho) W N3 (mhohg) du(ho) dps(he) du(m).  (7.20)

Now we consider the right hand side of the formula (7.4) of Theorem 7.1 in
a neighborhood of a non-regular semisimple point g, which belongs to the support
of the distribution in question. We may, and shall, assume that g preserves the
decomposition

Vv=XaoUaY,

and that the restriction of g to X is equal to hj.

Since g is not a regular element of L, det(Ad(g) — 1), = 0. However, by
the regularity of h’,

det(Ad(g) — 1)H0m(x/’y/)mg = det(Ad(h’S) — 1)H0m(x/’y/)mg 75 0.

Therefore, det(Ad(g) — 1)aomx/,u) = 0. Hence, U contains an g-indecomposable
subspace similar to some g-indecomposable subspace of V.. Let V/ C U be the
sum of all such subspaces, and let Uy = V”+. Also, there is a complete polarization
V" =X"@® Y" preserved by g, as in (7.12)-(7.20).

Let € > 0 be as in Lemma 5.7. For ¢ > ¢ > 0, let Z. C GY be an open
neighborhood of g, as in (5.1). Then

{u € G(U) | there is n € N such that hlun € G.Z.}
{ue GU)|hueClG.2Z.)}

{ue G)|hueG.2}

= GU).(GU)N Z,),

C
C

where the last equality follows from lemma 5.7.
Notice that, by the construction,

det(Ad(g) — Dnomx,up) # 0 and  det(Ad(g) — 1)Hom(x',ue) # 0.
By the regularity of A/,
det(Ad( ) )Hom(X” Y )Ng 7é 0 and det(Ad( ) - 1)Hom(X’,Y’)ﬂg@Hom(X’,Y”) 7£ 0.

Hence,
det(Ad(g) — 1)n, #0 and det(Ad(g) — 1),, # 0,

and therefore, we may choose € > 0 small enough, so that

det(Ad(u) — 1), #0  for u € G(U) N Z, and
det(Ad(u) — 1), #0  foru € Z.. (7.21)
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Notice that, by Corollary 5.5, det(h'g+1)nom(v,,y») 7 0. Since, G(U)NZ, C G(U),
every element u € G(U) N Z, preserves X”. Thus, again by Corollary 5.5,

det(h/u + 1)Hom(V£,V”) # 0 for u S G(U) N Ze-

Suppose our function ¥ € D(G) is such that
supp ¥ C G.Z,. (7.22)
Then, by (7.21),
{u € G(U) | hu € supp(¥™)} € G(U).(G(U) N 2.).

Hence, (7.21) and Proposition A.7 applied to the preimage of Q3 = L3Nz C G(U)
imply that the integral on the right hand side of (7.4) is equal to

/ [ (R, uy)Chew, (W) U (h.(0h.)w) dpe(w) dpu(hIT)
GL(X")/H{ J G(U)
- / [ e(h 1) Chew, (K| det(Ad(u) — 1)y, |
GLx /T
[ W@ wexp(:))dh) du(w) du(hi,) =
KQG(U) n3

/GL(X,)/H, /~f<°hsus>0h6wc<héuc>r det(Ad(u) = 1)ag |05 (h. (0] )u) dpa(u) dpu(hH)
o (7.23)

Furthermore, Ly = GL(X")G(Uy), and for u = u. = hahgy, with hy € GL(X") and
ho € G(Uyp),

Chetom(vz,u) (hew)
= ChCHom(V’C,V”) (héhQ)Cthom(V’c,Uo) (h/cho)

C _
= 62| det(h/h2)Hom(Vg,X”)|l/2 ’ det(h/hg + 1)Hom(Vé,X”)’ 1ChCH0m(V£7UO)(hIch0).

Since n 4+ n3 = ny + ny, and since by (7.21) the condition (7.22) implies
(7.10), we see that as a consequence of (7.23), the right hand side of the equality
(b) in Theorem 7.1 coincides with the expression (7.20). Thus, the formula (7.4)
of the theorem holds for any test function WU which satisfies the condition (7.5) or

(7.22). Hence, by localization, it holds for any ¥ € D(G). [

8. Proof of Theorem 0.10

We recall some more notation from [1]. Let H' be a compact Cartan subgroup
with the Lie algebra b’ of G’, and let

V=Vie> Vv
j=1
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be the decomposition into H'—irreducibles over D. If G’ = Og;,41 9, then H' acts
trivially on V{, and dim(V{) = 1 otherwise V{, is zero. There is a complex structure
J" on V' which belongs to h’. More precisely, the restriction of J' to V| is zero
and the restriction of J' to Z?/:l V is a complex structure. Similarly, let H be a
compact Cartan subgroup with the Lie algebra h of G, and let

n
V=Vo@ ) V,

j=1
be the decomposition into H—irreducibles over . In particular, we exclude the
case G = Ogpt194+1. We are going to deal with this case at the end of this section.
Here Vj is trivial unless G = Ogp,41,94, in which case H acts trivially on V, and
dim(Vy) = 1. There is a complex structure J on V which belongs to h. More
precisely, the restriction of J to Vj is zero and the restriction of J to Z?:1 V; is
a complex structure. We assume and identify:

Vi=V;, Ji=J = Jl,=J; (1<j<n),

and let J; = J]y, forall 1 <j <n.
Let W(H¢) = Normalizerg.(Hc)/He. If D = C then W (Hc) is identified
with the permutation group >, by

o- ZIJ ij (0 €X,).

If D # C, then W(Hc) is identified with the semidirect product of ¥, and Z%,
where Zy = {0, 1} with the addition modulo 2,

ZxJJ —Ze]x]J (e € Z3),

where é; = (—1)%. Thus, in any case, an element s € W (H¢) may be written
uniquely as s = oe.

For s € W(Hc) define ys € b as in [1, Definition 3.4]. For a subset
ACUU(—U) let

A = {j|there is a € A such that a(J;) # 0}.

Also, we shall write A(short) to indicate the subset of all the short roots in A,
and A(long) for the long roots. Furthermore, 7y is the product of all the roots
in a system of positive roots U’ for (g¢, b), and ¥ and W are realized explicitly

as in Appendix B of [1]. Fix a strongly orthogonal set & € UZ, and an element
s € W(Hg). Let

s, = >, Rh+bsn| Y Ci,

k¢S,0—1(k)<n’ keS\(sh')+

b = Y Rh+bsn| D> Cu

k¢S,o—1(k)>n' keSn(sh’)+




662 BERNON AND PRZEBINDA

Then
bs = b5, © b
Let
F;,s = Z (0, OO)J;(j) (ys)Jo(j)-

1<j<n’,0(4)¢S

This is the projection of I'ss onto 37, ,(jyes Ro(j)- (See (7.6) in [1].) For
convenience, we shall write

Is,= i :

S r;’sgzlao

Let

Rs, = {a€Vsr|aC{o(l),--- ,0(n)}},
g‘,s - {Oé € @SJR |g SZ {J<1)7 T 7U(n/)}}‘

In these terms, Theorem 7.3 in [1] says that for 2/ € h'™8,

my (@) ehe(W) (@) = Y Hi ('), (8.1)
S,s
where the summation is over all possible S and s,
ms(s)
/ / — ll _RI s d ,
Mot @) =los | gty AC RS, ) Hs () dua)
S,s

and for x € b,

Hsst(x) = | A(=Rg ) (@ +2")Ty(s™ - (o + 2")) Hsto(x + 2”) dp(a").
0%,
Lemma B.1, with V =bs, V' =bs,, V" =b5,, A=Vs, B=—-Rs, and

ol +2") =7p(s™" - (x+2")Hs(x + 2”) (z € b, 2" € bg,),

we see that Hs 1) is a Harish-Chandra Schwartz function on h{%, with respect to
‘I’g,iR N ( g,s)Li
M, € HCS (s, \ 552 N (b5 0)7))- (8.2)

Lemma 8.1.  Suppose one of the following conditions holds:

(i) there is o € S\ (sh')= with aNS\a=0 and a € {o(1),--- ,0(n)},
(ii) (G,G') = (Upg, Ura) and SO {o(1),---,0(n)} =0,
(i) (G, G)=(Osps 120 SDa(R)), S 1 {o(1), -, o ()} =0 and (1) g0y (short),

(iv) (G7 G/) = (021%247 SPQ(R)), and SN {0(1)7 T 7U(n/)} =0.
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Then My ) extends to a continuous function on b'.

Proof.  Assume (i). Suppose the division algebra I # C. Then I', 3 = () and
n' =1. Let a = {k,l}, with kK = o(1). Then

bs.={r =22y +2J;|2 € C}
and for x € b, as above,
det(z + z) gy = i(2] — 2),

where o' = x| J; € h/. Hence, for any 2’ € b’, the function

1
. D1 — eC
hS,s X det(l’/ + x)swh’

is locally integrable, with the integral over any compact subset of b defining a
continuous function of z’. Since, by (8.2), the function

h:S',s >2F — A(_ :9,s>(5’3)7'[fs,s¢(33) eC
is bounded and absolutely integrable, the claim follows.

Suppose D = C. Then n’ = 2. Let o = {k,(}, with k € {0(1),0(2)} and
[ ¢{o(1),0(2)}. Let {o(1),0(2)} = {j,k}. Then

bs.={v=u;J;+2Jp +2Ji|2; €R, 2 € C}.
Moreover, there is € = £1 such that
I‘;S = ¢(0,00)J;.
Assume (1) = j. The case o(1) = k is analogous and we leave it to the reader.
Let y = y;J; with ey; > 0. Then

det(z' + x + y) g = i(x] — x5 — iy;)i(zh — 2),
where ' = x1J] — x5, € . We see from (8.2) that Hs) € S(bs,). In
particular, the function
: 1 _
Coz—lim | ——Hs (2 J;+ 2 +2J)dz; € C
¥i—0 Jr T — Tj — 1Y;
is well defined for all 2j € R and belongs to the Schwartz space of C, viewed as
a vector space over R. Furthermore, this function depends continuously on z.
The function

Coz— cC

/

is locally integrable, with the integral over any compact subset of b defining a
continuous function of x5, € R. Since, Rg, = (), we see that Hj 1) extends to a
continuous function on b’.
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Assume (ii). Then n’ = 2,
hss = RJo1) + Roa)
and R, = 0. Let a € ¥ be equal to plus or minus 150 15 Suppose a ¢ U".

Then Hs b € S(bs,). Let us write 2" = 27 J{—24J5 and & = 2(1)Jo(1) +20(2) Jo(2) -
In these terms H ¢ is a constant multiple of

1
[ 3// . - Hs s0(To1) Jo(1)FTo2) Jo(2) ) dTo(1) AT (2) -
) A A sy Yo A (To() Jo (1) FTo2) Jo(2)) dTo(1)dTo(2)

Since I's, is a proper open cone, it is easy to see that Hs. 1 extends to a
continuous function on b’.

