
Journal of Lie Theory
Volume 21 (2011) 243–261
c© 2011 Heldermann Verlag

Boundary Behavior of Poisson Integrals
on Boundaries of Symmetric Spaces

Abdelhamid Boussejra

Communicated by J. Faraut

Abstract. In this paper we investigate the boundary behavior of Lp -Poisson
integrals for various boundaries of Riemannian Symmetric Spaces of the non-
compact type. In particular, we show that if a function F on a Riemannian
symmetric space G/K is solution of some invariant differential system associ-
ated to a standard parabolic subgroup PE of G then F is the Poisson integral
of an Lp -function on the boundary component G/PE if and only if it satisfies a
Hardy type condition on a family of K -orbits.
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1. Introduction and main results

The purpose of this paper is to extend the results in [2] and [3] to the case of arbi-
trary boundary component of a Riemannian symmetric space of the noncompact
type.

If X = G/K is a bounded symmetric domain then it is well known that
the Poisson transform gives a G-isomorphism from the degenerate series represen-
tations attached to the Shilov boundary with generic parameter λ onto the space
of joint eigenfunctions of all invariant differential operators that are solutions of
the Hua system associated to X ( for the tube case solutions of the Hua system
are indeed eigenfunctions of all invariant differential operators), see [13] and [9].
The results in [2], [3] assert that a C-valued function on X satisfying the above
system of differential equations has an Lp -Poisson integral representation over the
Shilov boundary of X if and only if it satisfies an Hp -condition on a family of
K -orbits.
In this paper a similar characterization is obtained for Poisson integrals of Lp -
functions on any boundary component of a Riemannian symmetric space of the
noncompact type.
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In order to describe our results let us fix some notations.
Let X = G/K be a Riemannian symmetric space of noncompact type and let
PE be a standard parabolic subgroup of G with the Langlands decomposition
PE = MEAENE .
Let λ be an element of the complexification (aE)∗c of the dual of the Lie algebra
aE of AE and let B(G/PE, λ) be the space of all hyperfunction valued sections of
degenerate principal series attached to the parabolic subgroup PE .
For f ∈ B(G/PE, λ) we define its Poisson transform Pλf by

Pλf(g) =

∫
K

f(gk)dk,

where dk is the normalized Haar measure of the compact group K . The image of
Pλ is contained in the solution space A(G/K;Mµλ) of the system

Mµλ : DF = χµλ(D)F, ∀D ∈ D(X), (1)

where χµλ is a certain character of the algebra D(X) of G-invariant differential
operators on X .

Actually the abstract existence of a system of differential equations (coming
from a left ideal of the universal enveloping algebra U(gc) of the complexification
gc of the Lie algebra g of G) characterizing the above Poisson transform seems
to be known and many authors construct in an explicit manner such operators.
We mention here the work of Johnson [5] in the case of the trivial line bundle (i.e
λ = ρE ).
When X is a Hermitian symmetric space, Shimeno [13] constructed K -covariant
differential operators H±E and showed that Pλ is a G-isomorphism from the de-
generate series representations attached to a certain parabolic subgroup PE onto
the space of functions that satisfy (1) and in the kernel of the operators H±E .
Recently Oshima [11] in his study of generalized Verma modules of the scalar type,
introduced a two sided ideal IpE(λ − ρE) of U(gc) associated to PE and showed
that if IpE(λ−ρE) satisfies some condition then the system defined by IpE(λ−ρE)
can be used to characterize the image of the Poisson integrals on the boundary
component G/PE .
Bearing in mind the above results it is natural to set the following problem:

Let D(PE) be an invariant system of differential equations characterizing
Poisson integrals on G/PE . Let F be in the null space of D(PE). Find a necessary
and sufficient condition on F to be representable as the Poisson integral of f in
Lp(G/PE), C∞(G/PE) or in the space of distributions on G/PE .

Our aim in this paper is to study the Lp -case.
We will show that, as in the case of the Furstenberg boundary see [14] (for the har-
monic case) or [2] and [3] in the case of the Shilov boundary, the question whether
a function F ∈ D(PE) has an Lp -Poisson integral representation on G/PE reduces
to the question whether F satisfies an Hp -type condition.
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Let us now state the results of this article.
Let G = KMEAENE be the generalized Iwasawa decomposition of G . Then each
x ∈ G can be written as x = κ(x)m(x)eHE(x)n(x), with unicity of HE(x) in aE .
The space B(G/PE, λ) can be identified to the space of all hyperfunctions f on
G that satisfy

f(gman) = e(λ−ρE)HE(a)f(g),∀g ∈ G,m ∈ME, a ∈ AE, n ∈ NE.

By the decomposition G = KPE the restriction from G to K gives a K -
isomorphism from B(G/PE, λ) onto the space B(K/KE) (KE = K ∩ ME ) of
all hyperfunctions f on K that satisfy

f(km) = f(k),∀m ∈ KE.

