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Abstract. The tame subgroup I; of the Iwahori subgroup I and the tame
Hecke algebra H; = C.(I;\G/I;) are introduced. It is shown that the tame
algebra has a presentation by means of generators and relations, similar to that
of the Iwahori-Hecke algebra H = C.(I\G/I). From this it is deduced that
each of the generators of the tame algebra is invertible. This has an application
concerning an irreducible admissible representation 7 of an unramified reduc-
tive p-adic group G: 7 has a nonzero vector fixed by the tame group, and the
Iwahori subgroup I acts on this vector by a character x, iff 7 is a constituent of
the representation induced from a character of the minimal parabolic subgroup,
denoted x4, which extends x. The proof is an extension to the tame context
of an unpublished argument of Bernstein, which he used to prove the follow-
ing. An irreducible admissible representation 7 of a quasisplit reductive p-adic
group has a nonzero Iwahori-fixed vector iff it is a constituent of a representa-
tion induced from an unramified character of the minimal parabolic subgroup.
The invertibility of each generator of H; is finally used to give a Bernstein-type
presentation of H;, also by means of generators and relations, as an extension
of an algebra with generators indexed by the finite Weyl group, by a finite index
maximal commutative subalgebra, reflecting more naturally the structure of G
and its maximally split torus.
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1. Introduction

The Iwahori, or Hecke, algebra H of a reductive connected split group G over
a p-adic field has an explicit presentation by generators and relations (see [IM]),
and a presentation — due to Bernstein (see [L], [HKP]) — exhibiting a commutative
subalgebra of finite index. It proved to be useful in the study of the admissible
representations of (G, especially those which have a nonzero vector fixed by the Iwa-
hori subgroup I, see, e.g., [KL], [L], [Re]. These representations are constituents
of representations induced from unramified characters of the Borel subgroup [Bo],
and have uses e.g. in the study of automorphic representations by means of the
trace formula.
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A purpose of this paper is to extend the study to constituents of repre-
sentations parabolically induced from characters which are tamely ramified. We
are then led to introducing the tame subgroup I; of the Iwahori subgroup I and
the tame Hecke algebra H, = C.([;\G/I;). This tame algebra is an extension
of the Iwahori-Hecke algebra H = C.(I\G/I) by a finite commutative algebra
C[I/I;], and we show that it has a presentation by means of generators and rela-
tions, similar to that of the Iwahori-Hecke algebra H, but in which the relation
T? = qI + (¢ —1)T ramifies. From this we deduce that each of these generators of
the tame algebra is invertible, as in the case of H.

This has the following application concerning an irreducible admissible rep-
resentation 7 of an unramified reductive p-adic group G: 7 has a nonzero vector
fixed by the tame group I, so that the Iwahori subgroup [ acts on this vector by
a character, denoted Y, iff 7 is a constituent of the representation induced from
a tame character of the minimal parabolic subgroup, denoted x4, which extends
x. The proof is an extension to the tame context of an unpublished argument of
Bernstein, which he used to prove the following result, also known to Borel [Bo].
An irreducible admissible representation 7 of a quasisplit reductive p-adic group
has a nonzero Iwahori-fixed vector iff it is a constituent of a representation induced
from an unramified character of the minimal parabolic subgroup.

The invertibility of each of the generators of the tame algebra H; is what
is needed to give a Bernstein-type presentation of H,, also by means of generators
and relations, as an extension of the finite tame Hecke algebra Hy, = C(L\K/1),
with generators indexed by the finite tame Weyl group W;;, by a finite index
maximal commutative subalgebra R; = C.(A/A:(O)), reflecting more naturally
the structure of G and its maximally split torus A. Our proof of this is natural,
being based on an isomorphism of H; with the universal tame principal series
module M;, in analogy with Bernstein’s proof of the isomorphism of the Hecke
algebra H with the universal principal series module M (see [HKP]). We do
not use Lusztig’s explicit yet partial description [L] in the Iwahori case, which
would require constructing the tame Weyl group W, as an abstract extension of
the extended Weyl group W by the finite torus A(F,). See Vignéras [V] where
applications to Fp—representations are given. A detailed exposition of this approach
is in Schmidt’s thesis [Sch]. E. Grofie-Klénne informed me of [V] and [Sch] after
my talk on this work at HU Berlin, December 2009. For a potential extension
of [DF] to representations with tamely ramified principal series components — as
considered in this paper — we need a complete and easily verifiable proof, as given
in this paper. In analogy with the Hecke case, we present generators indexed by
torus elements in A/A;(O) as a difference of dominant elements. Our presentation
takes the form (see Theorem 4.5): The tame algebra H; is the tensor product
R ®r,, Hpt (Ryy = C(A(O)/A4(O))) subject to the relations (in the localization
R ®r Hy, where R’ is the fraction field of the integral domain R = C.(A/A(O))
and Ry = R®c C.(A(F,)))

delﬁ; a’(¢m)

T(sa) 0 @ = sala) o T(s) + (sa(a) = ) = —'ovs

for all @ € A/A;(O) and all simple roots «. Finally we compute the center Z(H;)
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of H; to be RZVf‘t and conclude that H; is a module of finite rank over Z(Hy).
I am deeply indebted to J. Bernstein for his invaluable help in the prepara-
tion of this work.

2. The tame group and tame representations

Let F be a local field, O its ring of integers, ™ a generator of the maximal ideal
in O. The residue field F, = O/ has cardinality ¢ = p/ where p is the residual
characteristic. Let G’ be an unramified (quasisplit and split over an unramified
extension of F') reductive connected group defined over F'. Let = be a hyperspecial
point in the building of G’. Let G, be the stabilizer Stabg(p(x) of z. The Bruhat-
Tits theory ([T], 3.4.1; [La]) produces a unique affine connected smooth group
scheme G = G, over O whose generic fiber is G’, for which G(Op) = Stabg()(x)
for any unramified extension L of F', where Oy is the ring of integers in L. Write
K for the hyperspecial maximal compact subgroup G(O) of G(F).

Let I be an Iwahori subgroup of K. Then G has a minimal parabolic
subgroup scheme B over O such that [ is the pullback under reduction mod 7 of
B(F,). The group B has Levi decomposition B = AU where U is the unipotent
radical and A is a Levi subgroup. Both A and U are group schemes over O.
Denote by B_ the opposite parabolic, thus B_. N B = A and B_ = AU_.

The Iwahori group I has the decomposition I = I_A(O)l, = I, A(O)I_,
where I, =INU, I =1INU_, A(O) = INA. We introduce the tame subgroup I
of I to be the pullback of U(F,) under reduction mod 7. Then [, = I_A,(O)l; =
I A (O)I- where A;(O) = 1;NA(O). Note that the decomposition of an element
of I according to I_A(O)I, and according to I, A(O)I_ is unique. We say that
g in G(F) is prounipotent if lim,,_,., g*" = 1. Each g € I; is clearly prounipotent.
Conversely, any prounipotent ¢ in [ lies in I; (since a prounipotent a in O* must
liein 14+ 70). Thus I; can be defined to be the group of prounipotent elements
in I. We assume that G is unramified, namely that G is quasisplit, thus that
A is a torus, and that A splits over an unramified extension of F'. Then the
quotient [/I; = A(O)/A(O) is isomorphic to the torus A(F,), a finite abelian
group consisting of elements of order prime to p.