Suppose o € U". Then Hs 1) € HCS(bs,\b*, where h* = {x|a(z) = 0}.
Moreover, there is ¢ = £1 such that T%, ¢ 2 €(0,00)(Jo1) + Jo(2)). Hence, Hg 1
is a constant multiple of

1
lim / / - _ - :
=0+ Jp Jg (7] — To(1) — l%u))(% — To(2) — |y0'(2))
Hs,s0(To1)Jo(1) + To2)Jo(2) ATe1)dTo(2)

1
= lim / / . .
=0+ Jr Jr (—Zo() = We)) (—To@2) — 1Ys(2)
Hs s (@) + T601)) o) + (25 + To(2)) Jo2)) A0 (1)dTo(2),

and the conclusion follows.
Assume (iii). Then n’ =1, bs, = RJ,1), Rs, =0 and Hs ¥ € S(bs,).
Moreover, Hs .4 is a constant multiple of

1
. [ s (o)) d
S Jo T my —igey o @on Jotw) Aoty

where 1", s is a proper open convex cone. Hence it is easy to see that Hi 1

extends to a continuous function of 2’ € §’.
The proof in the case (iv) is the same as in the case (iii). ]

Lemma 8.2.  (a) Suppose (G,G') = (Upq,Uy1), € = £1 and o = e(e,q) —
€o2)) €S. Then

(His 0+ Hs )y 0 (] + )
~tmites (s A)ms)] [ ] B@Pe T 1)

bs.s Bew Bna=0 BET fNa#D

/ (g - e(S)x) d(gH(S))du(2"),
G/H(S)

where v = u'(Jo) + Jo2) + 1W(Joq) — Jo2) + 2"
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(b) Suppose (G,G') = (Sp,,(R),012) and 0(1) € S. Let o = 2e,(1). Then

<H:S',s¢ + Hg,sas¢>e]' (0)

:ii_r}(l) 2 (Jy, Ji)Y 2 ms(s)4 2T /,, ChCHom(v;(l),vg)@(S)x)

[T 1B@P lewLoyl- ] 8@}

Be¥ (long),BNa=0 BeY,Bna=0

/G/H(SV ) ¥(g - c(S) Yoy + 2)) du(gH(S V a))dpu(x),

(c) Suppose (G,G') = (Sp,,(R),012) and 0(1) € S. Let a = 2e,1y. Then a € S
and

<H:9,s¢ + Hg,sa5¢>J’(0)
= lim i2nR(Jy, 1) /| 2ms(s)]4= / hesomrs. v (€(S)7)
y—r 0

7 o(1)’
S,s

I B@F-lawlol- ] 8@

B€¥ (long),BNa=0 BeY,BNa=0

/ (g - e(S) Yoy + 7)) dp(gH(S V ) dp(),
G/H(SVa)

(d) Let (G,G") = (Ogps1,2,5P2(R)) and let a = es1y. Suppose o(1) ¢ S and
a € Vs . Then

/ / mS(S) / / 1
<HS’Sw + HS,sasw + mSVa(S) <H5Va,sw + HSVa,SQSw»J/ <O> o ?IJI—IRJ
i (Jy, 1) Y2 ms(s) I B@> I |B()* |y To)|
hsvaNhe BEV,BNa=0 Be¥ (short),SNa=0

/C;/H(S\/ )1/1(9 . C(S)(y’ijg(1) + l‘)) dlu(gH(S Vi Oé))d,u(flj)

(e) Let (G,G’) = (Ogpaq, SPo(R)) and let o € S. Suppose o(1) € a C S\ . Let
w € W(Hs) be the reflection with respect to J,uy. Then

(His, ¥ + Hs ws¥0).r (0) = i4mR (1, J1) 2 ms(s)]

/ T B@E T e
hsnh e )

! e ,o(1)¢s jto(l
/ (g - e(S)z) du(gH(S))dpu(z).
G/H(S)

Proof.  Consider the case (a). Here Rs, = {a}, Rs, =S5\« and I's, = 0.



666 BERNON AND PRZEBINDA

Hence, for 2’ € h™¢,
Hs (@) + Hs (") = ms(s)
1 1 a(x)
o~ wwr ) (o) et 6

5.5
For o e R\ 0 and z € C\ {¢v/, —v'} let

1 1 L
fo(2) =5 (<z “NETY) (G ro)E- v'>) |
Let us write

o= (J]+ Jy) + 0 (] — T5),
v = u(Joq) + Jo@) +iv(Jo) — Jo2))-

Then,
det(z' + ) gy = (U +0 —u—i)i(u — v —u+iv),
det(z' + ), g = (W +0 —u+iw)i(u —v" —u—iv).
Hence,
1 1 S+ i)
— = —2ify(u—u +iv).
det(a?’ + x)sW’)' det(x’ + x)SaSWh/
Let

o(u+iv) = =2iek(J1, J1)ms(s)Hs (v + ') (Joq) + o) + i0(Joq) — Jo@))-

Then ¢ is a Schwartz function on C, viewed as a vector space over R, and
d(u — i) = ¢p(u+ iv). Since 22 = ¢ the function (8.3) coincides with

lo()] [v]?
o(v') = / / for(u+ w)igb(u + iv) dudv.
R JR |v]
Corollary A.4 in [1] shows that
(8)(0) = —21%¢(0) = in’k(J1, J1)ms(s)Hs s (W (Jo1) + Jo(z)))-
Let w = w(v') = v (Joq) + Jo(2)) + V' (Joa) — Jo(2)) . Then,

ems(s)Hs s (W (Jo) + Jo2))
= lim Ems(U)/b Tym(o - 2")A(=(S\ @) (") A(S \ o) (z")

v'—0 ”
S,s

) T g +27) [ blg- )+ ) du(gH(S)dn(a").

ja(w)] 11 o/m(®
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For a regular element x € hs, we have

e sgn(o)mym(0 " - ) A(=(S\ @) (2) A(S \ a)(2)

= H (=B(c™!-2))- (_1)|8\a| .eﬂ . H Blo™t - x)
BEW,AN{1,2}=0

= I B0 (-1 a(a))

Be¥,n{1,2}=0

1T Blo™" - x) 11 Blo™" - z).

BeW\eota, BN{1,2}#0, BeW\eota, BN{1,2}#0,
ganS\a#) ganS\a=)

Notice that oWl is a positive root system for the restriction of g to > ., V;.

Also, there are numbers e = =1 such that {ez8|8 € S\ a} is a strongly
orthogonal set of non-compact imaginary roots in cr\lf|hgs. Furthermore, b, is

the corresponding Cartan subalgebra. Therefore [1, (1.11)] implies that

[I B (e

Bew,pn{1,2}=0

= I 8-y I s

Bea¥,na=0 Bea¥,Bna=0
= Il s@- I »s@=o.
pec¥,BNna=0 pec¥,fNa=0

The roots € oW\ ear, with fNa # 0 and FNS \ @ # () may be partitioned into
groups of four

€o(1) — €o(k)s €o(1) — €o(l);

€o(2) — €o(k)y €o(2) — €o(l),

so that ey2)(x) = —e,0)(7), exq)(x) = —eow)(x). Clearly the product of these
four roots evaluated at = is non-negative. Therefore

II B(z) > 0.

Beo¥\ea,BNa0,
BnS\a#0
The roots 3 € oV \ ear, with SN # 0 and NS\ a # (), may be combined into
n — |S| pairs
€o(1) — €o(k)s €o(2) — €o(k)

with e,(2)(2) = —esa)(z) and e ) () = —€sm(x). Hence,
11 Ba)= (== T 1B@)l.
BEG\D\ea,gﬂg;ﬁ@,: BeaT\ea,fNaFD,

0

BnS\a BnS\a=0
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Since |S| is even, (—1)"71€

(=" B II 18] la)].

Bea¥,fna=0 Beo¥\ea,fNa#d

(—1)™ and therefore (8.4) coincides with

Also, (see Appendix B in [1]), 2p, = 2n and «” = (—1)*72", so that
u=(=1)Pu" = (=1)".
Therefore,

GIORTELRAEEET I | (R ETETE § (I C)

bs,s Bea¥,fna=0 pea¥,Bna#d

/ V(g - (W (Joqy + Jo@) + ")) du(gH(S))dp(z").
G/H(S)

Consider the case (b). Here Rj

=0, R{, = Usgr and b, = Ry
Furthermore, consistently with (7.12) in [1],
(5 YHom(Vyqry,vp) > 0

so that the restriction of y, s to sWY is equal to —Jy(1). Moreover, by Lemma
B.1,
Hs,sth € HCS (b, \ 0).

Let us write o' = 21 J{, * = 2,1)J,a) and let yo > 0. Then,

det(z' 4+ = + iyoys.s) gwo = —i€1(—€12] + To1) — iYo),
det(z' 4+ = + YoYsas,s)swr = 1€1(€12] + Ty — 1Y0),

ms(Sas) = ms(s),
and therefore,

ms(s)

fH/ / /H/ A li S ~ Ja 7(]0 1/2
s,ﬂﬂ(x ) + S,sas¢<x ) yol—{%—i- lél KJ( (1) (1))
1 1
A — — — . Hs V(x5 I dz,y. (8.5
A<61$3+x0(1)_,y0 —elrc’1+:cg(1>—|yo) 5,50 (@o1)Jo(1))) do(r). (8.5)

By Lemma B.1, (8.5) is equal to a continuous function of zj € R plus

mg(s) . -1 1 1 .
‘f( )H(Ja(1),<]a(1))l/2/ ( - ) (Hss¥)N) g, 0, (iydoq)) dy.
0

€1 axl +iy o) —iy
Hence, by Lemma B.2,
(His ot + Hs 5 50)(0) = ms(8)F( Ty, Jo)) 221 (= 1) (K st )N) 1,10, (0)
But
(Hs,s¥)N) 1,0, (0) = (Hss¥)s,,,(0) (8.6)

= /N 7}3/(](3_1 ’ x”)A(_\ilSJR)(x”)<HS,sw>Jg(1)($Il) du(x”).

