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Abstract. Let θ be an involution of the finite dimensional reductive Lie
algebra g and g = k ⊕ p be the associated Cartan decomposition. Denote by
K ⊂ G the connected subgroup having k as Lie algebra. The K -module p is
the union of the subsets p(m) := {x | dim K.x = m} , m ∈ N , and the K -sheets
of (g, θ) are the irreducible components of the p(m) . The sheets can be, in
turn, written as a union of so-called Jordan K -classes. We introduce conditions
in order to describe the sheets and Jordan classes in terms of Slodowy slices.
When g is of classical type, the K -sheets are shown to be smooth; if g = glN a
complete description of sheets and Jordan classes is then obtained.
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Introduction

Let g be a finite dimensional reductive Lie algebra over an algebraically closed
field k of characteristic zero. Fix an involutive automorphism θ of g ; it yields
an eigenspace decomposition g = k ⊕ p associated to respective eigenvalues +1
and −1 . One then says that (g, θ) , or (g, k) , is a symmetric Lie algebra, or
a symmetric pair. Denote by G the adjoint group of g and by K ⊂ G the
connected subgroup with Lie algebra k ∩ [g, g] . The adjoint action of g ∈ G on
x ∈ g is denoted by g.x . Recall that a G-sheet of g is an irreducible component
of g(m) := {x ∈ g | dimG.x = m} for some m ∈ N . This notion can be obviously
generalized to (g, θ) : the K -sheets of p are the irreducible components of the
p(m) := {x ∈ p | dimK.x = m} , m ∈ N . The study of these varieties is related to
various geometric problems occurring in Lie theory. For example, the study of the
irreducibility of the commuting variety in [Ri79] and of its symmetric analogue in
[Pa05, SY06, PY07] is based on some results about G-sheets and K -sheets.

Let us first recall some results about G-sheets. The G-sheets containing
a semisimple element are called Dixmier sheets; they were introduced by Dixmier
in [Di75, Di76]. Any G-sheet is Dixmier when g = glN ; in [Kr78], Kraft gave
a parametrization of conjugacy classes of sheets. Borho and Kraft introduced in
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[BK79] the notion of a sheet for an arbitrary representation, which includes the
above definitions of G-sheets and K -sheets. They also generalized in [Bor81,
BK79] some of the results of [Kr78] to any semisimple g . In particular, they give
a parametrization of G-sheets which relies on the induction of nilpotent orbits,
defined by Lusztig-Spaltenstein [LS79], and the notion of decomposition classes or
Zerlegungsklassen. Following [TY05, 39.1], a decomposition class will be called a
Jordan G-class here. The Jordan G-class of an element x ∈ g can be defined by

JG(x) := {y ∈ g | ∃ g ∈ G, g.gx = gy}

(where gx is the centralizer of x in g). Clearly, Jordan G-classes are equivalence
classes and one can show that g is a finite disjoint union of these classes. Then,
it is easily seen that a G-sheet is the union of Jordan G-classes, cf. Section 2.
A significant part of the work made in [Bor81, BK79] consists in characterizing
a G-sheet by the Jordan G-classes it contains. Basic results on Jordan classes
(finiteness, smoothness, description of closures,. . . ) can be found in [TY05, Chap-
ter 39] and one can refer to Broer [Bro98] for more advanced properties (geometric
quotients, normalisation of closure,. . . ).

An important example of a G-sheet is the set of regular elements:

greg := {x ∈ g | dim gx 6 dim gy for all y ∈ g}.

Kostant [Ko63] has shown that the geometric quotient greg/G exists and is iso-
morphic to an affine space. This has been generalized to the so-called admissible
G-sheets in [Ru84]. Then, Katsylo proved in [Ka83] the existence of a geometric
quotient S/G for any G-sheet S . More recently, Im Hof [IH05] showed that the
G-sheets are smooth when g is of classical type.

The parametrization of sheets used in [Ko63, Ru84, Ka83, IH05] differs
from the one given in [Kr78, Bor81, BK79] by the use of “Slodowy slices”. More
precisely, let S be a sheet containing the nilpotent element e and embed e into
an sl2 -triple (e, h, f) . Following the work of Slodowy [Sl80, §7.4], the associated
Slodowy slice e+X of S is defined by

e+X := (e+ gf ) ∩ S.

Then, one has S = G.(e + X) and S/G is isomorphic to the quotient of e + X
by a finite group [Ka83]. Furthermore, since the morphism G × (e + X) → S is
smooth [IH05], the geometry of S is closely related to that of e + X . We give a
more detailed presentation of these results in Section 3.

In the symmetric case, much less properties of sheets are known. The
first important one was obtained in [KR71] where the regular sheet preg of p is
studied. In particular, similarly to [Ko63], it is shown that preg = Gθ.(ereg + pf )
where Gθ := {g ∈ G | g ◦ θ = θ ◦ g} . Another interesting result is obtained in
[Pa05, SY06, PY07] (where the symmetric commuting variety is studied): each
even nilpotent element of p belongs to some K -sheet containing a semisimple
element. More advanced results can be found in [TY05, §39]. The Jordan K -class
of x ∈ p is defined by

JK(x) := {y ∈ p | ∃ k ∈ K, k.px = py}.
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One can find in [TY05] some properties of Jordan K -classes (finiteness, dimension,
. . . ) and it is shown that a K -sheet is a finite disjoint union of such classes.

Unfortunately, the key notion of “orbit induction” does not seem to be well
adapted to the symmetric case. For instance, the definition introduced by Ohta in
[Oh99] does not leave invariant the orbit dimension anymore.

We now turn to the results of this paper. The inclusion p(m) ⊂ g(2m) is the
starting point for studying the intersection of G-sheets, or Jordan classes, with p

in order to get some information about K -sheets.
We first consider the case of symmetric pairs of type 0 in section 5. A

symmetric pair is said to be of type 0 if it is isomorphic to a pair (g′ × g′, θ)
with θ(x, y) = (y, x) . This case, often called the “group case”, is the symmetric
analogue of the Lie algebra g′ .

In the general case we study the intersection J ∩ p when J is a Jordan
G-class. Using the results obtained in sections 6 to 8, we show (see Theorem 8.4)
that J ∩ p is smooth, equidimensional, and that its irreducible components are
exactly the Jordan K -classes it contains.

We study the K -sheets, for a general symmetric pair, in section 9. After
proving the smoothness of K -sheets in classical cases (Remark 9.5), we try to
obtain a parametrization similar to the Lie algebra case by using generalized
“Slodowy slices” of the form e + X ∩ p , where e ∈ p is a nilpotent element
contained in the G-sheet S . To get this parametrization we need to introduce
three conditions (labelled by (♥), (♦) and (♣)) on the sheet S . Under these
assumptions, we obtain the parametrization result in Theorem 9.12; it gives in
particular the equidimensionality of S ∩ p .

In sections 10 to 12 we show that the conditions (♥), (♦), (♣) hold when
g = glN or slN (type A). In this case, up to conjugacy, three types of irreducible
symmetric pairs exist (AI, AII, AIII in the notation of [He78a]) and have to
be analyzed in details. The most difficult one being type AIII, i.e. (g, k) ∼=
(glN , glp × glN−p) .

In Section 13 we prove the main result in type A (Theorem 13.2), which
gives a complete description of the K -sheets and of the intersections of G-sheets
with p . In particular, we give the dimension of a K -sheet in terms of the dimension
of the nilpotent K -orbits contained in the sheet. One can also determine the sheets
which contain semisimple elements (i.e. the Dixmier K -sheets) and characterize
nilpotent orbits which are K -sheets (i.e. the rigid nilpotent K -orbits) as sketched
in Section 14.

Acknowledgments. I would like to thank Michaël Le Barbier, Oksana Yaki-
mova and Anne Moreau for useful conversations. I also thank the referees of
my thesis Dmitri Panyushev and Michel Brion for their valuable comments which
helped to improve significantly the quality of this article. I am grateful to Michel
Brion (and Thierry Levasseur) for pointing out the relevance of Theorem 8.5 to
the situation.
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1. Notation and basics

We fix an algebraically closed field k of characteristic zero and we set k× := kr{0} .
If V, V ′ are k-vector spaces, Hom(V, V ′) is the vector space of k-linear maps from
V to V ′ and the dual of V is V ∗ := Hom(V, k) . The space gl(V ) := Hom(V, V ) is
equipped with a natural Lie algebra structure by setting [x, y] = x ◦ y − y ◦ x
for x, y ∈ gl(V ) . The action of x ∈ gl(V ) on v ∈ V is written x.v = x(v)
and tx is the transpose linear map of x . If M is a subset of Hom(V, V ′) we set
kerM :=

⋂
α∈M kerα .

If v = (v1, . . . , vN) is a basis of V , the algebra gl(V ) can be identified with
gl(v) := glN = MN(k) (the algebra of N ×N matrices). When v′ = (vi1 , . . . , vik)
is a sub-basis of v , we may identify gl(v′) with a subalgebra of gl(V ) by extending
x ∈ gl(v′) as follows: x.vi := x.vij if i = ij for some j ∈ [[1, k]] , x.vi := 0 otherwise.

All the varieties considered will be algebraic over k and we (mostly) adopt
notations and conventions of [Ha77] or [TY05] for relevant algebraic and topological
notions. In particular, k[X] is the ring of globally defined algebraic functions on
an algebraic variety X . Recall that when V is a finite dimensional vector space
one has k[V ] = S(V ∗) , the symmetric algebra of V ∗ .

We will refer to [TY05] for most of the classical results concerning Lie
algebras. As said in the introduction, g denotes a finite dimensional reductive Lie
k-algebra. We write g = [g, g]⊕ z(g) where z(g) is the centre of g and we denote
by adg(x) : y 7→ [x, y] the adjoint action of x ∈ g on g . Let G be the connected
algebraic subgroup of GL(g) with Lie algebra LieG = adg(g) ∼= [g, g] . The group
G is called the adjoint group of g . The adjoint action of g ∈ G on y ∈ g is denoted
by g.y = Ad(g).y ; thus, G.y is the (adjoint) orbit of y .

We will generally denote Lie subalgebras of g by small german letters (e.g. l)
and the smallest algebraic subgroup of G whose Lie algebra contains adg(l) by the
corresponding capital roman letter (e.g. L). When l is an algebraic subalgebra of
g the subgroup L acts on l as its adjoint algebraic group, cf. [TY05, 24.8.5]. We
denote by H◦ the identity component of an algebraic group H .

Let E ⊂ g be an arbitrary subset. If l , resp. L , is a subalgebra of g ,
resp. algebraic subgroup of G , we define the associated centralizers and normalizers
by:

lE = cl(E) := {x ∈ l | [x,E] = (0)},
LE = CL(E) = CL(E) := {g ∈ L | g.x = x for all x ∈ E},

NL(E) := {g ∈ L | g.E ⊂ E}.

When E = {x} we simply write lx , Lx , etc. Recall from [TY05, 24.3.6] that
LieLE = lE . As in [TY05], the set of “regular” elements in E is denoted by:

E• :=
{
x ∈ E : dim gx = min

y∈E
dim gy

}
=
{
x ∈ E : dimG.x = max

y∈E
dimG.y

}
. (1)

Any x ∈ g has a Jordan decomposition in g , that we will very often write
x = s+ n (cf. [TY05, 20.4.5, 20.5.9]). Thus s is semisimple, i.e. adg(s) ∈ gl(g) is
semisimple, n is nilpotent, i.e. adg(n) is nilpotent, and [s, n] = 0 . The element s ,
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resp. n , is called the semisimple, resp. nilpotent, part (or component) of x . An
sl2 -triple is a triple (e, h, f) of elements of g satisfying the relations

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Let h be a Cartan subalgebra of g ; then, h = ([g, g] ∩ h) ⊕ z(g) and the
rank of g is rk g := dim h . We denote by R = R(g, h) = R([g, g], [g, g] ∩ h) ⊂ h∗

the associated root system. Recall that the Weyl group W = W (g, h) of R can be
naturally identified with NG(h)/CG(h) ⊂ GL(h) (see, for example, [TY05, 30.6.5]).
The type of the root system R , as well as the type of the reflection group W , will
be indicated by capital roman letters, frequently indexed by the rank of [g, g] ,
e.g. E8 . If α ∈ R(g, h) , gα := {x ∈ g | [h, x] = α(h)x for all h ∈ h} is the root
subspace associated to α . If M is a subset of R(g, h) , we denote by 〈M〉 the root
subsystem

(∑
α∈M Qα

)
∩R(g, h) .

We use the notation b c , resp. d e , for the floor, resp. ceiling, function on
Q ; thus bλc , resp. dλe , is the largest, resp. smallest, integer ≤ λ , resp. ≥ λ . If
i, j are two integers, the set [[i, j]] stands for {k ∈ Z | i 6 k 6 j} .

Let g =
∏

i gi =
⊕

i gi be a decomposition of g as a direct sum of reductive
Lie (sub)algebras. Let Gi be the adjoint group of gi , thus G =

∏
iGi . Under

these notations, it is not difficult to prove the following lemma:

Lemma 1.1. The G-sheets of g are of the form
∏

i Si where each Si is a
Gi -sheet of gi .

Recall that, since g is reductive, there exists a decomposition g = z×
∏

i gi

where z is the centre of g and gi is a simple Lie algebra for all i . So lemma 1.1
provides the following.

Corollary 1.2. The G-sheets of g are the sets of the form z ×
∏

i Si where
each Si is a Gi -sheet of gi .

The previous corollary allows us to restrict to the case when g is simple.
Furthermore, it shows that the study of sheets of g and of [g, g] are obviously
related by adding the centre. Therefore, we may for instance work with g = gln
to study the sln -case.

2. Levi factors and Jordan classes

Definition 2.1. A Levi factor of g is a subalgebra of the form l = gs where
s ∈ g is semisimple. The connected algebraic subgroup L ⊂ G associated to a
Levi factor l is called a Levi factor of G .

Observe that the previous definition of a Levi factor of g is equivalent to the
definition given in [TY05, 29.5.6], see, for example, [Bou75, Exercice 10, p. 223].
Recall that a Levi factor l = gs is reductive [TY05, 20.5.13] and L = Gs , cf. [St05,
Corollary 3.11] and [TY05, 24.3.6].
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Let h be a Cartan subalgebra and l be a Levi factor containing h . By
[TY05, 20.8.6] there exists a subset M = Ml ⊂ R(g, h) such that M = 〈M〉 and

l = lM := h⊕
⊕
α∈M

gα (2)

cg(l) = z(l) = {t ∈ h | α(t) = 0 for all α ∈M} and cg(cg(l)) = l. (3)

Conversely, if M ⊂ R(g, h) is a subset such that M = 〈M〉 , define l = lM as in
equation (2); then lM is a Levi factor and:

h ⊇ {s ∈ g | lM = gs} = kerM \

( ⋃
α/∈M

kerα

)
6= ∅. (4)

This construction gives a bĳective correspondence l = lM ↔ M = Ml between
Levi factors containing h and subsets of R(g, h) satisfying the above property.
Then the action of the Weyl group W = W (g, h) on R(g, h) induces an action
on the set of Levi factors containing h . In other words, if g ∈ NG(h) and l is
a Levi factor containing h , one has g.l = (gCG(h)).l and if w ∈ W is the class
of g , we define w.l := g.l . Let x, y ∈ h ; we will say that the Levi factors gx, gy

are W -conjugate if there exists w ∈ W such that w.Mgx = Mgy . From (4) one
deduces that this definition is equivalent to w.cg(g

x) = cg(g
y) for some w ∈ W .

Assume that g is semisimple and denote by κ the isomorphism h ∼−→ h∗

induced by the restriction of the Killing form of g . Define a Q-form of h , or h∗ ,
by hQ

κ∼= h∗Q := Q.R(g, h) . Fix the Cartan subalgebra h and a fundamental system
(i.e. a basis) B of R(g, h) . We say that a Levi factor l is standard if l = gs with
s ∈ hQ in the positive Weyl chamber of associated to B . In this case, one can
write Ml = 〈Il〉 = ZIl ∩ R(g, h) where Il ⊂ B . The following proposition is a
consequence of the definition of a Levi factor and (4).

Proposition 2.2. Any Levi factor of g is G-conjugate to a standard Levi
factor.

Let l ⊂ g be a Levi factor and L be the associated Levi factor of G . There
exists a unique decomposition l = z(l)⊕

⊕
i li , where z(l) is the centre and the li

are simple subalgebras. Let Li ⊂ G be the connected subgroup with Lie algebra
li (cf. [TY05, 24.7.2]). Under this notation we have:

Proposition 2.3. The subgroup L ⊂ G is generated by CG(l) and the sub-
groups Li .

Proof. Recall that LieLi = li and LieCG(l) = z(l) . By [TY05, 24.5.9] one gets
that L is generated by the connected subgroups Li and CG(l)◦ . Writing l = gs

with s semisimple, we have already observed that L = Gs , hence CG(gs) ⊂ Gs

and the result follows.

The description of G-sheets is closely related to the study of Jordan G-
classes, also called decomposition classes. We now recall some facts about these
classes (see, for example, [BK79, Bor81, Bro98, TY05]).
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Recall from §1 that any element x ∈ g has a unique Jordan decomposition
x = s+ n . We then say that the pair (gs, n) is the datum of x .

Definition 2.4. Let x = s + n be the Jordan decomposition of x ∈ g . The
Jordan G-class of x , or JG -class of x , is the set JG(x) := G.(cg(g

s)• + n) . Two
elements are Jordan G-equivalent if they have the same JG -class.

Let L be a Levi factor of G with Lie algebra l , and L.n ⊂ l be a nilpotent
orbit. If J is a JG -class, the pair (l, L.n) , or (l, n) , is called a datum of J if (l, n)
is the datum of an element x ∈ J . Setting t := gl it is then easy to see that
J = G.(t• +n) . From this result one can deduce that Jordan G-classes are locally
closed [TY05, 39.1.7], and smooth [Bro98]. Furthermore, two elements of g are
Jordan G-equivalent if and only if their data are conjugate under the diagonal
action of G [TY05, 39.1]. Then, g is the finite disjoint union of its Jordan G-
classes (cf. [TY05, 39.1.8]). The following result is taken from [BK79] (see also
[TY05, 39.3.4]).

Proposition 2.5. A G-sheet of g is a finite (disjoint) union of Jordan G-classes.

An immediate consequence of this proposition is that each G-sheet S
contains a unique dense (open) Jordan G-class J . It follows that we can define a
datum of S to be any datum (l, L.n) , or (l, n) , of this dense class J . For instance,
if S is a G-sheet containing a semisimple element, i.e. S is a Dixmier sheet, then
J is the class of semisimple elements of S and (l, 0) is a datum of S , see [TY05,
39.4.5].

3. Slodowy slices

We recall in this subsection some of the important results obtained by Katsylo
[Ka83]. One of the first fundamental properties of the sheets in g was obtained
by Borho-Kraft [BK79, Korollar 5.8] (cf. also [TY05, 39.3.5]):

Proposition 3.1. Each G-sheet contains a unique nilpotent orbit.

Fix a G-sheet SG , a datum (l, L.n) of SG , cf. 2, and a Cartan subalgebra
h ⊂ l . Set t := gl (thus t ⊂ h). Then, following [BK79], one can construct a
parabolic subalgebra j of g and a nilpotent ideal n of j such that r = n⊕t satisfies
SG = G.r• (and SG = G.r). This is done as follows. Recall, see for example [Ca89,
§5.7], that there exists a grading l =

⊕
i∈Z li such that j2 :=

⊕
i≥0 li is a parabolic

subalgebra of l , n2 :=
⊕

i≥2 li is a nilpotent ideal of j2 such that [j2, n] = n2 . If n1

is the nilradical of any parabolic subalgebra with l as Levi factor, one then takes
j := j2 + n1 and n := n1 + n2 .

Note here that when SG is Dixmier, i.e. contains semisimple elements, then
n = 0 and j = l + n has l as Levi factor and n as nilradical. This will be the case
when SG is regular in the end of section 3 or when g is of type A in 4.

