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Abstract. We obtain characterizations of Heisenberg-like Lie algebras which
are generalizations of results on Lie algebras of Heisenberg type, including a
characterization for Heisenberg-like Lie algebras in terms of the curvature trans-
formation. We also establish infinite families of examples of Lie algebras which
are Heisenberg-like, but not Heisenberg type, including examples arising from
representations of su(2).
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1. Introduction

The purpose of this paper is to continue the investigation of the geometry of a
two-step nilpotent Lie group endowed with a left-invariant metric, following the
approach of P. Eberlein and others [E1, K1, K2, GM, LP, M, DeC, DeM]. We focus
on Heisenberg-like Lie groups, introduced in [GM] as a natural generalization of
Lie groups of Heisenberg type. Two-step nilpotent Lie groups have a structure that
is both non-trivial and accessible. We study the geometry of a two-step nilpotent
metric Lie group N by investigating its associated Lie algebra n. The main tool we
use is the j -operator, first introduced by A. Kaplan [K1]; this operator determines
a set of skew-symmetric linear transformations acting on the complement of the
center of n which completely determine the geometry of N endowed with a left-
invariant metric.

The Heisenberg type Lie groups are considered model spaces in the class
of simply connected, two-step nilpotent metric Lie groups; they play an impor-
tant role in areas of research such as geometric analysis and mathematical physics.
Heisenberg-like Lie groups were introduced by R. Gornet and M. Mast [GM] as
a natural generalization, in a variety of ways, from the Heisenberg type condi-
tion. These generalizations include the formulation of the length spectrum of
the resulting nilmanifold and the prevalence of periodic geodesics contained in
three-dimensional totally geodesic submanifolds. We continue this investigation,
establishing equivalent approaches to the Heisenberg-like condition and character-
izing the Heisenberg-like Lie groups in terms of the curvature transformation. In
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[K2], Kaplan showed that there exist infinitely many Lie algebras of Heisenberg
type with center of arbitrary dimension. We establish a similar result for the
Heisenberg-like case. Finally, we construct new classes of examples of Heisenberg-
like Lie groups, including a class of examples arising from representations of su(2).

The outline of the paper is as follows. In section 2, we review basic in-
formation about two-step nilpotent Lie groups and introduce necessary notation.
In Section 3 we strengthen a result of [E1] on Heisenberg type Lie groups and
characterize Heisenberg-like Lie groups similarly. Additionally, we exploit a char-
acteristic of Heisenberg-like Lie algebras to write the curvature transformation in
terms of the eigenvalues of the transformations mentioned above. In the last three
sections, we use representation theory and matrix algebras to construct infinite
families of examples of Heisenberg-like Lie algebras.

2. Notation and Background

Let n denote a finite-dimensional real Lie algebra with Lie bracket [ , ] . We
say that n is two-step nilpotent if n is not abelian but [X, [Y,W ]] = 0 for all
X, Y,W ∈ n . Let N denote the unique, simply connected Lie group with Lie
algebra n ; N is said to be two-step nilpotent when n is two-step nilpotent. By
Raghunathan [R], the Lie group exponential map exp : n→ N is a diffeomorphism
for two-step nilpotent n, with inverse log : N → n . Let z denote the center of n .

Definition 2.1. [E1] A two-step nilpotent Lie algebra n is (strictly) nonsingular
if for every Z ∈ z and for every X ∈ n−z , there exists Y ∈ n such that [X, Y ] = Z.

When n has an inner product 〈 , 〉 , the notion of nonsingularity can be
refined further; the key approach is to use a set of skew symmetric linear trans-
formations which capture the geometry of N with a left invariant metric. Let
{n, 〈 , 〉} have center z . We denote v = z⊥ and write n = v⊕ z .

Definition 2.2. For each nonzero Z ∈ z define a skew symmetric linear trans-
formation j(Z) : v→ v by

〈[X, Y ], Z〉 = 〈j(Z)X, Y 〉 for all X, Y ∈ v.

Equivalently, let adX(Y ) be the Lie algebra adjoint defined by adX(Y ) =
[X, Y ] and let (adX)∗ denote the (metric) adjoint of adX . Then the map j :
z → so(v) defined by j(Z)X = (adX)∗Z is a linear transformation such that
〈[X, Y ], Z〉 = 〈j(Z)X, Y 〉. Observe that the skew symmetry of the Lie bracket
leads to the skew symmetry of the j(Z) maps for all Z ∈ z by the following:

〈j(Z)X, Y 〉 = 〈[X, Y ], Z〉 = −〈[Y,X], Z〉 = −〈j(Z)Y,X〉.

The j(Z) maps were first defined by Kaplan [K1] and were used extensively
by Eberlein [E1] to investigate the geometry of metric two-step nilpotent Lie
groups. These maps have proved to be valuable tools in understanding this
geometry.

We use the j(Z) maps to further refine the nonsingularity condition.
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Definition 2.3. Let n denote a two-step nilpotent metric Lie algebra.

1. If j(Z) is nonsingular for every nonzero Z ∈ z , then n is said to be (strictly)
nonsingular.

2. If j(Z) is nonsingular for every Z in an open dense subset of z , then n is
said to be almost nonsingular.

3. If j(Z) is singular for all Z ∈ z , then n is said to be (strictly) singular.

Proposition 2.4 ([GM], Lemma 1.16). Every two-step nilpotent Lie algebra is
nonsingular, almost nonsingular, or singular.