S,s
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By a theorem of Harish-Chandra (see Theorem 2.1 in [3])
(Hs,s¥)7,0,(@") = (Hssth)im, (2) = e(V, S, a)id(a) Hsvath (z").
However, as we computed in (C.18) in [1],
A(=Tsg)(z")e(P, S, a) = A(Usyar(short))(z"),
and by Lemma 1.9 in [1], d(«) = 1. Hence, (8.6) coincides with
[ Ao DAV nlshort) () e
5

= lim i/ 7”%3/;)(3_1 (To)Jo) + x”))A(—@SVa,R(short))(xg o) +2")
b//

:Bn.(l)*)O

HS\/oﬂz](xcr 0(1) + )dﬂ(lﬂ) (87>
Let x € bs®. Then,

sgn(short)( )y (s 1) A(—Vsyar(short)) (z) Hsvat) ()
= Tym(s™ - 2) A(=Vsvar(short))(2) A(Vsvar) ()

Bls™t- Bz U(g-x)du(gH(S V a)). (8.8)
,Be\llgort) 5@11_1[ong) /G/H(SVQ) ! Y
Furthermore,

(s 1) A(=Tsvam(short)) () A(Tsvar)(@) [ B x)- [ B

Be W (short) Be¥(long)

= I (B 2)A(=Vsvar(short)) () A(Ysyar) (z)

BeY(short),1¢a

II set2- I B ta- [ 8@ a@). 89

BE¥(short),1¢a BEY (short),lea Be ¥ (long)\ex
Also,
A(= W (shor) () A¥soz)(2) = (1) AW lomg)) (o)
(L 1)IS6homl_4( S (long) ) () )
(—1) (S(long))( )’a(x)’

and

II sty ] B2 ] B@

BeW¥ (short),1¢a BeY¥ (short),1¢a Be¥(long)\a«

= II e toy- [ 86" (8.10)
BEY(short),1¢a Be¥(long),1¢a

= II s ton. I 8027
Bev,1¢a BeW(long),1¢a

= u I e of I (B,

BeY,1¢a Be¥ (long),1¢a
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where the last equality follows from [1, (1.11)]. But, by [1, (7.17)],

II et = I 8@
B€¥(long),1¢a Be¥(long),B#a
= 4_"+lcthom(Vi<1),V())A(—S(long))(x).
Hence, (8.10) is equal to
()Ml T 1807 - )P - 47 ehegom,, i) A(=S(long)) ().

o(1)
BeEV,1¢a

Therefore, (8.9) coincides with

A(S(long))(z) a(z) (—1)¥srl+IS(short)| H 1B(oL - )2

()] Be¥ 1da

ey, vy ASlong)@) - [] Bl a) - al)

BEY (short), 1€

= la(@) I 18 -2)P

BeEV,1¢a
Chegomvt 7V6)(C<’S) - z) - H Blo~" - ) - (_1>|S(sh0rt)\.

o(1)
BeY(short),lea

477L+1

Notice that if a(z) =0, then

BeW(short),lea k=2
= J](eoy(@)* = oty (2)*) = [ [(—€oy(2)?)
=2 P
1 1 shor
= 11 (—Zﬁ(if)Q) = F(—l)'s( el T 1B
BEW(long) fa BEW(long) A

because the set of numbers {5(z) |5 € ¥(long), # a} C C is the union of
|S(short)|— pairs of the form {z,Z} and purely imaginary numbers. Hence, (8.7),
when multiplied by sgn(short)(s), is equal to

lim i4_2n+2/ |Oz(x0(1)Jg(1) + I”)|

xa(l)_ﬂ) hg
,S

IIT 1B 2" chenomus, vp(@S)-2") - T1  18@)P

o(1)’
BeW (short),lea BeY(long),B#a

/ V(g (o) Joqy + ")) du(gH(S V @))dp(z"). (8.12)
G/H(SVa)

Furthermore, p, = 2n and u” = (—1)!+Y/2 = —1. Thus

u=(—1)Pu" = —1. (8.13)



BERNON AND PRZEBINDA 671

By combining (8.6), (8.11) and (8.12), we see that (b) follows.
Consider the case (c). Here Rg, =0, Rs, = Ysg, I's, =0, bs, = R,
and, by Lemma B.1,

HS,S’QZ) € S(ﬁ%,s)
Let us write & = iyy(1)Jo(1). Then

det(z' 4 ) o = i(2] — i€1Y0q)),
det(:v' -+ x)sasWh/ = I(SCll + iglyo(l))a

ms(sas) = ms(s).
Hence,
His (@) + Hs, (2) = —ims(s)R(Joq), Jo)"/?

1 1 -
/ ( / + )%s,s@b(zya(lﬂo(l)))d%(n'
R \ 711

— €Yoy T+ i6Ye)

The above, Lemma B.2 and (8.13) imply
<'H:g7$¢ + %g,sas¢>J’(0) = i|m3(s)|/%(Ja(1), Ja(l))l/QQ -2 SgH(ShOl”t)(S),H&S@D(O).

But sgn(short)(s)Hs st (0) coincides with (8.8) if the SV « is replaced by S and
To(1) = 0. Thus, the formula follows as in the previous case.

Consider the case (d). Here Rg, = 0, RS, = Vsg, bs, = RJ,q) and
Hss € HCS(hs, \ 0). Suppose a € ¥". Then

<J/ , >Hom(VU(1),V’) >0 and <J/ , >Hom(Vo,V’) < 0. (814)

Therefore, ys.s|awy = —J;@)(Z/S)JU(I) = —é&J,q). Thus,

ms(s)
det(2" 4+ — iyoé1Jo(1)) sy

Hs p(x) = lim /b Hs s(z) du(x). (8.15)

yo—0+ /
S,s

Since det(z' 4+ & — iyoé1Jo1)) gy = 1(T] — To1) + iWoé1) = —i(—=2] + To1) — iYoé1),
Lemma B.2 implies that (8.15) is equal to

[0 ms(s) _
| /0 @ + o) o ()i To) dii(y o) (8.16)

plus a continuous function of ' € . If we replace s by s,s, then (8.16) transforms
to

[ ms(s) _
- H H S Jg’ d Jo‘ .
|/0 det(z’ + |yJa(1))sa5Wh’ (Hssv)n)(iy 1)) 1y 1))

Since the sum

Hs, W+ His s (8.17)
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does not depend on the transposition s — s,s, we may assume that ¢, = 1. Then
(8.17) is equal to

-1
. 1 .
ms(s) (/0 det (2 + iy Jo(1)) s ((Hsst)w) s (0o 1) iy Jo )

! 1
- . Hs.s iy o) du(yJ, 8.18
/0 det(x’ + IyJU(l))sasWh’ << S, ¢)N>Ja( )( Y (1)) :u(y (1))) ( )

plus a continuous function of z' € b’.
Notice that

(Mss)n) s, (W) = (Hss¥)n)ina (o)) (8.19)

:/h Top(s™h 2" )A(=Vsr)(2")e(V, S, a)id(«) Z W’Hgmw(x”) du(x")

"
S,s p:O

= Al A= a2 Y PR ) e’

g,s p=0

Furthermore, (8.19) is equal to
/ Tom(s™h ") A(=(VUsr \ @) (@")i2Hsvat (iy o) + ") du(2”)(8.20)
L

plus a function which vanishes at y = 0 like y™V !,

Notice that ngv%s = {a}, Rg\/ms = Usva \ @, b:S'\/(Ls = RiJ,) and
Hsvath € S(Rsyq,,)- In particular, (8.20) coincides with

i2Hsva(iyJo())-

Thus, if we replace (8.19) by (8.20) in (8.18), we obtain the following function

ms(s - Hsvasliyd,my) du(yJ,
st )</0 det (2 + iy Jon)) s sy Joy) di(ydoq))

' 2
" i Hsvas¥(iyJo)) dulyJo 8.21
/o det(z' + iy o)) soomer - Py o)) duly (1))) (8.21)

plus a continuous function of 2’ € . Clearly, (8.21) coincides with

1
2
Ii_
ms(S) /_1 (det<«r,+iyJa(1))st/ [ 1,0](1/)

2
I sV (iyJoy) du(yJymy), (8.22
* det(z' + iy o) )s, ot [0,1](2/)) Hsvas¥(iyJoq)) du(yJoqy), (8.22)

where I, is the indicator function of the interval [a,b].
On the other hand

H:S‘\/a,sw(‘r/> + HgVa,sa5¢<x,) - mS\/Oé<S)

/hg - (det(a:' i )y det(af +1x)808Wh,) (— |38|) Hsvath(z) du(z).
(8.23)
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Let = iyJ,1). Then

Hence, (8.23) coincides with

! 1 1 )
msvals - — -
sval )/1 (det(x’ +iydoy)gwr  det(a’ + |yJ0(1))SQSWb,
%H‘ngqﬁ(ing(l))du(ing(l)). (8.24)

plus a continuous function of =’ € h’. Clearly (8.24) is equal to

1 1 1
msvalS . ] — - [
sl )/1 (det<f”'+'yjo(1))swra' o) det (@' + iy Jo(1) ), o’ 1)

1 1
- I I
det(a’ + iy o) s () + det(z’ 4+ iy Jo1)) 5. s’ (=10 (y))

HSVa,sl/}(iy‘]U(l)) d:“(iy‘]tf(l) ) . (825>

Now we multiply (8.25) by %(s()s), add to (8.22) and obtain

1 1 1
- + -
ms(s) /_1 (det(iﬂ’ +iyJoq)) gy det(z’ + 'yJa(l))saswb')
HS\/a,sqvb(iyJJ(l)) dﬂ’(y‘]U(l))

Hence, Lemma B.2 implies

ms(s)

Hs b +Hs, W+
< S,w S,aw mSVa(s)

(%iS'Va,sl/} + H:S'Va,sas,(b»«]' (O>
= —ims(s)/?;(JU(l), Jo(l))1/2471'7‘[3\/a,s¢(0). (8.26)

Also, p, = 2q and v’ = —1, so that

u=(—1)P*u" = —1. (8.27)
Furthermore,
sg(s)Hsva,s¥(0)
— [ Al A (Wsuam \ @) (0") sl Havav (") dila”)
SVa,s
= lim (s (iydoq) +2")A(=(Tsvar \ @) (iyJoq) +2”)
hZSI\/oz s

sgn(s)Hsva (iyyay + ") dp(z").  (8.28)
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For = € b5,

(s 1) A(=(Tsvar \ @) () sgn(s)Hsvat) ()
= JI (86 ) A(Tsvar \ a))(2)

BEY, 143

[[o6" 0 [ w0 duS va)). (529

Bew G/H(SVa)

Notice that {s3|8 € ¥(long),1 ¢ B} is a positive root system for Oy, 2, and that
Usr(long) is the corresponding system of real roots for the Cartan subalgebra
55+ Thus ([1, (1.11)] implies

I[I 862 (et = T 572

BE¥(long),1¢8 BE¥(long),1¢3

Furthermore,
A(=(Tsvar \ ) (@) A(Vsvap)(@)a(z) = (=1)sv=m\a(z)|.
Notice that if a(z) =0, then

H Blo™t-x) = H(el(sfl x)? —ep(s7hx)?)