Under the previous notation, the following result is proved in [Ka83, Lemma 3.2]
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(cf. also [IH05, Proposition 2.6]).

Proposition 3.2. Let (e, h, f) be an sl2 -triple such that e ∈ n• and h ∈ h,
then

SG = G.(e+ t).

From [Ka83, Lemma 3.1] one knows that there exists an sl2 -triple S :=
(e, h, f) such that e ∈ n• and h ∈ h . We fix S = (e, h, f) for the rest of the
subsection. Note that e ∈ SG . The adjoint action of h on g yields a grading

g =
⊕
i∈Z

g(i, h), g(i, h) := {v ∈ g : [h, v] = iv}.

One of the main constructions in [Ka83] consists in deforming the “section” e+ t

into another “section” having nice properties. The construction goes as follows.
First, define a subset e + X(SG,S ) ⊂ SG , depending only on the sheet and the
choice of the sl2 -triple, by:

e+X(SG,S ) := SG ∩ (e+ gf ).

Then, the deformation is made by using a map εg
SG,S : e+t → e+X(SG,S ) , whose

definition is recalled below, see Remark 3.5. Before going into the details, note
that when there is no ambiguity on the context, we write X instead of X(SG,S )
and εg , or ε , instead of εg

SG,S .

Remark 3.3. When g is of type A, there is a unique sheet containing a fixed
nilpotent orbit (cf. [Kr78, §2]). In this case we can therefore set X(S ) :=
X(SG,S ) where SG is the sheet containing the nilpotent element e of S .

Define a one parameter subgroup (Ft)t∈k× ⊂ GL(g) by setting Ft.y :=
t(i−2)y for y ∈ g(i, h) . One can show as in [Ka83] that Ft.e = e , Ft.SG = SG ,
Ft.X = X and limt→0 Ft.y = e for all y ∈ e+X .

One can slightly modify [Ka83, Lemma 5.1] to obtain the following result:

Lemma 3.4. There exists a polynomial map

ε : e+
⊕
i60

g(2i, h) −→ e+ (gf ∩
⊕
i60

g(2i, h))

such that:
(i) e+ z ∈ G.ε(e+ z) for all z ∈

⊕
i60 g(2i, h);

(ii) let j 6 0 and set Pj := (π2j ◦ ε)|e+g(0,h) where π2j is the canonical projection
from

⊕
i60 g(2i, h) onto g(2j, h), then Pj is either 0 or a homogeneous polynomial

of degree −j + 1.

Proof. We set gi := g(i, h) for i 6 1 . One can then define affine subspaces
L2i and M2i by:

L2i := gf ∩ g2i, M2i := e+ L2 + L0 + L−2 + · · ·+ L2i + g2i−2 + g2i−4 + · · ·
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It is clear that L2 = {0} , M2 = e+
⊕

i60 g2i and M−2k = e+ (gf ∩
⊕

i60 g(2i, h))
for k large enough. We fix such a k . Now, define maps εi : M2i → M2i−2 as
follows.

Denote the projections associated to the decomposition g2i−2 = [e, g2i−4]⊕
L2i−2 by pr1 : g2i−2 → [e, g2i−4] and pr2 : g2i−2 → L2i−2 (hence pr1+pr2 = Idg2i−2

).
Next, define η2i−2 : g2i−2 → g2i−4 to be the linear map (ad e)−1 ◦ pr1 . It satisfies
[η2i−2(x), e]+x ∈ L2i−2 for all x ∈ g2i−2 . If e+z = e+

∑0
j=i z2j +

∑i−1
j=k w2j ∈M2i ,

where z2j ∈ L2j , w2j ∈ g2j , set:

εi(e+ z) := exp(ad η2i−2(w2i−2))(e+ z).

Then, εi is a polynomial map such that εi(e+ z) ∈M2i−2 . Now, set:

ε′i := εi ◦ · · · ◦ ε−1 ◦ ε0 ◦ ε1, ε := ε′−k.

Clearly, ε is a polynomial map which satisfies (i).
To get (ii), we now show, by decreasing induction on i 6 2 , that Pj =

(π2j ◦ ε′i)|e+g0 is either 0 or a homogeneous polynomial of degree −j + 1 . Set
ε′2 := Id so that P1 = 0 and the claim is obviously true for j = 1 . Assume
that the assertion is true for a given integer i0 = i + 1 6 2 . Remark that the
construction of εi, ε′i gives

ε′i(e+ t) = εi ◦ ε′i0(e+ t) = exp(ad η2i−2(π2i−2 ◦ ε′i0(e+ t))).ε′i0(e+ t)

for all e+ t ∈ e+ g0 . By induction, ui := η2i−2(π2i−2 ◦ ε′i0) : e+ g0 → g2i−4 is 0 or
homogeneous of degree −i+ 2 ; thus

π2j ◦ ε′i(e+ t) =
∑
l>0

(adui(e+ t))l

l!
◦ π2j+l(−2i+4) ◦ ε′i+1(e+ t)

is either 0 or homogeneous of degree l(−i + 2) + (−j − l(−i + 2) + 1) = −j + 1 ,
as desired.

Remark 3.5. The polynomial map ε constructed in the proof of Lemma 3.4
will be denoted by εg = εgS . By restriction, it induces a map ε = εg = εg

S from
e+ h to e+ gf and Lemma 3.4(i) implies that ε maps e+ t into e+X . One can
therefore define εg

SG,S to be the polynomial map (εg
S )|e+t .

Furthermore, one may observe that the construction of εg made in the proof
of the previous proposition yields that εg does not depend on g in the following
sense: if g′ is a reductive Lie subalgebra of g containing S , then εg′ = εg

|h∩g′ . In
the sequel, we will often write ε when the subscript is obvious from the context.

The next lemma is due to Katsylo [Ka83], see [IH05] for a purely algebraic
proof.

Lemma 3.6. Under the previous notation:
(i) SG = G.(e+X);
(ii) The group (Ge,h,f )◦ acts trivially on e + X so the action of G on g induces
an action of A := Ge/(Ge)◦ ∼= Ge,h,f/(Ge,h,f )◦ on e+X ;
(iii) for all x ∈ e+X , one has A.x = G.x ∩ (e+X).
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These results enable us to define a quotient map (of sets) by:

ψ = ψSG,S : SG −→ (e+X)/A, ψ(x) := A.y if G.y = G.x .

Since e + X is an affine algebraic variety [Ka83, Lemma 4.1] on which the finite
group A acts rationally, it follows from [TY05, 25.5.2] that (e + X)/A can be
endowed (in a canonical way) with a structure of algebraic variety and that the
quotient map

γ : e+X −→ (e+X)/A (5)

is the geometric quotient of e + X under the action of A . Using Lemma 3.4(i)
and Lemma 3.6 one obtains:

ψ = γ ◦ ε on e+ t .

The following theorem is the main result in [Ka83]:

Theorem 3.7. The map ψ : SG → (e + X)/A is a morphism of algebraic
varieties and gives a geometric quotient SG/G of the sheet SG .

Remark 3.8. One has dimSG/G = dimX = dim t , see [Bor81, §5]. It is shown
in [IH05, Corollary 4.6] that, when g is classical, the map ε : e + t → e + X is
quasi-finite (it is actually finite by [IH05, Chaps. 5 & 6]).

The variety e + X will be called a Slodowy slice of SG . One of the
main results of [IH05] is that e + X is smooth when g is of classical type,
cf. Theorem 3.10. This result relies on some properties of e + gf that we now
recall (see [Sl80, 7.4]).

Proposition 3.9. (i) The intersection of G.x with e+ gf is transverse for any
x ∈ e+X (i.e. Tx(e+ gf )⊕ Tx(G.x) = Tx(g).)
(ii) The morphism δ : G× (e+ gf ) → g, (g, x) 7→ g.x, is smooth.
(iii) Let Y be a G-stable subvariety of g and set Z := Y ∩ (e + gf ). Then the
restricted morphism δ′ : G× Z → Y is smooth. In particular, when Y = G.Z , Y
is smooth if and only if Z is smooth.

Proof. Claims (i) and (ii) are essentially contained in [Sl80, 7.4, Corollary 1].
(iii) We merely repeat the argument given in [IH05]. Let Ẑ = Y ∩sch (e + gf ) :=
Y ×g (e+ gf ) be the schematic intersection of Y and (e+ gf ) (cf. [Ha77, p. 87]).
Writing (G× (e+ gf ))×g Y ∼= G× ((e+ gf )×g Y ) = G× Ẑ , the base extension
Y → g gives the following diagram:

G× (e+ gf )
δ−→ g

↑ ∪
G× Ẑ

δ′′−→ Y.

By [Ha77, III, Theorem 10.1] δ′′ is smooth. Thus, as Y is reduced, [AK70, VII,
Theorem 4.9] implies that Ẑ is reduced. Since Y is G-stable, it is easy to see
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that δ′ factorizes through δ′′ , hence δ′ = δ′′ . When Y = G.Z , the morphism δ′

is surjective and [AK70, VII, Theorem 4.9] then implies that Z is smooth if, and
only if, Y is smooth.

Applying Proposition 3.9(iii) to a sheet Y = SG , one deduces that SG is
smooth if and only if the Slodowy slice e+X is smooth. Using this method, the
following general result was obtained by Im Hof:

Theorem 3.10 ([IH05]). The sheets of a classical Lie algebra are smooth.

Recall that the smoothness of sheets for slN is due to Kraft and Luna [Kr78]
and, independently, Peterson [Pe78]. It is known that when g is of type G2 , a
subregular sheet of g is not normal (hence is singular), see [Sl80, 8.11], [Bor81,
6.4] or [Pe78]. It seems to be the only known example of non smoothness of sheets.

Remarks 3.11. (1) Let S = (e, h, f) be as above and pick g ∈ G . Then, the
same results can be obtained for g.e and g.S . In particular, one can construct a
map

ε : g.e+ g.h → g.e+ gg.f

which induces a polynomial map ε|g.e+g.t .
(2) The results obtained from 3.6 to 3.10 depend only on SG and S but do not
refer to l , t or n . Precisely, these results remain true when e is replaced by g.e
and S by any sl2 -triple containing g.e . In particular, since SG contains a unique
nilpotent G-orbit G.e , they remain true for any sl2 -triple (e′, h′, f ′) such that
e′ ∈ SG .

The regular G-sheet. The set greg of regular elements in g is a sheet, called the
regular G-sheet, that we will denote by Sreg

G . We will use the previous notation
and results with SG = Sreg

G . One has t = h and G.(e+ h) = Sreg
G for any principal

sl2 -triple (e, h, f) such that e is regular and h ∈ h . Moreover, e+ gf ⊂ Sreg
G and

therefore Sreg
G = G.(e+ gf ) (cf. [Ko63]).

Lemma 3.12. Adopt the previous notation.
(i) The semisimple part of an element e+ x ∈ e+ h is conjugate to x.
(ii) Two regular elements are conjugate if and only if their semisimple parts are
in the same G-orbit.
(iii) Two elements e + x, e + y ∈ e + h lie in the same G-orbit if and only if
W.x = W.y .

Proof. The assertions (i) and (ii) follow from [Ko63, Lemma 11, Theorem 3],
whence (iii) is a direct consequence of (i) and (ii).

We can now state an important result of Kostant [Ko63, Theorem 8] in the
following form:

Lemma 3.13. The group A is trivial, thus ψ : Sreg
G → e + gf = ε(e + h) is a

geometric quotient of Sreg
G .
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4. The case g = glN

The setting. In this section we assume that g = gl(V ) , where V is a k-vector
space of dimension N . By [Kr78, §2], we know that there exists two natural
bĳections from G-sheets to partitions of N . Let S be a G-sheet,

• the first map sends S to the partition λ = (λ1 > λ2 > · · · > λδO) of the
unique nilpotent orbit O contained in S . (cf. Proposition 3.1);

• the second one sends S to the partition λ̃ = (λ̃1 > · · · > λ̃δl
) given by the

block sizes of the Levi factor l occurring in the datum (l, 0) of the dense
JG -class contained in S .

It is well known that λ̃ is the transpose of λ .
Let SG be a G-sheet and λ = (λ1 > λ2 > · · · > λδO) be the partition of N

associated to the nilpotent orbit O contained in SG . Fix an element e ∈ O and
a basis

v =
{
v

(i)
j | i ∈ [[1, δO]], j ∈ [[1, λi]]

}
providing a Jordan normal form of e . Precisely, write e =

∑
i ei , where ei ∈ g is

defined by:

ei.v
(k)
j =

{
v

(i)
j−1 if k = i and j = 2, . . . , λi;

0 otherwise.
(6)

Set qi := gl
(
v

(i)
j | j ∈ [[1, λi]]

)
, which is a reductive Lie algebra isomorphic to glλi

,
and define

q :=
⊕

i

qi.

Let pri : q → qi be canonical projection. For x ∈ q we set xi := pri(x) ; conversely,
for any family (yi)i of elements yi ∈ qi we can define y =

∑
i yi ∈ q .

We apply this construction to get an sl2 -triple S = (e, h, f) ⊂ q as follows.
Fixing the basis

(
v

(i)
1 , . . . , v

(i)
λi

)
, one can identify qi with the algebra of λi × λi -

matrices. Using this identification, embed ei in the standard sl2 -triple (ei, hi, fi)
of qi induced by the irreducible representation of sl2 of dimension λi , i.e.:

ei =


0 1 0 · · · 0
0 0 1 · · · 0
... ... ... . . . ...
0 0 0 · · · 1
0 0 0 · · · 0

 , hi =


λi − 1 0 0 · · · 0

0 λi − 3 0 · · · 0
0 0 λi − 5 · · · 0
... ... ... . . . ...
0 0 0 · · · −λi + 1


(a well known similar formula gives fi ). Then, h =

∑
i hi and f =

∑
i fi .

Clearly, the subspace

l :=
⊕

j

gl(v
(i)
j | i ∈ [[1, λ̃j]])

is a Levi factor of g . Denote by h :=
⊕

i hi the Cartan subalgebra of diagonal
matrices with respect to the chosen basis v . If t is the centre of l we then have
t ⊂ h ⊂ l ∩ q .
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Let Ei,i
j,j be the element of h defined by Ei,i

j,j.v
(l)
k = v

(i)
j if (i, j) = (l, k) , and

Ei,i
j,j.v

(l)
k = 0 otherwise. Each t ∈ h can then be written t =

∑
i,j ti,jE

i,i
j,j and one

has the following easy characterization of t :

t = {t ∈ h | ti,j = ti′,j for all i 6 i′; j ∈ [[1, λi′ ]]}. (7)

We will need later the following isomorphism:

α :

{
kλ1 ∼−→ t

(xj)j∈[[1,λ1]] 7→ (ti,j)i,j
(8)

where ti,j = xj for all i ∈ [[1, λδO ]] , 1 6 j 6 λi .
Order, lexicographically, the elements of v by: v(i)

j < v
(k)
` if j < ` or j = `

and i < k . Denote by b the Borel subalgebra of g consisting of upper triangular
matrices with respect to this ordering of v . Then, the subspace b+ l is a parabolic
subalgebra having l as Levi factor. Observe that h ∈ h ⊂ l and that e is regular
in the nilradical of b + l . The constructions of §3 can be made here with j = b + l

and the results of that subsection yield SG = G.(e + t) (Proposition 3.2) and a
map ε : e+ h → e+ gf (Lemma 3.4).

Lemma 4.1. (i) The group Ge is connected.
(ii) The map ψ induces a bĳection between G-orbits in SG and points in X .

Proof. Part (i) is a classical result, see for example [CM93, 6.1.6]. Since the
group A = Ge/(Ge)◦ is then trivial, part (ii) follows from Lemma 3.6.

By Remark 3.5 we may assume that ε = εq =
∑

i εi where

εi := εqi : ei + hi → ei + qfi

i .

As ei ∈ qi is regular, the study of ε is therefore reduced to the regular case.
The regular case and its consequences. We need to study in more details
the maps εi : ei + hi → ei + qfi

i introduced at the end of the previous subsection,
where, as already said, ei is regular in qi

∼= glλi
.

To simplify the notation we (temporarily) replace glλi
by glN and ei by ereg , the

regular element of g = glN . Hence,

ereg .vj =

{
vj−1 if j = 2, . . . , N ;
0 if j = 1.

Recall that h ⊂ glN is the set of diagonal matrices in the basis vreg := (vj)j . We
can then define the canonical principal triple (ereg , hreg , f reg) with respect to this
basis (see the definition of the triple (ei, hi, fi) in 4). In this case, εreg : ereg + h →
ereg + gfreg can be considered as the restriction of the geometric quotient map of
greg (cf. Lemma 3.13).

Let 0 6 k < N , the k -th subdiagonal (resp. k -th supdiagonal) is the
subspace of matrices [ai,j]i,j such that ai,j = 0 unless i = j + k (resp. i = j − k ).
We denote it by f(k) .



14 Bulois

Lemma 4.2. The map εreg is given by

εreg(ereg + t) = ei +
∑
j60

Pj(t) for all t ∈ h ,

where each Pj : h → f(−j) is a homogeneous polynomial map of degree −j + 1,
symmetric in the eigenvalues of the elements of h.

Proof. Recall that g(2j, hreg) is the 2j -th eigenspace of adg h
reg . It is easily

seen that g(2j, hreg) = f(−j) when j 6 0 . Using Lemma 3.4(ii), the only fact
remaining to be proved is that the polynomial map Pj is symmetric. Observe
that the Weyl group W = W (g, h) acts as the permutation group of [[1, N ]] on
the eigenvalues of h and recall that, by Lemma 3.13, εreg is a quotient map with
respect to W . Consequently, for all t ∈ h and w ∈ W one has εreg(ereg + w.t) =
εreg(ereg + t) . Thus Pj is symmetric.

If t is a semisimple element of g we denote by sp(t) the set of eigenvalues of
t and by m(t, c) the multiplicity of c ∈ k as an eigenvalue of t , with the convention
that m(t, c) = 0 if c /∈ sp(t) .

The next lemma is a direct consequence of Lemma 3.12.

Lemma 4.3. Let t ∈ h and c ∈ sp(t). In a Jordan normal form of ereg + t,
there exists exactly one Jordan block associated to c, and its size is m(t, c).

Recall that we want to apply Lemma 4.3 to the regular elements ei in
qi
∼= glλi

; we therefore generalize the previous notation as follows. For t =
∑

i ti ∈
h ⊂

⊕
i qi and c ∈ k , let mi(t, c) be the multiplicity of c as an eigenvalue of

ti . Then,
∑

imi(t, c) = m(t, c) and we have the following easy consequence of
Lemmas 3.12 and 4.3.

Corollary 4.4. Let t ∈ h. The semisimple part of e + t is conjugate to t. Its
nilpotent part is associated to the partition of N given by the integers mi(t, c),
c ∈ sp(t) and i ∈ [[1, δO]].

5. Sheets of Symmetric Lie algebras and type 0

We now turn to the symmetric case. We will denote a symmetric Lie algebra
either by (g, θ) , (g, k) or (g, k, p) , where: θ is an involution of g , k (resp. p) is the
+1(resp. −1)-eigenspace of θ in g . Then, g = k⊕ p , k is a Lie subalgebra and p

is a k-module under the adjoint action. Recall from §1 that K is the connected
subgroup of G such that Lie(K) = adg(k) and that K is the connected component
of

Gθ := {g ∈ G | g ◦ θ = θ ◦ g} = NG(k). (9)
Sheets and Jordan classes can naturally be defined in this setting, see [TY05,
39.5 & 39.6]. One has, cf. [KR71, Proposition 5],

dimK.x =
1

2
dimG.x for all x ∈ p
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and we set:
p(m) := {x ∈ p | dimK.x = m} ⊂ g(2m).

Definition 5.1. The K -sheets of (g, θ) are the irreducible components of the
p(m) , m ∈ N .
Let x = s+n (where s, n ∈ p) be the Jordan decomposition of an element x ∈ p .
The Jordan K -class of x , or JK -class of x , is the set

JK(x) := K.(cp(p
s)• + n) ⊂ p.

It is easily seen that p is the finite disjoint union of its JK -classes and that
a K -sheet is the union of the JK -classes it contains [TY05, 39.5.2].