Remark 2.5. (See [E1], Proposition 3.5 and [GM] Definition 1.17)Let {n, 〈 , 〉}
denote a two-step nilpotent Lie algebra and let Z ∈ z .

1. Denote the number of distinct eigenvalues of j(Z)2 by µ(Z). We write
µ = µ(Z) when convenient.

2. Denote the µ distinct eigenvalues of j(Z)2 by {−ϑ1(Z)2, . . . ,−ϑµ(Z)2} ,
where 0 ≤ ϑ1(Z)2 < ϑ2(Z)2 < · · · < ϑµ(Z)2 . Then the distinct eigenvalues
of j(Z) are {±iϑ1(Z), . . . ,±iϑµ(Z)} .

3. Let Wm(Z) be the invariant subspace of j(Z) associated to ϑm(Z), m =
1, . . . , µ(Z). By skew-symmetry of j(Z), v is the direct sum of the invariant
spaces Wm(Z).

The distinct eigenvalues of j(Z)2 give information about the geometry of
N . In general, the number of distinct eigenvalues of j(Z)2 can vary as Z varies.
However, this number is constant on an open, dense subset of z, as the next result
shows.

Theorem 2.6 ([GM], Prop. 1.19). Let U = {Z ∈ z : there exists an open
neighborhood O of Z such that µ is constant on O}. Then U is an open, dense
subset of z and µ(Z), the number of distinct eigenvalues of j(Z)2 , is constant on
U.

3. Heisenberg type and Heisenberg-like Lie groups

3.1. Heisenberg type Lie groups.

Lie groups of Heisenberg type are a generalization of the well-studied
Heisenberg group. Groups of Heisenberg type were introduced by Kaplan in [K1]
and their geometry has been studied extensively, including in [E1], [E2] and [K2].

Definition 3.1. A two-step nilpotent metric Lie algebra n is of Heisenberg type
if

j(Z)2 = −|Z|2Id|v (1)

for every choice of Z ∈ z . A simply connected two-step nilpotent metric Lie group
N is of Heisenberg type if its Lie algebra n is of Heisenberg type.
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The next result shows the strong relationship between the behavior of the
j(Z)-maps and the Heisenberg type condition. Eberlein [E1](1.7) established that
the identities below hold when N is of Heisenberg type; we generalize the result
to an if and only if statement.

Lemma 3.2. Let N be a two-step nilpotent metric Lie group with Lie algebra
n. The following are equivalent:

a. n is of Heisenberg type.

b. j(Z)j(Z∗) + j(Z∗)j(Z) = −2〈Z,Z∗〉Id|v for all Z,Z∗ ∈ z

c. 〈j(Z)X, j(Z∗)X〉 = 〈Z,Z∗〉|X|2 for all Z,Z∗ ∈ z, X ∈ v

d. 〈j(Z)X, j(Z)Y 〉 = |Z|2〈X, Y 〉 for all Z ∈ z, X, Y ∈ v

e. |j(Z)X| = |Z||X| for all Z ∈ z, X ∈ v

f. [X, j(Z)X] = |X|2Z for all X ∈ v, Z ∈ z.

Proof. [a. =⇒ b.] Apply the Heisenberg type condition to j(Z + Z∗)2X .

[b. =⇒ c.] From (b), 〈(j(Z)j(Z∗) + j(Z∗)j(Z))X,X〉 = −2〈Z,Z∗〉|X|2 . From the
definition of j(Z), 〈j(Z∗)j(Z)X,X〉 = −〈j(Z∗)X, j(Z)X〉. Then (c) follows.

[c. =⇒ d.] Apply (c) to 〈j(Z)(X + Y ), j(Z)(X + Y )〉 .
[d. =⇒ e.] Follows directly by letting Y = X .

[e. =⇒ f.] Apply (e) to |j(Z +Z∗)X| to obtain 〈j(Z)X, j(Z∗)X〉 = 〈Z,Z∗〉|X|2 .
Therefore, if Z ⊥ Z∗ , then 〈[X, j(Z)X], Z∗〉 = 〈j(Z)X, j(Z∗)X〉 = 0. It follows
that when part (e) holds, [X, j(Z)X] is a multiple of Z . Using part (e) again,
[X, j(Z)X] = |X|2Z.
[f. =⇒ a.] Apply (f) to X + Y to obtain [X + Y, j(Z)(X + Y )] = |X + Y |2Z .
Therefore |j(Z)(X+Y )|2 = 〈[X+Y, j(Z)(X+Y )], Z〉 = |X+Y |2|Z|2 . Expanding
this and applying (f) again, we obtain −〈j(Z)2X, Y 〉 = |Z|2〈X, Y 〉 . Thus, if
X ⊥ Y then 〈j(Z)2X, Y 〉 = 0. It follows that j(Z)2X is a multiple of X . Using
(f), 〈[X, j(Z)X], Z〉 = |Z|2|X|2 . But 〈[X, j(Z)X], Z〉 = −〈j(Z)2X,X〉 . It follows
that j(Z)2X = −|Z|2X , and so n is of Heisenberg type.

3.2. Heisenberg-like Lie groups.

Heisenberg-like Lie groups were introduced in [GM] as a generalization of
Lie groups of Heisenberg type. The Lie groups that are Heisenberg-like reflect
several of the properties of Heisenberg type Lie groups. By the following definitions
and results, particularly Theorem 3.7, a Lie group of Heisenberg type is also a
Heisenberg-like Lie group.