BeEW\e1,1€8 k=2
= [](eo)(@)* = oy (@)?) = [ [(—€awm(x)*)
k=2 k=2

= I[I @

BeY (short),1¢8

Hence, for such x

I sstay- [T 862 [[ B6'-a)

BeW(short),1¢4 BEW(short),1¢5 peW\e1,1€8
- I sstor= ] st wi= [ 1B ol
BEW(short),1¢3 BEY (short)\a BE Y (short)\«

where the last equality follows from the fact that the set {8(x) | 8 € ¥(short)\a} C
C may be partitioned into pairs {z, —z}, single real numbers and single imaginary
numbers. Furthermore,

Wsvar \ af = [Usr(long)| = [Vsvar \ (¢ UVsg(long))|
| (Wovas(long) U syas(short)) \ (o U W (long))
{B € Vsvar(long) |8 2 a} U Vs g(short)|
= [{B € Vsvar(long) |8 2 a}| + [Vsgr(short)| = 2|Vs r(short)|,

so that

(_1)|\PSVQ,R\aI (_1)|\Ifs,R(long)l -1
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Therefore, (8.29) is equal to

IT B@P- I 18@P @) (8.30)

BEY,BNa=0 Be¥(short)\ o
/ Y(g-x)du(gH(S V a)).
G/H(SVa)

By combining (8.26), (8.27), (8.28) and (8.30), we see that (c) holds for o € ¥".
Suppose a € ¥¢. Then there is a unique non-compact short root v € S.
Moreover, (8.14) implies that

<J/ ) >Hom(Vd(1),V’) < 0.

Therefore, yss|wr = €1Jo1). Thus Hi (2') is equal to

. €1 m5<5) )
| /0 T+ 9o ey T VINN i do) dialyJon)

plus a continuous function of 2’ € h'. Hence, as before, assuming that é; = 1,
Hs 0+ M, is equal to

1

—2
a,s [ JO' d g

s (s) </0 det (2" + iy Jo(1)) gwr Hova (o) duly o)

+ 1 H a,s | Jo' d Ja
/0 det(z’ + iyJo)) s, s’ sva,s¥ (1Y o)) dply (1)))

plus a continuous function of 2’ € h’. On the other hand, Hy,, ¥ + Hsyq.,, ¥ 18
equal to

monts) [ 1 - 1 )
Sve S \det(@ + iy o)) owe det(z +iyJoq)) s swe /Y]
Hsva,s V(i) dp(y o)), (8.31)

plus a continuous function of z’ € §’. By symmetry, (8.31) is equal to

() /1 ( 2 2 >

msva(s . — -

sV o \det(z' +iyJom))aw  det(z’ +iyJo)),, e
Hsva,sV(iys)) di(y o)) (8.32)

If we multiply (8.32) by —=CL we get

msva (5) ’

asV(iy o)) dp(yJs
ms(s) </0 det (2’ + iy Jo(1)) 5, swor Hovasth (o) duly o)

' 2
- H H «,s . Jo' d JU
/o det(a + iy Jo) s oms’ iy o) duly (1)))

1 2 2
= — - + ;
ms () /0 (det(iv’ +iyJo))wy  det(z’ + 'yJau))saswh')
HS\/a,sw(iyJU(l)) d:u(yja(l))
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Hence, Lemma B.2 and (8.29) show that

ms(s)

SVa(S

<H3 sw + HS Sa sw + (HSVO( sw + HSVoz sasw»J/(O)

= —idni(Jy, J1)Y*ms(s)| sgn(s)Hsvas0(0). (8.33)
As before,

Sgn(8>H8\/a,s¢(O> = leli% Sgn(S)HS\/a,sw(y‘]a(l))

=tim [ Al (o + ) A (Esvar \ @) (o) + o)

y—0 h”
SVa,s

sgn(s)Hsvat (iyJyay + ") dp(z"). (8.34)

reg

Also, for = € hgJ,,

(s~ (@) A(=(Tsvar \ a))() sgn(s)Hsvat(2)
= I 86 o)A (Ysvar \ ) @) AWsvaz) @) - [] B(s

BeW,1¢8 BeW
/ Bl - 2) du(gH(S v ). (8.35)
G/H(SVa)

Notice that,

[T (-B8G™" 2)A-(Tsvar \ @) (@) A(Tsvaz \ ) H@
Bew,1¢8 ﬁexp
= ] 862> I /3<s*w>-\a<x>|<—1>"1’8va»ﬂ<\a‘. (8.36)
BEV,1¢5 BEW\eq,1€8

If we divide (8.36) by |a(x)| and take z with a(x) =0, we obtain
H (—B(s™ - 2)2) - H B(s7 - ) - (=1)¥svar\el

BeV,1¢ pEW\e1,1€8

2
S| RO R B | 0] IR
BEY(long),1¢3 BE Y (short)\a

_ H \ﬂ(x)|2 H 18(x )’4 (— )I\IISVaR\al [¥ s\ a,r(long)]

BeY(long),1¢3 B (short)\ o
== II  B@r JI 8@ (c)teesbapston
Be¥(long),fNa=0 BT (short)\a

(8.37)

Notice that

|lIISVa,]R \ @S\V,R(long” = |\I/ aVvr)U(S\v),R \ \I]S\V R(long)| (8 38)
W sva,r(short)| + |V avmyus\vyr(long) \ ¥\, r(long)|,
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where both summands are even numbers. Therefore, (8.38) is equal to

- I @ I 1B@* (8.39)

Be¥(long),BNa=0 BT (short)\a

We combine (8.33)-(8.39) and deduce (d).

Consider the case (e). Let a = {k,I} and let o(1) = k. Then b5, =
RiJ, + RiJ;. Moreover, I, s = 0, Rs, =0, Rs, = Ysgr and Hs . € S(bs,).
Furthermore, since mgs(ws) = ms(s),

/! / !/ AN 1 1
R

Therefore, Lemma B.2 implies that
(Hls 0 + His ) 11 (0) = —idmms (s)i(J1, J1)"? / Hs (i) dp(ziiJy).
R
Also, p, =2q and v’ =1, so that
u=(—1)Pu" =1.
Notice that
Sgn(s)/Hg,siﬂ(xliJl)du(xliJl)
R

- /h nb”i (s o) A= Vs ) (@) A(Us ) () H B(s~'.z)

Bevw

/ (g.e(S)) du(gH(S)) dpz).
G/H(S)

Furthermore, for z € hs N b7,

Ty (s~ ) A(—Vsr) () A(Vsr) (2 Hﬁ (8.40)
Bew
= I 86y e I A
BEY,1¢3 peEY,1€p
= H (—B(s7L.3)?) - (—=1)HBTsrlogBY H B(s
BEV,1¢8 BEV, 18

because |{8 € Usg|o(1) € B} is even. By [1, (1.11)],

[I (=8 a))- (-pleveme@edi =TT |5 a)? = [ 18()

peEY,1¢8 eV, 1¢3 peY,0(1)¢8
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Let &'={8€ 8|8 C S}. Then |§] is even and therefore,

II 86" a) ZH(—ej(l‘)Q):H (&5 (@) T (—es(@)?) [](—es(2)?)

pev.1¢p jes\a(1) JES\S! i¢s
= 11 Ge@- 11 le@)P- T les@)?
JES\o (1) JES\S' J¢s
= (O TT es@P - T les(@)P- T les(@)?
JeS\o (1) JES\S' j¢s
= — II les@)P.
j#o(1)
Thus (8.40) is equal to
- I B@F- II le@P,
Bev,o(1)¢8 j#o(1)
and (e) follows. [

Lemma 8.3. Fiz acV". If (G,G') = (U,,,U11) then
(g pyrche(¥)) gy - (W' (J] + J3))
=3 lim dnR(Jy, J)me V2
v y—0

N Rk

bsmhej ;JEQ Be\lj7émg:®
II 18 (g - o(S)x) du(gH(S))du(="), (841)
BeY,BNa#d G/H(S)
where © = yHo +u' Yo, Jj +a".
If (G,G") = (Spy,(R), 012), assume that o is long. Then,
{my iy che()) 1 (0)

= D7 limidmR(h, 1) 225 V2 s 0 long)

CVG\IJSYR

| ol L 18P
hsNhe

BeV,Bna=0
II |B()]* |a($)|/ U(g - o(8)z) dp(gH(8))dp(z"), (8.42)
ﬁE\II(long),éﬂg:Q) G/H(S)
where x = yH, + x”.
If (G,G’) = (Ogpt1,24, SPo(R)), assume that « is short. Then,

(my () (0) = Y lim idmi(n, I 2msv/2 Y o (short)|

a€¥s R
/ II B@P I B@P-la@] [ v cS)e)du(gh(S))du(="),
bsmhaﬁe‘l’,éﬂgzw Be¥(short),BNa=0 G/H(S)

(8.43)
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where © = yH, + x”.
]f (G, G/> - (O2p,2q7 SPQ(R))7 then

(g piyche(¥)).(0)
= 3 2mR(h A PmevE e

a€S kealCS\a

/ [T B@F-TTle@? [ wlg-cS)z)du(gh(S))du(w). (8.44)

s’ BEW k¢ Ak G/H(S)

Proof. By Lemmas 8.1 and 8.2, the left hand side of (8.41) is equal to

3 (g py Che()) o (W (T + J5))

8,85 (=es(1)—€q(2)ES

. S }/Ln%i4w2&(J1,J1)ymS(s) e 1 1B@)P
8,85 (=es(1)—€s(2)ES bsMb BEW,LN¢=0
T 18 U(g - c(S)r) du(gH(S))dp(x")
BeY,BNEHD G/H(S)
= limidr?i(Jy, Ji)|ms(s)||W (He, Ze)) || 9" ; 1 1B@P
y—0 {ejii€a}t
a€S bsnh Be¥,BNa=0
| EIES (g ¢(S)r) dpu(gH(S))dp(x"),

BEW,Bnazt0 G/H(S)

which coincides with the right hand side because |ms(s)||W (He, Zc))| = ms\/ﬁdimmW'
By Lemmas 8.1 and 8.2, the left hand side of (8.42) is equal to

> lim i (1, J) Y2 mg(s)|87H!
S,s;0(1)¢S,é1=1 -

| b)) T 18, + 2P
hsnhe) BEV,B#2¢, 1)
H ’B(yHQGU(l) + 517”)|2 ’ ‘O‘(yH%ou) + 37”)'
ﬁe\l](long)767é2eo'(l)