Let 7w be an admissible irreducible representation of G(F') over C ([BZ],
[B]). Denote by 7!t the space of I;-invariant vectors in 7. It is finite dimensional
since 7 is admissible. The representation 7 is called tamely ramified if 7% # 0.
The group I acts on 7't since I; is normal in I. Since I/I; is a finite abelian
group, the finite dimensional space 7't splits as the direct sum of the eigenspaces

X = {v el gv=x(g)v, g€}

over the characters y of the finite abelian group I/, = A(O)/A(O) = A(F,).
Any such y can be viewed as a character of I trivial on I, and I_, or of A(O),
and it extends (not uniquely) to a character x4 of A(F) since A(F)/A(O) is a
finitely generated discrete group.

We can now characterize the tame representations.

Theorem 2.1. The space 7/X is nonzero iff 7 embeds in I(x4) for some
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character x4 of A(F) whose restriction to A(O) is x.

Here I(x4) signifies the representation of G(F') parabolically and normal-
izedly induced from the character x4 of A(F) extended to B(F) trivially on
U(F).

Corollary 2.2.  An irreducible admissible representation 7 of G(F) is tamely
ramified, thus has 7/t # 0, iff it is a constituent of an induced I(x4) from a tamely
ramified x4, thus the restriction of x4 to A;(O) is trivial.

Remark 1. (1) The analogous statement for the congruence subgroup
I (={g€l;g modm=1})

is false. There are cuspidal representations (in particular they are not constituents
of any induced representations) with vectors # 0 fixed by 1.

(2) Of course a proof of Theorem 2.1 based on the complicated theory of
types can be extracted from [Ro]. Our proof is simple.

(3) The representations of the theorem can be parametrized by extending
([Re]) the Kazhdan-Lusztig ([KL]) parametrization to our tamely ramified context.

Let A be a lattice in A(F), thus it is a finitely generated commutative
discrete subgroup of A(F) with A(F) = AA(O). Denote by AT the cone of A
in A such that Int(\)(U(O)) € U(O), Int(A\)I, C I, Int(A"HI_ C I_, and
Int(A\)A(O) = A(O). Denote by AT the subcone of A € At with

Nnsso It (U(0)) = {1},  Int(A\™)L C Int(A\"™) I, if n<m

and U,ssoInt(A™™) (1) = U(F). Here the examples of GL(n) and the classical
groups may help elucidate the definition.

Denote by h) a constant measure supported on the double coset I[;AI; for
A € AT. The volume of I; is normalized to be 1.

Lemma 2.3. The hy, are multiplicative on A" with respect to convolution,
namely hyh, = hy, for A\, p € A*.

Proof. To see this it suffices to consider the set LAl = LA AL(O)_ply,
and note that M A™' C I, and p'I_pu C I_ for \,u € AT. Of course
)\At(O>A71 = At(O) | ]

Remark 2. Here we used only the decomposition I; = I, A;(O)I_ and its prop-
erties, and not the fact that I is Iwahori.

Proof of Theorem 2.1. Let us consider a vector v in 7t, and hjv = hyv (=
image of v under the action of hyn) for A € A*" and n >> 0. Then

hiv = hyov = [N Tiw = [L Ay (O)I_\"v = I N0 = A" - (Int(A™") 14 )v

up to a scalar depending on the measure, where we write the set (e.g. I;\"I;)
for its characteristic function, and multiplication for convolution. We used here
AN C I and AA(O)N" € A(O). Now I, is an open compact subgroup of
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U(F), and Int(A™") acts on I, by expanding it, thus Int(A\™")I, C Int(A~™)I if
n <m and U,s~oInt(A™")I, = U(F). Here we use the assumption that A € A*T.

Lemma 2.33 of [BZ1], p. 25, asserts that a vector v € 7 lies in the span
(m(u)b—0b; u e U(F), b e V) iff there exists a compact subgroup S in U(F) with
Jsm(u)vdu = 0. We conclude that for v in 7't we have that hjv =0 for n >> 0
iff v lies in the kernel of the map 7 +— 7y sending 7 to its module of coinvariants
my = w/{(m(u)b —b;u € U(F),b € V). In particular, if hy is invertible then
the kernel of 7/t — 7y (in fact this map has image in (7y)"*"4) is zero, hence
mlt — (7y)!*"4 is an embedding. In particular (7 )H"4

Since I; is normal in I, I acts on 7' and 7t = @, 7/X, the sum ranges

over all characters x of the torus A(F,) = I/I, = A(O)/A,(O). Similarly Wgt(o) =
@Xwé(o)’x, where Wé(O),x ={v € Wét(o); g-v = x(g)v,g € AO)} is the x-
eigenspace. Then 71X — WS(O)’X for each . If 71X #£ 0 then Wé(o)’x £ 0. Let x4

be an irreducible quotient of n,ﬁ‘(o)’x; it is a character of A(F') whose restriction

to A(O) is x. By Frobenius reciprocity: Homa(ry(mr, xa) = Homep (7, 1(x4)),
the nonzero map 73(0)’X — x4 defines a nonzero map m — I(x4) which is an

embedding since 7 is irreducible.

1S nonzero.

Conversely, if 7 is an irreducible subrepresentation of I(x4), then by Frobe-
nius reciprocity there is a surjection my — x4, and since y4|A(O) = x we have
Wg(o)’x — xa. Note that if 7’ is an irreducible constituent of I(x’y) then there is
an element w of the Weyl group of A such that 7’ embeds in I(wx’y). Now the
key step in the proof that the functor m +— my of coinvariants takes admissible
representations m to admissible representations 7y consists of the claim ([BZ1],
3.17), that the map @ — 7y, when restricted to 7%, where K is any compact
open subgroup with Iwahori decomposition K = K_ K K, = K, K4K_ compat-
ible with B = AU and B_ = AU_, thus the map 7% — (7p)%4 (|[BZ1], 3.16(a)),

(0)

. .. . A AO),x - .
is surjective. In particular 7t = @, w/x — 7," = @XTFU( X s onto, and so is

7T[’X _y ﬂ-é(

X for all y. Hence 75X —» x4, which means that 71X = 0.
It remains to show that the hy, A\ € A™", are invertible. This is accom-

plished in Corollary 3.4 below. u

Remark 3. (1) The special case of x = 1 in the theorem is a well known result
of Borel [Bo] and Bernstein. We followed Bernstein’s unpublished proof, replacing
the Iwahori subgroup I which is used in Bernstein’s original proof, by the tame
subgroup I;, to be able to consider characters x of I/1;.

(2) The Iwahori Hecke algebra C.(I\G/I) is defined ([IM]) by generators —
essentially double cosets of I in G(F') — and relations, using which one sees that
the elements hi (= IAI, A € AT) are invertible. This completes the proof of the
theorem for the group I (that is, for y = 1). We shall see below that hy (= LA\l
A € AT) are also invertible, by generalizing the presentation to the context of the
tame algebra C.([;\G/I;).

(3) The surjectivity of VE — V[f{ 4 for an open compact K with Iwahori
decomposition is proven in [BD], Prop. 3.5.2, in the context of smooth (not neces-
sarily admissible) representations. This is used in [BD], Cor. 3.9, to characterize
the category of C.(K\G/K)-modules as that of the smooth G(F)-modules V'
generated by V. In particular any constituent of such a G(F)-module is again
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generated by its K -fixed vectors.

3. The tame algebra

We shall now describe the algebra H, = C.(I;\G/I;) by means of generators and
relations, when G is unramified. But we shall provide (complete) proofs only in
the case of the group G = GL(n, F) and leave to the reader the formal extension
to the context of a general unramified reductive connected p-adic group. This
way we can give explicit proofs by means of elementary matrix multiplication, and
hopefully elucidate the proof.

Thus let G be a quasisplit connected reductive group over F', with maxi-
mally split torus A and Borel subgroup B containing A. Then B = AU, where
U is the unipotent radical of B. We assume that G, A, U are defined over
O. We write G for G(F), A for A(F), etc. Write K = G(O) for the maximal
compact, and I for the Iwahori subgroup of K defined as the pullback of B(F,)
under O — O/m = F,, I; for the pullback of U(F,). Then I, consists of the
prounipotent elements of 1.