Via this isomorphism the Poisson transform of f ∈ B(K/KE) can be written as

Pλf(g) =

∫
K

e−(λ+ρE)HE(g−1k)f(k)dk.

Theorem 1.1. Let p ∈ [2,+∞[ and let λ ∈ (aE)∗c such that <(λ, α) > 0 for
all α ∈ Σ+\ < E >.
Let f ∈ B(K/KE) . Then the following are equivalent:

(i) f ∈ Lp(K/KE)

(ii) ‖ Pλf ‖λ,p= supa∈AE e
(ρE−<λ)HE(a)(

∫
K
| Pλf(ka) |p dk)

1
p < +∞.

Moreover there exists a positive constant γ(λ) such that for every f ∈ Lp(K/KE)
the following estimates hold

| c(λ) | ‖ f ‖p≤‖ Pλf ‖λ,p≤ γ(λ) ‖ f ‖p .

In the above c(λ) denotes the c-function associated to the parabolic sub-
group PE given by the following integral

c(λ) =

∫
N−E

e−(λ+ρE)HE(n)dn,

which is absolutely convergent if (<λ, α) > 0 for all α ∈ Σ+\ < E > (see
Lemma 2.4, section 2 ).

Most of the proof of Theorem 1.1 consists in proving Theorem 1.2 below.

Theorem 1.2. Let λ ∈ (aE)∗c such that <(λ, α) > 0 for all α ∈ Σ+\ < E >.
1) Let f ∈ B(K/KE) . Then the following are equivalent:

(i) f ∈ L2(K/KE)

(ii) ‖ Pλf ‖λ,2= supa∈A e
(ρE−<λ)HE(a)(

∫
K
| Pλf(ka) |2 dk)

1
2 < +∞.



246

2) Let F = Pλf with f ∈ L2(K/KE). Then f can be recovered from F by the
following inversion formula

f(k) =| c(λ) |−2 lim
a→∞
E

e2(ρE−<λ)HE(a)

∫
K

e−(λ+ρE)HE(a−1k−1h)F (ha)dh,

in L2(K/KE)

Here the notation a→∞
E

, means that α(HE(a)) → +∞ for every α ∈
Σ+\ < E > .

Remark 1.3. We should notice that for p ≥ 2, the results in Theorem 1.1 and
Theorem 1.2 doesn’t involve any class of differential equations on X that might
characterize Poisson integrals on the boundary component G/PE .

Remark 1.4. If we suppose in addition that Poisson integrals on G/PE are
characterized by some invariant system of differential equations then the result of
Theorem 1.1 can be extended to the range p ∈ (1, 2).

Indeed, assume that there exists a system of differential equations D(PE)
associated to PE (see the discussion at the end of this section) such that the
Poisson transform Pλ is a K -isomorphism from B(K/KE) onto the null space
Eλ(X) of D(PE), for λ running some subset in (aE)∗c .
Let F = Pλf with f ∈ B(K/KE) and suppose that ‖F‖λ,p <∞ .
Put Fn(g) =

∫
K
F (k−1g)χn(k)dk , where χn is an approximation of the identity

in C(K). Since Pλ is a K -isomorphism, from B(K/KE) onto Eλ(X), Fn = Pλfn
for some fn ∈ B(K/KE).
For a ∈ AE , let F a be the function defined on K/KE by F a(k) = F (ka). Then
Fn(ka) = (χn ∗ F a)(k), from which we deduce that

‖Fn‖λ,2 ≤ ‖F‖λ,p‖χn‖2.

Since ‖F‖λ,p < ∞ , it follows from the first part of Theorem 1.2 that fn ∈
L2(K/KE), provided that λ satisfies <(λ, α) > 0 for all α ∈ Σ+\ < E > .
To finish the proof we follow the technique we used in [2].

Remark 1.5. The method described in remark 1.4 follows from the one used by
Ben Said, Oshima and Shimeno in [1] to characterize the Lp -range of the Poisson
transform on the Furstenberg boundary (i.e E = ∅), 1 < p <∞ .

Now we give some applications of our result to Lp -integral representations
of solutions of generalized Hua operators.

In the case of the trivial line bundle (i.e λ = ρE ) Johnson [5] construct
a system of differential equations JE associated to PE (called generalized Hua
operators) and showed that Pρ(B(K/KE)) = H(X), where

H(X) = {F : X → C; JEF = 0 and DF = 0,∀D ∈ D(X)}.
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As a consequence of our results we get a characterization of those functions
on H(X) which are Poisson integrals of Lp -functions on the boundary component
K/KE .
More precisely let Hp(X) denote the following Hardy-type space

Hp(X) = {F ∈ H(X); ‖F‖p <∞},

where

‖F‖p = sup
a∈AE

[

∫
K

| F (ka) |p dk]
1
p .

Theorem 1.6. The Poisson transform PρE is an isometric isomorphism from
Lp(K/KE) onto the Hardy space Hp(X).

Proof. Letting λ = ρE in Theorem 1.1, we get the desired result for the case
p ≥ 2. For 1 < p < 2, see Remark 1.4.