/ (g - e(S)(YHae,,, +2")) du(gH(S V 2e,(1)))du(z")
G/H(S\/260<1))
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= Z lir% 4R (Jy, J1)1/22|m5v260(1)(s)|8_"+1n
S,s;0(1)¢S,é1=1 Y

/ cheromut v (€S)2") - T[ 18yt + 2"
hsNphe1 BEV,B+£2eq

I  18yHs, +2") |a(yHs, +2")]
BeY(long),B#2e1

/G/H(svg )1/1(9 - o(S)(yHae, + ")) du(gH(S V 2¢1))dpu(x”)

=> lim 47 (), J)Y22ms(s)||[W (He, Ze) |87 in
Yy

2e1€S

/ cheromui (@) [ 18Hse, + ")
hsNbel BET,B+£2eq

I  18yHs, +2") |a(yHs, +2")]
BeY(long),B#2e1

/G/H(S> U(g - c(S)(yHae, + 2")) du(gH(S))dpu(z"),

which coincides with the right hand side (see [1, (7.11)]).
We need to verify (8.43). Notice that if T, 3 = 0 and if w € W(Agg), then

ms(ws)

Hs et~ |

bs det(z’ 4+ ) oy myp(s ™ w ™ 2) A(=Vsr)(2)Hstp(x) du(x)

:/h T +<)> —mya(s” ) sEm(w) A W) (w0 - Vs () du(z)

B /b det(m8<8) m(s™ ) A(—Vsr)(2)Hsh(z) dp(z).

x' + x)sWh/

Let ¢ € V% i, (NS = 0. Suppose ¢ € U". There are w; € W(Asyer), 1 <i<m
(with w; = 1) such that

\IIS\/CuR<ShOI‘t> - {wlg) wQC: e 7me}
Moreover, by [1, (8.3)],

ms(s)| _
Imsve(s)]
Hence,
’m5<8>| / / < / /
T Hs g,sw(x) = Hs C,wisq/}('r )-
Imsve(s)| Y ; Y

Suppose ¢ € W¢. Then there is a unique element v € S N Y™ (short). Moreover,
(—veSV(. Let wy =1 and let wy = s¢. Then wy,ws € W(Agycr) and, by
1, (83)]

[ms(s)|

= 2.
[msve(s)]
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Hence,

2
%Hgvc,sw(x,) = ZHgvc,wis¢($/)-
ve =1

For two functions, f,g: h'\0 — C we shall write f =, g if f—g extends
to a continuous function on b’.

Lemma 8.1 implies

T3 pChe () =jump > Hod+ Y Hs
37S§C€q’g,iR,gmﬁ:@,gz{U(l)} S,S;U(I)E\PS’R
= ) Hi o0+ ) Hi 0
8,5;¢€ ¥ (short),(NS=0, S,5;¢€ ¥ (short),(NS=0,
U(l)Eg o(l)eg
+ > Hisvet) + > Hsue st
S,5;¢€W™ (short),(NS=0, S,5;¢€WC(short),cNS=0,
0(1)€¥ sy ¢ r(short) a(l)equr
= > (Ms ot +mHsye )+ D (M0 + 2Hsue )
S,s;(é‘l’"(short)ﬁlllgm, S,S;CE\I’C(Short)ﬂ\ngiR,
U(l)Eg O’(l)eg

- Y (e 2 0)

8,5CEVE poo(1)EC |m5\/<(3)|

Hence, Lemma 8.2 implies that the left hand side of (8.43) is equal to

> lim idric(Jy, J1)Y 2 ms(s)]
y—0
S,S;CG\Pg’iR(short),

o(1)etéi=1
[T Beor T 18R e+ o)
hsveNhs BEW,BN¢=0 BEY (short),NC=0

/ (g - o(S) (yHe + 2)) du(gH(S V O))dp(a")
G/H(SVC)

> lir%iélm%(Jl,Jl)l/QIW(H(c,ZC)HmS(S”
—

Y
S;(EWY i (short)

/b I BeeE I 18R laH + )

Sv¢nhs BEW,BNC=0 BEY (short),BN¢=0

/G/H(S\/g) w(g . C(S)(yHC + l’”)) d,u(gH(S \/ C))dlfl(x”>
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- ¥ nn%izmul,J1)1/2|qu,R(short)|m5\/§‘hmRW
S;¢eS(short)

/ |B(I//)|2 H |5($H)|2' |Oz(yH<+x")|
hsnb 56‘11 BN¢=0 BEeY (short),BN¢=0
/ Blg - o(S)yHe + ")) du(gH(S))du(a")
G/H(S)
+ 3 lim 47 (], J)Y22msv2 N

S=S(long);¢e¥°N¥ s g (short)

IT 1Ba")P 11 B(=")* - ey H + 2")]
BeV,B

bsNbhe n¢=0 BE¥ (short),N¢=0

/ Blg - e(S)yHe + ")) du(gH(S))du(a")
G/H(S)

= Z hm idmi(Jy, Jh) /2m5\/_dlmRW

S;¢€¥ s r(short)

/h B T 18P la(yHe +2)

snbe ,6’6\1! BN¢=0 BEW (short),BNE=0

/G/H< g - S)yHe + ) du(gH(S))dpu("),

which coincides with the right hand side.
By Lemmas 8.1 and 8.2, the left hand side of (8.44) is equal to

\I{TL
CHsthr O = Y (Mt Hsut)s(0)- o
S,s S,s; aES,a(l)GgQLW,
= > i47rF;(J1,J1)1/2|m3(s)\| |
S,s; aGS,o(l)Egg&,
/ - I 1B@r- 11 \ej(:v)P/ U(g - e(S)r) du(gH(S)) du(z)
hs 7D pey o(1)¢p j#o(1) G/H(S)
o o
= > '47T’€(J1=J1)1/2|m8(5)||W(H<C>ZC))|| 5 |
S; a€SkeaCS\a
/ P Tl [ oo o)) du(gH(S)) dua).
sk ey k¢ﬁ ik /H(S)

which coincides with the right hand side.
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Lemma 8.4.  With the notations of Corollary 0.8, we have

(g che()) -y (W' (T + J3)) (8.45)
. - dimg W
|27r2/<;£]((]i/,;cl)7\>/</§) " VE (! jeza Jj + ) dp(x),
if (Gw G/) = (Up,anl,l)f
(7 pyche(1)) 1 (0) . (8.46)
(., - impW,_,
e [ et (0 o) o)

. if (G>G/> = (Sp2n(R)a 0172)
i27Tl'%(J1’J1)1/2\/§d1m1RW

—; VB (x) dp(x
ZfG = 02p+1,2q or OQp,2q and G/ = Sp2 (R))

\

Proof. Consider the case (G,G’) = (U,,4,Uy1). We may assume that a =
e1 — epy1. Then, the identification (0.5) is

V/ == V,s == Vl + Vp+1.

For g € S let
(8) = exp(—i7 (X5 + X_p)) € End(V),
and let
&s) = [ a»

BesS

Then the Cayley transform ¢(S) coincides with the conjugation by &(S). Thus if
z € hs, then ¢(S)x acts on ¢(S)V; via the multiplication by e;j(x). Let

X =ES)Vi, Y = &S)Vpsr, U=V,

Jjéa

Then H, = —i(Jy — Jp4+1) acts via the multiplication by 1 on X and —1 on Y.
Hence,

V1+Vp+1:X@Y

is a complete polarization. Moreover,

V=(XaY)aU,
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and U = ¢(S)U. Hence, for z € b,

| det(ad(c(S)x))al = ][] ler(x) —e;(@)* - er(z) — epia(@)],
Jta
| det(ad(c(S)z))gu| = ] lei(x) — ex()P,
J<k;jk¢a
T 1B@I = JIdei() = ej@)llepsr () — ej(@)]) - ler(w) — eppa (@),
BE, Bl jga
[T B@P = J] le@) —el)?
BEY,BNa=0 J<k;jk¢a
Therefore,
II @ 11 1B@
BeY,BNa=0 BEY,BNaF#D
- [T e e =Sl e (o))l - det e () |
i (8.47)
and
: le1(z) — e;(@)]|ep+1(x) — €;()]
L o E e S

In terms of Lemma 8.3, hs N hlei€e} = hs N g(U)c. Moreover, the set of all
S\ a, where § € V%, | coincides with the set of all the sets of strongly orthogonal
non-compact imaginary roots for g(U). Furthermore,

1
me =2~ IS|_~ '
plq!
so that ]
_ s(U)

Thus, by (8.47), the Weyl integration formula for g(U) and Corollary A.3,

s |

a€S bs

T B@E- JI B@)

BeV,Bna=0 BeW,BNa£d

/G/H(S) V(g - c(S)x) du(gH (S))du(z")

| I v I pogvg

acS hsNg(U)c BEY,Bna=0 BeV,BNa#ld
1

det(ad(c(S)z))n /G(U)/H(U)(S\a)d) (g c(S)x) dp(gHU)(S \ a))dp(a")

-] [l sl o)
PV VLX) Sy AL Ter(e) = (o) P

mh{ej JEa}
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where z =y +u' ), J; +a”. Clearly (8.45) follows from (8.48) and (8.49).
Consider the case (G, G’) = (Spy,(R), O12). We may assume that o = 2e;,
so that iH, = Ji. Let U=}, V;. Define ¢(S) € End(Ve) as in the previous
case. Then ¢&(S) preserves V1<c and Uc, and ¢&(S)|v, . = ¢(a).
Let Vic m,=+1 € Vic be the subspace on which H, acts via the multipli-
cation by £1. Let

X = (&(S)Vicm,=1)NVi, Y =(&(S)Vicu,——1)N V.