There exists a symmetric analogue to the notion of sl2 -triple. An sl2 -triple
(e, h, f) is called normal if e, f ∈ p and h ∈ k . Similarly to the Lie algebra case,
there is a bĳection between K -orbits of nilpotent elements and K -orbits of normal
sl2 -triples, see [KR71, Proposition 4] or [TY05, 38.8.5].

Any semisimple symmetric Lie algebra can be decomposed as (g, θ) =∏
i(gi, θ|gi

) where (gi, θ|gi
) is a symmetric Lie subalgebra of one of the following

two types:

(a) gi simple;

(b) gi = g1
i ⊕ g2

i , with gj
i simple, θ|gj

i
isomorphism from gj

i onto g3−j
i , j = 1, 2 .

Each (gi, θ|gi
) is called an irreducible factor of (g, θ) ; this decomposition is unique

(up to permutation of the factors).
The Type 0 case. When (g, θ) is the sum of two simple factors as in the above
case (b), then g is said to be of “type 0”. We slightly enlarge this definition by
saying that a pair (g, θ) is a symmetric pair of type 0 if

g = g′ × g′, θ(x, y) = (y, x), k = {(x, x) | x ∈ g′}, p = {(x,−x) | x ∈ g′},

where g′ is only assumed to be reductive. Recall the following easy observations.
Let pr1 be the projection on the first coordinate. Via pr1 , the Lie algebra k is
isomorphic to g′ , thus K is isomorphic to the adjoint group G′ of g′ . Moreover,
the K -module p is isomorphic to the G′ -module g′ .

Using Lemma 1.1 it is not hard to prove the following.

Lemma 5.2. (i) The G-sheets of g = g′× g′ are the S ′× S ′′ where S ′ and S ′′

are G′ -sheets of g′ .
(ii) The sets {(x,−x) | x ∈ S ′}, where S ′ is a G′ -sheet of g′ , are the K -sheets of
p.

We would like to link the Lie algebra case to the symmetric case in type 0.
This partly rely on the following definition. If Y is a subset of p , we set

φ(Y ) := pr1(Y )× pr1(−Y ) ⊂ g.
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Proposition 5.3. (i) If Y is a K -orbit (resp. a JK -class or a K -sheet) of p,
then φ(Y ) is a G-orbit (resp. a JG -class or a G-sheet) of g.
(ii) If Z is a G-orbit (resp. a JG -class) of g intersecting p, then Z ∩ p is a K -
orbit (resp. a JK -class) of p.
(iii) Each pair of distinct sheets of g′ have an empty intersection if, and only if,
the intersection of each G-sheet of g with p is either empty or a single K -sheet .

Proof. (i) and (ii) are straightforward.
(iii) Let Z be a G-sheet of g and write Z as the product of two G′ -sheets of g′ ,
say Z = Z1 × Z2 . If (x,−x) ∈ Z , it follows that x ∈ Z1 ∩ Z2 and, in particular,
Z1 ∩ Z2 6= ∅ . If Z1 = Z2 , then Lemma 5.2 shows that Z ∩ p is a K -sheet.
Otherwise, one has Z ∩ p ( (Z1 × Z1) ∩ p and Z ∩ p is not a K -sheet of p .

Since a G′ -sheet of g′ contains exactly one nilpotent orbit of g′ , two G′ -
sheets of g′ have a non-empty intersection if and only if they contain the same
nilpotent orbit (cf. [TY05, 39.3.2]). A necessary and sufficient condition for g′

to have intersecting sheets is therefore to have more sheets than nilpotent orbits.
Using [Bor81] one can show that there are only two cases where sheets are in
bĳection with nilpotent orbits: when g′ is of type A or D4 . Therefore we have:

Corollary 5.4. Any G-sheet of g intersects p along one K -sheet if and only
if the simple factors of g′ are of type A or D4 .

The next (easy) result is true in type 0, but false in general.

Proposition 5.5. Let SG be a G-sheet of g intersecting p. Let S = (e, h, f)
be a normal sl2 -triple containing a nilpotent element e ∈ SG ∩ p. Then, if
e+X(SG,S ) = (e+ gf ) ∩ SG , one has

SG ∩ p = K.(e+X(SG,S ) ∩ p).

Proof. Write SG = S1 × S2 with S1, S2 sheets of g′ (cf. Lemma 5.2) and set
e = (e′,−e′) , f = (f ′,−f ′) , e′, f ′ ∈ g′ . Recall that pr1 yields an isomorphism
between p and g′ and that pr1(SG ∩ p) = S1 ∩ S2 . If Xi ⊂ g′ is defined by
(e′ + Xi) = (e′ + g′f

′
) ∩ Si , one has pr1(e + X ∩ p) = e′ + X1 ∩ X2 . Moreover,

pr1(K.(e+X ∩ p)) = G′.(e′ +X1 ∩X2) = S1 ∩ S2 = pr1(SG ∩ p) . Since pr1|p is an
isomorphism, we get the desired result.

6. Root systems and semisimple elements

Let (g, k, p) be the semisimple symmetric Lie algebra associated to an involution
θ . Fix a Cartan subspace a of p ; recall that the rank of the symmetric pair
(g, k) = (g, θ) is rk(g, θ) := dim a . Let d be a Cartan subalgebra of ck(a) . Then,
h := a ⊕ d is a θ -stable Cartan subalgebra of g ([TY05, 37.5.2]). If V := h∗

and σ denotes the transpose of θ , one can consider the σ -stable root system
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R = R(g, h) ⊂ V and we set (see [TY05, 36.1]):

V ′ := {x ∈ h∗ | σ(x) = x} = {x | x|a = 0},
V ′′ := {x ∈ h∗ | σ(x) = −x} = {x | x|d = 0},

R0 := R ∩ V ′ = {α ∈ R | σ(α) = α}, R1 := {α ∈ R | σ(α) 6= α}.

Recall that R0 is a root system. One has V = V ′ ⊕ V ′′ ; more precisely, x ∈ V
decomposes as x = x′ + x′′ , where x′ := 1

2
(x + σ(x)) ∈ V ′ , x′′ := 1

2
(x − σ(x)) =

x|a ∈ V ′′ . When x ∈ R is a root, x′′ is called its restricted root. Set:

S = {α′′ | α ∈ R1}.

Then, S ⊂ a∗ is a (not necessarily reduced) root system, see [TY05, 36.2.1], which
is called the restricted root system of (g, θ) . We denote by W , resp. WS , the Weyl
group of the root system R , resp. S , and we set

Wσ := {w ∈ W | w ◦ σ = σ ◦ w}.

If B ⊂ R is a fundamental system (i.e. a basis of R), denote by R+ (resp. R− )
the set of positive (resp. negative) roots associated to B . In order to define the
Satake diagram of the symmetric pair (g, k) one needs to work with some special
fundamental systems for R . Setting

R1
± := R1 ∩R±

one can give the following definition:

Definition 6.1. ([TY05, 36.1.4], [Ar70, 2.8]) A σ -fundamental system B ⊂ R
is a fundamental system satisfying the following conditions:

(i) σ(R1
+) = R1

− ;

(ii) If α ∈ R1
+ , β ∈ R and α− β ∈ V ′ , then β ∈ R1

+ ;

(iii) (R1
+ +R1

+) ∩R ⊂ R1
+ ;

Let VQ be the Q-vector space spanned by R ; then VQ = V ′
Q ⊕ V ′′

Q where
V ′

Q := VQ ∩ V ′ , resp. V ′′
Q := VQ ∩ V ′′ , are Q-forms of V ′ , resp. V ′′ (cf. [TY05,

proof of 36.1.4]). Denote by aQ the Q-form of a given by the dual of V ′′
Q . The

choice of a Q-basis C = (e1, . . . , el) of VQ gives rise to a lexicographic ordering
≺ on VQ and, therefore, to a set of positive roots R+,C := {α ∈ R | α � 0} .
Recall [TY05, 18.7] that for each choice of such a basis C , there exists a unique
fundamental system BC such that R+,C is the set of positive roots with respect
to B . The existence of a σ -fundamental system is ensured by the next lemma,
which provides all the σ -fundamental systems, see Proposition 6.3(iv).

Lemma 6.2. Let (e1, . . . , ep), resp. (ep+1, . . . , el), be a basis of V ′′
Q , resp. V ′

Q ,
and set C = (e1, . . . , el). Then BC is a σ -fundamental system such that B0

C :=
BC ∩ V ′ is a fundamental system of R0 .
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Proof. By [TY05, 36.1.4] BC is a σ -fundamental system. The second state-
ment follows from the fact that BC ∩ V ′ is the set of simple roots associated to
the lexicographic ordering associated to the basis (ep+1, . . . , el) .

Proposition 6.3. (i) The map w 7→ w|V ′′ induces a surjective homomorphism
Wσ → WS whose kernel is W 0 , the Weyl group of R0 .
(ii) For x ∈ V ′′

Q , one has WS.x = W.x ∩ V ′′
Q . Dually, WS.a = W.a ∩ aQ for all

a ∈ aQ .
(iii) Let B be a σ -fundamental system. Then, the restricted fundamental system
B′′ := {α′′ | α ∈ B} is a fundamental system of the restricted root system S .
(iv) Wσ acts transitively on the set of σ -fundamental systems.

Proof. Claims (i) and (ii) are proved in [TY05, 36.2.5, 36.2.6], while (iii) and
(iv) can be found in [Ar70, 2.8 and 2.9].

Remarks 6.4. (1) The restriction to a yields an isomorphism NK(a)/CK(a) ∼−→WS ,
cf. [TY05, 38.7.2].
(2) Let w ∈ Wσ , then there exists k ∈ K such that k|h = w . This can be shown
as follows. Recall that h = a ⊕ d , where d is a Cartan subalgebra of u := ck(a) .
Note that w.a = a and w.d = d . Pick k1 ∈ K such that k1|a = w|a ∈ WS . Let
U ⊂ CK(a) be the connected subgroup of K with Lie algebra u . The Weyl group
of the root system R0 = R(u, d) is W 0 ∼= NU(d)/CU(d) , see [TY05, 38.2.1]. By
composing k1 with an element of U we may assume that k1.h = h and k1|a = w|a .
Set w0 := (w ◦ k−1

1 )|h ∈ W ; one has w0|a = Ida , therefore w0 ∈ W 0 and we can
find k0 ∈ NU(d) such that k0|d = w0|d = w|d ◦ k−1

1 |d . Setting k := k0k1 ∈ K we
obtain k|a = k1|a = w|a and k|d = k0|d ◦ k1|d = w|d , thus k|h = w .

Fix a σ -fundamental system B ; from the Dynkin diagram D associated to
B one can construct the Satake diagram D̄ of (g, θ) as follows. The nodes α of
D such that α′′ = 0 are colored in black, the other nodes being white; two white
nodes α 6= β of D such that α′′ = β′′ are related by a two-sided arrow. This defines
the new diagram D̄ . Recall that the Satake diagram of (g, θ) does not depend on
the choice of the σ -fundamental system B , and that two semisimple symmetric
Lie algebras are isomorphic if and only if they have the same Satake diagram
(cf. [Ar70, Theorem 2.14]). A classification of symmetric Lie algebras together
with their Satake diagrams and restricted root systems is given in [He78a, Ch. X].

We now recall the (well-known) links between G-conjugacy and W -conju-
gacy, and their analogues for a symmetric Lie algebra.

Lemma 6.5. (i) Two elements of h (resp. a) are G(resp. K )-conjugate if and
only if they are W (resp. WS or, equivalently, Wσ )-conjugate.
(ii) Let x, y ∈ h (resp. x, y ∈ a), then the Levi factors gx and gy are G(resp. K )-
conjugate if, and only if, they are W (resp. WS or, equivalently, Wσ )-conjugate.

Proof. (i) is standard.
(ii) We write the proof for x, y ∈ a . Thanks to [TY05, 29.2.3 & 37.4.10] applied
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to (gy, ky) , the Levi factors gx, gy are K -conjugate if, and only if, there exists
g ∈ K such that g.gx = gy and g.h = h . Then g induces an element of W , and
therefore of Wσ since g ◦σ = σ ◦ g . Observe finally that Proposition 6.3(i) implies
the equivalence of Wσ and WS -conjugacy. Conversely, [TY05, 38.7.2] applied to
cp(p

x) and cp(p
y) shows that the conjugation under WS implies the K -conjugation.

In general, if x ∈ p , the intersection of G.x with p contains more than
one orbit (cf. [TY05, 38.6.1(i)]). But, when x is semisimple one can prove the
following result, for which we provide a proof since we did not find a reference in
the literature.

Proposition 6.6. Let s ∈ p be semisimple. Then, G.s ∩ p = K.s.

Proof. Recall that any semisimple element of p is K -conjugate to an element
of a , cf. [TY05, 37.4.10]. Therefore, by Lemma 6.5(i), it suffices to show that the
property (ii) of Proposition 6.3 holds for all a ∈ a , i.e. WS.a = W.a ∩ a . Denote
by L one of the fields Q or k . For (w,w′) ∈ W ×WS , define linear subspaces of
aL := aQ ⊗Q L by:

Ew,w′

L := keraL(w − w′) = {a ∈ aL | w.a = w′.a}, Ew
L := w−1(aL) ∩ aL.

From Proposition 6.3(ii) one gets that Ew
Q =

⋃
w′∈WS

Ew,w′

Q ; thus, there exists
w′ ∈ WS such that Ew

Q = Ew,w′

Q . The flatness of −⊗Q k yields:

Ew,w′

k = Ew,w′

Q ⊗Q k, Ew
k = Ew

Q ⊗Q k.

Therefore, for any w ∈ W , there exists w′ ∈ WS such that w′
|Ew

k
= w|Ew

k
. It

follows that Proposition 6.3(ii) is satisfied for all a ∈ a = ak .

Consequence. Proposition 6.6 yields a bĳection between K -orbits of semisim-
ple elements of p and G-orbits of semisimple elements intersecting p .

Recall [Ko63, KR71] that the set of semisimple G(resp. K )-orbits is pa-
rameterized by the categorical quotient g//G (resp. p//K) , and that k[g//G] ∼=
k[h/W ] = S(h∗)W , k[p//K] ∼= k[a/WS] = S(a∗)WS . The previous consequence can
then be interpreted as follows.

Let γ be the map which associates to the WS -orbit of a ∈ a , the orbit
W.a ⊂ h ; hence, γ : a/WS → h/W . Define Z := γ(a/WS) ⊂ h/W to be the
image of γ and let φ : a/WS → Z be the induced surjective map. Write γ = ι◦φ ,
where ι : Z → h/W is the natural inclusion.

Then we can get the following from Proposition 6.6:

Corollary 6.7. The morphism φ : a/WS → Z is a bĳective birational map,
and a/WS is the normalization of Z .

One must observe that the injective comorphism φ∗ is not surjective, i.e. Z
is not normal, in general. This question has been studied in [He78b, He92, Ri87,
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Pa05]. The notation being as in [He78a, Ch. X], the results obtained in the
previous references show that φ is an isomorphism when g is of classical type,
and in the exceptional cases of type EI, EII, EV, EVI, EVIII, FI, FII, G. In cases
EIII, EIV, EVII, EIX, it is known that φ∗ (or, equivalently, γ∗ ) is not surjective,
cf. [He78b, Ri87].

Remark 6.8. By standard arguments one can see that the results obtained in
6.4, 6.5 and 6.6 remain true when (g, θ) is a reductive symmetric Lie algebra.

7. Property (L)
Let (g, θ) = (g, k, p) , a, h , R,R0, R1, S be as in 6, and fix a σ -fundamental system
B of R (cf. Definition 6.1). The next definition introduces an important property
in order to study the K -conjugacy classes of Levi factors of the form gs , s ∈ p

semisimple. Observe that (gs, ks) is a symmetric Lie algebra, that we will call a
subsymmetric pair.

Definition 7.1. The pair (g, k) satisfies the property (L) if, for all semisimple
elements s, u ∈ p :

{∃ g ∈ G, g.gs = gu} ⇐⇒ {∃ k ∈ K, k.gs = gu}. (L)

Remark 7.2. More generally, when (g, θ) is a reductive symmetric Lie algebra,
the condition (L) holds if and only if it holds for ([g, g], θ) .

The aim of this section is to prove that the property (L) holds for any
reductive symmetric Lie algebra (cf. Theorem 7.8). We are going to show that it is
sufficient to check (L) for some Levi factors gs of a particular type, cf. Corollary 7.6.

Definition 7.3. One says that a standard Levi factor l arises from p if there
is s ∈ aQ lying in the positive Weyl chamber for B and such that l = gs .

Recall from Section 2 that there is a natural one to one correspondence
between standard Levi factors and subsets of B . In this correspondence, to a Levi
factor l one associates the subset

Il := {α ∈ B | α(s) = 0}
where s is any element in (gl)• . Conversely, from any subset I ⊂ B one gets a
Levi subalgebra by setting:

lI := h⊕
(
⊕α∈〈I〉g

α
)

where 〈I〉 = ZI ∩R . Remark that glI = {h ∈ h : α(h) = 0 for all α ∈ I } .
Let D be the Dynkin diagram defined by B and denote by D̄ the associated

Satake diagram. Let B0 ⊂ B be the set of black nodes of D̄ ; recall that B0 is a
fundamental system of R0 (cf. Lemmas 6.2 and 6.3). Set

B2 := {(α1, α2) ∈ B ×B : α1 6= α2, α
′′
1 = α′′2} ,

B3 :=
{
α1 − α2 | (α1, α2) ∈ B2

}
⊂ h∗Q.
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Thus, B2 is the set of pairs of white nodes (α1 6= α2) of D̄ connected by a two-sided
arrow (note that (α1, α2) ∈ B2 ⇐⇒ (α2, α1) ∈ B2 ). Denote by B2 ⊂ B the set
of all nodes pointed by such an arrow, i.e. B2 = {α ∈ B : ∃ β ∈ B, (α, β) ∈ B2} .
A subset I ⊂ B is said to be stable under arrows if (α1, α2) ∈ B2 with α1 ∈ I
implies α2 ∈ I .

Remark 7.4. The subspace aQ ⊂ hQ is the intersection of the kernels of
elements of B0 ∪ B3 . A standard Levi factor l arises from p if, and only if,
Il is stable under arrows and contains B0 .

We now want to describe the subalgebra gs when s ∈ a semisimple. Set

Es := {ϕ ∈ h∗Q = VQ : ϕ(s) = 0}, Rs := Es ∩R.

Then, Rs is a root subsystem of R (cf. [TY05, 18.2.5]) and, with obvious notation,
the Q-vector space Fs spanned by Rs decomposes as F ′

s ⊕F ′′
s . The restriction to

hs,Q := hQ∩ [gs, gs] identifies Fs with h∗s,Q and Rs with the root system of (gs, ks) .
One can therefore apply to Rs the results of section 6.

Let Ss be the restricted root system of Rs . As s ∈ a , one has:

Ss = {x′′ | x ∈ R1, x(s) = 0} = {x′′ | x ∈ R1, x′′(s) = 0} = S ∩ F ′′
s . (10)

Let Bs be a σ -fundamental system of Rs . One can write Bs = B0
s t B1

s with
B0

s ⊂ R0 , B1
s ⊂ R1 and we denote by B′′

s the restricted fundamental system of Ss

associated to Bs .
We can now prove the following result:

Proposition 7.5. Each Levi factor gs , s ∈ p, is K -conjugate to a standard
Levi factor that arises from p.

Proof. Since the element s ∈ p is semisimple, it is K -conjugate to an element
of a and we may as well suppose that s ∈ a . We will use the previous notation
relative to Rs, Ss and a fixed σ -fundamental system Bs ⊂ Rs .

We first show that there exists w ∈ Wσ such that Bs ⊂ w.B . Since V ′
Q ⊂ Es

one has R0 ⊂ Rs , and B0
s being a fundamental system of the root system R0 , it

can be conjugated to B0 by an element of W 0 . As B′′
s is a fundamental system of

Ss = S ∩ F ′′
s (see (10)), [TY05, 18.7.9(ii)] implies that B′′

s is a WS -conjugate of a
subset of B′′ . Combining these two facts and Lemma 6.3(i), one gets the existence
of w ∈ Wσ such that B0

s = w.B0 and B′′
s ⊂ w.B′′ .