Our aim is to describe the tame convolution algebra Hy = C.(I;\G/I;)
by means of generators and relations. We shall use the Bruhat decomposition
G = I[N(A)I, = IN(A)I, where N(A) is the normalizer of A in G. The tame
affine Weyl group W, = N(A)/A(O), A(O) = A(O)Nn I, A(O) = NA)NI =

AN, is an extension 1 — A(F,) — W, — W — 1 of the extended affine
Weyl group W = N(A)/A(O) by the finite torus A(F,) = A(O)/A(O). In
turn, W is the semidirect product W x X,(A) of the Weyl group W = N(A)/A
and the lattice X,(A4) = A/A(O), and W, is an extension of W by the abelian
group Ay = A/A;(O), which in itself is an extension of A/A(O) = X.(A) by
A(0)/A(O) = A(F,). Then W acts on A; and on X,(A) by permutations.

For simplicity, assume that the root system of G is irreducible. Let
ai, ..., q, denote the B-positive simple roots. Let S = {s,, = 5_4,;1 <@ < n} be
the set of simple reflections corresponding to the B-positive (or B_-positive) sim-
ple roots. Let a denote the B-highest root, and & the corresponding coweight.
Denote by t, = p(m) the element of X,(A) corresponding to the cocharacter .
Thus we have t_gzv, and we put sg = t_gv - s5. The set S, = S U {sp} is the set
of simple affine reflections corresponding to the B_-positive affine roots.

The extended affine Weyl group W is W, x €1, where W, is the Coxeter
group generated by S,, and {2 is the subgroup of W which preserves the set
of B_-positive simple affine roots under the usual left action: an affine linear
automorphism acts on a functional by precomposition with its inverse. The set
S, defines a length function and a Bruhat order on W . The elements of 2 are of
length zero.

We embed X, (A) inside A via p — p(m), and regard each element of W as
an element of K | fixed once and for all. Also fix a primitive (¢—1)th root ¢ of 1 in
O* and identify F with () C O*, and A(F,) with the elements in A with entries
in ({). Then view A; as the (direct) product of the W- and -stable subgroups
X.(A) and A(F,) of A. However the decomposition A; = X, (A) x A(F,) is not

canonical as it depends on the choice of w. This permits us to view lifts of W and
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W, as subsets — but not subgroups! — of G.

The decomposition of G as the union of Lwl; (w in W;) is disjoint ([IM],
Thm 2.16). Hence each member of the convolution algebra H; is a linear combi-
nation over C of the functions 7T'(w) (w € W;) which are supported on I;wl; and
attain the value 1/|I;| there. The function 7T'(w) is independent of the choice of
the representative w in Lwl,.

The group 2 is computed in [IM], Sect. 1.8, when G is split, to be Z/2 in
types By, Cy, Er; trivial in types Eg, Fy, Go; Z/3 in type Eg; and Z/2 x Z/2
in type Doy, Z/4 in type Dogyq.

In the example of G = GL(n, F'), we choose lifts in G of elements of W, as
follows. Let s; (1 < i < n) be the matrix whose entries are 0 except for a;; =1
(7 #4,0+1), a;i41 =1, aiy1, = —1, thus it has determinant 1, but order 4. Its
image in W is the transposition (i,i+1). The images {S;; 1 <i <n} in W of the
{si;; 1 <i < n} generate W. Denote by 7 the member (a;;) of G whose nonzero
entries are a;;11 =1 (1 <i<n)and a,; =x. Then 7" =& in GL(n, F) and the
image of 7 in W generates ). Define sy = s, to be 75,771 = 7715, ;7. It is the
matrix in G whose nonzero entries are a;,, = -7, a; = 1 (l<i<n), a, =m.
Then 78,41 = 5,7 (0 < i < n). Let us also introduce the diagonal matrices ¢;
whose only diagonal entry which is not 1is —1 at the ith place. Then s, = s;¢;
has entries 0 or 1, and s/2 =1 (1 <7< n).

The group W, is generated by the images S, = {3;; 0 < i < n} in W of
the transpositions S, = {s;; 0 < i < n}, W by the {5;; 1 <i < n}, Q by the
image 7 of 7 in W. Note that the group generated by S, in W, is bigger than
W,, although S, generates W,. Thus (W,,S,) is a Coxeter group ([BN], IV, Sect.
1). Hence it has a length function ¢ which assigns w in W, the minimal integer
m so that w =t;---t,, (t; in S,). In particular £(1) =0, and {(w) =1 iff w = 5;
for some . The length function ¢ extends to W by l(tw) = l(w) (w e W,). The
function ¢ extends to W; by ¢(w) = ¢(w), where W is the image of w € W} in w.
The group W; is generated by any pullback of W and by the p € A(O)/A(O).
Thus ¢ is well defined and ¢(pw) = ¢(w).

Note that X.(A) = Z" and A(O)/A(O) ~ A(F,) ~ F;>". We identified
W A(O) with the group of matrices which have a single nonzero entry in O* at
each row and column, X,(A) with the group of diagonal matrices with diagonal
entries in 7%, and A(O)/A;(O) with the group of diagonal matrices with diagonal
entries in O*/(14+70). For a in O*, write a;, for diag(1,...,1,a7 % a,1,...,1),
where a is in the (i + 1)th place and a™! is in the ith place (1 <14 < n). Write
Qi for diag(a,1,...,1,a7"), p;a for g;0; 4, and p, . for e,0,,,4.

Recall that H; is the convolution algebra C.(I;\G/I;), general G. A C-
basis of H; is given by T'(w), the characteristic function of I,wl, divided by |[;|,
as w ranges over Wy, since I;\G/I; ~ W;. To simplify the notations we normalize
the Haar measure to assign I; the volume |[;| = 1.

Theorem 3.1.  The tame algebra H; is an algebra over C generated by T'(w),
w € Wy, subject to the relations
(i) T(w)T(w') =T(ww') if L(ww') =L(w) + (W), w, w € Wy
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(i) T(s:)*=qq*IT(s?) + (g + 1) D>, T(vas:) (1<i<mn).

Here s; = (° (1)) lies in a subgroup SL(2,F) in G if G is split, and then
v(i) =0 and a;, = (1*°), and a ranges over (O/m)*, or s; lies in a subgroup
SU3,E/F) = {g € SL(3,F);gsg = s}, where s; = s is antidiag(1l,—1,1), and
E is the unramified quadratic extension of F', and then ¢(i) = 1 and o;, =
diag(@a!,a/a,a), and a ranges over (Og/m)*.

Remark 4. (1) Put u(a) = w;(a) = (*/*°) in SL(2,F). We use in the proof
the relation s;u(a)s;’ = u(—a Ha.s;u(—a™t) in SL(2,F). It can be written
in GL(2,F) on replacing a by —a, thus we get slu(a)s; = u(a™')pisiu(a™),
where s, = s;g;, pia = Qiaci. The relation (i7) can then be expressed as T'(s;)? =
4T (1) + 3" 0co/mazo T (Piasi), closer to the relation T'(s;)* = ¢T'(1) + (¢ — 1)T'(s;)
in H. This relation is (T" — ¢)(T'+ 1) = 0. In the quasisplit nonsplit case it is
(T—¢*)(T+q)=0,0or T?> —q(q—1)T — ¢*I = 0.
(2) In SU(3, E/F) we put u(a,b) = u;(a,b) = (é
/

b+b=aa. Then su(a,b)s = u(—a/b,1/b)aysu(—a/b,1/b).