Definition 3.3. Let N denote a two-step nilpotent Lie group with a left-
invariant metric. A simply connected subgroup H of N is said to be totally
geodesic if every geodesic that starts in H remains in H . Equivalently, if h denotes
the Lie algebra of H , then H is totally geodesic if for all X, Y ∈ h , ∇XY ∈ h .
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If N is Heisenberg type, then for any X ∈ v and Z ∈ z the subalgebra
given by spanR{X, j(Z)X,Z} is totally geodesic [E2]. We obtain Heisenberg-like
Lie groups by slightly generalizing this property.

Definition 3.4. A two-step nilpotent metric Lie algebra {n, 〈 , 〉} is Heisenberg-
like if the subalgebra spanR{Xm, j(Z)Xm, Z} is totally geodesic for every Z ∈ z
and every Xm ∈ Wm(Z), m = 1, . . . , µ . A two-step nilpotent metric Lie group is
Heisenberg-like if and only if its Lie algebra is.

Some results from [GM] about Heisenberg-like Lie algebras follow.

Lemma 3.5 ([GM], Lemma 3.3). A two-step nilpotent metric Lie algebra {n, 〈 , 〉}
is Heisenberg-like if and only if [j(Z)Xm, Xm] ∈ spanR{Z} for all Z ∈ z and all
Xm ∈ Wm(Z), m = 1, . . . , µ.

Lemma 3.5 generalizes the property given in equation (1) of definition 3.1.
The next result eliminates the possibility that a Lie algebra could be Heisenberg-
like and also almost nonsingular. Note that all Lie algebras of Heisenberg type are
nonsingular.

Theorem 3.6 ([GM], Theorem 3.6). A Heisenberg-like metric Lie algebra is
either strictly nonsingular or strictly singular.

A significant property of Heisenberg-like groups is that the eigenvalues of
the j(Z) maps depend on the norm of Z , analogous to the Heisenberg type case.

Theorem 3.7 ([GM], Theorem 3.7). A two-step nilpotent metric Lie algebra
{n, 〈 , 〉} is Heisenberg-like if and only if for every i = 1, . . . , µ = µ(U) there is a
constant ci ≥ 0 such that for every nonzero Z ∈ z, ϑi(Z) = ci|Z|.

Note that both conditions in the theorem above imply that U = z−{0} . For
clarity, we state this explicitly in the next result. Note also that when U = z−{0}
then we write µ instead of µ(U).

In Lemma 3.2, we showed that certain properties related to the j(Z)−maps
are equivalent to the Heisenberg type condition. This Lemma can be generalized
to the Heisenberg-like case, with one exception which we address below.

Theorem 3.8. Let N be a two-step nilpotent metric Lie group with Lie algebra
n. Then n is Heisenberg-like if and only if U = z−{0} and any one of the following
hold:

a. For every m ∈ {1, . . . , µ = µ(U)}

[Xm, j(Z)Xm] =

(
ϑm(Z)|Xm|
|Z|

)2

Z

for all nonzero Z ∈ z and all Xm ∈ Wm(Z).
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b. For every m ∈ {1, . . . , µ = µ(U)} there exists a constant cm ≥ 0 such that

〈j(Z)Xm, j(Z
∗)Xm〉 = c2m〈Z,Z∗〉|Xm|2

for all Z,Z∗ ∈ z with Z 6= 0 and all Xm ∈ Wm(Z).

c. For every m ∈ {1, . . . , µ = µ(U)} there exists a constant cm ≥ 0 such that

〈j(Z)Xm, j(Z)Ym〉 = c2m〈Xm, Ym〉|Z|2

for all nonzero Z ∈ z and all Xm, Ym ∈ Wm(Z).

d. For every m ∈ {1, . . . , µ = µ(U)} there exists a constant cm ≥ 0 such that

|j(Z)Xm| = cm|Xm||Z|

for all nonzero Z ∈ z and all Xm ∈ Wm(Z).

Proof. By Lemma 3.5, {n, 〈 , 〉} is Heisenberg-like if and only if [j(Z)Xm, Xm] ∈
spanR{Z} for all Z ∈ z and all Xm ∈ Wm(Z), m = 1, . . . , µ . Since

〈[j(Z)Xm, Xm], Z〉 = 〈j(Z)2Xm, Xm〉 = −〈ϑm(Z)2Xm, Xm〉,

part (a) follows. To show (b), let {n, 〈 , 〉} be Heisenberg-like and c1, . . . , cµ be the
constants given by Theorem 3.7. Thus j(Z)2|Wm(Z) = −c2m|Z|Id|Wm(Z) for each
Z 6= 0. When Z∗ is orthogonal to Z one has

〈j(Z)Xm, j(Z
∗)Xm〉 = 〈Z∗, [Xm, j(Z)Xm]〉 = 0

by Lemma 3.5. So (b) holds in this case. Next for a given Z 6= 0 and Z∗ ∈ z write
Z∗ = aZ + Z ′ where 〈Z,Z ′〉 = 0 and a = 〈Z,Z∗〉/|Z|2 . Now

〈j(Z)Xm, j(Z
∗)Xm〉 = a〈j(Z)Xm, j(Z)Xm〉+ 〈j(Z)Xm, j(Z

′)Xm〉
= −a〈j(Z)2Xm, Xm〉 (by above and skew symmetry of j(Z))

= c2m〈Z,Z∗〉|Xm|2

as claimed. The remaining statements follow in a similar manner from Lemma 3.5
and Theorem 3.7.