We claim that Bs ⊂ w.B , i.e. B1
s ⊂ w.B . Let α ∈ B1

s . Since w.B is a σ -
fundamental system of R , there exist integers (nγ)γ∈w.B , of the same sign, such
that α =

∑
γ∈w.B nγγ and α′′ =

∑
γ∈w.B1 nγγ

′′ . As α′′ ∈ w.B′′ , the nγ ’s must be
positive and there exists a unique β ∈ w.B1 such that α′′ = β′′ , nβ = 1 , nγ = 0
for γ ∈ w.B1 r {β} . One then gets β = α −

∑
γ∈w.B0=B0

s
nγγ , hence β ∈ Rs .

But Bs is a fundamental system of Rs , thus the previous decomposition of β as a
sum of positive and negative elements of Bs forces nγ = 0 for γ ∈ B0

s . Therefore
α = β ∈ w.B , as desired.
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Pick ẇ ∈ K such that ẇ.s = w.s , see Remark 6.4(2); replacing gs by gẇ.s

we may assume that w = Id and Bs ⊂ B . Define t ∈ hQ by the conditions:
α(t) = 0 for α ∈ Bs and β(t) = 1 for β ∈ BrBs . Then, t ∈

⋂
ϕ∈B0∪B3 kerϕ = aQ

(cf. Remark 7.4). Finally, since Bs is a fundamental system of Rs , it is easily seen
that gt = gs .

From the previous proposition one deduces the announced result:

Corollary 7.6. The property (L) is equivalent to: “Two standard Levi factors
arising from p are G-conjugate if, and only if, they are K -conjugate”.

Remark 7.7. Assume that there is no arrow in the Satake diagram of (g, k) .
Then B2 = ∅ . Let s ∈ p be a semisimple element. By Proposition 7.5 we may
assume that gs = gt with t ∈ aQ is standard. Then, obviously, B0 ⊂ Igs and
one deduces from the characterization of a given in Remark 7.4 that cg(g

s) ⊂ p .
Hence, the centre of any Levi arising from p is wholly included in p in this case.

Theorem 7.8. Every reductive symmetric Lie algebra satisfies the property (L).

Proof. Assume that l1 and l2 are two standard G-conjugate Levi factors
arising from p such that

B0 ∪B2 ⊂ Il1 . (11)

The characterization of a given in Remark 7.4 yields gl1 ⊂ a ⊂ p . Let s ∈ (gl2)•∩p ,
hence gs = l2 and, by hypothesis, there exists g ∈ G such that g.s ∈ (gl1)• ⊂ p .
Proposition 6.6 then implies the existence of k ∈ K such that g.s = k.s , thus:
l1 = gk.s = k.l2 .

When there is no arrow in the Satake diagram of (g, k) , (11) is satisfied
(cf. Remark 7.7). It then follows from the previous discussion that property (L)
is satisfied in this case.

In the other cases, let gsi , si ∈ aQ , i = 1, 2 , be two standard Levi factors
arising from p . Observe first that Proposition 6.5(ii) yields:

• gs1 , gs2 are G-conjugate ⇐⇒ gs1 , gs2 are W -conjugate,

• gs1 , gs2 are K -conjugate ⇐⇒ gs1 , gs2 are Wσ -conjugate.

Let B be a σ -fundamental system; denote by Φ the set of all subsets of B which
contain all black nodes and which are stable under arrows. Observe that E ∈ Φ
is equivalent to E = Il for some standard Levi factor l arising from p . Therefore,
by the previous remark, we need to show that two elements of Φ are W -conjugate
if and only if they are Wσ -conjugate.

For E ∈ Φ we define a subset φ(E) of B′′ , the fundamental system of
the restricted root system S , by setting φ(E) := {α′′ : α ∈ E} r {0} . It is
easy to see that φ defines a bĳection from Φ onto Φ′′ , the set of all subsets of
B′′ , and that two elements of Φ are Wσ -conjugate if and only if their images
by φ are WS -conjugate. By abuse of notation, we denote by Φ/W and Φ/Wσ

resp. Φ′′/WS , the set of orbits under W and Wσ , resp. WS , of elements of Φ ,
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resp. Φ′′ . Since Wσ ⊂ W , there exists a natural surjection π from Φ/Wσ onto
Φ/W , hence #Φ/W ≤ #Φ′′/WS = #Φ/Wσ , and we need to show that π is
bĳective. We have remarked above that φ−1 yields a bĳection between Φ′′/WS

and Φ/Wσ . Let δ : Φ′′/WS → Φ/W be the surjection induced by π ◦ φ−1 . It
remains to show that δ is injective, or, equivalently, that #Φ/W ≥ #Φ′′/WS .

When (g, θ) is of type 0 there is an obvious bĳection between W -conjugacy
classes of elements Φ and WS -conjugacy classes in Φ′′ . In the other types, the
description of φ , Φ and Φ′′ can be deduced from [He78a, p. 532]. The W -
conjugacy classes of subsets of B are given in [BC76, p. 5] (cf. [Dy57, Theorem 5.4]
for the original classification). Using these results, it is then easy to make a case
by case comparison of Φ/W and Φ′′/WS and prove that they are in one-to-one
correspondence. For example when (g, k) is irreducible of type EIII, one finds that
Φ/W = {E6,A5,D4,A3} and Φ′′/WS = {B2,B1,A1, ∅} . In case EII, one easily
sees that #Φ/W = #Φ′′/WS = 12 . One can deal with cases DI, DIII and AIII in
the same way.

Since g is a direct product of irreducible symmetric Lie algebras and the
only irreducible Lie algebra whose Satake diagram has arrows are of type 0 or of
type AIII, DI, DIII, EII, EIII, property (L) follows in the general case.

8. Jordan K -classes

Let (g, k) be a reductive symmetric Lie algebra. We adopt the notation of Defini-
tions 2.4 and 5.1. Observe the following easy result:

Lemma 8.1. The intersection of a JG -class with p is either empty or the union
of JK -classes it contains.

Proof. Let J be a Jordan G-class intersecting p and x = s+n ∈ J ∩p . Then
JK(x) = K.(cp(p

s)• + n) ⊂ G.(cg(g
s)• + n) = JG(x) .

In Lemma 8.2 we fix a JG -class J such that J ∩ p 6= ∅ , and an element
x = s + n ∈ J ∩ p . Let l := gs and L := Gs ⊂ G be the associated Levi factors.
Observe that:

L = CG(cg(g
s)•). (12)

Then, (gs, ks) is a symmetric pair and KL := (K ∩ L)◦ ⊂ Ks acts naturally on
ps . Denote by O1 the orbit L.n ∈ l , so that (l,O1) is a datum of J . Let Oi ⊂ l

(i > 1) be the L-orbits (if they exist) different from O1 such that (l,Oi) is a
datum of J . Define nilpotent KL -orbits in ps by

Oi ∩ ps =
⋃
j

Oj
i , Oj

i = KL.n
j
i .

Lemma 8.2. (i) One has J ∩ p =
⋃

i,j K.(cp(p
s)• + nj

i ).
(ii) Any JK -class contained in J ∩ p has dimension dim cp(p

s) + dimK.x.

Proof. Let y = s′ + n′ ∈ J ∩ p . Since x and y belong to the same JG -
class, gs′ is G-conjugate to gs [TY05, 39.1.3]. By Property (L), see Theorem 7.8,
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the subalgebra gs′ is then K -conjugate to gs . We can therefore assume that
s′ ∈ cp(p

s)• . It follows that n′ belongs to one of the orbits KL.n
j
i , hence JK(y) =

K.(cp(p
s)• + nj

i ) ⊂ J ∩ p .
By [TY05, 39.5.8] one knows that dim JK(y) = dimK.y+ dim cp(p

s) = dimK.x+
dim cp(p

s) = dim JK(x) . This proves (i) and (ii).

Note that the union in Lemma 8.2(i) is not necessarily a disjoint union.

Lemma 8.3. (i) Let g ∈ G and a semisimple element s ∈ p be such that
g.s ∈ p; then g.cp(p

s) ⊂ p.
(ii) For x, y ∈ p such that G.x = G.y , one has G.JK(x) = G.JK(y).

Proof. (i) By Lemma 6.6 there exists k ∈ K such that k.(g.s) = s , hence
kg ∈ L = CG(cg(g

s)•) (see (12)) and kg.cp(p
s) = cp(p

s) . This gives g.cp(p
s) =

k−1.cp(p
s) ⊂ p .

(ii) By Lemma 6.6, again, we may assume that x = s+ n and y = s+ n′ . Then,
JK(x) = K.(cp(p

s)• + n) and JK(y) = K.(cp(p
s)• + n′) . Write y = g.x , g ∈ G ;

from (12) it follows that g.(s′ + n) = s′ + n′ for all s′ ∈ cp(p
s)• .

We can now describe the intersection of a JG -class with p .

Theorem 8.4. Let J be a Jordan G-class. The variety J ∩ p is smooth. The
JK -classes contained in J ∩ p are its (pairwise disjoint and smooth) irreducible
components.

Proof. We may obviously assume that J∩p 6= ∅ ; pick x ∈ J∩p . Recall [Bro98]
that J is smooth and that the tangent space TxJ is equal to [x, g] ⊕ cg(g

s) , see
[TY05, 39.2.8, 39.2.9]. By [TY05, 39.5.5] there exists a dominant morphism µ :
K × cp(p

x)• → JK(x) , (k, u) 7→ k.u . Therefore d(Id,x)µ(k× cp(p
x)) = [x, k]⊕ cp(p

s)
(cf. [TY05, 39.5.7]) is a subspace of the tangent space TxJK(x) , and we then
obtain:
Tx(J ∩ p) ⊂ TxJ ∩ p = ([x, g]⊕ cg(g

s))∩ p = [x, k]⊕ cp(p
s) ⊂ TxJK(x) ⊂ Tx(J ∩ p).

Thus Tx(J ∩ p) = TxJK(x) has dimension dim JK(x) = dim cp(p
s) + dimK.x . By

Lemma 8.2(ii), this dimension does not depend on the element x chosen in J ∩ p .
Therefore JK(x) , J ∩ p are smooth and each element of J ∩ p belongs to a unique
irreducible component (see, for example, [TY05, 17.1.3]). Then, Lemma 8.1 yields
the desired result.

The smoothness of J ∩ p can be deduced from a general result that we now
recall, see, for example, [Iv72, Proposition 1.3] or [PV91, 6.5, Corollary].

Theorem 8.5. Let Γ be a linear reductive group acting on a smooth variety
X . Then the subvariety of fixed points XΓ := {x ∈ X | Γ.x = x} is smooth, and
TxX

Γ = (TxX)Γ for all x ∈ XΓ .

This theorem can be applied to a JG -class J as follows. Let
Γ := {Id, θ̃} ⊂ GL(g)
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be the group, of order two, generated by θ̃ := −θ (thus θ̃ is an anti-automorphism
of g). Now, we can note [TY05, 39.1.7] that J = JG(x) = G.cg(g

x)• . From the
definition of a Jordan class, or this description, it follows that J is stable under
the k× -action y 7→ λy , λ ∈ k× so, when J ∩ p 6= ∅ , we have θ̃(J) = θ(J) = J .
Therefore, the group Γ acts on the smooth variety J and we get from Theorem 8.5
that JΓ = J ∩ p is smooth. This provides another proof of Theorem 8.4 (see the
four last lines in the proof of that theorem).

9. Sheets of symmetric Lie algebras, the general case

We continue with the same notation. Fix a G-sheet S = SG ⊂ g(2m) , m ∈ N .
Since each K -sheet is an irreducible component of p(m′) ⊂ g(2m′) for some m′ ∈ N ,
we aim to describe the irreducible components of SG ∩ p . In this way, we will get
informations on K -sheets One important remark is the following

Lemma 9.1. If SG ∩ p 6= ∅ then the unique nilpotent orbit O contained in SG

intersects p.

Proof. Let x ∈ SG ∩ p . It follows from [TY05, 38.6.9] that there exists a
nilpotent element n ∈ p such that n ∈ K.(kx)• . Since K.(k×x) ⊂ SG , we get that
n ∈ SG and n ∈ O ∩ p .

The description of the irreducible components of SG ∩ p will be given in
terms of the K -orbits contained in O , see Theorem 9.12.

We first want to prove that when S is smooth, and (g, θ) has no irreducible
factor of type 0, the intersection S ∩ p (which can be empty) is also smooth.
To obtain this result we will apply Theorem 8.5, as in the case of a Jordan G-
class. We adopt the notation of the end of the previous subsection, in particular
we set Γ := {Id, θ̃ = −θ} . Observe that S is stable under the k× -action, thus
θ̃(S) = θ(S) ; but, contrary to the case of a Jordan class, the stability of S under
Γ requires some hypothesis, even in the case where S ∩ p 6= ∅ .

We begin with the following technical result which is a reformulation of
[Bor81, Lemma 4.5]. Its proof is based on a case by case study and goes along the
same lines as [Bor81, §3.9]. Recall [CM93, 7.1] that a nilpotent orbit O is called
rigid if it can not be obtained by induction of a proper parabolic subalgebra of g ;
equivalently, when g is semisimple, O is rigid if O is a G-sheet, cf. [Bor81, §4].

Lemma 9.2. Let l be a Levi factor of a simple Lie algebra g and O be a rigid
nilpotent orbit of l. Then, τ(O) = O for all τ ∈ Aut(l).

The next lemma ensures that when g is simple, S ∪ θ(S) inherits its
smoothness from S .

Lemma 9.3. Let g be a simple Lie algebra. If g is not of type D, then
θ(S) = S .
If g is of type D, one has either θ(S) = S or S ∩ θ(S) = ∅.
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Proof. Let J1 be the dense Jordan class contained in S and let (l,O) be
a datum of J1 . Then, the dense Jordan class J2 in the sheet θ(S) has datum
(θ(l), θ(O)) .
If g is of type different from D or E7 , it follows from the classification of Levi factors
in [Dy57, Theorem 5.4] that θ(l) is G-conjugate to l (cf. also [BC76, Proposition
6.3]). In these cases we can therefore assume that θ(l) = l , and Lemma 9.2 yields
θ(O) = O . Thus, J1 = J2 and θ(S) = S .
If g is of type E7 , there exists no outer automorphism of g so θ(S) ⊆ G.S = S .
Suppose that g is of type D. If l and θ(l) are G-conjugate, the previous argument
applies and one gets θ(S) = S . Otherwise, [IH05, Corollary 3.15] implies that
S ∩ θ(S) = J1

• ∩ J2
•

= ∅ .

We can now prove the desired result:

Proposition 9.4. (i) Let (g, θ) be a reductive symmetric Lie algebra which has
no irreducible factor of type 0. If S is a smooth G-sheet then the intersection
S ∩ p is smooth.
(ii) Let (g, θ) be a symmetric Lie algebra and S ′ be a K -sheet contained in a
smooth G-sheet S . Then S ′ is smooth.
(iii) Under the assumptions of (ii), S ′ is a union of Jordan K -classes.

Proof. Decompose the symmetric algebra (g, θ) as (z(g), θ|z(g)) ⊕
⊕

i(gi, θ|gi
)

where each (gi, θ|gi
) is an irreducible factor (see the beginning of this section).

(i) We want to apply Theorem 8.5 with Γ = {Id, θ̃ = −θ} and X := S∪ θ(S) ⊂ g .
Note that XΓ = (S ∩ p) ∪ (θ(S) ∩ p) and that θ(S) is smooth.
If g is simple, Lemma 9.3 yields that X = S or S t θ(S) (in type D) is smooth;
therefore XΓ , and consequently S ∩ p , is smooth. Suppose that g is not simple.
By hypothesis, each gi is simple and the result then follows from Corollary 1.2.
(ii) The K -sheet S ′ is an irreducible component of a p(m) for some m ∈ N . Since
S ′ ⊂ S ∩ p ⊂ g(2m) ∩ p = p(m) , S ′ is an irreducible component of S ∩ p . It is
therefore sufficient to prove that S ∩ p is smooth.
From (i), we are reduced to the case of type 0, i.e., g = g1 ⊕ g2 with θ : g1 ∼−→ g2 .
From the results of §5 it follows that there exists a G1 -sheet S1 ⊂ g1 such that
S ′ = {x − θ(x) | x ∈ S1} . Then S = S1 × θ(S1) , which is smooth if and only if
S1 is smooth. As S1 is isomorphic to S ′ , one gets the desired result.
(iii) Note that

S ∩ p =
⋃

JG⊂S

JG ∩ p

where JG runs in the Jordan G-classes included in S . Then, Lemma 8.1 implies
that, with obvious notations,

S ∩ p =
⋃

JK⊂S∩p

JK .

By (ii), S ∩ p is smooth and therefore is the disjoint union of its irreducible
components. In particular, S ′ is a union of Jordan K -classes since those are
irreducible subvarieties of S ∩ p .
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Remarks 9.5. (1) The sheets in a classical Lie algebra are smooth, see Theo-
rem 3.10. Therefore if (g, k) is a symmetric Lie algebra with g of classical type,
Proposition 9.4 implies that its K -sheets are smooth and union of Jordan K -
classes.
(2) When g = glN , case which will be studied in details in Section 10, the smooth-
ness of SG ∩ p can been explained in different (equivalent) terms. Indeed, recall
first that, if g = glN , a nilpotent orbit is contained in a unique G-sheet, cf. Re-
mark 3.3. Assume that the sheet S = SG intersects p and let O = G.e be the
nilpotent orbit contained in S . Then, since we may assume that e ∈ p , it follows
from G.θ(e) = G.(−e) = G.e ⊂ θ(S) ∩ S that θ(S) = S . Therefore, the group Γ
acts on S and SΓ = S ∩ p is smooth.
(3) Michaël Le Barbier has recently proved that The closure of a Jordan K -class
is a union of Jordan K -classes, see [Le10, Theorem B.1]. Proposition 9.4(iii) may
be seen as a straightforward consequence of this result.

Assume that the sheet SG intersects p , pick e ∈ O ∩ p and set

Oe := K.e ⊂ O ∩ p.

Denote by S = (e, h, f) a normal sl2 -triple containing e . We are going to
apply the results recalled in §3 to various triples deduced from S . Recall from
Remarks 3.11 that these results hold for any such sl2 -triple.

Let Z ⊂ G be a subset such that {g.e}g∈Z is a set of representatives of the
K -orbits contained in O∩ p ; we assume that Id ∈ Z . Observe that, since the sl2 -
triples containing g.e are conjugate, we may also assume that g.S := (g.e, g.h, g.f)
is a normal sl2 -triple for all g ∈ Z . Recall that X(SG, g.S ) is defined by

g.e+X(SG, g.S ) = SG ∩ (g.e+ gg.f ) = g.(SG ∩ (e+ gf )) = g.(e+X(SG,S )).

(Hence X(SG, g.S ) = g.X(SG,S ) .) Set

Xp(SG, g.S ) := X(SG, g.S ) ∩ p. (13)

Remark 9.6. Recall that S ⊂ g(2m) . Let Y 6= ∅ be a subvariety of g.e +
Xp(SG, g.S ) ; then, each G-orbit (resp. K -orbit) of an element of Y has dimension
dimG.e = 2m (resp. dimK.e = m). Lemma 3.6 implies that the fibers of the
morphisms G×Y → G.Y and K ×Y → K.Y are of respective dimension dimGe

and dimKe . Then, by [TY05, 15.5.5], we get that dimG.Y = dimY + 2m and
dimK.Y = dimY +m .

We now introduce some conditions which will be sufficient to give a de-
scription of the irreducible components of SG∩p in terms of the Xp(SG, g.S ) , see
Theorem 9.12.

Recall that SG = G.(e+X(SG,S )) . The first condition ensures that e+Xp

is large enough:

G.(g.e+Xp(SG, g.S )) = G.(SG ∩ p) for all g ∈ Z. (♥)
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The condition (♥) was established for pairs of type 0 in Proposition 5.5, and we
will see that it also holds for all symmetric pairs when g = glN (cf. Theorem 11.1).
Set:

A(g.e) := Gg.e/(Gg.e)◦.