>,a€E,b€Ewith

—Qlo

a
1
0

Corollary 3.2. The tame algebra H, is an algebra generated over the commu-
tative algebra C[A(F,)] by T'(s;) (0 <i<mn), T(7), subject to the relations

(tii) T(m)™ = T(m™); T(w)T(p) = T(w(p))T(w) where w(p) is the image of
p € A(F,) under w (where w is 7 € Q or s; € S,);

(iv)  T(T)T(si12) = T(s:)T(7) (0 <i<n);

the quadratic relation (ii) and the braid relations

(v)  T(s:)T(s;)T(s:) = T(s5)T(s:)T(s5) if s;578; = s;8;5; (namely when 7 = j=£1
and n > 3;1 <14, j<n);

(vi)  T(s;)T(s;) = T(sj)T(s;) if s;8; = sjs; (namely ¢ # 7, j £ 1 and n > 4;
1<i, 5 <n).

It is clear that the presentation of Theorem 3.1 implies that of Corollary
3.2, and is implied by it.

Remark 5. By (iv), T(so) = T(7)T(s1)T(7)™' = T(r ) 'T(s,_1)T(7) satisfies
(v), (vi), and with ay,, = Ta1, 7' = (14 Qe 1a) = diag(a,1,...,1,a7 1),
also

(i6)o  T(s0)” = g IT(s5) + (4 + 1) 3 e jmaro T(@nas0)-

The proof of the relations (iii) involving T(p) is immediate from the
definition of T'(p) as the characteristic function of pl;, and the proof of (iv), (v),
(vi) follows the proof of the corresponding statements for the Iwahori (unramified)
Hecke algebra C.(I\G/I) in [IM], Prop. 3.8.

For example, to prove (v) it suffices to work in GL(3, F') and show that
(v)  LisiLisolysily = Iisolysi1isoly.

To show that both sides are equal to [;s1s9511; we first observe the crucial fact,

that will be used repeatedly, in particular in the proof of (i7), that I; decomposes
as I_A(O)1; = I A(O)I_, where

I, =INU(F) = LNU(F), [ =INU_(F)=LNU_(F), A(0)=ILnNA(F),
and U(F') is the unipotent radical of the upper triangular subgroup B(F), and
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U_(F) is the lower unipotent subgroup, so that A(F)U_(F) is the parabolic
subgroup opposite to B(F) = A(F)U(F') (thus B(F)NA(F)U_(F) = A(F)).
The decomposition of each element of I; is unique. Of course, this follows
from the analogous decomposition I = I_A(O)I, = I, A(O)I_ where A(O) =
INA(F) = A(O), of the Iwahori subgroup /. Write I] for the group of z in I;
whose reduction mod 7 is 1 in G(F,). Then s;Ijs;' = I} C I, for any s;. To
deal with unipotent elements in I, not in I, NI}, say z, note that s;xs;’ € I,
if * = (a;j), a1z = 0. However, an upper unipotent matrix with nonzero entry
only at the (12) position is conjugated by s, to an upper unipotent matrix with
nonzero entry only at the (13) position, and then by s; to one with nonzero entry
only at the (23) position; but this lies in the I; at the right side of the left wing of
(v)', and so we see that the left side of (v)’ is equal to I;s189811;. Similar analysis
applies to the right wing of (v)’, and the equality of (v)" follows.
Proof of Theorem 3.1. The relation (i) differs from the analogous relation T2 =
(g — 1)Ts+ q- I in the Iwahori Hecke algebra, but the proof follows along similar
lines. Since the relation (ii) involves only the reflection s;, it suffices to work in
the group SL(2, F') if G is split, and in SU(3, E/F) if not. The symbol T(s)?
stands for the convolution

T(s)?) (x) = / TN IO = / ()] (y™)dy.

Iisly

We then need to find the y € I;sl, with xy=! € LI, thus o € I,sl;sl,.
We first work in SL(2, F). Put u(a) = u;(a) = (1/“ 0). It suffices to look at the
I;-double coset Iisu(a)sl; since I; = U.ju(c), union over a set of representatives
in O for O/m, and sljs™' = I/ C I,;. If a = 0 we obtain the double coset —I;. If
a# 0 (mod m) we observe that

su(a)s = —'u(—a) = —u(—a Nagsu(—a') € —a.Iisl;, a, = diag(a™,a).

It follows that I;sl;sl, = —1; U Ugzo — oI35l Hence

T(S) = moT + Zma Qg S
a#0

Thus we need to compute the coefficients m,, a € O/m. It suffices to compute
[T(s)%](z) at * = —1 and at * = —a,s. At x = —1 the integral becomes the
cardinality of I;sI;/I; ~ I,/I;Nsl;s™1, a set represented by u(a), a € O/x. It has
cardinality ¢, so my = q.

Next we compute m, = [T(s)?](—a,s), thus the volume of the set of
y € I;isl; (that is, y=' € —I;sl;) with —a,sy~! € I;sl;, namely the volume of
the set (of y=' in) (—I;sI; N ayuslysl;)/I;. The intersection consists of a single
coset —u(a~')sl;, so the volume is 1, and m, = 1 for every a # 0 in O/x.

The work in SU(3, E//F) is analogous. We put u(a,b) = u;(a,b) = (é g %) ,

a € E,be FE with b+b = aa. We consider the I,-double cosets Iisu(a, b)sl; since
Iy = U qliu(c, d), union over a set of representatives ¢ for Og/m ~F,, = F_2 and
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d= Ld’+%cé, deO/m~F,=F,t+1=0,.€0;,and sljs ' =1I. Ifb=0
(mod 7) we get the double coset I;. If not, we use

su(a,b)s = u(—a/b,1/b)aysu(—a/b, 1/b) € ayl;sl,.

Then I;slisly = Iy U Ugqppr0yanlisl;. Hence

T(s)? =meT(1)+(g+1) Y mT(ms).
{b€O R /m;b£0}

Thus we need to compute the coefficients m;,, b € Og/m. It suffices to
compute [T(s)?|(z) at z =1 and at * = aps. At x = 1 the integral becomes the
cardinality of I;sl;/I; ~ I,/I, N sl;s™!, a set represented by u(a,b), a € Og/w,
V' € O/m. It has cardinality ¢*, so mg = ¢>.

Next we compute mg = [T'(s)?](ags), thus the volume of the set of y € I;sI;
(that is, y~1 € I;sl;) with agsy™' € I;sl;, namely the volume of the set (of y~*
in) (Iysl; Nags 'sl;)/I;. The intersection consists of the ¢ + 1 cosets u(a, b)sl;

with b = Eil, so my =1 for every b # 0 in Op/m, and there are ¢ + 1 elements
a in Og/m with the same aa = b+ b.

To prove (i), in view of (i7i) and (iv) it suffices to show that wl;s C LywslI;
where s is the reflection s; (1 <i<n)and we€ W’ has {(ws) =1+ {(w). Each
element of I; can be expressed as the product u(a)g with g € sI;s™'NI; and u(a)
is a matrix in the unipotent upper triangular subgroup whose only nonzero entry
is a (in O —7O) at the (i,7+ 1) place. It remains to show that wu(a)s € Lwsl,.
Since {(ws) = 1+ ¢(w), we have wu(a)s € TwsI, thus u(a)s € w ' Tw-s- 1. We
now assume G is split — the quasisplit case is similarly handled. Let G; be derived
group of the subgroup of G whose jth (j # i, i + 1) diagonal entry is 1, and its
nondiagonal entries not at positions (¢,17), (i,i+1), (i+1,7), (i+1,7+1) are zero.
Then G; ~ SL(2, F) and s, u(a) € G;, thus u(a)s € (G;Nw ' Tw)-s-(G;NI). The
group G; N1 is the upper triangular Iwahori subgroup I; in G; ~ SL(2, F'), and
G; Nw™Tw is either I; or the lower conjugate If = sl;s~1. By the uniqueness of
the Bruhat decomposition for G; we conclude that u(a) € G;Nw ' w C w ' Tw.
Hence wu(a)w™ € I. But u(a) is unipotent, in particular prounipotent. Hence
wu(a)w™ € I;, as I, is the prounipotent part of I. Then wu(a) € Lw, and so
wu(a)s € Lyws, as required.