In Lemma 3.2 we showed that N is of Heisenberg-type if and only if

j(Z)j(Z∗) + j(Z∗)j(Z) = −2〈Z,Z∗〉Id|v for all Z,Z∗ ∈ z.

The natural generalization of this statement in the Heisenberg-like case is that for
all Z,Z∗ ∈ z,

j(Z)j(Z∗) + j(Z∗)j(Z) = −2c2m〈Z,Z∗〉Id on Wm(Z). (2)

Unfortunately, this does not hold. Example 1.15 of [GM] is Heisenberg-like, but
(2) will not hold for all Z,Z∗ ∈ z . This example is described below in Example
5.2. If equation (2) does hold, the following Lemma shows that n must either have
one-dimensional center or be of Heisenberg type up to scaling.
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Lemma 3.9. Let {n, 〈 , 〉} be a two-step nilpotent metric Lie algebra. Suppose
there exist non-negative constants cm , m = 1, . . . , µ, such that for each Z ∈ z,

j(Z)j(Z∗) + j(Z∗)j(Z) = −2c2m〈Z,Z∗〉Id on Wm(Z)

for all Z∗ ∈ z. Then either dim z = 1 and n is Heisenberg-like or there is a
constant c > 0 such that j(Z)2 = −c2|Z|2Id|v for all Z ∈ z.

Proof. If dim z = 1 then n must be Heisenberg-like by Theorem 3.7.

Suppose that dim z > 1 and let Z,Z∗ ∈ z be non-zero. We may assume
that Z and Z∗ are not collinear and that they are not orthogonal. Furthermore,
we may refine our choice of Z so that Z ∈ U with µ(Z) > 1; if this is not possible,
then n is Heisenberg type up to scaling and we are done.

Let X ∈ Wk(Z), where k > 1. Since v = ⊕µm=1Wm(Z∗), there exist
X∗m ∈ Wm(Z∗),m = 1, ..., µ such that

X = X∗1 + · · ·+X∗µ.

By the assumption in the statement of the lemma,

(j(Z)j(Z∗) + j(Z∗)j(Z))X = −2c2k〈Z,Z∗〉X.

Note that ck 6= 0 by our assumption on k . Combining the previous two statements,
we have

(j(Z)j(Z∗) + j(Z∗)j(Z))X = (j(Z)j(Z∗) + j(Z∗)j(Z))

µ∑
m=1

X∗m

= −2

µ∑
m=1

c2m〈Z,Z∗〉X∗m.

Therefore,

µ∑
m=1

X∗m = X =

µ∑
m=1

(
c2m
c2k

)
X∗m. (3)

We have two cases. If c1 6= 0 then c2m = c2k for all m = 1, ..., µ . Hence
j(Z∗)2 is nonsingular and j(Z∗)2 = −c2k|Z∗|2Id|v . Therefore, for all Z in z ,
j(Z)2 = −c2k|Z|2Id|v .

For the second case assume c1 = 0. Then c2m = c2k for m = 2, ..., µ .
It follows that j(Z∗)2 has two invariant subspaces, W1(Z

∗) = ker j(Z∗) and
W2(Z

∗) = {X ∈ v : j(Z∗)2X = −c2|Z∗|}where c2 = c22 . Using the symmetry
between Z and Z∗ in the assumption of this lemma, j(Z)2 also has two invariant
subspaces, W1(Z),W2(Z). Furthermore, again using the decomposition of X ∈
W2(Z) and equation (3), we see thatW2(Z) is orthogonal to W1(Z

∗) and so
W1(Z) = W1(Z

∗).

Now consider Z∗ ⊥ Z . Since dim z > 1 there exists nonzero Z0 ∈ z
such that Z0 is neither orthogonal nor colinear to either Z or Z∗ . By the above
argument, Wi(Z) = Wi(Z0) = Wi(Z

∗), i = 1, 2.
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We will show that W1(Z) = 0 for all Z ∈ z . Let X ∈ W1(Z) and let
{Z1, . . . Zp} be an orthonormal basis for z . Then for all Y ∈ v ,

[X, Y ] =

p∑
i=1

〈[X, Y ], Zi〉Zi =

p∑
i=1

〈j(Zi)X, Y 〉 = 0,

since X ∈ ker j(Z) for all Z . So X ∈ W1(Z) implies X ∈ z . Since W1(Z) and z
are orthogonal, X = 0.

Hence, n is nonsingular and, as above, therefore, j(Z)2 = −c2|Z|2Id|v for
all Z ∈ z . That is, n is Heisenberg type up to scaling.

3.3. Curvature Transformations in the Heisenberg-like case. Let ξ1, ξ2, ξ3
denote left-invariant vector fields on N . The curvature tensor is given by

R(ξ1, ξ2)ξ3 = −∇[ξ1,ξ2]ξ3 +∇ξ1(∇ξ2ξ3)−∇ξ2(∇ξ1ξ3).

The curvature transformation Rξ is defined by Rξν = R(ν, ξ)ξ for left invariant
vector fields ξ, ν on N . Eberlein showed the following.