By Theorem 3.7 the Slodowy slice g.e+X(SG, g.S ) provides the geometric quo-
tient

ψSG,g.S : SG −→ (g.e+X(SG, g.S ))/A(g.e)

and we will be interested in some cases where the following property is satisfied:

Ge is connected. (*)

Recall that (*) is true when g = glN (see Lemma 4.1). Clearly, (*) implies
that g.e +X(SG, g.S ) is the geometric quotient of SG . In this case, the restric-
tion of ψSG,g.S to the subset

(
g.e +

⊕
i60 g(2i, g.h)

)
∩ SG is given by the map

εSG,g.S constructed in Lemma 3.4, and if hypothesis (♥) is also satisfied, one has:
ψSG,g.S (SG ∩ p) = g.e+Xp(SG, g.S ) .

Let J1 be a JK -class contained in SG∩p . As J1 is K -stable, the dimension
of J1∩ (g.e+pg.f ) does not depend on the representative element g.S of the orbit
K.g.S . Since K -orbits of normal sl2 -triples are in one to one correspondence with
K -orbits of their nilpositive parts (i.e. the first element of such an sl2 -triple), we
may introduce the following definition.

Definition 9.7. Let g ∈ Z . A JK -class J1 contained in SG is said to be
well-behaved with respect to Og.e := K.g.e , if:

dim J1 ∩ (g.e+ pg.f ) = dim J1 −m. (14)

Remark 9.8. It follows from Lemma 8.2(ii) that a JK -class J1 = K.(cp(p
s)•+n)

is well-behaved w.r.t. Og.e if and only if Y = J1 ∩ (g.e + pg.f ) satisfies dimY =
dim cp(p

s) (= dim J1 −m) . By Remark 9.6 this is also equivalent to dimK.Y =
dim J1 , which is in turn equivalent to J1 ⊂ K.Y . In this case one has J1 ⊂
K.(g.e+Xp(SG, g.S )) , property which will be of importance for the description
of SG ∩ p .

The following lemma shows that, assuming (♥), well-behaved JK -classes
exist.

Lemma 9.9. Let J be a JG -class contained in SG such that J ∩ p 6= ∅. Fix
g ∈ Z and set ψ := ψSG,g.S . Assume that the property (♥) is satisfied.
(i) Let J1 ⊂ J ∩p be a JK -class. There exists a subvariety Y ⊂ g.e+Xp(SG, g.S )
such that: Y is irreducible and ψ(Y ) is dense in ψ(J1). Moreover, if Y ⊂
g.e + Xp(SG, g.S ) is maximal for these two properties, then ψ(Y ) = ψ(J1) and
J2 := K.Y ∩ J is a JK -class (contained in J ) which is well-behaved w.r.t. Og.e .
(ii) The class J1 is well-behaved w.r.t. Og.e if and only if one can find Y , as in
(i), such that J1 = K.Y ∩ J .
(iii) If (*) holds, there exists a unique maximal Y as in (i), namely Y = ψSG,g.S (J1),
thus J2 = K.ψSG,g.S (J1) ∩ J .



Bulois 29

Proof. In order to simplify the notation, we suppose that g = Id and we set
X := X(SG,S ) , Xp := X ∩ p , ψ := ψSG,S , S := SG , etc.
(i) Consider the following commutative diagram

e+Xp
γp

((PPPPPPPPP
i // e+X

γ
��

(e+X)/A = ψ(S)

where i is the natural closed embedding and γ is the quotient morphism, see (5).
Observe that, the group A being finite, the morphisms γ and γp are finite, hence
closed. Moreover, (♥) implies that im(γp) = ψ(S ∩ p) . Let Y ′ be any irreducible
component of γ−1

p

(
ψ(J1)

)
dominating ψ(J1) ⊂ (e+X)/A and set:

Y := γ−1
p (ψ(J1)) ∩ Y ′.

Then Y ⊂ J is a dense irreducible subset of Y ′ such that ψ(Y ) = γp(Y ) = ψ(J1) .
Since the fibers of ψ are of dimension m and γp is finite, one has dimY =
dim J1 −m . Set

J2 := K.Y ∩ J.

As K.Y ⊂ J2 ⊂ J ∩ p , we see that J2 is a closed irreducible subset of J ∩ p of
dimension dimK.Y = dimY +m = dim J ∩ p (cf. Remark 9.6). One obtains from
Theorem 8.4 that J2 is a JK -class, which is well-behaved w.r.t. Oe (recall that
J2 ⊂ K.Y ).
Suppose now that Y1 ⊂ e +Xp is maximal for the properties: Y1 irreducible and
ψ(Y1) dense in ψ(J1) . Observe that the closure Y ′

1 of Y1 inside e+Xp is irreducible,
and γp(Y

′
1) = γp(Y1) = ψ(J1) . The argument of the previous paragraph, together

with the maximality of Y1 , implies that Y1 = γ−1
p (ψ(J1))∩ Y ′

1 . As above, we then
get that K.Y1 ∩ J is a well-behaved JK -class contained in J ∩ p .
(ii) Set Y1 := J1 ∩ (e + Xp) and suppose that J1 is well-behaved w.r.t. Oe , thus
dim J1 = dimY1 + m . Let Y2 ⊂ Y1 be an irreducible component of maximal
dimension; since γp is finite, one has dim γp(Y2) = dimY1 = dimψ(J1) , hence
ψ(Y2) is dense in ψ(J1) . We then deduce from (i) that J2 := K.Y2 ∩ J is a JK -
class; since Y2 ⊂ J2 ∩ J1 , it follows that J1 = J2 is well-behaved w.r.t. Oe . The
converse is clear.
(iii) Here, γp : e + Xp

∼−→ψ(S ∩ p) is the identity; thus Y ′ = ψ(J1) and Y =
ψ(J1) .

Remarks 9.10. (1) In part (i) of the previous lemma, the JK -class J2 (⊂ J ⊂
SG) is contained in the following variety:

SK(SG, g.S ) := K.(g.e+Xp(SG, g.S ))
•
. (15)

Since K -orbits of normal sl2 -triples are in bĳection with nilpotent K -orbits,
SK(SG, g.S ) depends only on the sheet SG and the orbit Og.e = K.g.e . Therefore
we can write

SK(SG, g.S ) = SK(SG,Og.e).
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Furthermore when g is of type A, thanks to Remark 3.3, we may also write
SK(SG, g.S ) = SK(g.S ) = SK(Og.e) .
(2) Under assumption (*), Lemma 9.9(iii) yields a well defined map

J1 7→ J2 := J ∩K.ψSG,g.S (J1)

from the set of JK -classes contained in SG ∩ p to the set of JK -classes contained
in SK(SG, g.O) .
In case A, we will show in Lemma 12.5 and Lemma 12.12 that each JK -class
contained in SG ∩ p is in the image of such an map, for an appropriate choice of
g ∈ Z .

We now introduce a condition ensuring that the varieties SK(SG,Oe) are
irreducible:

Xp(SG, g.S ) is irreducible for all g ∈ Z. (♦)

Corollary 9.11. Assume that conditions (♥) and (♦) hold. Then, SK(SG,Og.e)
is an irreducible component of SG ∩ p of maximal dimension.

Proof. Let J1 be a JK -class of maximal dimension contained in SG ∩ p and
J ⊂ SG be the JG -class containing J1 . Since (♥) is satisfied, one can find Y as
in Lemma 9.9(i) such that J2 := K.Y ∩ J is a JK -class contained in J . Then,
J2 ⊂ SK(SG,Og.e) ⊂ SG ∩ p and Theorem 8.4 implies that dim J2 = dim J1 =
dimSG ∩ p . Therefore SK(SG,Og.e) = J2

• is an irreducible component of SG ∩ p

of maximal dimension.

In view of the previous corollary, it is then natural to ask: Are all the
irreducible components of SG ∩ p of the form SK(SG,Og.e)? We introduce the
next additional condition to answer that question:

For each JK-class J1 in SG ∩ p,

there exists g ∈ Z such that J1 is well-behaved w.r.t. Og.e. (♣)

Theorem 9.12. Assume that conditions (♥), (♦) and (♣) are satisfied.
(i) The irreducible components of SG ∩ p are the SK(SG,Og.e) with g ∈ Z.
(ii) SG ∩ p is equidimensional.
(iii) There exists a unique JG -class J such that SG ∩ p = J ∩ p

• and, for each
g ∈ Z, SK(SG,Og.e) = Jg

• for a unique JK -class Jg ⊂ J .
(iv) The map SK(SG,Og.e) → Jg gives a bĳection between irreducible components
of SG ∩ p and the set of JK -classes contained in J ∩ p.

Proof. Write SG ∩ p =
⋃

J⊂SG
J ∩ p , where the union is taken over the JG -

classes J intersecting p . For any such J , J ∩ p is the union of the JK -classes
it contains (cf. Lemma 8.1), thus (♣) and Lemma 9.9(ii) imply that SG ∩ p =⋃

g∈Z SK(SG,Og.e) . Then, apply Corollary 9.11 to get (i) and (ii).
Now, let J1 be a JK -class of maximal dimension contained in SG ∩ p and denote
by J ⊂ SG the JG -class containing J1 . Let g ∈ Z ; as in the proof of Corollary 9.11
one can find a JK -class Jg ⊂ J ∩ p such that SK(SG,Og.e) = Jg

• . It then follows
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from (i) that SG ∩ p = J ∩ p
• . Furthermore, as JK -classes are locally closed, Jg

is the unique dense JK -class in SK(SG,Og.e) . This implies the unicity of the class
J and (iii) follows. Finally, one deduces (iv) from (i), (iii) and Theorem 8.4.

10. Type A, involutions

From section 10 to 12, we show that the conditions (♥), (♦) and (♣), introduced
in Section 9 in order to describe the K -sheets of a reductive (or semisimple, see
Corollary 1.2) symmetric Lie algebra (g, θ) , are satisfied in type A, i.e. when
g = glN (or slN ).

Thereafter, unless otherwise specified, e.g. in type A0, we set g = glN ,
N ∈ N∗ , and if θ is an involution on g we adopt the notation of Section 5 relative
to the symmetric pair (g, θ) = (g, k) . The natural action of G̃ = GLN on g

factorizes through the adjoint action to give the surjective morphism:

ρ : G̃ −→ G ∼= G̃/k×Id = PGLN = PSLN

Recall that Gθ := {g ∈ G | g ◦ θ = θ ◦ g} and K := (Gθ)◦ . If H is an algebraic
subgroup of G we set:

H̃ := ρ−1(H). (16)
Thus, H.x = H̃.x for all x ∈ g . After recalling the three different possible types
of involutions, we will establish the three aforementioned conditions:

(♥) in Theorem 11.1 (types AI, AII) and Proposition 11.6 (type AIII);
(♦) in Remark 11.3 (types AI, AII) and Remark 11.8 (type AIII);
(♣) in Corollary 12.5 (types AI, AII) and Proposition 12.12 (type AIII).
We recall below a construction of the involutions on glN = gl(V ) . We will

also have to consider the involution by permutation of factors on glN × glN , cf. 5;
this case will be called “type A0”.

Recall that the nilpotent orbits in g = glN are in bĳection with the par-
titions of N and that, to each partition µ = (µ1 > · · · > µk) , one associates a
Young diagram having µi boxes on the i-th row.

We fix a G-sheet SG ⊂ g and an element e in the nilpotent orbit O ⊂ SG .
The partition associated to e is denoted by

λ = (λ1 > λ2 > · · · > λδO).

We adopt the notation introduced in 4; in particular, the basis v (in which
e =

∑
i ei has a Jordan normal form, see (6)) and the subalgebras qi

∼= glλi
,

q = ⊕iqi, l, t are fixed.
We want to construct symmetric pairs (g, θ) ≡ (g, k, p) ≡ (g, k) such that

e ∈ p . These constructions are inspired by [Oh86, Oh91]. The notation being as
in [He78a, GW98], one obtains three types of non-isomorphic symmetric pairs: AI,
AII and AIII. Recall that the involution θ is outer in types AI, AII and inner in
type AIII.

The most complicated case is type AIII, where it is possible to embed
e in several non-isomorphic ways in different p ’s. These possibilities will be
parameterized by functions Φ : [[1, δO]] → {a, b} , where a, b are different symbols.
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10.1. Case A0. Let θ be the involution on g = glN × glN sending (x, y) to
(y, x) . Recall that k = {(x, x) | x ∈ glN} ∼= glN , p = {(x,−x) | x ∈ glN} . The
k-module p is isomorphic to the ad glN -module glN ; thus, G.y ∩ p = K.y for
y = (x,−x) ∈ p . Suppose that y = (x,−x) is nilpotent, i.e. x ∈ glN is nilpotent.
The elements x and −x share the same Young diagram µ = (µ1 > · · · > µk) and
the orbit K.y is uniquely determined by µ .
10.2. Case AI. Let χ be the nondegenerate symmetric bilinear form on V
defined, in the basis v (cf. 4), by:

χ(v
(i)
j , v

(l)
k ) :=

{
1 if l = i and j + k = λi + 1;
0 otherwise.

Set
k := {k ∈ g | ∀u, v ∈ V, χ(k.u, v) = −χ(u, k.v)} ∼= soN ,

p := {p ∈ g | ∀u, v ∈ V, χ(p.u, v) = χ(u, p.v)}.
The symmetric Lie algebra (g, k, p) is of type AI with associated involution θ on
g having k (resp. p) as +1 (resp. −1) eigenspace. In particular z(g) = kId ⊂ p .

In this case, each (qi, k∩qi) is a simple symmetric pair of type AI isomorphic
to (glλi

, soλi
) . Denote by sk the (k × k)-matrix with entries equal to 1 on its

antidiagonal and 0 elsewhere, as in [GW98, 3.2]. The involution θ associated to
(g, k, p) acts on each element x ∈ qi by θ(x) = −sλi

txsλi
(which is the opposite of

the symmetric matrix of x with respect to the antidiagonal).
The group G̃θ = ρ−1(Gθ) , cf. (16), is a nonconnected group isomorphic

to the orthogonal group ON and Gθ ∼= ON/{±Id} . Fix ω̃ ∈ G̃θ r (G̃θ)◦ , then:
G̃θ = (G̃θ)◦ t ω̃(G̃θ)◦ , Gθ = K ∪ ωK , where ω := ρ(ω̃) . When N is odd,
ω ∈ K = Gθ ∼= SON and Gθ is connected. If N is even, one has Gθ = K t ωK
and K ∼= SON /{±Id} .

Let (g, k′, p′) be another symmetric Lie algebra of type AI, then O∩ p′ 6= ∅
and, moreover, for any element e′ ∈ O ∩ p′ there exists an isomorphism of
symmetric Lie algebras τ : (g, k′, p′) → (g, k, p) such that τ(e′) = e (see [GW98,
Theorem 3.4]).
10.3. Case AII. Assume that θ′ is an involution of type AII on g (i.e. k ∼= spN )
such that θ′(e) = −e ; the following condition is then necessarily satisfied:

λ2i+1 = λ2i+2 for all i.

We therefore assume, in this subsection, that the previous condition holds. In
particular, N is even and we write N = 2N ′ .

Define a symplectic form χ on V by setting

χ(v
(i)
j , v

(l)
k ) :=


1 if i+ 1 = l ≡ 0 (mod 2) and j + k = λi + 1;
−1 if l + 1 = i ≡ 0 (mod 2) and j + k = λi + 1;
0 otherwise.

The subspaces k and p are then defined, through χ , as in the AI case and, θ being
the associated involution, one has:

k ∼= sp2N ′ , K = Gθ
ρ∼= G̃θ/{±1} ∼= Sp2N ′ /{±1}, z(g) ⊂ p. (17)
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Set q′2i+1 := gl
(
v

(2i+1)
j , v(2i+2)

j | j = 1, . . . , λ2i+1

)
; then, (q′2i+1, k∩q′2i+1) is a simple

symmetric pair of type AII isomorphic to (gl2λ2i+1
, sp2λ2i+1

) . We can identify q2i+1

with q2i+2 via the isomorphism ui : q2i+1
∼→ q2i+2 defined as follows:

ui(x).v
(2i+2)
j = x.v

(2i+1)
j for all j ∈ [[1, λ2i+1]] and x ∈ q2i+1 .

The involution θ associated to (g, k, p) acts on each element x ∈ q2i+2 , resp. x ∈
q2i+1 , by θ(x) = −u−1

i (sλ2i+2
txsλ2i+2

) , resp. θ(x) = −ui(sλ2i+1
txsλ2i+1

) .
As in case AI, if (g, k′, p′) is another symmetric pair of type AII then

O ∩ p′ 6= ∅ and, for any element e′ ∈ O ∩ p′ , there exists an isomorphism of
symmetric pairs τ : (g, k′, p′) → (g, k, p) with τ(e′) = e (see [GW98] and (17)).
10.4. Case AIII. Following [Oh86, Oh91] we will use the notion of ab-diagram
to classify nilpotent orbits in classical reductive symmetric pairs of type AIII,
i.e. (g, k) = (glN , glp × glq) .

Definition 10.1. An ab-picture is a Young diagram in which each box is labeled
by an a or a b , in such a way that these two symbols alternate along rows. Two
ab-picture Λ,Λ′ are equivalent if they differ by permutations of lines of the same
length. We then note Λ ∼= Λ′ .
An ab-diagram is an equivalence class of ab-pictures. The shape of an ab-diagram
is the shape of any of its ab-picture.

Recall that O ⊂ g is a nilpotent orbit with associated partition λ = (λ1 >
· · · > λδO) . To any function

Φ : [[1, δO]] −→ {a, b}

one can associate an ab-picture Λ(Φ) of shape λ as follows: label the first box
of the i-th row (of size λi ) of Λ(Φ) by Φ(i) , and continue the labeling to get an
ab-picture as defined above. We denote by ∆(Φ) the ab-diagram associated to
Λ(Φ) . Observe that we may have Φ 6= Ψ and ∆(Φ) = ∆(Ψ) .

Fix a such a function Φ and decompose V into a direct sum V = V Φ
a ⊕V Φ

b

by defining (cf. [Oh91])

V Φ
a :=

〈
v

(i)
j | (Φ(i) = a and λi − j ≡ 0 mod 2) or (Φ(i) = b and λi − j ≡ 1 mod 2)

〉
V Φ

b :=
〈
v

(i)
j | (Φ(i) = b and λi − j ≡ 0 mod 2) or (Φ(i) = a and λi − j ≡ 1 mod 2)

〉
.

Set Na := dimV Φ
a and Nb := dimV Φ

b , hence N = Na +Nb . Now, if

kΦ := gl(V Φ
a )⊕ gl(V Φ

b ) ⊂ g, pΦ := Hom(V Φ
a , V

Φ
b )⊕ Hom(V Φ

b , V
Φ
a ) ⊂ g

we obtain a symmetric Lie algebra

(g, k, p) := (g, kΦ, pΦ),

such that ([g, g], k ∩ [g, g]) is irreducible of type AIII and z(g) ⊂ k . One has:
K = ρ(GL(V Φ

a )×GL(V Φ
b )) and, θ being the associated involution, K = Gθ if and
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only if Na 6= Nb . It is easily seen that (qi, k
Φ ∩ qi) is a reductive symmetric pair

(of type AIII) isomorphic to
(
glλi

, glbλi
2
c ⊕ gldλi

2
e

)
.

The ab-diagram associated to a nilpotent element e′ ∈ pΦ is defined in the
following way (see, for example, [Oh91, (1.4)]). Let µ = (µ1 > · · · > µk) be the
partition associated to e′ . Fix a normal sl2 -triple (e′, h′, f ′) and a basis of V{

ζ
(i)
j | i ∈ [[1, k]], j ∈ [[1, µi]]

}
such that: ζ(i)

j belongs either to V Φ
a or V Φ

b , ζ(i)
1 is a basis of ker f ′ and e′(ζ

(i)
j ) =

ζ
(i)
j+1 . Then, label the j -th box in the i-th row of the Young diagram associated

to µ by a , resp. b , if ζ(i)
j ∈ V Φ

a , resp. ζ(i)
j ∈ V Φ

b . This defines an ab-picture
whose ab-diagram, denoted by ΓΦ(e′) , does not depends on the choice of the ζ(i)

j .
The map K.x 7→ ΓΦ(x) gives a parameterization of the nilpotent K -orbits in pΦ ,
see [Oh91, Proposition 1(2)].