Note that the relation Twlsl = Iwl U Iwsl (see [BN], IV, §2.2, p. 24)
implies that Lwlsl;, = U.p,Lywly U Uppplywsl, for suitable diagonal matrices
Pa, pp With entries in a set of representatives in O* for O*/(1 + 70O). When
lws;) =14+ l(w) (L(s;) = 1) we have that Twls;] = Tws;I. We showed that
Lowls; I, = Iyws;I; in this case. This establishes the last claim of the theorem. O

The hy (A € AT) are generated by hy with A = (m,...,m, 1,...,1), where
m occurs m times. The latter h) are expressible as a product of T'(s;) (1 <i<n)
of minimal length, and the power, m, of 7. Note that 7 normalizes I; (and I)
and T'(7) is invertible by (zii). To check that each hy (A € AT) is invertible it
then remains to show the following.
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Proposition 3.3.  Each 7T'(s;) is invertible (0 <i < n).

Proof. It suffices to consider the case of GL(2) (or SU(3, E/F)). Put T(s;) =

T(2)(T(52) — (g + )P Socopmy T(0ia)- Then T(s)T(s) = T(s:VT(s:) =
2u(7)

qq®\V . |

Corollary 3.4. Every T(pw) (p € A(F,), w € W) in H, is invertible.

Proof. By (iii), each T'(p) is invertible. If w = t; - - - £,,, is a reduced expression
for w in terms of the generators 7, s; (1 <i <mn), then T(w) =T(t1)---T(t;n),
and each T'(t;) is invertible. ]

This is the fact needed to complete the proof of Theorem 2.1.

4. Bernstein-type presentation

The conclusion of Corollary 3.4, that each generator T'(w), w € W;, of the tame
algebra H; = C.(I;\G/I;) is invertible, can be used to give a different presentation
of the tame algebra, exhibiting a commutative algebra of finite codimension,
parametrized by A/A;(O), analogous to the Bernstein presentation of the Iwahori-
Hecke algebra H = C.(I\G/I). We proceed following Bernstein’s abstract proof
of his presentation and the clear exposition of [HKP]. We do not follow Lusztig
[L] explicit but partial exposition of this presentation, as this would require in
particular constructing W, as an extension of W by A(F,).

Our Bernstein-type presentation of the tame algebra H; (see Theorem 4.5
below) asserts that (1) there is an explicitly described isomorphism of H; with
Ry ®r,, Hpy, where Ry = C.(A/A;(O)) is a commutative subalgebra, Hy, =
C(Ng(A)/A(O)) is a finite dimensional subalgebra, both containing a finite di-
mensional commutative algebra Ry; = C(A(O)/A:(O)), and (2) the commutation
relations of the generators a € A/A,(O) of R, and s, of Hy,, take the form

den?; a’(¢m)
1—aV(m)

We proceed to explain the notations, statement and proof of the presenta-
tion.

T(sa)0a = s4(a)oT(sq) + (sala) — a)

We first recall our notations. Let F' be a p-adic field with a ring O of
integers whose maximal ideal is generated by w. The residue field O/m is F,.
Consider a split connected reductive group G over F', with split maximal torus
A and Borel subgroup B = AU containing A. Let B. = AU_ be the Borel
subgroup opposite to B containing A. Assume G, A, U are defined over O.
Write K for G(O), I for the ITwahori subgroup of K defined to be the inverse
image of B(F,) under G(O) — G(F,), and define the tame Iwahori subgroup I
to be the inverse image of U(F,) under this map. For p € X,(A) = Hom(G,,, A)
we have p(m) € A(F), and p+— p(m) defines an isomorphism X, (A) — A/A(O).
We often write G, A, ... for G(F), A(F), ....

The tame Weyl group W, is the quotient Ng(A)/A;(O) of the normalizer
Ng(A) of A in G, by the kernel A;(O) = I, N A(O) of the reduction mod 7 map
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A(O) — A(F,). It contains the finite torus A(F,) = A(O)/A;(O), which is the
commutative subgroup (F;)", where n is the dimension of A. Thus W; is an

extension of the extended Weyl group W = Na(A)/A(O) by A(F,). Moreover
W, contains the tame torus A, = AJ/A;(O), a commutative subgroup which is an
extension of the lattice A/A(O) = X.(A) by the finite torus A(O)/A:(O) = A(F,).

The quotient of W, by A/A;(O) is the finite Weyl group W; = Ng(A)/A.
This W can be realized inside W as the quotient N x(A)/A(O), expressing W
as the semidirect product of Wy and X,(A). We introduce also the tame finite
Weyl group Wy = Nk (A)/A(O). It is a subgroup of W;.

We choose a section W — W, of the extension 1 — A(F,) > W, — W —1,
namely we identify W with a subset of W;. But W is not a subgroup of W;.

The tame Weyl group W, contains as subgroups the tame torus A; and the
tame Weyl group W;,. Both subgroups contain A, N Wy, = A(F,).

Having fixed a generator m of the maximal ideal wO in O, we can choose
a splitting F*/(1 + w0) =~ (w) - O* /(1 + m0) ~ Z x F), and so a splitting of
the tame torus A; = A/A,(O) as a direct product of the lattice A/A(O) ~ X,.(A)
with the finite torus A(O)/A:(O) ~ A(F,). However, these splittings depend on
the choice of 7, hence are not canonical.

Proposition 4.1.  The natural map W; — A,(O)U\G/I, is a bijection.

Proof. To describe the inverse, write ¢ € G as g = pu(m)uk € AUK, using
the Iwasawa decomposition. Then write k& = wowi with vy € U(O), i € I,
w € W realized in K, using the Bruhat decomposition over the residue field.
Then g = p(m)uuowi defines the I;-double coset of p(m)wi. n

Definition 1. (1) Denote by H; the tame Hecke algebra C.(I,\G/I;). Tt is a
convolution algebra, where we normalize the Haar measure of G by |I;| = 1. The
characteristic functions T (x) = ch(l;z1;) of the double cosets I;zl;, v € W;, make
a C-basis of H;, by the disjoint decomposition G = I;W;I; (where by x € W, we
mean a representative in G for z).

(2) The universal tame principal series module is M; = C.(A(O)U\G/1}).
It is the space of I;-fixed vectors in the smooth G-module C2°(A,(O)U\G), hence
M, is aright H;-module. For each z € W, denote by v, the characteristic function
ch(A,(O)UxI;). The vectors v, (x € W;) make a C-basis for M,;. For example,
we have v; = ch(A;(O)UL).

(3) Let Ry = C.(A/A:(O)) be the group algebra of AJ/A:(O). It is isomor-
phic, noncanonically, to C.[X.(A) x A(F,)]. The elements (u(m) (p € X.(A),
¢ € A(F,)) make a basis for the C-vector space R;. The right H;-module M,
has a structure of a left R,-module by a - v, = q ‘#Flu,, if a — pa(m) un-
der A/A;(O) — A/A(O), where p is half the sum of the roots of A in Lie(U).
If 0p(a) denotes the absolute value of the determinant of the adjoint action of
a € A on Lie(U), then ¢g~{»#e) = §p(a)'/? for any a € A which maps to p,(m) in
A/A(O). As the actions of R, and H; commute, M; is an R; ®g,, H;-module,
where the commutative algebra Ry, = C(A(F,)) is contained in both R, and H;.