Lemma 3.10 ([E2], Lemma B). Let {n, 〈 , 〉} be a nonsingular, two-step nilpo-
tent metric Lie algebra. Then

a. {n, 〈 , 〉} is of Heisenberg type if and only if there exists a positive constant
α such that

RZ |v = α|Z|2Id|v for all Z ∈ z.

b. If {n, 〈 , 〉} is of Heisenberg type up to scaling with j(Z)2 = −λ|Z|2Id for
some positive constant λ and all Z ∈ z, then [X, j(Z)X] = λ|X|2Z for all
X ∈ v, Z ∈ z. In particular,

RX |z =
1

4
λ|X|2Id|z for every X ∈ v.

We generalize this result to the Heisenberg-like case:

Lemma 3.11. A two-step nilpotent metric Lie algebra {n, 〈 , 〉} is Heisenberg-
like if and only if there exist positive constants cm such that RZ(Xm) = 1

4
c2m|Z|2Xm,

where Xm ∈ Wm(Z), m = 1, . . . , µ.

Proof. Using 1.11b in [E2], we calculate RZ(Xm) = R(Xm, Z)Z = −1
4
j(Z)2Xm

= 1
4
ϑ2
m(Z)Xm . By Theorem 3.7, RZ(Xm) = 1

4
c2m|Z|2Xm if and only if n is

Heisenberg-like.

3.4. Dimension of the center. Kaplan [K2] states that there are infinitely
many Lie algebras of Heisenberg type with center z of arbitrary dimension. An
analogous result can be established for Heisenberg-like Lie algebras, using the
families of examples in Example 6.3.
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Proposition 3.12. For each integer n ≥ 2, there exist infinitely many Lie
algebras which are Heisenberg-like, but not Heisenberg type, having center z of
dimension n.

Proof. Fix an integer n ≥ 2. Let k be any integer, k ≥ 1. From Example
6.3 below, there exists a singular Heisenberg-like Lie algebra n = v⊕ z such that
dim v = k(n+ 1) and dim z = n . Since n is singular, it is not of Heisenberg type.
As k varies the dimension of n varies. The result follows.

4. A Class of Heisenberg-Like Lie Algebras from Representations of
su(2)

A method for constructing a two-step nilpotent Lie algebra n from an irreducible
representation of a compact Lie group G was given in [EH] and also studied in [L].
The geodesic properties of these two-step nilpotent Lie algebras were studied in
detail in the case of su(2) in [DeM] and in the case of compact simple G in [DeC].
We give a brief description of the construction here and show that the algebras of
the form Un ⊕ su(2), for n even, are Heisenberg-like.

Let G denote a compact Lie group and ρ : G→ Aut(V ) a finite dimensional
real irreducible representation with discrete kernel. The derived representation
j = dρ : g → End(V ) is faithful. Since G is compact and ρ is irreducible, there
is a ρ(G)− invariant inner product 〈 , 〉V on V which is unique up to constant
multiple. Let 〈 , 〉g be any Ad(G) invariant inner product on g . If g is simple,
then the only Ad(G) invariant inner products on g are of the form

〈Z,Z∗〉g = −c2trace(j(Z)j(Z∗))

for all Z,Z∗ ∈ g where c is a nonzero constant.

From this representation, we construct a two-step nilpotent Lie algebra n
as follows. Let z = g and v = V and let n denote the orthogonal direct sum
n = V ⊕ g as a vector space with inner product. Define the bracket operation on
n by

[n, g] = 0, [X, Y ] ∈ g for X, Y ∈ V,

where 〈[X, Y ], Z〉g = 〈j(Z)X, Y 〉V for X, Y ∈ V, Z ∈ z . Then n is a metric
two-step nilpotent Lie algebra.

Let Un denote the irreducible real representation of su(2) of dimension
n + 1. (See Fulton and Harris [FH] or [DeM] for full details.) In the case where
n is even and the dimension of Un is odd, the resulting two-step nilpotent Lie
algebra is singular.

Let n = Un⊕su(2) with metric as described above. The metric on z = su(2)
is Ad(SU(2))-invariant. By Lemma 2 of [DeM], the action of Ad(SU(2)) by
conjugation on vectors of constant length in su(2) is transitive.

Let I(n) denote the isometry group of n . The following two results were
established by J. Lauret [L].
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Proposition 4.1. Let n denote a two step nilpotent Lie algebra and write
n = v⊕ z. Then

Aut(n) ∩ I(n) = {(ρ,A) ∈ O(v)×O(z)| ρj(Z)ρ−1 = j(AZ) for all Z ∈ z}.

Theorem 4.2. Let ρ : G → Aut(V ) be an irreducible representation of a
compact Lie group G with discrete kernel on a real, finite dimensional vector space
V . Let n = V ⊕ g be a metric two-step nilpotent Lie algebra constructed as above,
and let N be the simply connected two-step nilpotent Lie group with left invariant
metric. Then G ⊆ Aut(N) ∩ I(N) and each g ∈ G acts on n = V ⊕ g as an
automorphism and an isometry by (ρ(g), Ad(g)).

We now prove the main result of this section.

Theorem 4.3. Let n be an even integer. Then the Lie algebras n = Un⊕ su(2)
are Heisenberg-like.