Remark that the element ei , defined in 4, belongs to pΦ∩qi in the symmetric
Lie algebra (qi, k

Φ ∩ qi) ; its ab-diagram has only one row, with first box labeled
with Φ(i) . An ab-diagram whose equivalent class is of the form ΓΦ(x) is said to
be admissible for Φ . For example, ΓΦ(e) = ∆(Φ) is admissible. It is easy to see
that a necessary and sufficient condition for an ab-diagram to be admissible is to
have exactly Na labels equal to a and Nb labels equal to b .

The number Na−Nb is called the parameter of the symmetric pair (g, kΦ) .
Its absolute value |Na−Nb| can be read from the Satake diagram of the symmetric
pair (g, kΦ) . The parameter is different from 0 when all the white nodes are
connected by arrows; then, its absolute value is the number of black nodes plus
one, cf. [He78a, p. 532]. Two symmetric pairs (g, k) of type AIII are isomorphic if
and only if their parameters have the same absolute value.

Assume that (g, k′, p′) is a symmetric Lie algebra of type AIII such that
O∩p′ 6= ∅ . Then, for every element e′ ∈ O∩p′ with ab-diagram Γ′ , there exists a
function Ψ : [[1, δO]] → {a, b} such that Γ′ = ∆(Ψ) . Furthermore, it is not difficult
to show that, in this case, there exists an isomorphism of symmetric Lie algebras
τ : (g, k′, p′) → (g, kΨ, pΨ) such that τ(e′) = e .
10.5. Notation and remarks. Let (g, k, p) be a symmetric Lie algebra with
g = glN = gl(V ) and SG be a G-sheet intersecting p . We follow the notation
introduced in sections 4 and 9.

Recall from Lemma 9.1 that the nilpotent orbit O ⊂ SG intersects p and
fix e ∈ O ∩ p . Then, the symmetric pair (g, k) can be described as in 10.2, 10.3
or 10.4. The notation for v , q =

⊕
i qi , l , t ⊂ h ⊂ l ∩ q , being as in 4, set:

ki := qi ∩ k, pi := qi ∩ p, θi := θ|qi
.

The normal sl2 -triple S = (e, f, h) is then given by e =
∑

i ei , h =
∑

i hi ,
f =

∑
i fi . The map

ε = εg : e+ h → e+ gf

is defined as in Remark 3.5; it is the restriction of the polynomial map ε from
Lemma 3.4.
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Recall also that the subset Z ⊂ G is chosen such that: Id ∈ Z , {g.e}g∈Z

is a set of representatives of the K -orbits contained in G.e ∩ p and g.S :=
(g.e, g.h, g.f) is a normal sl2 -triple. The “Slodowy slices” are defined by:

g.e+X(SG, g.S ) := SG ∩ (g.e+ gg.f ), Xp(SG, g.S ) := X(SG, g.S ) ∩ p.

As observed in Remark 3.3, we may simplify the notation by setting:

X := X(S ) = X(SG,S ), Xp := Xp(S ) = X(SG,S ) ∩ p.

It follows from the results of Section 3 that: X is smooth, e + X = ε(e + t) is
irreducible, SG = G.(e +X) and ψ : SG → e +X is a geometric quotient of the
sheet SG , cf. Theorem 3.7 (recall that the group Ge is connected).

Since e, g.e ∈ p , the remarks at the end of the previous subsections show
that there exists an isomorphism τ (depending on g ) of symmetric Lie algebras
sending (g, k, p) to a symmetric pair of the same type (AI, AII or AIII) such that
τ(e) = g.e . It is not hard to see that we can further assume that τ(S ) = g.S . The
main consequence of this observation is that, applying τ , any property obtained
for e + Xp(S ) also holds for g.e + Xp(g.S ) . In particular, we will mainly work
with e+Xp(S ) .

11. Properties (♥) and (♦)

We continue with the notation of 10.5. Hence SG ⊂ g is a G-sheet, e ∈ SG ∩ p is
a fixed nilpotent element and S = (e, f, h) , v , q , etc., are as defined in 4.

The main result of this section is

Theorem 11.1. Assume that (g, θ) is of type A. Then, one has:

G.(e+Xp) = G.(SG ∩ p). (♥)

Moreover, in types AI and AII a stronger version holds, namely: e+X ⊂ p.

Since SG = G.(e + X) and e + Xp = (e + X) ∩ p ⊂ SG ∩ p , the inclusion
G.(e + Xp) ⊂ G.(SG ∩ p) is obvious. Hence, it is sufficient to prove the reverse
inclusion. Clearly, e+X ⊂ p yields G.(e+Xp) = G.(e+X) = SG ⊃ G.(SG ∩ p) .
This is what we prove in types AI and AII below. The proof in the AIII case is
postponed to Proposition 11.6.
End of the proof of theorem 11.1 in types AI and AII.

Type AI: As said in subsection 10.2, each (qi, ki) is a symmetric pair of
type AI. Since this pair has maximal rank and ei ∈ pi is a regular element, one has
qfi

i = p∩qfi

i . Therefore the image of each map εi : ei+hi → ei+qfi , as defined in 4,
is contained in qfi

i ⊆ pi . From ε =
∑

i εi one gets that e+X = ε(e+ t) ⊂ SG ∩ p .
Type AII: Recall that λ2i+1 = λ2i+2 if 2i+2 6 δO . Let x =

∑
i xi ∈ q ; then

x ∈ p ∩ q if and only if, for all i , x2i+1 = −θ2i+2(x2i+2) = sλ2i+1
t(u−1

i (x2i+2))sλ2i+1

(cf. §10.3). This last condition means that x2i+1 is the transpose of u−1
i (x2i+2) with

respect to the antidiagonal. Fix t ∈ t , hence e+ t ∈ SG ; from the description of t

given in (7), one deduces that ui(e2i+1 + t2i+1) = e2i+2 + t2i+2 . Set x = ε(e+ t) . It
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follows from ui◦ε2i+1 = ε2i+2◦ui that ui(x2i+1) = x2i+2 . Since e2i+1+q
f2i+1

2i+1 is fixed
under the conjugation by sλ2i+1

, one obtains −θ2i+2(x2i+2) = sλ2i+1
tx2i+1sλ2i+1

=
x2i+1 . Hence ε(e+ t) ∈ p and, therefore, ε(e+ t) = e+X ⊂ p . �

Corollary 11.2. Every G-orbit contained in SG and intersecting p, also in-
tersects (q ∩ p)• .

Proof. It suffices to observe that e+X ⊂ q• and (q ∩ p)• ⊂ q•

Remark 11.3. (1) One can deduce Theorem 11.1 from Corollary 11.2. Indeed,
let x ∈ SG and suppose that y ∈ G.x∩ (q∩ p)• . Since e is regular in q , it follows
from [KR71] that y is (Q ∩K)◦ -conjugate to an element of e+Xp .
(2) Assume that (g, k) is of type AI or AII. Then, since e+Xp = e+X is irreducible
and smooth in type A (see §10.5), Theorem 11.1 yields that the condition (♦),cf. §9,
holds.

Theorem 11.1 and Type AIII. We assume until the end of this section that
(g, k, p) = (g, kΦ, pΦ) is of type AIII. Let a ⊂ p be a Cartan subspace and h′ ⊂ g

be a Cartan subalgebra containing a . Denote by B a σ -fundamental system of
the root system R(g, h′) := R([g, g], h′∩ [g, g]) , see §6 with h replaced by h′∩ [g, g] .
Let D̄ be the Satake diagram of type AIII associated to B (cf. [He78a, p. 532]).
Since a ⊂ [g, g] , see 10.4, one can define a Q-form of a by

aQ := {a ∈ a | α(a) ∈ Q for all α ∈ R(g, h′)}.

The nodes of D̄ can be labeled by the elements α1, . . . , αN−1 of B . Set α′i := αN−i ,
1 ≤ i ≤ N − 1 , hence αi|a = α′i|a ; there exists an arrow between αi and α′i when
these nodes are colored in white and i 6= N/2 .

Let s ∈ g be semisimple and let c ∈ sp(s) = {eigenvalues of s on V } .
Denote by Vs,c the eigenspace associated to c ; thus, m(s, c) := dimVs,c is the
multiplicity of c . More generally, see the regular case in §4, we set Vs,d :=
ker(s − d IdV ) and m(s, d) := dimVs,d for every d ∈ k . One can identify gl(Vs,c)
with a Lie subalgebra of gl(V ) by extending an element x ∈ gl(Vs,c) by 0 on⊕

c′ 6=c Vs,c′ . Under this identification, sl(Vs,c) is a simple factor of gs if and only
if m(s, c) > 2 . Setting

w′
s,c := sl(Vs,c), ws,c := gl(Vs,c),

one has:
gs =

⊕
c∈sp(s)

ws,c = cg(g
s) ⊕

⊕
m(s,c)>2

w′
s,c. (18)

Denote by Ms,c the connected algebraic subgroup of G group with Lie algebra w′
s,c .

Then, Ms,c acts on ws,c via the adjoint action and the group Gs is generated by
CG(gs) and the Ms,c , c ∈ sp(s) (see §2 and Proposition 2.3).

The group {±1} acts by multiplication on sp′(s) := {c ∈ sp(s) | −c ∈
sp(s)} ; let sp±(s) := sp′(s)/{±1} be the orbit space. The class of c ∈ sp′(s) in
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sp±(s) is denoted by ±c . When 0 ∈ sp(s) we simply write 0 instead of ±0 . We
then set

gs,±c := ws,c ⊕ws,−c, gs,0 := ws,0.

If 0 6= c ∈ sp′(s) , the connected subgroup of G generated by Ms,c and Ms,−c is
denoted by Gs,±c and we set Gs,0 := Ms,0 . One has Lie(Gs,±c) = [gs,±c, gs,±c] .

Recall that we have written V = V Φ
a ⊕ V Φ

b ; we set Va := V Φ
a , Vb := V Φ

b .
The parameter of (g, k) is Na −Nb where Na := dimVa , Nb := dimVb , see 10.4.

Lemma 11.4. Let s ∈ p be a semisimple element. Then:
(1) m(s, c) = m(s,−c) for all c ∈ k;
(2) the symmetric Lie algebra (gs, ks) decomposes as

⊕
±c∈sp±(s)(gs,±c, ks,±c), where

ks,±c := k ∩ gs,±c ;
(3) if c 6= 0, (gs,±c, ks,±c) is a reductive symmetric pair whose semisimple part is
irreducible of type A0;
(4) Vs,0 = (Vs,0 ∩ Va) ⊕ (Vs,0 ∩ Vb) and the symmetric Lie algebra (gs,0, ks,0) is a
reductive symmetric pair whose semisimple part is irreducible of type AIII, with
the same parameter as (g, k). In particular, the parameter of (g, k) is 0 when
0 /∈ sp(s).

Proof. (1) Since the involution θ is inner, the claim follows from the following
elementary observation. Suppose that A ∈ GLN , x ∈ glN , and set x′ := AxA−1 .
Then, m(x, c) = dim ker(x − c Id) = dim ker(x′ − c Id) ; in particular, m(x, c) =
m(x′, c) , thus m(x, c) = m(x,−c) when x′ = −x .
(2) The assertion is an easy consequence of (18) and θ(ws,c) = ws,−c .
(3) & (4). We may assume that Na > Nb and, by Proposition 7.5, s ∈ aQ . Then,
the claims can be read on the Satake diagram of type AIII, except for the equality
of the parameters when c = 0 (one only sees in this way that the absolute values
are equal). A complete proof can be given as follows.
Let (va,i)i∈[[1,Na]] and (vb,i)i∈[[1,Nb]] be bases of Va and Vb . For each i ∈ [[1, Nb]] ,
define ui ∈ p by

ui(vd,j) =

{
vd̄,i if i = j

0 otherwise,

where d̄ is the element of {a, b} r {d} . The subspace generated by the ui ,
i ∈ [[1, Nb]] , is a Cartan subspace of p . If s =

∑
i ciui , the eigenvalues of s are given

by square roots of the ci ’s and one has Vs,0 =
〈
{va,i, vb,i | ci = 0}∪{va,i | i > Nb}

〉
.

It is then not difficult to get the desired assertions.

Recall from the regular case in §4 that if t =
∑

i ti ∈ q =
⊕

i qi is
semisimple, mi(t, c) denotes the multiplicity of the eigenvalue c for ti ∈ qi ; recall
also that h ⊂ q .

Lemma 11.5. Let t ∈ h be such that G.(e+ t) ∩ p 6= ∅. Then:

mi(t, c) = mi(t,−c) for all c ∈ k . (19)
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Proof. Let s1 +n1 be the Jordan decomposition of e+ t and pick g ∈ G such
that g.(e+t) ∈ p . Therefore, s := g.s1 ∈ p and n := g.n1 ∈ p∩gs . By Corollary 4.4
we know that t , s1 and s are in the same G-orbit. Then, Lemma 11.4(1) gives
m(t, c) = m(s, c) = m(s,−c) = m(t,−c) . On the other hand, n ∈ p ∩ gs is a
nilpotent element of the subsymmetric pair (gs, gs ∩ k) =

∏
±c∈sp±(s)(gs,±c, ks,±c) ,

cf. Lemma 11.4(3,4). The orbit Ks.n belongs to p∩gs . Hence it can be decomposed
along the previous direct product:

Ks.n =
∏

±c∈sp±(s)

O±c

where O±c is the projection of the orbit Ks.n onto ps,±c . The result in the case
c = 0 is vacuous. Recall that when c 6= 0 one has gs,±c = ws,c ⊕ ws,−c , and
we can further decompose each orbit Gs,±c · O±c as Oc × O−c ⊂ ws,c × ws,−c .
Then, Gs,±c · O±c , is characterized by the Young diagrams of the nilpotent orbits
Oc , O−c . Since (gs,±c, ks,±c) is of type A0, these two Young diagrams are equal
(cf. §10.1). The results of §4.4 then yield that the partition of Oδc , δ ∈ {−1, 1} ,
is given by the sequence (mi(t, δc))i . As these two sequences are decreasing on i ,
cf. (7), one obtains mi(t, c) = mi(t,−c) for all i .

The following proposition completes the proof of Theorem 11.1 and Corol-
lary 11.2 in case AIII.

Proposition 11.6. Let t ∈ t.
(i) If t satisfies (19), then ε(e+ t) ∈ e+Xp .
(ii) One has G.(e+ t) ∩ p 6= ∅ if and only if t satisfies (19).
(iii) The condition (♥) holds, i.e. G.(SG ∩ p) = G.(e+Xp).

Proof. (i) Recall that t =
∑

i ti , e =
∑

i ei with ti ∈ qi and ei ∈ p∩qi regular
in qi

∼= glλi
. The map ε can be written as

∑
i εi , where εi is given by Lemma 4.2

applied in the algebra qi . Thus εi(ei + ti) = ei +
∑

j≤0 Pj(ti) . From (19) and since
the polynomials Pj are symmetric in eigenvalues of ti (Lemma 4.2), one obtains
Pj(ti) = 0 if j is even. One can deduce from the construction made in 10.4 that
the subspaces pi := p ∩ qi are the sum of the j -subdiagonals and j -supdiagonals
of qi for j odd. It follows that εi(ei + ti) ∈ ei + pfi

i , hence ε(e+ t) ∈ e+X ∩ p .
(ii) By Lemma 3.4 one has G.(e + t) = G.ε(e + t) , thus part (i) shows that the
condition is sufficient. Lemma 11.5 gives the converse.
(iii)We have seen below Theorem 11.1 that the inclusion G.(e+Xp) ⊂ G.(SG ∩ p)
always holds. By Proposition 3.2, every x ∈ SG ∩ p is G-conjugate to an element
e + t ∈ e + t ; parts (i) and (ii) give ε(e + t) ∈ G.x ∩ (e + Xp) and the result
follows.

We now find a convenient subspace c ⊂ t such that ε(e+ c) = e+Xp . For
i ∈ [[1, λδO ]] and j ∈ [[0, b(λi − λi+1)/2c − 1]] , define elements c(i, j) = (c(i, j)k)k ∈
kλ1 by:

c(i, j)k :=


1 if k = λi+1 + 2j + 1;
−1 if k = λi+1 + 2j + 2;
0 otherwise.

(20)
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Let c′ be the subspace of kλ1 generated by the elements c(i, j) . Recall from (8)
the isomorphism α : kλ1 ∼−→ t and set:

c := α(c′) ⊂ t. (21)

The main property of the subspace c is the following. By construction every
element of c satisfies (19); conversely, Lemma 3.12 applied in each qi implies that
any element e + t (with e =

∑
i ei , t =

∑
i ti ) satisfying (19) is conjugate to an

element of c .

Proposition 11.7. In the previous notation one has: ε(e + c) = e + Xp and
G.(e+ c) = G.(SG ∩ p). Moreover,

dim c =

δO∑
i=1

⌊
λi−λi+1

2

⌋
, (22)

which only depends on λ.

Proof. The formula (22) follows without difficulty from the definition of c′ .
Since the elements of e+ c satisfy (19), Proposition 11.6(i) gives ε(e+ c) ⊂ e+Xp .
Conversely, let e+x ∈ e+Xp . As e+X = ε(e+t) , the element e+x = ε(e+t) , t ∈ t ,
is the unique point of e+X intersecting the orbit G.(e+x) = G.ε(e+t) = G.(e+t)
(see Lemma 3.4(i)). By Proposition 11.6(ii), e + t satisfies (19) and, as noticed
above, e + t is conjugate to an element e + c ∈ e + c ⊂ e + t . It follows that
{e+x} = G.(e+x)∩ (e+X) = G.ε(e+ c)∩ (e+X) = {ε(e+ c)} . Hence, e+x =
ε(e+ c) ∈ ε(e+ c) . Finally, G.(SG ∩ p) = G.(e+Xp) = G.ε(e+ c) = G.(e+ c) .

Remark 11.8. Proposition 11.7 implies that condition (♦) holds in case AIII,
i.e., e+Xp is irreducible.

Corollary 11.2 says that in each G-orbit contained in SG and intersecting
p one can find an element x = s + n ∈ (q ∩ p)• . The next corollary summarizes
various results which can be deduced from Lemma 11.4. Recall that q =

⊕
i qi

and that (qi, k∩qi) is a symmetric Lie algebra of type AIII. Applying Lemma 11.4
in each symmetric pair (qi, k ∩ qi) yields:

Corollary 11.9. Let x = s+n ∈ (q∩p)• and write s =
∑

i si , n =
∑

i ni with
si, ni ∈ p ∩ qi , as in 4.
(1) The Levi factor qsi

i of qi has the following decomposition:

qsi
i =

⊕
c∈k

wi,si,c

where wi,si,c := gl
(
ker(si − c Id)

)
⊂ qi .

(2) The symmetric pair (qsi
i , q

si
i ∩ k) decomposes as

(qsi
i , q

si
i ∩ k) =

⊕
±c∈sp±(si)

(qi,si,±c, ki,si,±c)
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where (qi,si,0, ki,si,0) := (wi,si,0,wi,si,0 ∩ k) is of type AIII and, when c 6= 0,
(qi,si,±c, ki,si,±c) :=

(
(wi,si,c ⊕wi,si,−c), (wi,si,c ⊕wi,si,−c) ∩ k

)
is of type A0.

(3) The factor (qi,si,0, ki,si,0) has the same parameter as (qi, qi ∩ k). In particular,
the ranks of qi and qi,si,0 have the same parity.
(4) The nilpotent element ni is regular in qsi

i ; thus, the orbit (Q ∩ K)◦.ni is
uniquely determined by its one row ab-diagram (see 10.4).