(4) The finite dimensional tame algebra Hy, = C([;\K/I;) is a subalgebra
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of H,. The T(w) = ch(fywl;), w € Wy, make a basis. It contains Ry =
C(A(F,)).

The representation of G by right translation on C°(A,(O)U\G) is com-
pactly induced from the trivial representation of A,(O)U. Inducing in stages we
get C°(A(O)U\G) = I§(R;). We are using normalized induction, and R; is
viewed as an A-module via y,., @ A/A:(O) — R, a ~ a. A vector in the
induced representation I§(R;) is a locally constant function ¢ : G — R; with
o(aug) = 6p(a)/?-a=' - ¢(g) (a € A,u € U, g € G). The group G acts by
right translation. If p € C°(A4,(O)U\G), the corresponding vector ¢ in I$(R;)
is #(9) =D ueca/a,0) op(a)~"p(ag) -a, g€G.

There is an R;-module structure on I§(R;), defined by (r¢)(g) = r - ¢(g).
The isomorphism Cg°(A4,(O)U\G) = I§(R;) induces an R, ®g,, H;-module iso-
morphism from M; to I§(R;)"*, the space of I;-fixed vectors in I§(R;).

A character y : A/A;(O) — C* determines a C-algebra homomorphism
Ry — C. We use x to extend scalars, to get the H;-module

C OR;,x M, =C O Ry\x Ig<Rt)It = Ig(Xil)It‘

Proposition 4.2.  The map h +— vih, v; = ch(A,(O)UI;), is an isomorphism
of right H;-modules from H; to M,;. Namely M, is a free rank one H;-module
with canonical generator v .

Proof. It suffices to show that the map A — v1h, when presented in terms of
the bases {T'(w) = ch(Lywl}); w € W;} and {v, = ch(A;(O)Uwl;); w € W,}, is a
triangular matrix with nonzero diagonal.

To show this, we claim that if Uzl N Iiyl; # 0 then z < y in the Bruhat
order on W = Ng(A)/A(O). Note that T'(¢) is invertible, for ¢ € A(F,). Hence it
suffices to show the same claim with I; replaced by I, namely that Uzl NIyl # ()
implies < y. Then suppose that uz € Iyl with u € U. Choose dominant enough
p € X.(A) to have p(m)up(r)™ € I. Then (u(m)up(r) Hu(r)z € u(m)Iyl,
and so Ip(m)zl C Ip(m)Iyl. But Iu(m)Iyl C 1], Ip(m)y'], hence the claim
follows. ]

Corollary 4.3.  There is a canonical isomorphism H; ~ Endg, (M;). It iden-
tifies n € H; with the endomorphism ¢, : vih — vinh of M;, namely each
Hi-endomorphism ¢ : My — M, is given by vih — vih,h for h, € H,.

Proof.  For every h € H;, ¢(vih) = uh where u = p(vy) = vih,,. n

Recall that T'(w) = ch(lywl}), v, = ch(A(O)Uwl,) for w € W;. Recall
that Wy, = Nk (A)/A(O) is a subgroup of W;. We have
(1) v T(w) = vy (w e Wpy).
Indeed, the Iwahori factorization implies I, = (I, N U)A,(O)(l; N U-). Then
A(O)VUIL - Lwl; = A(O)Uwly, and A(O)UL;Nwhw Iy = I; as A, (O) ULNK =
L.
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Using the left R;-module structure on M; we conclude from (1)

(2) VT (W) = Vg (we Wy, a e AJA(O)).
Further we have
(3) nT(a) = v, (a € AJA;(O) with dominant image p, € X.(A)).

If p is dominant then Ay(O)UIL;-Liyu(w)I; = A(O)Up(m)I; since p(m)(LNU)p(mw)~?
C L,NU and pu(m) Y (L,NU_)p(r) C LNU_, and A, (O) UL N p(m) Lu(w) 1, = 1.

The elements of R; can be viewed as endomorphisms of M;. Hence by
Corollary 4.3 they can be viewed as elements in H;. This way we can embed
R; as a subalgebra of H;. Denote by fl € H, the image of the basis element
a € AJA(O) of R; under the embedding R; < H;. jFrom the definition of the
left R;-action on M;, we conclude that vlf w = avy, namely v is an eigenvector
for the right action of the subalgebra R; of H;. Note that R; contains the algebra
Ry, too.

Proposition 4.4.  Multiplication in H; induces a vector space isomorphism
Ry ®r,, Hyy— H,,

sending a®h to fah. Composing this isomorphism with the isomorphism h + vih,
Hy — My, we get a vector space isomorphism R;®pg,, Hy—M;, mapping a®T (w)
to q_<p7ua>vaw

Proof. From (1), the composition R; ®g,, Hy; — H; — M; maps a ® T'(w)
to g~ ‘PHaly,,, consequently is an isomorphism. As H,~»M, by Proposition 4.2,
Ry ®g;, Hyy—H; is an isomorphism as well. [

Remark 6. From (3) we have T, = ¢»#2=m)T(ay)T(as)™" if a = ai/as and
M1 = fay, Mo = [g, are dominant characters. In particular fa = ¢~ P T, for
a € A/A;(O) which maps to a dominant p, € X,(A) = A/A(O).

The isomorphism H; = R, ®g,, Hy, of Proposition 4.4 describes the gener-
ators of H,. To complete our Bernstein-type presentation we need to describe the
relations among the generators a € A/A,(O) of R, and T'(s,) in Hy,. For that,
let a be a simple root and s, a representative in W, s = Ng(A)/A(O) of the
corresponding simple reflection, a¥ € X,(A) the coroot and o (w) € A/A(O),
Sa the corresponding copy of SL(2, F') with its Borel subgroup B, = S, N B,
torus A, = S, N A, tame torus A,/A,+(O) where A,:(0) =S, N A(O), lattice
Au/Aa(O) and K, = S, N K. If {a"((); ¢ € F} is a set of representatives in
A, for Ay(0)/Aa:(O) (= F)), denote by {a”(¢m) = a¥(()a’(r); ¢ € FX} the
inverse image of aV(m) under Ng, (Aa)/Aat(O) = Nk, (An)/Aa(O). This is a
subset of Wy, C W; independent of any choice of representatives (that is, of 7).

Theorem 4.5. The tame algebra H, is the tensor product R; ®pr sy subject
to the relations

deﬁ«‘; a’(¢m)

T(sa) 0@ = sala) o Tlsa) + (sala) — ) =200

for all a € A/A;(O) and all simple roots «.
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Note that the displayed expression is independent of the choice of .

The proof of the relations relies on properties of intertwining operators. We
first need an inner product. Thus let ¢ : G — G be the involution t(g) = g~', and
v : Hy — H; the involution ¢(h)(z) = h(z™'). On R, = C.(A/A;(O)) one has the
involution ¢4, defined by a +— a™!.

The induced representation 15(5}3/ %) consists of the locally constant func-
tions f on G satisfying f(ang) = dp(a)f(g). The space of G-invariant linear func-
tionals on Ig(éjlg/ 2) is one-dimensional. Denote by fB\G the unique such functional

which takes the value 1 at the function fy in [g(é}g/ %) defined by fo(ank) = 65(a).
Recall that x_ . : A/A;(O) — R/ is given by a — a. On the induced represen-
tation Ig(xljnliv) define the R;-valued pairing (¢1,p2) = fng\G ta(01(9)) - d2(9).