Remark 1.7. It follows from the above theorem that Hp(X) is a Banach space.

Remark 1.8. In [14], Stoll showed that a harmonic function F on X (with
respect to D(X)) is the Poisson integral of an Lp -function on the Furstenberg
boundary of X if and only if

sup
a∈A

∫
K

| F (ka) |p dk <∞.

Thus the above theorem extends Stoll result [14] to all boundaries of X .

As mentioned before, if X is a Hermitian symmetric space, Shimeno [13]
constructed K -covariant differential operators Hk

± associated to a certain parabolic
subgroup PE and showed that the Poisson transform gives a G-isomorphism of
degenerate series representation attached to PE onto the space of functions on X
that are joint eigenfunctions of invariant differential operators and in the kernel of
Hk
± .

Using our main result we get a necessary and sufficient condition on solutions of
the above system to have an Lp -Poisson integral representation over the boundary
component G/PE .
To be more precise let us review the construction of the operators Hk

± refereing to
Shimeno [13] for more details. Let ∆ = {α1, . . . , αr} be the set of simple roots in
Σ+ (see section 2) and Let Ek be the subset of ∆ given by

Ek = {αk, . . . , αr} (2 ≤ k ≤ r).

Let Z be an element of the center of k such that (adZ)2 is −1 on the
complexification pc of p . Let p± be the ±

√
−1 eigenspace of adZ in pc .

Let t be a Cartan subalgebra of k ; then t is a Cartan subalgebra of g also.
Let Φ denote the root system of (gc, tc) and Φn the set of the noncompact roots.
For γ ∈ Φ let gγ denote the root space for γ . We choose a set of positive roots
Φ+ such that p+ =

∑
γ∈Φ+

n
gγ , where Φ+

n = Φn ∩ Φ+ .
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Let {γ1, . . . , γr} be the maximal set of strongly orthogonal noncompact roots,
such that γ1 is the lowest root in Φ+

n and γj+1 is the lowest element of Φ+
n that

is strongly orthogonal to γ1, . . . , γj , for j = r, . . . , 1.
Let p− (resp. p+) be the projection of ⊗kp− (resp. ⊗kp+ ) onto the irre-
ducible submodule Vk,− (resp. Vk,+ ) with highest weight −(γ1 + · · · + γk) (
resp. γr + · · ·+ γr−k+1 ).

Let {Xi} be a basis of p+ and let {X∗i } be the dual basis of p− with
respect to the Killing form. Then the Hua operator Hk

+ (resp Hk
− ) is the

homogeneous differential operator from C∞(G/K) to the space of C∞ -sections
of the homogeneous vector bundle G×K Vk,− (resp. G×K Vk,+ ) defined by

Hk
+ =

∑
i1,...,ik

Xi1 · · ·Xik ⊗ p−(X∗i1 · · ·X
∗
ik

)

(resp.Hk
− =

∑
i1,...,ik

X∗i1 · · ·X
∗
ik
⊗ p−(Xi1 · · ·Xik)).

Let {H1, . . . , Hr} be the basis of a which is dual to ∆.
For λ ∈ (aE)∗c define µλ on a∗c by µλ = λ− ρE + ρ .
Put λw,i = (ρ− wµλ, Hi) and λw = (λw,i)αi /∈Ek , where w ∈ Wk \W .
Here Wk denotes the subgroup of the Weyl group W , generated by the reflections
in < Ek > .

Let Hλ(X) be the space of analytic functions F on X that satisfy

Hk
±F = 0,

and
DF = χµλ(D)F, ∀D ∈ D(X).

For µ ∈ a∗c denote by cEk(µ) the c-function associated to PEk . Let e−1
k (µ) denote

the denominator in the formula giving the meromorphic extension of cEk(µ), see
[12]. Then Shimeno result can be stated as follows

Theorem 1.9. [13] Let λ ∈ (aE)∗c such that

ek(µλ) 6= 0,

and
1

2
(λ1 − λw) /∈ {0, 1, . . .}k−1,

for all w ∈ Wk \W , with λw 6= λ1 .
Then the Poisson transform Pλ is a G-isomorphism from B(G/PE, λ) onto Hλ(X).

For p ∈]1,∞[ and λ ∈ (aE)∗c we introduce a Hardy-type space Hp
λ(X)

consisting of all F ∈ Hλ(X) that satisfy

‖ F ‖λ,p= sup
a∈AE

e(ρE−<λ)HE(a)(

∫
K

| F (ka) |p dk)
1
p <∞.
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Theorem 1.10. Let p ∈]1,+∞[ and let λ ∈ (aE)∗c such that <(λ, α) > 0 for
all α ∈ Σ+\ < E >. Let F ∈ Hλ(X). Then we have:
F = Pλf , for some f ∈ Lp(K/KE) if and only if F ∈ Hp

λ(X).