Then
Vi=XaY

is a complete polarization, and we identify with V., = X @ Y. It is easy to check
that foreach 1 <5< n

&SIV = (E(S)Vjc)ejoc(s)-1 @ (E(S)Vie)—ejoc(s) 1

where the subscript indicates the weight by which §(S)c acts on the indicated
space. Hence, for = € bgs,

| det(ad(¢(S)2))nc| = [ [ ler(@)® — ¢;(2)?| - [2ea ()],

JEa
| det(ad(c(S)a))quycl = [ lea@)” —e;(@)*)” - T 12¢;(2)I,
J<kijkga jga
11 B(2) - |a(x)] = [ ] 12¢; ()] - [2e1 ()],
BeY(long),fNa=0 jga
IT 1B@P= I le@)?—ex@)?)? J]2e)P
peV,BNa=0 J<k;jk¢a Jta
Therefore,
T B@P 1T B(2)” - Ja()]
Bev,fna=0 Be¥ (long),BNa#0

-1l rel<l§§j£m2 ’~(:13)2\ | det(ad(e(S)))ac| - | det(ad(e(8)x))gw)cl, (8:50)
jta J

and

: |2€] _ gn—1
lim H|e1 o = (8.51)

a(z)—0 j ) ’

In this case,

ms = ———
ST 9lsIp)

so that

= % S\a*
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Thus, as before,

st/ chepomv s v (¢(S) ) H 1B(yHea + x)|?
hsnhe N

a€S Be¥,BNa=0

[I 1BuH.+2) |a(yH, + )]
,BE\I/(long),éﬂg#@

/ (g - e(S)(yHa + 2)) du(gH(S))dp(x)
G/H(S)

1 u
- Z %mg(\a) / ChCHom(Vé,Vé)(C(S)x) H ’ﬁ(yHCM + l‘) |2
hsNg(U)c

BeV,BNa=0

2. (6% € ;

M(bgmﬂwwﬂﬁxn (e + )|

1 K(,. o . N e

T EEII / s )(s\a)wn (9 - ¢(S)(yHy + x)) du(gH(U)(S \ @))dpu(x)

b 2¢;(x K
st hommion )] o o S ) )

and thus (8.46) follows from (8.51) and (8.42).
Consider the case (G, G’) = (Ogp+1.24, Sp2(R)). Suppose that a € S(short)

We may assume that o = e,4;, so that iH, = 2J,,;.
Define é(a) € End((Vo + Vp11)c) as before. Let

X = (Vo + Vpi1) NE€(@)Vypi1.c.H,=2,
Y = (Vo + V1) Né(a)Vpi1.c m,——2
Vig = (X+Y)" N (Vo + Vpia),

U=Vy+ >V,

1<j,5¢a

Then

V0—|—Vp+1:X@Y®U,

the spaces X, Y are isotropic and the space V) is anisotropic. Moreover,
V=XaYaU,

and we identify with V, = X @ Y. Define ¢(S) € End(V¢) as before. Then ¢(S)
preserves (Vo + Vpi1)c, Uc, and the restriction of &(S) to (Vo + Vpi1)c is equal
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to ¢(a). Furthermore, Hom(X,Y) Ng = 0. Hence, for = € bg,

[det(ad(e(S)z)acl = ] lepri(@)® = €;(2)*] - lepra ()],

1<5,5¢a
[det(ad(c(S)z))quycl = [ lea@)?® —e;@)*- ] les(@),
1<j<k;j k¢ 1<j¢a
11 B - lal@)| = ] lej@) - lepa ()],
Be¥(short),BNa=0 1<j¢a
II B@r= I leg@?—e@? - ] le@
BeY,fna=0 1<j<ksj k¢ 1<j¢a
Hence,
1T B T 18@)-la)
BE¥(short),BNa=0 BEW,BNa=0
— H &3 (@)I* - |det(ad(c(S)x) )nc| - | det(ad(c(S)x)) gl
= lepra(x)? — ej(2)?| i e
1<j¢a
and

} 2
. ()]

=1.
a(z)—0 \Zida lepi1(2)? — ej(x)?]

Suppose S = S(long). We may assume that o = ey, so that iH, = 2J;. Also, we
may assume that e; £ e,.; € S. Define ¢(S) € End(V¢) as before. Let

X = (V14 Vpi1) NES)Vpi1c Ha=2,
= (V1 + V1) N E(S)Vpr1,0Ha=—2,

Y
U=V +Vo) NXEY) )V,
0<j#p+1,5#1

The spaces X, Y are isotropic,
V=XaYoU,

and we identify V' =X @Y. Let = € hs. Then,

| det(ad(e(S)z)acl =[] lea(@)® —ej(@)?| - lea ()],

1<j#p+1
| det(ad(c(S)z))guyel = [ lex(@)? —e;(@)*)* - [ les(x)P,
2<j<k 2<;
11 |6(z) (@) = [ les @) - lex ()],
BEW (short),BNa=0 2<j

II 1B@PF= 1] lej@)? —en(@)?- [T les(2)

Bev,Bna=0 2<j<k 2<5
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Hence,

11 B I 18@)F - la)

Be ¥ (short),BNa=0 Bevw,fna=0

= H o ’€J<x)| T |det(ad(c(8)x))nc| . |det(ad(c(8)x))g(u)c\,

e ()
6] xr
R | S s oy R
Let

a(S) = {3 € S(long) | 8 C S\ B},

bS) = |{6 € Stlong) | 5N S\ § = B}
Then

1 1
ms =

2a(8)/2. 268 . 1.3.5- - (a(S) + 2|S(short)| — 1) 2¢pl2ag!”
In particular, if v € § is short, then

L1 g

mSZ_a(S)—i—l % Mg, -

Let § = S(long). Let ¢ € ¥(short), v € U*(short), ( VrUS”" =S§. Then,

1 )
mgs = 2_q : mgs//\/u.

Furthermore, a(S) + 1 = |¥gr(short)|. Thus, with z = yH, + 2", we have
> ms | B I 18@P- la)
ac¥sp bsnhe BeY( short) BNa=0 Be¥,BNa=0

/ Blg - e(S)(x)) du(gH(S))dp(a")
G/H(S)

= Y @nms [ I p@P I P e

a€S(short) DsM0% ey (short),Bra=0 BET,Bra=0

/G/H(S) 1/}(9 . c(S)(%)) d,u(gH(S))dM(x//>

+ > ms | I 1see

S=S(long),ac¥eN¥ g r(short) bsMbe BEY (short),SNa=0

II 1B@PF @) U(g - c(S)(x)) du(gH(S))dp(z")

BEV fra=0 G/H(S)
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= > e[ I pwr I B e

a€eS(short) 2q hsMbe BE¥(short),BNa=0 BeW,BNa=0
| vl eS))) dulgHS) dula”)
G/H(S)
L g
+ > Q_mgﬁ,gy / I1 18(z)?
S=8(long),ac¥°N¥ s g (short) q hsMb™ Be¥(short),BNa=0

11 \ﬁ(x)\z‘!a(x)I/G/H(S)w(g-0(3)(x))du(gH(3))dﬂ(x”)

BeY,fNa=0

I S S T
—2gn(V, V', X) /g(U) g le1(x)? — ej(x)?| Y (e(S) (@) dpu(a"),

Now we take the limit if y — 0 and deduce (8.46).
Consider the pair (G, G’) = (Ogp24, Spo(R)). In terms of (8.44) let us fix
an element k € . Then

Y . ~ dimgp W
(T jiyche(ap)) y(0) = 2 Z 27k (Jy, ) msV2 |0

ae&ggm
z)|?- ejx2. co(S)x) du(gH(S))dp(z). (8.52
fwe JL v Tl [ la-oo) dutatissto). 552

Let a = {k,l} and let
X= Vi + Vi) Ne(S)Vicis=1,
Y = (Vi + V) NE(S)Vic,ig=—1,
U= (Vi + V)N (X+Y)"+U",
where U” = %", V;. Then,
V=XaYalUu,
and for z € hs N b7k,
| det(ad(c(S)a))ac| = [ ] les ()P,
J#k
| det(ad(c(S)a)qwcl =[] 18()P.

BEV k¢B

Moreover, we see from the formula (7.9) in [1] that if we denote by a° the unique
element of S such that a¢ # o and a = a¢, then

1 1
TS SIS 1.3 5. (18" — 1) 2¢pl24g!
1 a(U”)

—1MM
(IS"| = 1)8pg
2(18" \{a, aH+1) yuy 1 4

(1S" = D8pg S~ dpq SMawary
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Thus (8.52) may be rewritten as

1 dimp W
3 |47T/<(J1,J1)1/24pqm3(\u{)aac}\/_ e

aES,gg&

/ | det(ad(c(8)))nc || det(ad(¢(S)x))g(u).| @/)( co(8)x) du(gH(S))du(z),
hsnh’k G/H(S

which coincides with the right hand side of (8.46). [

It is clear from Theorem 7.4 in [1] that, in order to verify Theorem 0.10, we
may assume that the differential operator d(w) = 1. In view of Corollary 0.8 and
Lemma 8.4, we shall be done as soon as we show that

22k (Jy, V2 v, VLX)
w(HYn(V, V', X v (V, VX))

AR (J1, J) Y220 ot oy v X))
W(HY(V, V7, X)) A(V, V7, X))
omi(Jy, S22 (v, VLX)
p(H)n(V, VI, X)) 4 (V, VLX)

ok (Jy, J)V2/2 N v v X
p(H)n(V, VLX) 4 (V, VLX)

—1, if (G,G) = (Upy, Ury) (8.53)

=2, if (G7 Gl) = (SPQn(R)a 01,2) 6854)

=1, if (G,G") = (Ogps1,24, S5 (R))  (8.55)

=1, if (G,G) = (Ozpae. Spo(R)) (8.56)

The left hand side of (8.53) is equal to

2128275 (v, VLX)

= 1.
8nm? - n(V,V/, X)) 22+l -1
The left hand side of (8.54) is equal to
47{_ . \/6 . \/§2n~32_n+1 n(v’ V/7 X/) B 2

4\/5’/T . U(V, V/, X/) 22n+1 . \/23
The left hand side of (8.55) is equal to
o 2.2 v v X))

2V4An+ 27 -n(V, V', X) it}

2n+1

=1.

The left hand side of (8.56) is equal to

o - 2-v/27" (VL VX))
dry/n-n(V, V' X )
Ve n( ) Vo

Consider the pair (G, G") = (Ogp+1,24+1, 5p2(R)). In this case the defining module
V for G has the following orthogonal direct sum decomposition

= 1.

V=V,aV, (8.57)
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where G(V;) is isomorphic to Oq; and G(V”) is isomorphic to Ogp9,. Let h” be
an elliptic Cartan subalgebra of g(V”). Let h = g(V1) @ bh”. This is a fundamental
Cartan subalgebra of g.

Every Cartan subalgebra of g is conjugate to one which preserves the
decomposition (8.57), and two such are G—conjugate if and only if they are
G(V")—conjugate.

Let ¥(V”) be a system of positive roots of h” in g(V")c, ¥"(V") C W (V")
be the subset of the non-compact roots and W% (V") be the set of the strongly
orthogonal subsets of ¥"(V"). Let ¥ be a system of positive roots of h in g¢ such
that, if we extends each root in W(V”) by zero to g(Vi), then ¥(V") C ¥. In
order to simplify the notation we shall write ¥" for U™(V") and V7, for W7 (V").