The product ta(¢p1(g)) - ¢2(g) lies in Ig(é}gﬂ). This pairing is G-invariant and
Hermitian:

(7’1<Z51,7”2¢2) = LA(Tl)Tz : (¢1, ¢2)7 (¢2, ¢1) = LA<(¢17¢2>)-

Using the t4-linear isomorphism ¢ — 14 0 ¢, I§(Xony) — IS (Xuniv), the
Hermitian form can be viewed as an R;-bilinear pairing

]g(Xuniv) ®Rt Ig(Xﬂiw) — Rt‘

Extending scalars R, — C using a character y : A/A,(O) — C* the pairing
becomes I§(x) ®c I§(x™') — C. Since M; = I§(x,5, )", by restricting to the
subspace of [;-invariant vectors we get a perfect Hermitian form on M;, denoted
(mq,my), satisfying the Hecke algebra analogue of G-invariance, thus

(myh, my) = (mq, mat(h)), Vh € Hy.

We next define, for each w € W;, an intertwining operator I, from one
completion of M; to another. For this we fix the maximal torus A, the tame
Iwahori subgroup I;, and the maximal compact subgroup K, and let the Borel
subgroup B vary over the set B(A) of Borel subgroups containing A. Then I,
will be recovered by conjugating the second Borel subgroup to the first using an
element of the Weyl group. For B = AU € B(A) put Mp; = C.(A(O)U\G/1L;).

Let J be a set of coroots in a system of positive coroots. Recall that
R, = C.(A/A:(0)). It is an extension of R = C[X,(A)] = C.(A/A(O)) by
C[A(F,)]. Denote by C[J]; the C-subalgebra of R, generated by J over C[A(F,)],
and by C[J]; the completion of C[.J]; with respect to the maximal ideal generated
by J. Denote by Ry, the R;-algebra C[J]y ®cs), R:. It is a completion of R; which
can be viewed as a convolution algebra of complex valued functions on A/A;(O)
supported on a finite union of sets z - C;; where z € A/A;(O) and Cy, is the
submonoid of A/A;(O) consisting of all products of nonnegative integral powers
of elements in J and the elements of A(O)/A:(O).

Given B = AU € B(A) and J as above, put Mp ;s = R4 ®p, Mp;. This
left R;;-module and right H;-module can be regarded as consisting of the functions
f on A (O)U\G/I; whose support lies in a finite union of sets A;,(O)UaK where
a lies in a finite union of sets = - C;.
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Let B = AU, B’ = AU’ be Borel subgroups in B(A), write B_ = AU_
for the Borel subgroup in B(A) opposite to B. Let J be the set of coroots
which are positive for B’ and negative for B. We shall now define an intertwining
operator Ip g, : Mp j, — Mp j,. It will be an R;; X H;-module map. Given
¢ € Mg j:, regarded as a function with support as above, on A;(O)U\G/I,
then Ip p; takes ¢ to the function ¢’ on A,(O)U'\G/I; whose value at g € G
is ¢'(9) = [y e(Wg)du'. The Haar measure du’ is normalized to assign
U'NU_NK the volume 1. Note that the integral is not changed if J is increased
within some positive system, for example that defined by B’.

Given By = AUy, By = AUy, By = AU; € B(A), let J;; be the set of
coroots which are positive for B; and negative for B;. Assume Js; is the disjoint
union of Jy; and Jzp. Abbreviate I;; for Ip, p, ;. Each of the integrals defining
Iy, I35, I3 can be defined using the biggest of the three sets J;;, which is Js ;.
When this is done we have I3 = I3315;. We could have taken J to be the set of
all coroots positive for Bj.

To check the convergence of the integral which defines I/ p,, we record
Lemma 1.10.1 of [HKP]:

Lemma 4.6. For v € X,(A) define a subset C, of the group U' N U_ by

L, =U'NU_Nuv(mUK. (1) If C, # () then v is a nonnegative integral linear
combination of coroots which are positive for B and negative for B’. (2) The
subset C, is compact.

To understand how the Iz g, relate to the Hermitian form on Mp,, denote
by —J the set of negatives of the coroots in J. The involution ¢4 on R; extends
to an isomorphism, still denoted ¢4, between R;; and R_;;. The Hermitian form
(.,.) on Mp; extends to Mp _j; x Mp ji: given my € Mg _ ¢, ma € Mg j;, the
definition of (my,msg) still makes sense and defines an element of R;;, and we
have (rymq,roms) = ta(r1)re - (My, m2).

If J is the set of coroots which are positive for B’ and negative for B,
we have ]B’,B,t : MB,J,t — MB/’JJH as well as ]B,B’,t : MB/7_J’t — MB7_J’t. Given
m € Mp j, and m' € Mp/_;;, we have (m/, Ip pym) = (Ip g ym',m). Indeed, let
¢, ¢’ be the members of I§(x L) ®r, R 7+ and IS (Xuniv) ®r, Ry corresponding
to m, m'. Put H = A(UNU’). Then both sides of the asserted equality are equal
to $no ¢'(9)8(g). Here $, , is the unique G-invariant linear functional on the
space
{f € C=(G); f(hg) = ou(h)f(g), h € H, compactly supported mod H} whose
value is 1 at the function fy supported on HK with fo(hk) = dg(h).

Let now w be an element in W;,. There is an isomorphism
L(w): Mp.y-17:— Myp. e given by (L(w)d)(g) = ¢(w'g) where w is a repre-
sentative for w in K. Define an intertwining operator I,; : Mp,-15: — Mp j;
as the composition Ig,p: o L(w). It is defined by the integral (1,.(¢))(g) =
Jo, e ug)du, U, = U NwlU_w". We conclude:

Lemma 4.7. We have
(i) Lytoa=w(a)o I, forall a € A/A(O).
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(19) Tuywet = Lyt © Ly s if L(wiwe) = C(wy) + £(ws).
(¢4i) I,y is a homomorphism of right H;-modules.

When G has semisimple rank 1 we consider ¢ = v; = ch(A;(O)UI;) and
compute [, +(¢) where s is a representative in K for the unique nontrivial element
in Wy. We may assume that G is SL(2, F) and s = ( % §). Put a=a, = (§,%).

Lemma 4.8.  We have I, ;(v1) = ¢~ 05 + X e pr j1 1m0y, <1 @ 1010a -

Proof. To express ¢ = I (v1) as Y, Cala + Y, CasVas (@ € AJA(O)) we
compute the coefficients ¢, = ¢'(a) and c,s = ¢'(as). To compute these integrals
write u = (§%), a=(5,%), and let w be 1 or s. The integrand o(s™ uaw) is
nonzero iff

sThuaw = (9§50 (51) (5,5 ) w= (52 ) w
lies in A (O)UI; = Ul. It then lies in A(O)UK = UK, hence |b| <1, |z/b] <1,
and |z/b] =1 if |b] < 1 (consider the bottom row of UK).

If |b| =1 then |z| < 1. In this case s 'uaw € K. This s 'uaw lies in UI,
only if w = s, and |z] < 1, and a € A,(O) (thus b € 1 +70). As we integrate
over z, we conclude that v, has coefficient ¢, = ¢!, while ¢, = 0 if [b| = 1, and
Cos = 0if B =1, b¢ 1 +70.

If b| = ¢, 7 > 1, then s"luaw € UK implies z = br, r € O*. Then
stua = (9 *l;_l) =(! ’11/”) (127" 2) The last matrix lies in I, iff r € 1+7O. The
one on its left lies in U. Hence the integral over x is equal to ¢/ (1—¢~1)/(qg—1) =
g7 socg=q 7L if |b| =¢7 (and w =1).