Moreover, there exists a positive constant γ(λ) such that for every f ∈
Lp(K/KE) the following estimates hold:

|c(λ)| ‖f‖p ≤‖ Pλf ‖λ,p≤ γ(λ)‖f‖p.

Proof. For p ≥ 2 the result follows from Theorem 1.1 and for p ∈ (1, 2) see
remark 1.4.

We end this section with a brief discussion on the image of the Poisson
transform on the degenerate principal series representation attached to a boundary
component G/PE of a Riemannian symmetric space of the noncompact type. We
follow the notation of [11] with slight modifications.
For λ ∈ (aE)∗c , put

JpE(λ− ρE) =
∑

X∈(pE)c

U(g)(X − (λ− ρE)(X)),

and
Jp(λ− ρ) =

∑
X∈pc

U(g)(X − (λ− ρ)(X)).

Here (pE)c (resp.pc ) denotes the complexification of the Lie algebra pE of the
parabolic subgroup PE (resp. p of P ).
Let µλ = λ − ρE + ρ and let e−1(µλ) be the denominator of the Harish-Chandra
c-function. Then Oshima result can be state as follows

Theorem 1.11. [11] Let λ ∈ (aE)∗c such that e(µλ) 6= 0. Assume that a two
sided ideal IpE(λ− ρE) of U(gc) satisfies

JpE(λ− ρE) = IpE(λ− ρE) + Jp(λ− ρ).

Then the Poisson transform Pλ is a G-isomorphism from B(G/PE, λ) onto the
simultaneous solution space Eλ(X) of the system defined by IpE(λ − ρE) and the
system Mµλ .

As a consequence of our main result we obtain a necessary and sufficient
condition on a function F ∈ Eλ(X) to be representable as the Poisson integral of
a function in Lp(K/KE).

Theorem 1.12. Let λ ∈ (aE)∗c such that <(λ, α) > 0 for all α ∈ Σ+\ < E >
and let p > 1. For F ∈ Eλ(X) the following are equivalent:
(i)There exists a unique f ∈ Lp(K/KE) such that F = Pλf .
(ii) ‖ F ‖λ,p< +∞.

Proof. For p ≥ 2 the result follows from Theorem 1.1 and for p ∈ (1, 2) the
result follows from remark 1.4.
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The outline of this paper is as follows. In the next section after some pre-
liminary material, we state and prove a Lemma on the asymptotic behavior of
Eisenstein integrals associated to the parabolic subgroup PE . To this end we ex-
tend the Fatou-type theorems in [2] and [3] to all boundaries of a Riemannian
symmetric space of the noncompact type . In section 3 we prove Theorem 1.2.
This will be derived from our result on the asymptotic behavior of the generalized
Eisenstein integrals. The proof of Theorem 1.1 is based on the L2 -inversion for-
mula stated in Theorem 1.2.

Some techniques we use here are similar to those of [2] and [3]. However
the results here apply to all boundaries of Riemannian symmetric spaces of the
noncompact type.

2. Asymptotic behavior of Eisenstein integrals

2.1. Preliminary results. Let G be a connected semi-simple Lie group with
finite center and let K be a maximal compact subgroup of G . Then G/K is a
Riemannian symmetric space of the noncompact type.
Let g = k+ p be the Cartan decomposition of the Lie algebra g of G with respect
to the Cartan involution θ . Denote by a a maximal Abelian subspace of p , Σ the
set of restricted roots of the pair (g, a). Fix a linear order in the dual a∗ of a and
let Σ+ be the positive elements in Σ. By ρ we denote as usual the half sum of
positive roots with multiplicities counted.
Put n = Σα∈Σ+gα where gα is the root space for α . Let N (resp A) be the
connected subgroup of G with Lie algebra n (resp a). If M is the centralizer of
A in K , then P = MAN is a closed subgroup of G , called a minimal parabolic
subgroup.
By definition, a standard parabolic subgroup of G is a closed subgroup of G con-
taining P .
It is well known that standard parabolic subgroups of G are in one to one corre-
spondence with subsets E of ∆ the set of simple roots in Σ+ .
Let E ⊂ ∆ and let PE be the corresponding parabolic subgroup with Langlands
decomposition PE = MEAENE such that AE ⊂ A . Each boundary component
of X is of the form G/PE and we have the identification G/PE = K/KE where
KE = K ∩ME .
If aE denotes the Lie algebra of AE . Then

aE = {H ∈ a, α(H) = 0,∀α ∈ E}.

Let a(E) denote the orthogonal complement of aE in a with respect to the Killing
form B of gc . Let ρE and ρa(E) be the restriction of ρ to aE and a(E) respectively.
Then we have

ρE =
1

2

∑
α∈

∑+ \<E>

mαα,

ρa(E) =
1

2

∑
α∈

∑+ ∩<E>

mαα,
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and ρ = ρE + ρa(E) .
In the above < E >= Σ ∩ Σα∈EZα and mα = dim gα .
For α ∈ a∗c , we denote by Hα the unique element in ac such that B(H,Hα) = Hα

for all H ∈ a .
Also, for α, β in a∗c we set (α, β) = B(Hα, Hβ).
Let W be the Weyl group of the pair (g, a). Then W acts on a and a∗ (via the
Killing form) and is naturally identified to the Weyl group of Σ.