For § € U, there is an element &(S) € GL(g¢) such that

(S)Vic = Vic, e(S)VE = V¢,
a(V1) = R&(S)ihe(S) ™,
Ad(&(S)|g(v).) is the Cayley transform for S and g(V"),

Let ¢(S) = Ad(é(S)) € GL(gc) and let h(S) = g(V1) @ h”(S). Define

hs = c(S)7'(h(S)e) N

Then

bs = RiJ; © b
and, as we have seen in [1, (11.2)],
— 1 g(V")
T (8 e

where " ={aeS|laCS\a} and §'=8\S5".
For § € U7, and s € W(Hc) let

ms

(8.58)

bs. = > R+ Y RiJi+bsn > o Ch.

k¢S k>2,0-1(k)=1 k=1,0(k)=1 keS\(sh')L,k>2
A > R+ Y RiJi+bsn > Ch
kS0 (k)71 k=10 (k)#£1 KES(sh') L k>2
;,S = Z (0>OO>JT<3/S)J17
o(1)¢S

where y, is defined as in [1, Definition 3.4]. Then, the formula (8.1) holds.
Furthermore, the following statements are true, with the proofs almost identical
to the proofs of the corresponding statements in the (Ogp 24, SPo(R)) case.

Lemma 8.5.  Suppose there is a € S\ (sh')* with aNS\a =0 and o(1) ¢
SUA{1}. Then Hjs ) extends to a continuous function on b'.
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Lemma 8.6. Suppose a € S, 0(1) e a CS\a or o(l) =1. Let w e W(Hs)
be the reflection with respect to J,1y. Then

(Hs 0+ Hs o) 5 (0)=idri(Jy, J1) ¥ ms(s)| [T18@) 1 e

b0 "0 5y o a 1)¢8 j#o(1)

/G/H(S) W(g - c(S)x) du(gH(S))du(x).

Hence, (my /h/chc Z’HS s (

= > (Hsat+ Hs,ws¢>Jf(0) + > (Mssth + Hswsth) 1 (0)

875; (XES//,U(I)GQ7€J(1):1 375§ 0—(1):17€0(1):1

_ S idni(Jy, J)Y2|ms(s)]

S, a€S” 0(1)€q,ép(1)=1

e -e(S)z)d S))du(x
/bﬁ 11 H|] /G/H(S)w(g (8)a) du(gH(S)) du(x)

snh M seg o(1)¢8 (1

n 3 (1, J1) 2 ms(s))|

S,8; O’(l):l,gg(n:l

2 j (g - c(S)x)du(gH(S)) d
/hsme* Emﬁ o)l g'e / ) (g - ¢(S)x) du(gH(S)) dpu(x)
— Z i47TI~£(J1,J1)1/2\/§dimRWmS
S; aeS" kea
)|? (g - e(S)z) du(gH(S)) d
/hsm.,a: Begw ) 1}' / s, V0 AS)) du(gH(S) du)
+Zi47ﬂ%(z]1,¢]1)1/2\/§dimkwm$
/ D2 [ les(@) / (g - e(8)) du(gH(S)) dia(z)
hsnb gt BeW, 1¢/3 j#£1 /H(S)
. ~ 1/2 dimg W, ,,
- Z idni(Jy, Jy)Y*V2 |S" |ms
S; S"#D
2. () - e(S)x) du(gH(S)) d
/hsme; Beg@'@(ﬂfﬂ jl;[llea(ffﬂ /G /H(S)w(g co(8)z) du(gH(S)) dp(z)

+ Z i (Jy, 1) 2VE

Bz ej(z)|? -c(S)x S x
. - Tleslt [ oo () du(gH(S)) du)

"% e, 1¢6 j#1 G/H(S)
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= S imi(y, 2V (S 4 1) ms
S

o

Bl 1] lej(x)lz/ (g - e(S)x) du(gH(S)) dp(x)

7 sew, 1¢6 i#1 G/H(S)
1/2 dimp W " 1 a(v"”)
; i (i, J)AV2TT (IS + D5rET D™
/ @ [[leste / Bl - e(S)2) du(gH(S)) dyu(z)
U sew, 1¢6 j#1 /H(S)
B 2 (1, 1) 1/2fd‘“”RW/ V5 (@) du),
B n(V,V/, X!

where the sixth equation follows from (8.58). Furthermore

omi(Jy, J)V2/2EY (v, v X))
p(H)n(V, V', X) Y(V, VX"
_2me2 2T vvxy
= i —n_|_177(V,V/,X’) ﬁ(2-2(n+1)+1) - -

\/2(n+1)

This completes the proof of Theorem 0.10.

Appendix A.

Let G be a reductive Lie group (Lie(G) = g) and 6 a Cartan involution on g.
Consider the Cartan decomposition g = € @ p associated to # and an invariant
non degenerate bilinear form x such that the form

g2 — R
(x,y) — _K(9($)ay)

is positive definite. We denote this form %. Let V be a subspace of g. As the
restriction of k£ to V' is non-degenerate this induces a volume form and a measure
on V. We denote the volume form Ay and the measure py. Let s an abelian
subalgebra of g included in p and m the centralizer of s in g. Denote by Q the
parabolic Lie subgroup of G such that Lie(Q) = m @ n and let K the maximal
compact subgroup of G such that Lie(K) = €. Let H be a subgroup of G. Consider
the volume form Ay on H defined by Ang(2) = Afjem (g7t - z) for z € T,(H),
the tangent space of H for ¢ € G. We denote the Haar measure induced by Ay,

by fim.

Proposition A.1.  We have the following equality

u(K N Qv /¢ )dpuc (g //ékq dpu (k)dpg(q)

for all ¢ € L'(G).
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Proof. Consider the map

Yv:KxQ — G
(k,q) — kq.

This map is a surjective submersion. For (k,q) € K x Q, let ¢y, be the derivative
of ¢ in the point (k,q). Let g = kq with &k € K and ¢ € Q Then the fiber
v Hg) = {(ku,u"'q) |u € KNQ}. In particular, we see that this set is a compact
smooth manifold. We may define a natural measure on this set. The tangent space

of ¥~1(g) is:
Thuu-1¥ " (9) = {(ku-v,—v-u""q) v € tNq}.
Define a volume form on ~1(g):

)\Kk’uX/\Qu*1 (xla"'axnayla"'ay)
A1 (eu,u—1 ($17 e ,xn> — > > q q ’
v @ )‘G,g(wku,u_lp(yl)u T 7¢ku,u_1p(yq))

where (21, ...,2,) (vesp., (@1,...,Zn,Y1,. .., Yy)) denote a basis of Ty u-19% " (9)
(resp. Tiguu—1q(K x Q)). It’s 1mmed1ate that Ay-1(g) (kuu-1q)(T1, -+, T,) is well
defined and Ay-1(y) is a volume form on ¢~*(g). We denote the measure attached
to this form by dd, 1(g)- We have the integration formula

//@/f (k, q)dpx (k)dpg(q) // U(k, q)dpy-1(9dpc(9)

for ¢ € L'(Kx Q). We want now to simplify the expression (A.1). Let p, (resp pe)
the orthogonal projection on p (resp. £). We observe that we have the following
equalities :

(A.1)

1 1
g=mdndon) =madp(n)d py(n)
Let ¥ = {x +0(x)|x € n}. Then ¥ is a subspace of £ and

1
t=te(maen)nt

Since the following is an isomorphism

~

meénddn) — met Sn,
($maxnax;1) L — (xrmxn’ + G(xn/),xn - 9($n/)),

we see that

)‘g = A ® Ape(n) ® >‘pp (n)>
AMRAN = Mm@ Ay @ A @ Ay

Let w = (wla"' 7’(1)[), T = (:Llla"' 7xm)7 Y= (yh"' ayn> and z = (Zlu"' 7Zp) be
the basis of ENm, €, m and ¢ respectively. Then

AN (w+z,y+2) = Aenm(w) X Ap(x) X An(y) X Aa(2),
NE@+y+2) = An(y) X Mo (z + 2)
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and
—dim(n)
)\nGBO(n)(:U + Z) = )‘B’(x) X )‘pq(n)(pq(z)) = \/§ AE’(x) X )‘n(z)
We deduce

Ae ® A\g(w + 2,y + 2) dim(n)
=2 A .
M(z+y+2) V2 o)

The equality (A.1) is equivalent to

dim(n)
)‘w‘l(g),(ku,U‘lq) = \/5 AKAM,u-

Let ¢ € L'(G). We consider the function 7 defined on K x Q by n(k, q) = ¢(kq).
This function belongs to L'(K x Q) and is constant on all fibers of 1 thus we get

/ / o(kg)dps (F)dpa(q) = p(K N Q2™ / o(9)duc(g). .
QJK G

Let M the Levi factor of Q such that Lie(M) = m. We denote by Car(G)
(resp. Car(M)) the set of Cartan subgroups of G (resp. M). We have the
inclusion Car(M) C Car(G).

Corollary A.2. Let H € Car(M) and ¢ € L*(G/H). Then

dim(n)

(KN QY3 (gt ducya(gt) = | o(kaHdpucdyiqu(m)

G/H KxQ/H

Let ¢ € C.(g). We denote by N the unipotent radical of Q. Consider the
function

Un(y) = o(k.(y +n))dp(k)du(n)  (y € m).

Kxn

Recall the Weyl denominators:
Dg(x) = [det (ad(z))
Dy(z) = |det(ad(z))

o/g 112 for € g™®, (A.2)

1/2 reg
mme | 17 for @ € m™E.

We have KNQ =K NM.

Corollary A.3. Let H e Car(M), z € b*¢ and ip € C.(g). Then

WK MV [ (g duem(gH) = 22)
G/H Da(r) Jym

YK (m.x)dpongu(mH).

Let ¢ € C.(G). We note N the nilpotent radical of Q. We consider the
function

Un(y) = ¢(k.(yn))dp(k)dp(n) — (y € M)

KxN
Consider the Weyl denominators:

Dg(z) = |det (1 — Ad(x_l))
Dy(xz) = |det (1 - Ad(x_l))

1/2
/2 for x € G™®,

12 for o € M8,

g/gz|
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Corollary A.4. Let H € Car(M), x € H*® and ¢ € C.(G). Then

dim(n) = DM(x)
u(KN M)\/§ G/H@D(g.m)due/H(gH) ~ Da(2) M/H

Uy (mez)dpnm (mH).

Induced distributions.
Let L = MA a Levi factor of G. For any function ¥ € D(G) define

UK (g) = /K W(k.g) duh), (A3)

W(o) = [ W (gn)dutn) = [ 9(g expl) dulz),
U (ma) = | det(Ad(ma),)|* UK (ma) (g€ G, meM, acA).

Clearly

D(G) > ¥ — U, € D(L)
is a well defined continuous linear map. For a distribution v € D'(MA) define a
distribution Ind¥(u) € D'(G) by

Ind® (u)(¥) = u(T*) (Ve D(G)).