12. JK -classes in type A

Knowing that (♥) holds, we want to prove below that condition (♣), introduced
in §9, is satisfied. As above, SG ⊂ g(2m) is a G-sheet and e ∈ SG is a nilpotent
element. We fix a Jordan G-class J ⊂ SG such that J ∩ p 6= ∅ . Recall from
Theorem 8.4 that J ∩ p is a (disjoint) union of JK -classes.
Cases AI and AII. First, we assume that (g, θ) = (g, k, p) is a symmetric Lie
algebra of type AI or AII, as described in 10.2 and 10.3.

We will need the following result, which is a formulation of [Oh86, Propo-
sition 4] in a slightly more general setting. (Its proof is exactly the same.)

Proposition 12.1 (Ohta). Let κ be a linear involution of the associative algebra
g = glN and x 7→ x∗ be a linear anti-involution of the associative algebra g which
commutes with κ. Define:

G′ := gκ ∩GLN , G′′ :=
{
g ∈ G′ : g∗ = g−1

}
.

Set σ(x) := −x∗ and let η, η′ be elements of {±1}. Then, via the adjoint action,
G′ acts on gη′κ and G′′ acts on gησ ∩ gη′κ . The elements x, y ∈ gησ ∩ gη′κ are
conjugate under G′′ if and only if they are conjugate under G′ .

We may apply this proposition in the two following situations. Fixing
η = −1 , η′ = 1 , we take: (κ = Id, x∗ = tx) in type AI, (κ = Id, x∗ = −J txJ)
in type AII, where J =

[
0 Id
−Id 0

]
∈ gl2N ′ . Observe that g′ = g = glN , G′′ = ON ,

resp. G′′ = SpN , and recall that the action of G′ = GLN = G̃ factorizes through
G ∼= G̃/{k×Id} . Then, σ is an involution of the Lie algebra g of type AI, resp. AII
(cf. [GW98, Theorem 3.4]). Using an isomorphism τ as explained in 10, we may
assume that k = τ(gσ) and p = τ(g−σ) . Moreover, in each case ρ(τ(G′′)) = Gθ

(cf. 10.2 and 10.3).
We therefore have obtained the (well known) result:

Proposition 12.2. Let (g, θ) be of type AI or AII. For x, y ∈ p one has the
equivalence:

Gθ.x = Gθ.y ⇐⇒ G.x = G.y.

Corollary 12.3. If (g, θ) is of type AI or AII, the JK -classes contained in J∩p

are conjugate under Gθ .

Proof. Let J1 := K.(cp(p
s)•+n) be the Jordan K -class containing x = s+n ∈

J ∩ p and denote by J2 := K.(cp(p
s)• + n′) another Jordan K -class contained in
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J ∩ p (cf. 8.2(i)). Since J = G.(cg(g
s)• + n′) , there exists g ∈ G such that

g.x ∈ cg(g
s)•+n′ and Remark 7.7 implies that g.x ∈ J2 . Now, by Proposition 12.2,

we may assume that g ∈ Gθ . Then, g.J1 is an irreducible subvariety of J ∩ p of
dimension dim J ∩ p (see Lemma 8.2(ii)) which intersects J2 . It follows from
Theorem 8.4 that g.J1 = J2 .

Remark 12.4. As Gθ = K ∪ ωK in type AI (cf. 10.2), there are at most two
Jordan K -classes in J ∩ p . In type AII one has Gθ = K and J ∩ p is a Jordan
K -class.

Corollary 12.5. The condition (♣) of section 9 is satisfied.

Proof. Let J1 ⊂ J ∩ p be a JK -class. By Lemma 9.9 there exists a JK -class
J2 ⊂ J∩p such that J2 is well-behaved w.r.t. K.e , and Corollary 12.3 gives k ∈ Gθ

such that J1 = k.J2 . Since k defines an automorphism of the symmetric Lie
algebra (g, k, p) , the class J1 = k.J2 is well-behaved w.r.t. K.(k.e) = k.(K.e) .

Case AIII, characterization of JK -classes. We fix (g, θ) = (g, k, p) =
(g, kΦ, pΦ) of type AIII as in section 10.4 and we use the notation introduced
in type AIII in 11. For simplicity we assume that the numbers Na, Nb are such
that Nb ≤ Na .

Let a ⊂ p be a Cartan subspace. Since the involutions of type AIII are
conjugate, and the Cartan subspaces are K -conjugate, one can find a Cartan
subalgebra h′ containing a and satisfying the following conditions (see, for exam-
ple, [GW98, Polarizations-Type AIII, p. 20]). There exists a basis ($1, . . . , $N)
of h′∗ such that: $j(t) , 1 ≤ j ≤ N , are the eigenvalues of t ∈ h′ and
B := {αj = $j − $j+1 | 1 ≤ j ≤ N − 1} is a σ -fundamental system of the
root system R := R(g, h′) . Recall that the Weyl group W (g, h′) = NG(h′)/CG(h′)
can be naturally identified with the group S

(
{$1, . . . , $N}

) ∼= SN = S([[1, N ]]) ,
where we denote by S(E) the permutation group of a set E . Moreover, the action
of θ on h′ is defined by:

$i(θ(t)) :=

{
$N+1−i(t) if min(i, N + 1− i) 6 Nb;
$i(t) otherwise. (23)

Fix the semisimple part s of an element belonging to J ∩ p . By Lemma 8.2, J ∩ p

is the union of JK -classes of the form K.(cp(p
s)• + n) where n ∈ ps is nilpotent.

Thanks to Proposition 7.5 we may assume that s ∈ aQ is in the positive Weyl
chamber defined by B . Recall from (18) that we write

gs =
⊕

c∈sp(s)

ws,c, ws,c := gl(Vs,c),

where gl(Vs,c) is naturally embedded into g = gl(V ) . Note that cg(g
s) =⊕

c∈sp(s) k IdVs,c . Let g ∈ NG(gs) ; then s′ := g.s ∈ cg(g
s) , hence s′|Vs,c

= c′ IdVs,c

for some c′ ∈ sp(s) , that is to say Vs,c ⊂ Vs′,c′ . It is then easily seen that
the map η : c 7→ c′ defines a permutation of sp(s) such that Vs,c = Vs′,c′ . If
r(g) := η−1 ∈ S

(
sp(s)

)
one has Vs′,c = g.Vs,c = Vs,r(g)(c) and it follows that:

g.ws,c = ws,r(g)(c) for all c ∈ sp(s) .
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From this observation one deduces that r is a group homomorphism

r : NG(cg(g
s)) = NG(gs) −→ S

(
sp(s)

)
, g 7→ r(g).

Clearly, if γ = r(g) one has:

m(s, γ(c)) = m(s, c) for all c ∈ sp(s) . (24)

This condition characterizes the elements of the image of r :

Lemma 12.6. An element γ ∈ S
(
sp(s)

)
is in the image of the morphism r if

and only if it satisfies (24).

Proof. Let c1, . . . , c` be the distinct eigenvalues of s . By construction, γ
can be identified with the element γ ∈ S` such that γ(ci) = cγ(i) , 1 ≤ i ≤ ` .
Write [[1, N ]] as a disjoint union

⊔`
j=1 Jj , where Jj := {k : $k(s) = cj} . By (24)

one has #Jj = m(s, cj) = #Jγ(j) = m(s, γ(cj)) . One can therefore find w ∈
SN

∼= W (g, h′) such that w(Jj) = Jγ(j) for j = 1, . . . , ` . Let g ∈ NG(h′) be a
representative of w . One then gets g ∈ NG(cg(g

s)) = NG(gs) and r(g) = γ .

Recall from §11 that we denote by sp±(s) the set of classes {±c : c ∈ sp′(s)} .
For every k ∈ NK(gs) we have

ws,r(k)(−c) = k.ws,−c = k.θ(ws,c) = θ(k.ws,c) = ws,−r(k)(c).

Thus r(k)(−c) = −r(k)(c) and, since gs,±c = ws,c ⊕ ws,−c , one gets k.gs,±c =
gs,±r(k)(c) . Therefore, any element of r(NK(gs)) induces a permutation of sp±(s) .
By Lemma 11.4, if 0 ∈ sp(s) , the factor (gs,0, ks,0) is the unique factor of type AIII
in the decomposition of the symmetric Lie algebra (gs, ks) and, as k ∈ NK(gs)
defines an automorphism of this symmetric pair, one necessarily has r(k)(0) = 0 .
It follows that r induces a homomorphism:

r′ : NK(cp(p
s)) = NK(gs) −→ S

(
sp±(s) r {0}

)
, k 7→ r′(k),

with the convention that sp±(s) r {0} = sp±(s) when 0 /∈ sp(s) .

Lemma 12.7. (1) Let c0, c1 ∈ sp(s) r {0} be such that m(s, c0) = m(s, c1).
There exists k ∈ NK(cp(p

s)) such that: r′(k)(±c0) = c±1 , for i = 0, 1, and
r′(k)(±c) = ±c for all ±c ∈ sp±(s) r {±c0,±c1}.
(2) A permutation γ of sp±(s) r {0} belongs to r′(NK(gs)) if and only if

m(s,±c) = m(s, γ(±c)) for all ±c ∈ sp±(s) r {0} .

In particular, for such a permutation γ there exists k ∈ NK(gs) such that

k.gs,±c = gs,γ(±c)

where γ is, if necessary, extended to sp±(s) by γ(0) = 0.
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Proof. (1) Recall that s ∈ aQ is in the positive Weyl chamber defined by
B . Therefore, for i = 0, 1 , Ii := {j | ci = $j(s)} ⊂ [[1, N ]] is an interval; set
Ii = [[d1

i , d
2
i ]] . In the case ±c0 = ±c1 the element k = Id obviously works.

Otherwise, we may replace ci by −ci to ensure that d2
i 6 Nb 6 N/2 and we define

a permutation γ ∈ SN by:

γ(j) :=


j − d1

i + d1
1−i if j ∈ Ii;

j if j 6 (N + 1)/2 and j /∈ I1 ∪ I2;
N + 1− γ(N + 1− j) if j > (N + 1)/2.

One has: $j(s) = ±c1−i if $j(s) = ±ci , i = 0, 1 and ±$γ(j)(s) = ±$j(s)
otherwise. Denote by w ∈ W = W (g, h′) ∼= SN the element corresponding to the
permutation γ , hence w.$j = $γ(j) . From (23) one deduces that:

θ(w.$j) =

{
$N+1−γ(j) = $γ(N+1−j) = w.θ($j) if min(j,N + 1− j) 6 Nb;
$γ(j) = w.θ($j) otherwise.

This implies θ ◦ w(α) = w ◦ θ(α) for all α ∈ R(g, h′) ; thus θ commutes with w ,
i.e. w ∈ Wσ in the notation of §6. By Remark 6.4(2) there exists k ∈ K acting like
w on h′ . Therefore k ∈ NK(cg(g

s)) , r(k) = γ and k has the desired properties.
(2) It suffices to write an element of S

(
sp±(s)r{0}

)
as a product of transpositions

and to apply part (1).

If x = t+ n ∈ gs we write x =
∑

c xs,c =
∑

c(ts,c + ns,c) where ts,c + ns,c is
the Jordan decomposition of xs,c ∈ ws,c (thus ns,c is the nilpotent part of xs,c ).

We first state consequences of Lemma 11.4 for a nilpotent element x = n ∈
ps . As θ sends ns,c onto −ns,−c , the Young diagram of ns,c ∈ ws,c is the same
as the Young diagram of ns,−c ∈ ws,−c . Moreover, the (Ks)◦ -orbit of n in ps is
characterized by the Young diagrams of the ns,c for c 6= 0 and the ab-diagram of
ns,0 .

Lemma 12.8. Let x = t+n and x′ = t′+n′ be G-conjugate elements of p with
t, t′ ∈ cp(p

s)• . Then ns,0 and n′s,0 have the same Young diagram. Furthermore, if
x and x′ are K -conjugate, ns,0 and n′s,0 have the same ab-diagram.

Proof. If m(s, 0) 6 1 one has ns,0 = n′s,0 = 0 ; we will therefore assume that
0 ∈ sp(s) and w′

s,0 = sl(Vs,0) 6= {0} . One can define equivalence relations R
and R′ on sp(s) as follows. Say that cRd if the two following conditions are
satisfied: ws,c is isomorphic to ws,d , i.e. m(s, c) = m(s, d) , and ns,c, ns,d have
the same Young diagram. The relation R′ is defined similarly with n′ instead of
n . As observed above, the elements c and −c are in the same equivalence class.
Consequently, the class containing 0 is the only class, for R or R′ , having odd
cardinality.
Since t, t′ ∈ cg(g

s)• , there exists g ∈ NG(gs) such that g.x′ = x and we can set
γ := r(g) . One then has ns,γ(c) = g.n′s,c , therefore γ sends each R′ -equivalence
class to an R-equivalence class. Thus, as the cardinality of the equivalence class of
γ(0) is odd, γ(0)R0 , g.n′s,0 = ns,γ(0) and ns,0, n

′
s,0 have the same Young diagram.

This proves the first statement.
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Now assume that g ∈ K , hence g ∈ NK(gs) . We have already shown before
Lemma 12.7 that, in this situation, γ(0) = 0 . Thus g.ns,0 = n′s,0 with g ∈ K , as
desired.

Let y = t+ n ∈ J ∩ p . Then (gt,0, kt,0) is either (0) or a reductive factor of
type AIII. By Lemma 11.4 the parameter of this factor is the same as the parameter
of (g, k) , thus it does not depend on the choice of y ∈ J ∩ p . Recall that nt,0 is
the component of n lying in gt,0 = wt,0 and define ΓΦ(y) to be the ab-diagram of
nt,0 in (gt,0, kt,0) . Remark that one can recover the ab-diagram of nt,0 in (g, k) by
adding to ΓΦ(y) some pairs of rows of length 1 , one row beginning by a and the
other by b .

Proposition 12.9. (1) Let x1, x2 ∈ J ∩ p. The following conditions are equiv-
alent

(i) ΓΦ(x1) = ΓΦ(x2) ; (ii) JK(x1) = JK(x2).
Set ΓΦ(JK(x)) := ΓΦ(x) for x ∈ J ∩ p.
(2) The map J1 7→ ΓΦ(J1) gives an injection from the set of JK -classes contained
in J ∩ p to the set of admissible ab-diagrams for the symmetric pair (gs,0, ks,0).

Proof. (1) Write xi = ti + ni for i = 1, 2 . By Lemma 8.2 there exists ki ∈ K
such that ki.ti ∈ cp(p

s)• . Observe that ΓΦ(ki.xi) = ΓΦ(xi) and JK(ki.xi) =
JK(xi) , therefore we may assume that xi ∈ gs and ti ∈ cp(p

s)• for i = 1, 2 . We
may also assume that m(t1, 0) = m(t2, 0) > 1 , otherwise each ni

ti,0 = 0 is zero and
the equivalence is clear.
As ni

ti,0 belongs to the unique simple factor of type AIII of (gti , kti) , one has
ni

ti,0 ∈ ws,0 , thus ni
ti,0 = ni

s,0 and we can set ni
0 := ni

ti,0 = ni
s,0 . For 0 6= c ∈ sp(s) ,

set ni
c := ni

s,c . Recall that the JK -class of xi is JK(xi) = K.(cp(p
s)• + ni) .

(ii) ⇒ (i): By hypothesis there exists an element of K.(cp(p
s)• + n1) which is

K -conjugate to x2 . Lemma 12.8 then shows that n1
0 has the same ab-diagram as

n2
0 for the pair (g, k) , which implies that ΓΦ(x1) = ΓΦ(x2) (cf. remark above).

(i) ⇒ (ii): Suppose that n1
0 and n2

0 have the same ab-diagram in (gs,0, ks,0) . We
want to show that n1 is NK(gs)-conjugate to n2 . Observe that n1

0 and n2
0 have

the same orbit under the group Ks,0 , where we set Ks,±c := (Gs,±c∩K)◦ . As n1 is
G-conjugate to n2 there exists g ∈ NG(gs) such that g.n1

c = n2
γ(c) , which defines

γ = r(g) ∈ S
(
sp(s)

)
. Since ni

c, n
i
−c have the same diagrams for all c , there exists

γ′ ∈ S
(
sp(s)

)
such that:

ws,c
∼= ws,γ′(c) , n1

c has the same diagram as n2
γ′(c) , γ′(−c) = −γ′(c) ,

for all c ∈ sp(s) . The permutation γ′ fixes 0 and induces γ′′ ∈ S
(
sp±(s)

)
.

Lemma 12.7(2) gives an element k ∈ NK(gs) such that k.gs,±c = gs,±γ′(c) for
c ∈ sp±(s) . Set n3 := k.n1 ; then n3

c has the same diagram as n2
c for all

c 6= 0 , and the same ab-diagram when c = 0 . By the results on type A0,
n3

c +n3
−c and n2

c +n2
−c are Ks,±c -conjugate for c 6= 0 . This proves the existence of

k′ ∈ CK(cp(p
s)•) ⊂ NK(gs) such that k′.n3 = n2 and k′k.n1 = n2 . In particular,

K.(cp(p
s)• + n1) = K.(cp(p

s)• + n2) and the result follows.
(2) is an obvious consequence of (1).
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Property (♣) and the AIII case. We continue with the same notation. Thus:
e ∈ g = glN is a nilpotent element, the partition of N associated to O := G.e
is denoted by λ = (λ1 > · · · > λδO) , Φ : [[1, δO]] −→ {a, b} is an arbitrary
function and (g, θ) = (g, k, p) = (g, kΦ, pΦ) is the symmetric Lie algebra defined
in §10.4, hence e ∈ p = pΦ . As above, S = SG is the G-sheet containing e and
J is a JG -class of S intersecting p . Recall from section 9 that the set {g.e}g∈Z

parameterizes the K -orbits Og.e := K.(g.e) contained in O ∩ p . We aim to show
that the following condition defined in section 9 holds (see Proposition 12.12):

For each JK-class J1 in SG ∩ p,

there exists g ∈ Z such that J1 is well-behaved w.r.t. Og.e. (♣)

Let Γ1 := ∆(Φ) be the admissible ab-diagram associated to e ∈ pΦ and let
J1 ⊂ J ∩ p be a JK -class. By Theorem 11.1 and Lemma 4.1 the conditions (♥)
and (*) are satisfied; therefore, Lemma 9.9(iii) can be applied in this situation.
Let J2 be given by this lemma (for g = Id) , thus J2 ⊂ J is a JK -class which is
well behaved w.r.t Oe . Set Y := J2 ∩ (e + Xp) ⊂ J ∩ (q ∩ p)• ; as observed in
Remark 9.8, we have:

dimY = dim J ∩ p−m. (25)

Let s be the semisimple part of an element of J ∩ p and recall that ΓΦ(J1) ,
resp. ΓΦ(J2) , is the admissible ab-diagram, for (gs,0, ks,0) , associated to J1 , resp.
J2 , by Proposition 12.9(2). We are going to compare these diagrams with Γ1 in
order to obtain an element g.e (g ∈ Z) such that J1 is well behaved w.r.t Og.e .

Let q =
⊕

i qi be as in 4 and x = s + n be an element of J ∩ (q ∩ p)• ,
cf. Corollary 11.2. Recall that we write n =

∑δO
i=1 ni with ni ∈ qi . Let O′ ⊂ gs,0

be the nilpotent orbit Gs,0.ns,0 and let µ = (µ1 > · · · > µδO′
) be the associated

partition of m(s, 0) . Remark that the shape of the Young diagram underlying
ΓΦ(J1) or, equivalently, ΓΦ(J2) , is given by µ .

On the other hand n =
∑

c∈sp(s) ns,c with ns,c ∈ ws,c and, by Corollary 11.9,
one can write ns,0 =

∑
i ni,s,0 where each ni,s,0 ∈ qi,s,0 ∩ pΦ is regular. This yields

in particular that δO′ 6 δO . We can therefore define a map

[Φ(x) : [[1, δO′ ]] −→ {a, b} (26)

where [Φ(x)(i) is the first symbol of the one row ab-diagram of ni,s,0 ∈ qi,s,0 ∩ pΦ .
Observe that when λi is odd, Corollary 11.9(3-4) yields

µi ≡ 1 mod 2 and [Φ(x) = Φ(i) for all x ∈ J ∩ (q ∩ p)• . (27)

It is not difficult to see that the ab-diagram ∆([Φ(x)) associated to the function
[Φ(x) , see §10.4, coincides with the ab-diagram ΓΦ(x) defined before Proposi-
tion 12.9. Thus, according to the previous notation:

∆([Φ(y)) = ΓΦ(y) = ΓΦ(J2) for all y ∈ Y ⊂ J2 ∩ (q ∩ p)• .