Now we recall an integral formula on the group N−E = θ(NE). Let dn be
the invariant measure of N−E such that

∫
N−E

e−2ρE(HE(n))dn = 1.

Then for a continuous function f on the coset K/KE , we have∫
K

f(k)dk =

∫
N−E

f(κ(n))e−2ρE(HE(n))dn. (2)

In the remainder of this paper the space Lp(K/KE) will be regarded as
the space of all C-valued measurable (classes) functions f on K which are right
KE -invariant with

‖ f ‖p= [

∫
K

| f(k) |p dk]
1
p < +∞.

2.2. Asymptotic behavior of Eisenstein integrals. We first review some
basic facts about harmonic analysis on the homogeneous space K/KE refereing to
[4] for more details.

Let K̂ denote as usual the set of all equivalence classes of unitary irreducible
representations of K .
For δ ∈ K̂ , let Vδ be the representation space of δ with inner product <,> .
Let K̂E denote the set of elements δ ∈ K̂ for which the subspace

V KE
δ = {v ∈ Vδ, δ(m)v = v,∀m ∈ KE}

is nonzero.
Let (vi)

d
i=1 be an orthonormal basis of Vδ so that (vi)

l
i=1 is also a basis of V KE

δ .
Here d and l denote respectively the dimension of Vδ and V KE

δ .
According to the Peter-Weyl Theorem we have the orthogonal Hilbert space de-
composition

L2(K/KE) =
⊕
δ∈K̂E

Hδ,

where Hδ is the space spanned by the linearly independent functions

hδi,j(k) =< δ(k)vj, vi >, (1 ≤ j ≤ l, 1 ≤ i ≤ d).

For λ ∈ (aE)∗c , consider the Eisenstein integral Φλ,δ defined on X by

Φλ,δ(g) =

∫
K

e−(λ+ρE)HE(g−1k)δ(k)dk.

Then Φλ,δ maps X into Hom(Vδ, Vδ).
Moreover we have

Φλ,δ(kg) = δ(k)Φλ,δ(g), (3)
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for every k in K .

Proposition 2.1. let λ ∈ (aE)∗c . Then we have

Pλh
δ
i,j(ka) =

∑
1≤m≤l

Φδ
λ,m,j(a)hδi,m(a),

where

Φδ
λ,m,j(a) = Pλh

δ
m,j(a).

Proof. Put Fλ,δ(g) = Φλ,δ(g)vj . Then Fλ,δ(ka) = δ(k)Fλ,δ(a), for every
k ∈ K , by (3).
Since ME centralizes AE

δ(m)Fλ,δ(a) = Fλ,δ(a),

for all m ∈ KE .
That is Fλ,δ(a) ∈ V KE

δ . Hence

Fλ,δ(a) =
l∑

m=1

Φδ
λ,m,j(a)vm,

where Φδ
λ,m,j(a) =< Fλ,δ(a), vm > .

By definition Pλh
δ
i,j(g) =< Fλ,δ(g), vi > . Hence

Φδ
λ,m,j(a) = Pλh

δ
m,j(a).

Since

Pλh
δ
i,j(ka) =< Fλ,δ(ka), vi >,

and since

< Fλ,δ(ka), vi >=< δ(k)Fλ,δ(a), vi >,

we deduce that Pλh
δ
i,j(ka) =

l∑
m=1

Φδ
λ,m,j(a)hδi,m(a).

Now we prove the following lemma giving the asymptotic behavior of the
Eisenstein integrals.

Lemma 2.2. Let λ ∈ (aE)∗c be such that <(λ, α) > 0 for all α ∈
∑+ \ < E >.

Then we have

lim
a→∞
E

e(ρE−λ)HE(a)Φδ
λ,m,j(a) =

{
c(λ) if m = j
0 otherwise

for every δ ∈ K̂E , 1 ≤ m, j ≤ l .
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To prove Lemma 2.2 we will establish a Fatou-type theorem for Poisson
integrals on any boundary component which is at our knowledge new. For Fatou-
theorems on the maximal boundary see Korányi [8], Knapp and Williamson [7] in
the harmonic case and Michelson [10] for other eigenvalues.
In the case λ = ρE , Poisson integrals for other boundary components have been
studied by Korányi [8] for L∞ .

Proof. Recall that Φδ
λ,m,j(a) = Pλh

δ
m,j(a). Then by (i) of the above theorem

lim
a→∞
E

e(ρE−λ)HE(a)Φδ
λ,m,j(a) = c(λ)hδm,j(e),

and since hδm,j(k) =< δ(k)vj, vm > , we get the desired result.

Lemma 2.3. Let λ ∈ (aE)∗c such that <(λ, α) > 0 for every α ∈
∑+ \ < E >.