Proof. Let {Z1, Z2, Z3} be the standard basis for su(2). In the metric given,
this is an orthogonal basis with |Z1| = |Z2| = |Z3| , but this basis is not orthonor-
mal. Let Z ∈ {Z1, Z2, Z3} . The j(Z) maps may be explicitly calculated (see page
293 of [DeM]).

Let Y denote an eigenvector of j(Z1) with eigenvalue λ, and let Z ∈ g .

Then there exist g ∈ SU(2) and α ∈ R so that Ad(g)αZ1 = Z; here α = |Z|
|Z1|

since Ad(g) is an isometry on su(2). Therefore, j(Z)(ρ(g)Y ) =
j(Ad(g)αZ1)(ρ(g)Y )=αρ(g)j(Z1)ρ(g)−1(ρ(g)Y )=αρ(g)λY=αλ(ρ(g)Y ).

Hence ρ(g)Y is an eigenvector of j(Z) with eigenvalue αλ . Therefore, for any
Z ∈ z , the eigenvalues of j(Z) depend only on the norm of Z . Hence n is
Heisenberg-like.

Example 4.4. n = 2:
The real representations of su(2) are given by vector spaces Un where dimUn =
n + 1. In this case n = U2 ⊕ su(2) is a 6-dimensional Lie algebra with basis
{v1, v2, v3, Z1, Z2, Z3} . Note that this basis arises from the representation and is
an orthogonal basis, but is not orthonormal.

We obtain

j(Z1) =

 0 2 0
−2 0 0
0 0 0

 , j(Z2) =

 0 0 −2
0 0 0
2 0 0

 , j(Z3) =

 0 0 0
0 0 2
0 −2 0

 .

If Z = α1Z1 + α2Z2 + α3Z3 , then since the norms of the Zi are all equal,
|Z| = |Z1|

√
α2
1 + α2

2 + α2
3 and j(Z) has eigenvalues{

0,±2i
√
α2
1 + α2

2 + α2
3

}
=

{
0,±2i

|Z|
|Z1|

}
.

Example 4.5. n = 4:
In this case n = U4 ⊕ su(2) with basis {v1, . . . , v5, Z1, Z2, Z3} . The matrix repre-
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sentations for j(Z1), j(Z2), j(Z3) with respect to {v1, ..., v5} are as follows:

j(Z1) =


0 4 0 0 0
−4 0 0 0 0
0 0 0 2 0
0 0 −2 0 0
0 0 0 0 0

 , j(Z2) =


0 0 −1 0 0
0 0 0 −1 0
4 0 0 0 −4
0 4 0 0 0
0 0 3 0 0

 ,

j(Z3) =


0 0 0 −1 0
0 0 1 0 0
0 −4 0 0 0
4 0 0 0 4
0 0 0 −3 0

 .

Note that the elements v1, . . . , v5 in the basis for U4 do not all have the
same length. This accounts for the lack of skew symmetry in the matrices.

For Z = α1Z1 + α2Z2 + α3Z3 , j(Z) has eigenvalues{
0,±2i

√
α2
1 + α2

2 + α2
3,±4i

√
α2
1 + α2

2 + α2
3

}
=

{
0,±2i

|Z|
|Z1|

,±4i
|Z|
|Z1|

}
.

In general, for n = Un ⊕ su(2) the map j(Z) = j(α1Z1 + α2Z2 + α3Z3) has

eigenvalues

{
0,±2i

|Z|
|Z1|

,±4i
|Z|
|Z1|

, . . . ,±ni |Z|
|Z1|

}
. This follows from the proof of

Theorem 4.3 above and the fact that j(Z1) has eigenvalues
{0,±2i,±4i, . . . ,±(n− 2)i,±ni} .

5. Examples from Gornet-Mast [GM]

The examples of Heisenberg-like Lie algebras in section 6 below are based on
examples first developed in [GM]. We use the examples presented here to generate
families of examples in section 6.

Example 5.1. ([GM], example 3.9)
Let n = v ⊕ z be a six-dimensional vector space with inner product. Let
{X1, X2, X3, X4} be an orthonormal basis for v and {Z1, Z2} be an orthonor-
mal basis for z . Let j(Z1), j(Z2) have the following matrix representations with
respect to the basis given for v :

j(Z1) =


0 −a1 0 0
a1 0 0 0
0 0 0 −a2
0 0 a2 0

 , j(Z2) =


0 0 −b1 0
0 0 0 b2
b1 0 0 0
0 −b2 0 0


for real numbers a1, a2, b1, b2.

Using the relationship 〈j(Z)X, Y 〉 = 〈[X, Y ], Z〉 , the j(Z) maps define a
Lie bracket on n by

[X1, X2] = −[X2, X1] = a1Z1, [X1, X3] = −[X3, X1] = b1Z2,
[X2, X4] = −[X4, X2] = −b2Z2, [X3, X4] = −[X4, X3] = a2Z1,

with all other brackets zero.
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Let Z = α1Z1 + α2Z2 . The set of eigenvalues of j(Z) is{
± i

2

(√
(a1 + a2)2α2

1 + (b1 + b2)2α2
2 ±

√
(a1 − a2)2α2

1 + (b1 − b2)2α2
2

)}
.

Then n is Heisenberg-like if and only if

a21 + a22 = b21 + b22 and a1a2 = b1b2.

Note that n is of Heisenberg type if a1 = a2 = b1 = b2 .