Remark 12.10. One may have [Φ(x) 6= [Φ(x′) with K.x′ = K.x . Such
examples can be easily obtained by permuting blocks qi and qj such that λi = λj .
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Now, let Ψ′ : [[1, δO′ ]] −→ {a, b} be a map such that its associated ab-
diagram, ∆(Ψ′) , is equal to ΓΦ(J1) . Under this notation, we want to construct
Ψ : [[1, δO]] → {a, b} such that Ψ′ = [Ψ(y) and

∆([Ψ(y)) = ΓΨ(y) = ΓΦ(J1) for all y ∈ Y .

Fix y ∈ Y and define Ψ as follows:
Ψ(i) = Φ(i) if Ψ′(i) = [Φ(y)(i) and i 6 δO′ ;
Ψ(i) 6= Φ(i) if Ψ′(i) 6= [Φ(y)(i) and i 6 δO′ ;
Ψ(i) = Φ(i) for i ∈ [[δO′ + 1, δO]].

By (27), for each i ∈ [[1, δO]] such that λi is odd one has Ψ′(i) = Ψ(i) .

Lemma 12.11. The ab-diagram Γ2 := ∆(Ψ) is admissible for the symmetric
pair (g, kΦ).

Proof. The only thing to prove is that N ′
a (resp. N ′

b ), the number of a
(resp. b) in Γ2 is equal to Na (resp. Nb ). This is equivalent to showing that
N ′

a −N ′
b = Na −Nb . From (27) and the definition of Ψ one deduces:

Na −Nb − (N ′
a −N ′

b)

= #{i | Φ(i) = a and λi ≡ 1 mod 2} −#{i | Φ(i) = b and λi ≡ 1 mod 2}
−#{i | Ψ(i) = a and λi ≡ 1 mod 2}+ #{i | Ψ(i) = b and λi ≡ 1 mod 2}

= #{i | [Φ(y)(i) = a and λi ≡ 1 mod 2} −#{i | [Φ(y)(i) = b and λi ≡ 1 mod 2}
−#{i | Ψ′(i) = a and λi ≡ 1 mod 2}+ #{i | Ψ′(i) = a and λi ≡ 1 mod 2} .

Since the diagrams ∆(Ψ′) = ΓΦ(J1) and ∆([Φ(y)) = ΓΦ(J2) are admissible in
the same symmetric pair (gs,0, ks,0) , the previous equation implies that Na−Nb−
(N ′

a −N ′
b) = 0 .

From the function Ψ one constructs, as in §10.4, the symmetric Lie algebra
(g, k′, p′) = (g, kΨ, pΨ) with V = V Ψ

a

⊕
V Ψ

b . Since qi∩k and qi∩k′ are both spanned
by even sup- and sub-diagonals, we obtain the same symmetric Lie subalgebras
(qi, qi∩k, qi∩p) = (qi, qi∩k′, qi∩p′) . It follows that the function [Ψ(z) : [[1, δO′ ]] →
{a, b} is well defined for all z ∈ J ∩ (q ∩ p)• = J ∩ (q ∩ p′)• .

Recall that y ∈ (q ∩ p)• = (q ∩ p′)• , thus [Ψ(y) is defined; we claim that
[Ψ(y) = Ψ′ . Set V Φ

a (i) := 〈v(i)
j : 1 ≤ j ≤ λi〉 ∩ V Φ

a , V Φ
b (i) := 〈v(i)

j : 1 ≤ j ≤
λi〉 ∩ V Φ

b , and define V Ψ
a (i), V Ψ

b (i) accordingly. Observe that: V Φ
a (i) = V Ψ

a (i) ,
V Φ

b (i) = V Ψ
b (i) when Φ(i) = Ψ(i) , and V Φ

a (i) = V Ψ
b (i) , V Φ

b (i) = V Ψ
a (i) otherwise.

Suppose that Φ(i) 6= Ψ(i) ; by definition of [Φ, [Ψ one has [Φ(y)(i) 6= [Ψ(y)(i) ,
therefore [Ψ(y)(i) = Ψ′(i) by definition of Ψ . The equality [Ψ(y)(i) = Ψ′(i) is
obtained in the same way when Φ(i) = Ψ(i) . The equality [Ψ(y) = Ψ′ implies in
particular ΓΨ(y) = ΓΦ(J1) .

We can now show that the condition (♣) is satisfied in type AIII:

Proposition 12.12. For each JK -class J1 ⊂ J ∩ p, there exists g ∈ Z such
that J1 is well-behaved w.r.t. Og.e
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Proof. By Lemma 12.11 one can find g′ ∈ GLN such that g′.V Ψ
a = V Φ

a and
g′.V Ψ

b = V Φ
b . Then, g = ρ(g′) ∈ G induces an isomorphism of symmetric Lie

algebras between (g, k′, p′) and (g, k, p) (cf. end of 10.4). Since e ∈ q ∩ p , one
has e ∈ p′ and g.e ∈ p ; therefore, up to conjugation by an element of KΦ (the
algebraic group associated to k = kΦ ), we may assume that g ∈ Z (see §10.5).
These remarks imply that ΓΦ(g.y) = ΓΨ(y) = ΓΦ(J1) is the ab-diagram associated
to J1 with respect to Φ , cf. Proposition 12.9. From Y ⊂ q ∩ p = q ∩ p′ one
gets g.y ∈ g.Y ⊂ J ∩ p and, since g.Y is irreducible, one has g.Y ⊂ J1 . In
particular, g.Y ⊂ g.(e + Xp(g.S )) ∩ p ⊂ g.e + Xp(g.S ) is contained in J1 with
dim g.Y = dim J1 −m . The result then follows from Remarks 9.6 and 9.8.

13. Main theorem
In this section we give the description of the K -sheets when (g, θ) is of type A.
Thus, g ∼= glN and (g, θ) = (g, k, p) is a symmetric Lie algebra. Suppose that
SG ⊂ g is a G-sheet intersecting p . In (15), cf. Remark 9.10, we have defined, for
any nilpotent element e ∈ SG ∩ p and any normal sl2 -triple S = (e, h, f) , the
following subvariety of SG ∩ p :

SK(SG,S ) = SK(S ) = SK(K.e) := K.(e+Xp(S ))
•
.

We aim to describe the K -sheets and the varieties SG∩p in terms of the SK(K.e) .
Recall from Remark 9.5(2) that SG ∩ p is smooth; in particular, its irre-

ducible components are disjoint. The next lemma reduces the study of K -sheets
to the study of irreducible components of SG ∩ p ; this result may be false in some
cases of type 0, see the remark previous to Corollary 5.4.

Lemma 13.1. Let SG be a G-sheet of g intersecting p, then each irreducible
component of SG ∩ p is a K -sheet.

Proof. Let SK be an irreducible component of SG ∩ p . As SG ∩ p is a union
of K -orbits of same dimension, there exists a K -sheet S ′K containing SK . Recall
that, as g ∼= glN , two distinct G-sheets are disjoint (see the discussion previous
to Corollary 5.4). It follows that S ′K must be contained in SG and, therefore, in
SG ∩ p . This proves that S ′K = SK , hence the result.

Theorem 13.2. (i) The K -sheets of p are disjoint, they are exactly the smooth
irreducible varieties SK(OK) where OK ⊂ p is a nilpotent K -orbit.
(ii) Let SG be a G-sheet intersecting p. Then, SG∩p is a smooth equidimensional
variety and each of its irreducible component is some SK(OK), where OK ⊂ SG∩p

is a nilpotent K -orbit.
(iii) Let SK ⊂ p be a K -sheet and e be a nilpotent element of SK embedded in
a normal sl2 -triple S = (e, h, f). Define Y by e + Y := SK ∩ (e + pf ). Then
SK = K.(e+ Y )

• .

Proof. We need to summarize the conditions introduced in §9 and proved in
cases AI, AII and AIII: (♥) has been proved in Theorem 11.1 (with proof in Propo-
sition 11.6 for type AIII); (♦) was established in Remark 11.3 (types AI, AII) and
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Remark 11.8 (type AIII); (♣) has been obtained in Corollary 12.5 (types AI, AII)
and Proposition 12.12 (type AIII).
Claim (ii) is therefore consequence of Remark 9.5(2) (or equivalently Proposi-
tion 9.4) and Theorem 9.12.
Recall that G-sheets are disjoint. Then, from p(m) ⊂ g(2m) , it follows that each
K -sheet is contained in a unique G-sheet. So, (i) is consequence of (ii) and
Lemma 13.1.
Under the hypothesis in (iii), e belongs to SK , hence SK = SK(S ) is the unique
K -sheet containing e . Therefore,

e+ Y ⊂ e+X(S ) ∩ p ⊂ SK(S ) ∩ (e+ pf ) = e+ Y.

The assertion in (iii) then follows from the definition of SK(S ) .

Remark 13.3. One can be more precise about the number of irreducible com-
ponents of SG ∩ p , see §14(4).

Fix a sheet SG intersecting p . One can compute the dimension of SG ∩ p

in terms of the partitions associated to the nilpotent orbit O ⊂ SG . Let λ =
(λ1 > · · · > λδO) and λ̃ = (λ̃1 > · · · > λ̃δl

) be the partitions of N defined in 4.
Pick e ∈ O ∩ p and recall that if S = (e, h, f) is a normal sl2 -triple we set
SK(K.e) := K.(e+Xp(S ))

• .

Proposition 13.4. Under the previous notation one has

dimSG ∩ p = dimSK(K.e) = λ1 +
1

2

(
N2 −

λ1∑
i=1

λ̃2
i

)
in types AI and AII, and

dimSG ∩ p = dimSK(K.e) =

δO∑
i=1

⌊
λi − λi+1

2

⌋
+

1

2

(
N2 −

λ1∑
i=1

λ̃2
i

)
.

in type AIII.

Proof. Recall that dimG.e = N2 −
∑λ1

i=1 λ̃
2
i , see [CM93], and dimK.e =

1
2
dimG.e . By Theorem 13.2 and Remark 9.6 one has

dimSG ∩ p = dimSK(K.e) = dimK.e+ dimXp(S ).

We know that Xp(S ) = X(S ) in types AI and AII, cf. Theorem 11.1.
Therefore, Remark 3.8 and equation (8) yield dimSG∩p = dimK.e+dimX(S ) =
dimK.e+ dim t = dimK.e+ λ1 . Hence:

dimSG ∩ p = λ1 +
1

2

(
N2 −

λ1∑
i=1

λ̃2
i

)
.
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Since the morphism ε is quasi-finite, see Remark 3.8, one has dimXp(S ) =
dim c in type AIII by Proposition 11.7. It then follows from (22) that

dimSG ∩ p = dimK.e+ dim c = dimK.e+

δO∑
i=1

⌊
λi−λi+1

2

⌋
.

Thus

dimSG ∩ p =

δO∑
i=1

⌊
λi − λi+1

2

⌋
+

1

2

(
N2 −

λ1∑
i=1

λ̃2
i

)
as desired.

14. Remarks and comments
We collect here various remarks and comments about the results obtained in the
previous sections. To keep the length of the exposition reasonable we will not give
full details of the proofs, leaving them to the interested reader.

If not otherwise specified, we assume that (g, θ) ∼= (glN , θ) is of type AI-II-
III; we then retain the notation of Section 10 and §13. In particular, SG ⊂ g is a
G-sheet which intersects p , O = G.e , e ∈ SG ∩ p , is the nilpotent orbit contained
in SG , λ = (λ1, . . . , λδO) is the associated partition of N , v is the basis of V
introduced in §4, e+X = e+X(S ) , with S = (e, h, f) , is a Slodowy slice of SG ,
Xp = Xp(S ) = X ∩ p , c ⊂ t is such that ε(e+ c) = e+Xp in case AIII (cf. (21)),
etc.

For simplicity, we will sometimes assume that g = slN . When this is the
case, the above notation refers to their intersection with slN .

(1) Theorems 11.1 and 13.2 show that e+Xp is “almost” a slice for SG∩p ,
or for a K -sheet contained in SG and containing e , meaning that the G-orbit
of any element of SG ∩ p intersects e + Xp . But, contrary to the Lie algebra
case, e + Xp does not necessarily intersect each K -orbit contained in the given
K -sheet. As it is implicitly noticed in [KR71], this phenomenon already occurs,
in some cases, for the regular sheet; however, e + Xp is a “true” slice when one
considers the Gθ -action instead of the K -action [KR71, Theorem 11]. On can
show that the previous result holds in general for types AI, AII. But, in case AIII,
it may happen that Aut(g, k).(e + Xp) ( K.(e+Xp)

• for some K -sheets. This
mainly explains why we need to work with the closure of K.(e+Xp) in the whole
paper.

(2) Suppose that (g, θ) = (g, k) is an arbitrary reductive symmetric Lie
algebra. Recall [TY05, 39.4] that a G-sheet containing a semisimple element is
called a Dixmier sheet. Similarly, we will say that a K -sheet which contains a
semisimple element is a Dixmier K -sheet.

If g is semisimple of type A, all G-sheets are Dixmier sheets, cf. [Kr78,
2.3]. This implies that, for each sheet SG and sl2 -triple S = (e, h, f) as in §3,
the set e+X(SG,S ) = e+X(S ) contains a semisimple element. For symmetric
pairs of type AI or AII, the K -sheets are all of the form SK(S ) = SK(K.e) :=

K.(e+X(S ))
• (cf. Theorems 11.1 and 13.2); thus, in these cases, any K -sheet

is a Dixmier K -sheet.
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In type AIII there exist K -sheets containing no semisimple element and
one can characterize them in terms of the partition λ associated to the nilpotent
element e ∈ SG ∩ p as follows.

Claim 14.1. In type AIII, a K -sheet is Dixmier if and only if the partition λ
satisfies: λi−λi+1 is odd for at most one i ∈ [[1, δO]] (where we set λδO+1 := 0).

This can be proved by using Propositions 11.7 and 11.6, Corollary 4.4 and a
study of semisimple elements in e+c . Observe that the condition for a K -sheet to
be Dixmier depends only on the nilpotent orbit G.e and that SK(K.e) is Dixmier
if and only if SK(K.g.e) , g ∈ Z , is Dixmier.

(3) Recall from Section 9 that a nilpotent orbit of g is rigid when it is a
sheet of [g, g] . When g is of type A the only rigid nilpotent orbit is {0} . In other
cases it may happen that a rigid orbit O1 contains a non-rigid orbit O2 in its
closure (see the classification of rigid nilpotent orbits in [CM93]). Observe that,
since the nilpotent cone is closed, a sheet containing O2 cannot be contained in
the closure of O1 . One gets in this way some sheets whose closure is not a union of
sheets. One can ask if similar facts occur for symmetric pairs (g, k) , in particular
when g is of type A.

Let (g, k, p) be a symmetric Lie algebra; a nilpotent K -orbit in p which
is a K -sheet in p ∩ [g, g] will be called rigid. We remarked in (2) that, in types
AI and AII, each K -sheet contains a semisimple element; thus, {0} is the only
rigid nilpotent K -orbit in these cases. Assume that (g, k, p) is of type AIII,
z(g) ⊂ k , and recall from the proof of Proposition 13.4 (using Remark 3.8) that
SK(K.e) = K.e if and only if dim c = 0 . The arguments given in (2) about
K -sheets can be adapted to prove:

Claim 14.2. The orbit K.e is rigid if and only if the partition λ satisfies:
λi − λi+1 6 1 for all i ∈ [[1, δO]] .

Note that the previous result depends only on the partition λ and not on the
ab-diagram of e . In particular, K.e is rigid if and only if each K -orbit contained
in G.e ∩ p is rigid.

Example 14.3. Consider the symmetric pair (gl6, gl3⊕gl3) and a rigid K -orbit
O1 associated to the partition λ = (3, 2, 1) . This orbit contains in its closure a
nilpotent K -orbit O2 with partition (3, 1, 1, 1) , cf. [Oh91], but O2 is not rigid.
In type AIII, we can construct in this way K -sheets whose closures are not a union
of sheets.

(4) We have shown in Theorem 13.2 that the irreducible components of
SG ∩ p are K -sheets and are of the form SK(OK) , where OK is a (nilpotent)
K -orbit contained in O := G.e . The number of these irreducible components thus
depends on the analysis of the equality SK(O1

K) = SK(O2
K) where O1

K ,O2
K are

nilpotent K -orbits. An obvious necessary condition is O = G.O1
K = G.O2

K .
In cases AI and AII, SG ∩ p is irreducible and G.O1

K = G.O2
K is also a
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sufficient condition for having SK(O1
K) = SK(O2

K) . This follows in case AII from
K = Gθ , hence O∩ p = O1

K (Proposition 12.2), and in case AI from the fact that
all sheets are Dixmier.

The situation in type AIII is more complicated and one can find G-sheets
having a nonirreducible intersection with p . The characterization of the equality
SK(O1

K) = SK(O2
K) is given in Claim 14.4. We first have to define the notion

of “rigidified ab-diagram”. Let Γ be an ab-diagram coresponding to a nilpotent
K -orbit OK ⊂ p ; remove from Γ the maximum number of pairs of consecutive
columns of the same length. The new ab-diagram obtained in this way is uniquely
determined and is called the the rigidified ab-diagram deduced from Γ , or associ-
ated to OK . The terminology can be justified by the following remark: a rigidified
ab-diagram corresponds to a rigid nilpotent K -orbit in some other symmetric pair
of type AIII.

Claim 14.4. The two orbits O1
K and O2

K are contained in the same K -sheet,
i.e. SK(O1

K) = SK(O2
K) , if and only if their associated rigidified ab-diagrams are

equal.

Example 14.5. Let (g, k) = (gl8, gl4 ⊕ gl4) and O be the nilpotent G-orbit
with associated partition λ = (4, 3, 1) . The set O ∩ p splits into four K -orbits
Oj

K , 1 ≤ j ≤ 4 , whose respective ab-diagrams are

Γ(O1
K) =

abab
aba
b

; Γ(O2
K) =

abab
bab
a

; Γ(O3
K) =

baba
aba
b

; Γ(O4
K) =

baba
bab
a

.

The associated rigidified ab-diagrams are, respectively:

ab
a
b

;
ab
a
b

;
ba
a
b

;
ba
a
b

.

The previous result implies that SG∩p is the disjoint union of SK(O1
K) = SK(O2

K)
and SK(O3

K) = SK(O4
K) .

(5) A natural problem is, using section §9, to generalize the results obtained
in type A to other types. The action of ε is well described in [IH05] for classical
Lie algebras and one may ask if conditions (♥), (♦) or (♣) hold in this case.
Concerning (♥), the author made some calculations when (g, k) is of type CI. Im-
Hof, cf. [IH05], splits this type in three cases that we label CI-I, CI-II and CI-III.
It is likely that (♥) remains true for the first two cases. In case CI-III one finds
the following counterexample. Consider (g, k) := (sp6, gl3) and the sheet SG with
datum (l, 0) where l is isomorphic to gl2⊕sp2 . Let e and e′ be nilpotent elements
in SG ∩ p with respective ab-diagrams Γ(e) = abab

ab and Γ(e′) = abab
ba . Embed e ,

resp. e′ , in an sl2 -triple S , resp. S ′ . One can show that dimXp(SG,S ) = 1 ,
dimXp(SG,S ′) = 2 and we then get G.(e +Xp(SG,S )) ( G.(e′ +Xp(SG,S ′)) ,
showing that (♥) is not satisfied. Moreover, we see that the similarity observed
in the case g = glN between properties of Xp(SG, g.S ) and Xp(SG,S ) , when
g ∈ Z , is no longer valid.
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