Then the integral

c(λ) =

∫
N−E

e−(λ+ρE)HE(n)dn

converges absolutely.

Before proving this lemma, we recall a result on the partial Harish-Chandra
cE -function associated to the parabolic subgroup PE (see [12] Lemma 6.1.4).
Let µ ∈ a∗c such that (<µ, α) > 0, for every α ∈

∑+ \ < E > . Then cE(µ) is
given by the absolutely convergent integral

cE(µ) =

∫
N−E

e−(µ+ρ)H(n)dn,

where H(n) ∈ a with respect to the Iwasawa decomposition G = KAN of G,
x = κ(x)eH(x)n(x) .

Proof. Let λ ∈ a∗c . We extend it to a C-linear form µλ on ac by setting

µλ = λ on aE and µλ = ρa(E) on a(E).
Put

WE = {s ∈ W ; s.H = H ∀H ∈ aE},

and let s ∈ WE such that

(i) s(
∑+ \ < E >) =

∑+ \ < E >

(ii) s(
∑+ ∩ < E >) = −

∑+ ∩ < E >

We have sµλ + ρ = λ+ ρE , by (ii).
Since

(s.µλ, α) = (µλ, s
−1α),
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we get

<(s.µλ, α) > 0, ∀α ∈
+∑
\ < E >,

by (i). Therefore the integral

cE(sµλ) =

∫
N−E

e−(sµλ+ρ)H(n)dn,

converges absolutely. To conclude observe that c(λ) = cE(sµλ).

Theorem 2.4. Let λ ∈ (aE)∗c be such that <(λ, α) > 0 for all
α ∈

∑+ \ < E >. Then

c(λ)−1 lim
a→∞
E

e(ρE−λ)HE(a)Pλf(ka) = f(k)

(i) uniformly for f ∈ C(K/KE);
(ii) in Lp(K/KE), 1 < p <∞.

Proof. (i) Let f ∈ C(K/KE) and rewrite its Poisson transform as

Pλf(ka) =

∫
K

e−(λ+ρE)HE(a−1h)f(kh)dh.

Since the integrand
h→ e−(λ+ρE)HE(a−1h)f(kh)

is a continuous KE -invariant function on K , we can use the formula (2) to
transform the above integral into an integral over N−E :

Pλf(ka) =

∫
N−E

e−(λ+ρE)HE(a−1κ(n))f(kκ(n))e−2ρE(HE(n))dn.

Next use the following cocycle relation for the generalized Iwasawa function HE(x),

HE(xκ(y)) = HE(xy)−HE(y)

for all x, y in G , to get

Pλf(ka) =

∫
N−E

e−(λ+ρE)HE(a−1n)e(λ−ρE)HE(n)f(kκ(n))dn.

By using the change of variables n → a−1na , the above Poisson integral can be
rewritten as

Pλf(ka) =

∫
N−E

e−(λ+ρE)HE(na−1)e(λ−ρE)HE(ana−1)f(kκ(ana−1))e−2ρEHE(a)dn,

and since H(na−1) = HE(n)−HE(a)

Pλf(ka) = e(λ−ρE)H(a)

∫
N−E

e−(λ+ρE)HE(n)e(λ−ρE)HE(ana−1)f(kκ(ana−1)dn.
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From ana−1 → e as a→∞
E

, it follows that

lim
a→∞
E

e(ρE−λ)HE(a)Pλf(ka) = c(λ)f(k),

provided a reversal of the order of the limit and the integration is justified.
To justify this by the dominated convergence theorem, it suffices to show that the
functions

Ψa(n) = e−(λ+ρE)HE(n)e(λ−ρE)HE(ana−1)

are uniformly bounded by f ∈ L1(N−E ), since the integrand is less than | Ψa(n) |
supk∈K | f(k) | .
For this we will need the following result from [12]:

Let ν in a∗E such that (ν, α) > 0, ∀α ∈
∑+ \ < E > .

Let a ∈ A+
E and n ∈ N−E . Then we have

(i) ν(HE(n)) ≥ 0
(ii) ν(HE(n)−HE(ana−1) ≥ 0.

Let 0 < ε ≤ 1 be such that <(ρE − ελ, α) ≥ 0,∀α ∈
∑+ \ < E > , and

rewrite | Ψa(n) | as

| Ψa(n) |= e−(<λ+ρE)HE(n)e−(ρE−ε<λ)HE(ana−1)e(1−ε)<λ(HE(ana−1)).

Then by (i)

| Ψa(n) |≤ e−(<λ+ρE)HE(n)e(1−ε)<λ(HE(ana−1)),

and by (ii)

e(1−ε)<λHE(ana−1) ≤ e(1−ε)<λ(HE(n)).

Therefore

| Ψa(n) |≤ e−(ε<λ+ρE)HE(n),

which is integrable by Lemma 2.4 and the proof of the (i) part of Theorem 2.3 is
finished.

To prove (ii) we first establish the following proposition which shows that
Poisson integrals of Lp -functions on the boundary component K/KE satisfy the
Hp -condition stated in Theorem 1.1.