If wis s then s™'uas = (§ 7)) ("7 %) (% §). The matrix on the left
lies in U, and the product of the two on the right is ( 1/ T> ¢ I, hence c,s =0

if bl =q77, j>1. ]

Proof of Theorem 4.5. By Proposition 4.4 we have H; = Ry®g,, Hft, so it remains
to prove the relation. We use I;;(v1) = ¢ 'vg + ZCGFX > is1 4 T Vav(cai), from
Lemma 4.8. Recall — from Definition 1 — that o ((m?)v, = ¢/ VoV (cnd)- Hence

Ly=q 'T(s)+q7' ) D a’(Cn!) =q7! (T<3) " %QTV((C:))) |

¢ j=21

Note that both expressions right of I,; are independent of the choice of w. Note
that Ry = R®c¢ C.(A(F,)), where R = C.(A/A(O)) is an integral domain. Let R’
denote the fraction field of R. Then I, is an element of the localization R’ ®pr R;
Of Rt .

The operator I, satisfies
]wﬂg oa = ’UJ((I) e} -[w,t7 Ya € A/At<0>
Using this relation with w = s = s, we obtain the asserted relation

ZCE]F; a” (gﬂ-)

1 —aVY(m)

T(sa)0oa=s4(a)oT(ss)+ (sa(a) —a)
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for all @ € A/A;(O) and all simple roots «. [
Analogously to the last lemma, we show:

Lemma 4.9. We have I ;(vs-1) = vy + 122 ()

g T—av(m) Vs~

1.

Proof.  To express ¢’ = [;1(vs-1) as >, Calaq + 2., Cas—1Vas—1 (@ € AJA(O))
we compute the coefficients ¢, = ¢'(a) and cue-1 = ¢'(as™!). To compute these
integrals write u = (%), a = (2,%), and let w be 1 or s=*. The integrand

(s uaw) is nonzero iff
— _ T o _p—1
sThuaws = (95 (51) (5,5 ) ws = (7, ) w

lies in A(O)Us 'I;s = U - s 'I;s. Tt then lies in A(O)UK = UK, hence [b] <1,
|z/bl <1, and |z/b| =1 if |b] <1 (consider the bottom row of UK).

If |b] =1 then |z| < 1. In this case s~ luaws € K. Suppose s~
in U-s'I;s.

If w=s"!, whenis s tua = <g ;%1) € U-s7'1;s? From (V) (2 ’rb;) =

(%}b m”””’) € s ;s we see that x € b+ 7O, thus c,o1 = 1/q if b€ Fy.

Lyaws lies

z/b

Ifw=1, sluas = <g;b/_bl> (%6)= (_b;/lb2> ceU-ssiff be 1+mO,
thus ¢; = 1.

Suppose |b| =¢ 7, j > 1. Then x = br, |r| = 1. We have to find when is

s tuaws = (2 ;%1) ws = ((1) _11/’””) (Tgl 2) ws € U - s s.

If w=s"', then r € 14+mO, thus cpe-1 = ¢ 771,
If w=1 then b€ 1+m0, contradicting |b| =¢, j > 1. So ¢, = 0.

_j >V (9)
Hence [;(vs-1) = v + 524 ngoq TVav (criys—1 = U1 + %mvs_lu as

asserted. n

Fix a simple root a and s, and Y. Put T for T(s,), write A for
> cerx @’(C), and a = o¥(m) and I = I,;. Define J = Jy; to be (1 —a)l =
¢ ' Aa+ (1 —a)T). We have A? = (¢ — 1)A, TA = AT, T? = ¢qT(-1) + AT,
Ta=a T+ A(l + a). Then we claim

Lemma 4.10. We have J? = ¢ 2[(¢— 1)A+q(2 —a —a )T(-1)].

Proof. We compute:
J*=q*Aa+ (1 —a)T)(Aa+ (1 —a)T)
=q¢ *((¢—1)Ac*+ Aa(1—a)T+(1—a)A(a ' T+A(1+a))+ (1 —a)(T? - TaT)).
Now
T°~TaT = (1—-a HT? - A(1+a)T = ¢(1—a HT(=1)+(1—a HYAT - A(1+a)T
=q(1—a T (-1) — (o™ + a)AT.

The coefficient of ¢~2T in J? is 0, thus the lemma follows. m



FLICKER 487

Note that in the Iwahori case A is replaced by ¢ — 1, and the expression

o 1
becomes (1 —¢)(1 — 7).

Proposition 4.11.  The center Z(H,) of H, is R;'"*.

Proof. If R is a commutative algebra over C and x : R — C is a character,
and H is an algebra which is a left R-module, the induced (from x on R)
representation of H is m, = C®, g H. If S is a variety, a character Z: R — O(S)
(= ring of global sections) is a family of characters:  indeed each s € S defines
X=Xxs: R—C.

A point in the O(S) x H-bimodule Iz = O(S) ®. g H is the induced
representation m, = C ®, g H. If we take S = Spec R, thus O(S) = R, and =
the identity, then the induced representation is just H. The right regular repre-
sentation of H on itself as a right H-module is then a family of representations
parametrized by xy € S = Spec R.

Suppose W is a group acting on the family {xs : R — C;s € S}.
Given w € W, suppose {Il,s @ Ty, — Tuy,} is a family of right H-module
homomorphisms defined on an open subset of S. Suppose there is a non zerodivisor
f € R such that J,s = =(f)(s)]ys is defined for all s € S. Thus J, ¢ defines a
right H-module endomorphism of H.

An endomorphism e of the right H-module H is clearly given by left
multiplication by an element g = g(e) of H. Indeed, if e: H — H, e(h) = e(1)h,
e(l)y=ge€ H. Thus J,, € H forall se€ S.

Recall that H; = R;®g,, Hy;, where Ry = C.(A/A(O)) = RecC.(A(F,)),
and R = C.(A/A(O)) is an integral domain. Let R’ be the fraction field of R.

Let us total order the w € W} in some way compatible with the length
function ¢ on Wj. Denote this order by w' < w. Consider H, and its filtration
Q. generated over R; by {T'(w'); w' < w}. Thus the filtration starts with R;, to
which we add copies of I;s;, then copies of R;s;s;, then copies of Ryw, w in Wy,
with nondecreasing length. Note that @, is a bi- R;-module (each filtration step
is).

Write w™ for the largest element with w™ < w. We have the relation
T(w)a = w(a)T(w) + terms in @Q,-; see the proof of Theorem 4.5. Thus on the
filtered quotient @Q,/Q.- = R; we have T(w)a = w(a)T (w). This quotient is a
bi- R;-module, with left multiplication of r in R; as r, and right multiplication by
roas w(r).

Suppose we have a filtration of a vector space H, and an eigenvector at
each filtered quotient such that the eigencharacters are pairwise distinct. Then
there exists an eigenvector which induces the given eigenvectors in the filtered
subquotients. As the characters a — w(a), w : A — A, are all distinct, for
w € Wy, and the filtered subquotients are all one dimensional, we conclude
that there exists [,; # 0 in R ®g H; with [,;a = w(a)l,; for all a € A.
From H; = ®yew, R - T'(w) (see Proposition 4.4) we deduce that R' ®@p H; =
Bwew; [V @ C(A(F,)) Ly, namely some multiple J,,; of I,; by an element of R
isin H;.

Now RZV 7* lies in the center of R’ ®g Hy, as each of its elements commutes
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with R; and with each of the J,,. Hence RZV 7% lies in the center of H,.

On the other hand, no element of R'R;.J,,; lies in the center when w # id.
Hence the center Z(H;) is contained in R;, and the relations J,:0a = w(a)o Jy;
which follow from Lemma 4.7 imply that only the W;,-invariant elements in R,
are central. ]

We conclude that H; is a module of finite rank over Z(H;).
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