Example 5.2. ([GM], example 1.15)
Let n = v ⊕ z denote a vector space with inner product; assume dim v = 3 and
dim z = 2. Let {X1, X2, X3} denote an orthonormal basis for v and {Z1, Z2}
denote an orthonormal basis for z . Define j(Z1), j(Z2) as follows:

j(Z1) =

 0 −a1 0
a1 0 0
0 0 0

 , j(Z2) =

 0 0 −a2
0 0 0
a2 0 0


for nonzero constants a1, a2 . Let Z = α1Z1 + α2Z2 . Then j(Z) has eigenvalues{

0,±i
√
α2
1a

2
1 + α2

2a
2
2

}
. It follows that n is Heisenberg-like if and only if a21 = a22 .

Note also that

W1(Z) = span{α2X2 − α1X3} = ker j(Z)

W2(Z) = span{X1, α1X2 + α2X3}

Note that since n is singular, it is not of Heisenberg type.

6. Generalizations of the Gornet-Mast examples

The above examples may be generalized to construct Heisenberg-like two-step
nilpotent Lie groups with centers of arbitrary dimension. The main approach
is to construct maps j(Zi) consisting of block matrices, where the blocks follow
the patterns of the above examples. We then obtain conditions on the matrix
entries which can be used to determine Heisenberg-like Lie algebras.

Recall that if n is a two-step nilpotent metric Lie algebra with one-dimensional
center then n must be Heisenberg-like; thus we only consider z with dim z ≥ 2.

In constructing the examples below, for dim v = m and dim z = r , we
let {X1, ..., Xm} denote an orthonormal basis for v and {Z1, ..., Zr} denote an
orthonormal basis for z . Recall that we use the relationship 〈j(Z)X, Y 〉 =
〈[X, Y ], Z〉 to determine a Lie bracket on n; thus the given definitions suffice
to completely determine the Lie algebra structure, and thus the corresponding
simply connected Lie group, in each case.

Example 6.1. Nonsingular (4k + 2)-dimensional Heisenberg-like Lie groups.
Let dim v = 4k , k ∈ Z+, and dim z = 2. We generalize the approach of example

5.1.
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Define j(Z1), j(Z2) by

j(Z1) =


A1 0 · · · 0

0 A2
. . .

...
...

. . . . . . 0
0 · · · 0 Ak

 j(Z2) =


B1 0 · · · 0

0 B2
. . .

...
...

. . . . . . 0
0 · · · 0 Bk


where Al, Bl, 1 ≤ l ≤ k, are 4× 4 matrices of the form

Al =


0 −γl 0 0
γl 0 0 0
0 0 0 −δl
0 0 δl 0

 Bl =


0 0 −ρl 0
0 0 0 ηl
ρl 0 0 0
0 −ηl 0 0

 .

For Z = α1Z1 + α2Z2, the set of eigenvalues of j(Z) is{
± i

2

(√
(γl + δl)2α2

1 + (ρl + ηl)2α2
2 ±

√
(γl − δl)2α2

1 + (ρl − ηl)2α2
2

)
: 1 ≤ l ≤ k

}
Then n is Heisenberg-like if and only if

γ2l + δ2l = ρ2l + η2l and γlδl = ρlηl (4)

for 1 ≤ l ≤ k . Furthermore, N is nonsingular provided γl, δl, ρl, ηl are all
nonzero, for each l . With the Heisenberg-like assumption one of the following
four relationships must hold: γl = ρl and δl = ηl , γl = −ρl and δl = −ηl , γl = ηl
and δl = ρl , or γl = −ηl and δl = −ρl for each l . Without loss of generality,
assume the first. Then W1(Z) = ker j(α1Z + α2Z) = {0} and the remaining
invariant subspaces are as follows:

W2(Z) = span{X1, α1X2 + α2X3}
W3(Z) = span{X4, α2X2 − α1X3}

...

W2k(Z) = span{X4k−3, α1X4k−2 + α2X4k−1}
W2k+1(Z) = span{X4k, α2X4k−2 − α1X4k−1}.

Example 6.2. Nonsingular (4k + 3)-dimensional examples

The previous example may be generalized so that dim z = 3. Define j(Z1)
and j(Z2) as above and define

j(Z3) =


C1 0 · · · 0

0 C2
. . .

...
...

. . . . . . 0
0 · · · 0 Ck

 where Cl =


0 0 0 −νl
0 0 −ωl 0
0 ωl 0 0
νl 0 0 0

 .

The eigenvalues of j(Z) = j(α1Z1 + α2Z2 + α3Z3) are{
± i

2

(√
(γl + δl)2α2

1 + (ρl + ηl)2α2
2 + (νl + ωl)2α2

3

±
√

(γl − δl)2α2
1 + (ρl − ηl)2α2

2 + (νl − ωl)2α2
3

)
: 1 ≤ l ≤ k

}
.
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The Lie algebra n is Heisenberg-like if and only if the following hold for 1 ≤ l ≤ k :

γ2l + δ2l = ρ2l + η2l = ν2l + ω2
l and γlδl = ρlηl = νlωl. (5)

Again, without loss of generality, assume γl = ρl = νl 6= 0 and δl = ηl = ωl 6= 0
for 1 ≤ l ≤ k . As above W1 = {0}, and the non-trivial invariant subspaces of
j(Z) are

W2(Z) = span{X1, α1X2 + α2X3 + α3X4}
W3(Z) = span{α2X2 − α1X3, α3X2 − α1X4}

...