Proposition 2.5. Let λ ∈ (aE)∗c be such that <(λ, α) > 0 for all
α ∈

∑+ \ < E >. Then there exists a positive constant γ(λ) such that for
p ∈]1,+∞[ and f ∈ Lp(K/KE), we have:

sup
a∈AE

e(ρE−<λ)HE(a)[

∫
K

| Pλf(ka) |p dk]
1
p ≤ γ(λ) ‖ f ‖p .
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Proof. Let f ∈ Lp(K/KE). Then its Poisson transform Pλf can be written
as a convolution over the compact group K :

Pλf(ka) = [f ∗ P a
λ ](k),

where P a
λ is the function defined on K by

P a
λ (k) = e−(λ+ρE)H(a−1k−1).

By using the Hausdorff-Young inequality, we get

(

∫
K

| Pλf(ka) |p dk)
1
p ≤‖ f ‖p ‖ P a

λ ‖1,

and since ‖ P a
λ ‖1= φ<λ(a), it follows from the i) part of Theorem 2.3 that

‖ P a
λ ‖1≤ γ(λ)e(<(λ)−ρE)HE(a),

for some positive constant γ(λ). Therefore

sup
a∈AE

e(ρE−<λ)HE(a)[

∫
K

| Pλf(ka) |p dk]
1
p ≤ γ(λ) ‖ f ‖p .

This proves Proposition 2.5.

We come back to the proof of (ii) of Theorem 2.3. We first recall a classi-

cal result on harmonic analysis on compact homogeneous spaces. For δ ∈ K̂ let
C(K/KE)(δ) denote the subspace of C(K/KE) consisting of the K -finite vectors
of type δ . Then, the algebraic sum ⊕δ∈K̂C(K/KE)(δ) is dense in C(K/KE) un-
der the topology of uniform convergence. Therefore ⊕δ∈K̂C(K/KE)(δ) is dense in
Lp(K/KE).

Let f ∈ Lp(K/KE). Then for any ε > 0, there exists φ ∈ ⊕δ∈K̂C(K/KE)(δ)
such that ‖f − φ‖p ≤ ε . We have

‖c(λ)−1e(ρE−λ)HE(a)P a
λf − f‖p ≤ ‖c(λ)−1e(ρE−λ)HE(a)P a

λ (f − φ)‖p +

‖c(λ)−1e(ρE−λ)HE(a)P a
λφ− φ‖p + ‖φ− f‖p.

Since
‖c(λ)−1e(ρE−λ)HE(a)P a

λ (f − φ)‖p ≤ γ(λ)|c(λ)|−1‖f − φ‖p,
by Proposition 2.5, and since

lim
a→∞
E

‖c(λ)−1e(ρE−λ)HE(a)P a
λφ− φ‖p = 0,

by the (i) part of Theorem 2.3, we conclude that

lim
a→∞
E

‖c(λ)−1e(ρE−λ)HE(a)Pλf − f‖p ≤ ε(γ(λ) + 1).

Therefore
lim
a→∞
E

‖c(λ)−1e(ρE−λ)HE(a)Pλf − f‖p = 0.

This proves (ii) and the proof of Theorem 2.3 is complete.
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As an immediate consequence of Theorem 2.3, we obtain the following
characterization of Poisson integrals of Lp functions on the boundary component
K/KE .

Corollary 2.6. Let λ ∈ (aE)∗c such that <(λ, α) > 0 for all α ∈
∑+ \ < E >.

Then there exists a positive constant γ(λ) such that for every p ∈]1,+∞[ and
every f ∈ Lp(K/KE) the following estimates hold

|c(λ)| ‖f‖p ≤ ‖Pλf‖λ,p ≤ γ(λ)‖f‖p.

Proof. The right hand side follows from Proposition 2.5. For the left hand
side the proof follows the same line as in the proof
of corollary 2.1 in [2], so we omit it.

3. Proof of the main result

In this section we prove our main result.

3.1. Proof of Theorem 1.2. 1) The necessary condition follows from Proposi-
tion 2.5, for p = 2.

Let F = Pλf , with f ∈ B(K/KE) and assume that

‖ F ‖λ,2= sup
a∈AE

e(ρE−<λ)HE(a)[

∫
K

| Pλf(ka) |2 dk]
1
2 <∞.