Proposition A.5. If u € D'(L)*, then IndY(u) € D'(G)¢ does not depend
on 0. Furthermore, supp (Indf’(u)) = K. (supp(u) N), and the set of semisimple

elements in the support of Indf(u) 18 equal to the union of all the G -orbits passing
through the semisimple points of supp(u).

Proof.  The invariance is well known, see [11, part II, Proposition 31]. Since all

Cartan involutions are conjugated to each other, the independence of 6 is clear.

The last statement is obvious. u
Let

L8 = {I € L| det(Ad(l) — 1), # 0}

denote the set of regular elements in L.

Restriction of a distribution.
Let V be a completely invariant open set of m and & = G.). For Y € V,
we consider

Vo/m(Y) = [ det(ad Y)g/m| /2.
Let
DG xV) — D),
7.(6)(9.X) = vyym(X) / o(gm™", m.X)du(m);

D(GxV) — D(V),

/cbg, )dp(y

According to Harish-Chandra’s descent, we have a bijective map Res : © +— 0
from D'(U)“ onto D'(V)M such that © o1, = 0 o p,.
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Proposition A.6.  Let u € D'(g)¢ and ¢ € D(U) then we have
1

V2 (K M)

Proof. Let = € g™ and H the Cartan subgroup of G such that Lie(H) = b
and z € §.

u(¢) = Res(u)(y ).

Jow(9) = | det (ad(z)yp) [ /G/H ¢(g-x)dp(gH)
we consider also Jy .(¢). Recall that we have the equality
Ve =y ngre.

According to the lemma 5.1.3 of [3], we have for z € V™ Res(Jy.) = Jme-
According to the Corollary A.3, we have

1
J, ,w(gb) = im(n Jm,ac(gbi{)
’ VT L N )
for ¢ € D(g) and = € V8. Thus for x € V**¢ and ¢ € D(U), we have
1
Jya(0) = Res(Jg.0)(¢r)

\/idim(n)u(K m M)
As the space Vect{Jy, |z € V™8} is weakly dense in D'(U)® according to the
Corollary 4.1.3 of [3] and the map ¢ — ¢X is continuous, we deduce that result.

We consider now a completely invariant open set V of M and let & = G.V.
For ¢ € D(U), we consider the function ¢&% € D(V) such that

oK () = / / (k. () )dpu(k)dpa(n).

For a Cartan subgroup H C G and x € H™®, the orbital integral of ¢ at x € H™®
is

Jow(0) = Du(x) | d(g.x) du(gH).
G/H

We consider also Jy, for x € H® and H a Cartan subgroup of M. According to
the Harish-Chandra’s descent, there is a map

Res: D'(U)¢ — D' (V)M
Moreover, we know that
ReS(JGJ) = JM@,

for any x € V™. Notice that V' =1V N G™8. We deduce from the lemma A.4,
that for ¢ € D(U) and x € V™8 :

\/ﬁdim(n)ﬂ(K N M) DG(;C)

As the space Vect{J,q} is weakly dense in D'(U)¢ (Corollary 3.3.2 of [4]), we
deduce the following proposition :

Jaa(9) = Tt (ON).
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Proposition A.7.  Let u € D'(G)¢ and ¢ € D(U). Then

1
uor= V2 LK A M)

Proposition A.8.  Suppose u € D'(L) is an L—invariant Borel measure con-
centrated on M N G™. Then the induced distribution Indf (u) is a G—invariant
Borel measure concentrated on G,

Res(u)(4Y).

Proof.  Notice that LN G™8 C L"™&. Hence, for ¥ € C.(G),
Ind? (u) () = u(TY) = w(U|pnqres)

= [ wwutaya= [ wlderada " [ ¥ duto) dut)

_ /L (i) det(Ad(h " — 1)) det(Ad(1),)]? / T (nln=") dya(n) dpu(1)

N

- /G u(D)] det(Ad(I™" = 1),)[| det(Ad(1),)|/* / WS (nln ) dp(m) dps(1)

_ / ()| det(Ad(I~" — 1),)]] det(Ad(1),)] 2 / oK
LNGree .

:/, u(l) (W

= Ind{ (u) (¥

aree(nin™ 1) du(n) du(l)

ares) " (h) dpa(1)

Greg ) .

Appendix B.

Let V' be a finite dimensional vector space over R and let A C V* be a finite set
such that no two elements of A are proportional. Let

VA = {x € V| there exists a € A such that a(z) = 0}.
We shall say that a function ¢ € C*°(V \ V4) is a Harish-Chandra Schwartz
function with respect to A if and only if for every constant coefficient differential
operator D on V and for every polynomial function P on V',

sup |P(z)D¢(x)| < oo, (B.1)
zeV\VA

and for every connected component C' C V \ V4 the restriction of D¢ to C
extends to a continuous function on C', the closure of C' in V. (If V is a Cartan
subalgebra in a real semisimple Lie algebra and C' is a connected component of
the set of the regular semisimple elements, then as shown in [6, sections 7 and
12], (B.1) implies the existence of the extension.) Notice that this extension is a
rapidly decreasing function on C'. We shall denote by HCS(V \ V4) the space of
all the Harish-Chandra Schwartz functions with respect to A and equip this space
with the topology induced by the seminorms (B.1). Our definition is motivated
by a theorem of Harish-Chandra concerning his orbital integrals, see Theorem 23
on page 23 and the proof of Proposition 10 in the Appendix of part I of [11] or
section 14 in [7].
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Suppose we have a direct sum decomposition
V=VaeV"
Let A’ ={a € Ala(V")=0}. Let B C V* be a finite set such that
Ve£VP  (a€ A, BeEB).
Fix a Lebesgue measure p on V.

Lemma B.1.  The formula

/I _ ﬂ([L’—l—l’”) O(x I” :L"H A T ! 1,A
o () /wg—wxﬂ”ﬂ Seta)dula") (6 € HCS(V\VA), z € VYY)

defines a continuous map
HCS(V\VA) 3 ¢ — ¢ € HCS(V'\ V).

Proof. Since ¢ is rapidly decreasing, ¢’ is well defined and is also rapidly
decreasing. Let A” ={a € A|a(V") # 0} U B. Then

dim(V'N (VA —2)) <dim V"  (z€V). (B.2)
Indeed, if not then there is an element o € A” such that
dim(V"' N (V* —z)) = dim V" (xeV). (B.3)

Since
V'V —x)— (V"'n(V*—1x)) CV(a),

(B.3) implies that V* contains an non-empty open subset of V”. Therefore
V" C Ve, a contradiction.

Let C'(V') € V' \ V" be a connected component, with the closure
C'(V') CV'. Let x € C'(V') and let z,, € C'(V’) be a sequence with lim z,, = z.

n—oo

Let C' = C'(V') + V", This is a connected component of V' \ V4. We see from
(B.2) that

V// \ (V//A” - l’) g V//

is an open dense subset. Let z” € V" \ (V"4" —z). Then x + 2" € V\ VA", Let
C” C V\ VA" be the connected component containing z 4 «”. Then C = C'NC"
is a connected component of V' \ VAYZ and

r+2"eC'nC” CC.

Since C is invariant under translations by the elements of V", z,,+a” € C for all
n. Since C” is open, there is N such that x,, +2” € C” for all n > N. Therefore,

z,+2"€C  (n>N).
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Since the restriction of ¢ to C is continuous,

lim ¢(z,, + 2") = ¢(z + 2").

n—oo

Thus by Lebesgue’s Dominated Convergence Theorem,

lim [ oz + 2")dp(a") = | ¢(z + 2")du(z").
n—oo v v
Therefore ¢’ extends to a continuous function on C’(V”).

Since the above argument applies to any derivative of ¢, we see that
¢ € HCS(V'\ V'Y). The proof of the continuity of the map ¢ — ¢’ is easy
and we leave it to the reader. [ |

For a function ¢ : R — C let
(9)(0) = lim ¢(z) — lim ¢(—z),

r—0+ z—0+

whenever the indicated limits exist. Also, for a non-negative integer N, let

onto+in) =Y g0 (eR\0, yeR)

Lemma B.2. Let ¢ € HCS(R\ 0) and let e = £1. Then, for N > 1,

im [ L g)de— / L om) () dliy) + 3() (@ €R),

y=0+ Jr\o @' + T + i€y 0 Tty

where ¢ extends to a continuous function on R.

Proof. Suppose € = —1. (The case € = 1 is entirely analogous.) Let z = z+iy
and let f(2) = -1

x4z

Fix 6 > 0 and let
Cy ={z]z < -6, -1 <y<0},
Ci={z]z >4, —1<y<0}

with the boundaries oriented counter-clockwise. Then Stokes’ Theorem implies
that for any yo > 0.

o0

/c+ d(f(z —iyo)on(2)dz) = / flz —iyo)o(x) da

+ / F(6+ iy — o) én (6 + i) dliy) + / T fle—i—igo)én (e — i) da

/cg

0 =

and

A(F (= — igo) b (2)dz) = / ;m F( — igo)b(a) de
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Hence,

(/_:+/;o) flx —i—iyo)dn(z — i) do (B.4)

- /0 (f(0 +iy —iyo)pn (0 +iy) — f(=0 + iy — iyo)pn(—6 + iy)) d(iy)
N ( / OO N / °°) flo—i—iyo)ow(a — i) do — / oy WG =)o (e)

Since, it is well known and easy to check,

A0F(z — w)on(:)d2) = Flo -+ iy — i) 060D ) didy,

we may take the limit as 0 goes to zero of both sides of (B.4) and obtain the
following equality

£ — iyo)pla) dx = /  fiy — o) (6w iy) d(iy)

R\0
[ amimonte—iae= [ [ piy—in) S0 do diy)
R\0 —1JR\0 '

(B.5)

Now we take the limit of both sides of (B.5) as y, goes to zero and deduce the
equation of our Lemma, with

TN 1 _ 0 L W)Y v _
¢($)—/R\qub]v(:v—|)dx—/1/R\0x/+x+iy iy SNV () d d(iy).

Since N > 1 and since ¢N*t1 is absolutely integrable, (5 extends to a continuous
function on R. [

Lemma B.3. Let ¢ : [-1,1] — C be a continuous function and let ¢ = +1.
For ' € R\ 0 define

i) = [ (s + o ) o

Then
(9)(0) = 2mep(0).
Proof. Since -
-, T
p(a') = /0 :(:’2—4—y2¢(y> dy,
is an odd function, (¢)(0) =2 lim ¢(z') =

z/—0+

e/x’ 2 0o 2
. / _ _
2$/11_>r{)1+ 1T y2¢(x y)dy = 2(—:/0 T dy ¢(0) = 2emp(0). n
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