W2k(Z) = span{X4k−3, α1X4k−2 + α2X4k−1 + α3X4k}
W2k+1(Z) = span{α2X4k−2 − α1X4k−1, α3X4k−2 − α1X4k}

We can further alter this example by exchanging blocks between the ma-
trices while maintaining the relationships between the constants given in equation
(5). This exchange, for example swapping Ai with either Bi or Ci , leaves the
eigenvalues unchanged.

Example 6.3. Singular (k(n+1)+n)-dimensional Heisenberg-like Lie algebras
The first step is to construct a singular (2n+ 1)-dimensional Heisenberg-like Lie

algebra. Let dim v = n + 1 and dim z = n . Define j(Zl) to have (r, s) entry
j(Zl)r,s, 1 ≤ r, s ≤ n+ 1, where

j(Zl)r,s =


−al r = 1, s = l + 1
al r = l + 1, s = 1
0 otherwise

(6)

where al are real nonzero constants, 1 ≤ l ≤ n . The resulting Lie bracket satisfies

[X1, Xl] = −[Xl, X1] = al−1Zl−1 for 2 ≤ l ≤ n+ 1,

with all other brackets zero.

The eigenvalues of j(Zl) are {0,±ial} , 1 ≤ l ≤ n , where the zero eigenvalue
has multiplicity n−1. Thus there are only three distinct eigenvalues for each j(Z)
for nonzero Z ∈ z . Let Z = α1Z1 + α2Z2 + · · · + αnZn . The eigenvalues of j(Z)
are {

0,±i
√
a21α

2
1 + a22α

2
2 + · · ·+ a2nα

2
n

}
.

Then n is Heisenberg-like if and only if a21 = a22 = · · · = a2n .

Assume that n is Heisenberg-like. Without loss of generality, assume ai =
a1 , 2 ≤ i ≤ n . In this case, the invariant subspaces of j(Z) are

W1(Z) = span{α2X2 − α1X3, α3X2 − α1X4, . . . , αnX2 − α1Xn+1}
W2(Z) = span{X1, α1X2 + α2X3 + · · ·+ αnXn+1}.

Now we generalize the above to construct a (k(n+ 1) + n)-dimensional Lie
algebra. Let dim v = k(n+1) and dim z = n, where n ≥ 2. Construct the bracket



DeCoste, DeMeyer, and Mast 725

on n by letting each j(Zl) have matrix representation consisting of k blocks, where
each (n + 1) × (n + 1) block is constructed as in equation (6). For example, if
n = 3 then

j(Z1) =


A1

1 0 · · · 0

0 A2
1

. . .
...

...
. . . . . . 0

0 · · · 0 Ak1

 , j(Z2) =


A1

2 0 · · · 0

0 A2
2

. . .
...

...
. . . . . . 0

0 · · · 0 Ak2

 ,

j(Z3) =


A1

3 0 · · · 0

0 A2
3

. . .
...

...
. . . . . . 0

0 · · · 0 Ak3


where

Al1 =


0 −al1 0 0
al1 0 0 0
0 0 0 0
0 0 0 0

 Al2 =


0 0 −al2 0
0 0 0 0
al2 0 0 0
0 0 0 0

 Al3 =


0 0 0 −al3
0 0 0 0
0 0 0 0
al3 0 0 0


for 1 ≤ l ≤ k .

The eigenvalues of j(Z1) are {0,±ia11,±ia21, . . . ,±iak1}, the eigenvalues of
j(Z2) are {0,±ia12,±ia22, . . . ,±iak2}, and so on. Then the eigenvalues of j(Z) =
j(α1Z1 + α2Z2 + · · ·+ αnZn) are{

0,±i
√

(al1)
2α2

1 + (al2)
2α2

2 + · · ·+ (aln)2α2
n : 1 ≤ l ≤ k

}
where the zero eigenvalue has multiplicity k(n + 1) − 2k . Thus in order for n
to be Heisenberg-like, (al1)

2 = (al2)
2 = · · · = (aln)2 for 1 ≤ l ≤ k , and then the

eigenvalues of j(Z) are{
0,±ial1

√
α2
1 + α2

2 + · · ·+ α2
n : 1 ≤ l ≤ k

}
.

Without loss of generality, assuming ali = al1 for 2 ≤ i ≤ n and 1 ≤ l ≤ k , the
invariant subspaces are

W1(Z) = span {α2X2 − α1X3, α3X2 − α1X4, . . . , αnX2 − α1Xn+1,

α2Xn+3 − α1Xn+4, α3Xn+3 − α1Xn+5, . . . , αnXn+3 − α1X2(n+1),

. . .

α2Xk(n+1)−n+1 − α1Xk(n+1)−n+2, α3Xk(n+1)−n+1 − α1Xk(n+1)−n+3,

. . . , αnXk(n+1)−n+1 − α1Xk(n+1)

}
W2(Z) = span{X1, α1X2 + α2X3 + · · ·+ αnXn+1}
W3(Z) = span{Xn+2, α1Xn+3 + α2Xn+4 + · · ·+ αnX2(n+1)}

... =
...

Wk+1(Z) = span{Xk(n+1)−n, α1Xk(n+1)−n+1 + α2Xk(n+1)−n+2 + · · ·+ αnXk(n+1)}.
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