Let
f =

∑
δ∈K̂E

∑
1≤i≤l;1≤j≤d

cδijh
δ
ij,

be the Fourier expansion of the hyperfunction f with respect to the basis (hδij)δ∈K̂E .
By Proposition 2.1, we have

F (ka) =
∑
δ∈K̂E

∑
1≤i≤l;1≤m≤d

{ d∑
j=1

cδijΦ
δ
λ,m,j(a)

}
hδim(k),

with ∫
K

| F (ka) |2 dk =
∑
δ∈K̂E

∑
1≤i≤l;1≤m≤d

∣∣∣∣ d∑
j=1

cδijΦ
δ
λ,m,j(a)

∣∣∣∣2 <∞,
for each a ∈ AE .
Since ‖ F ‖λ,2<∞ , we have

e2(ρ−<λ)HE(a)
∑
δ∈K̂E

∑
1≤i≤l;1≤m≤d

|
d∑
j=1

cδijΦ
δ
λ,m,j(a) |2≤‖ F ‖2

λ,2<∞,

for all a ∈ AE .
let Λ be a finite subset of K̂E . Then, using the asymptotic behavior of Eisenstein
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integrals giving by Lemma 2.2, we get∑
δ∈Λ

∑
1≤i≤d;1≤m≤l

| cδij |2| c(λ) |2≤‖ F ‖2
λ,2,

and since Λ is arbitrary we deduce that f ∈ L2(K/KE) and that

| c(λ) | ‖ f ‖2≤‖ F ‖λ,2 .

This prove the first part of Theorem 1.2.

2) Now we turn to the proof of the L2 -inversion formula.

Let F = Pλf with f ∈ L2(K/KE). Expanding f into its Fourier series
and using proposition 2.1, F may be written as

F (ka) =
∑
δ∈K̂E

∑
1≤i≤l;1≤m≤d

{
d∑
j=1

cδijΦ
δ
λ,m,j(a)}hδim(k),

in C∞(K × AE).
For a ∈ AE , we define a C-valued function ga on K/KE by

ga(k) =| c(λ) |−2 e2(ρE−<λ)HE(a)

∫
K

e−(λ+ρE)HE(a−1k−1h)F (ha)dh.

Then replacing F by the above series and using again Proposition 2.1, we obtain

ga(k) =| c(λ) |−2 e2(ρE−<λ)HE(a)
∑
δ∈K̂

∑
1≤i≤d;1≤q≤l

{
∑

1≤m≤l;1≤j≤l

cδijΦ
δ
λ,m,j(a)Φδ

λ,q,m(a)}hδiq(k).

Put
Aδiq(a) =

∑
1≤m≤l;1≤j≤l

cδijΦ
δ
mj(a)Φδ

qm(a).

Then
lim
a→∞
E

|c(λ)|−2e2(ρE−<λ)HE(a)Aδiq(a) = cδiq,

by Lemma 2.2. Therefore

lim
a→∞
E

‖ ga − f ‖2= 0.

This completes the proof of Theorem 1.2.

3.2. Proof of Theorem 1.1. (i) implies (ii) by proposition 2.5.

To prove (ii) implies (i), let F = Pλf with f ∈ B(K/KE) and assume that
‖F‖λ,p <∞ . Since p ≥ 2,

‖F‖λ,2 ≤ ‖F‖λ,p.
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Hence the given f is necessarily in L2(K/KE), by Theorem 1.2.
Moreover, by the second part of Theorem 1.2 the function f can be recovered from
F via the inversion formula

f(k) =| c(λ) |−2 lim
a→∞
E

e2(ρE−<λ)HE(a)

∫
K

e−(λ+ρE)HE(a−1k−1h)F (ha)dh,

in L2(K/KE).
Next, put

ga(k) =| c(λ) |−2 e2(ρE−<λ)HE(a)

∫
K

e−(λ+ρE)HE(a−1k−1h)F (ha)dh,

and let φ be a continuous function on K/KE . Then

lim
a→∞
E

∫
K

ga(k)φ(k)dk =

∫
K

f(k)φ(k)dk.

By definition∫
K

ga(k)φ(k)dk = |c(λ)|−2e2(ρE−<(λ))HE(a)

∫
K

[

∫
K

e−(λ+ρE)HE(a−1k−1h)F (ha)dh]φ(k)dk.

Using Fubini theorem, the right-hand side of the above equality may be written as

|c(λ)|−2e2(ρE−<(λ))HE(a)

∫
K

Pλφ(ha)F (ha)dh,

from which we deduce

|
∫
K

ga(k)φ(k)dk| ≤ |c(λ)|−2e2(ρE−<(λ))HE(a)[

∫
K

|Pλφ(ha)|q]
1
q [

∫
K

|F (ha)|p]
1
p ,

by Hölder inequality.
Clearly

|
∫
K

ga(k)φ(k)dk| ≤ |c(λ)|−2e(ρE−<(λ))HE(a)[

∫
K

|Pλφ(ha)|q]
1
q ‖F‖λ,p.

We have
φ(k) = |c(λ)|−1 lim

a→∞
E

e(ρE−<(λ))HE(a)Pλφ(ka)

in Lq(K/KE), by Theorem 2.3.
Consequently

|
∫
K

f(k)φ(k)dk| ≤ |c(λ)|−1‖F‖λ,p‖φ‖q.

Next taking the supremum over all continuous φ with ‖φ‖q = 1 in the above
inequality we get

‖f‖p ≤ |c(λ)|−1‖F‖λ,p‖φ‖q.

This shows that f is in Lp(K/KE) and the proof of Theorem 1.1 is finished.
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