Dirichlet Distribution and Orbital Measures

Faïza Fourati*

Communicated by B. Ørsted

Abstract. The starting point of this paper is an observation by Okounkov concerning the projection of orbital measures for the action of the unitary group U(n) on the space $\operatorname{Herm}(n, \mathbb{C})$ of $n \times n$ Hermitian matrices. The projection of such an orbital measure on the straight line generated by a rank one Hermitian matrix is a probability measure whose density is a spline function. More generally we consider the projection of orbital measures for the action of the group $U(n, \mathbb{F})$ on the space $\operatorname{Herm}(n, \mathbb{F})$ for $\mathbb{F} = \mathbb{R}$, \mathbb{C} , \mathbb{H} , and their relation with Dirichlet distributions.

Mathematics Subject Classification 2000: 60B05, 65D07.

Key Words and Phrases: Dirichlet distribution, orbital measure, Markov-Krein correspondence, spline function, Jack polynomial.

1. Introduction

For $\kappa = (\kappa_1, \ldots, \kappa_n) \in (\mathbb{R}^*_+)^n$, the Dirichlet distribution D_n^{κ} is the probability measure on the simplex

$$\Delta_{n-1} = \{ \tau = (\tau_1, \dots, \tau_n) \in \mathbb{R}^n \mid \tau_i \ge 0, \tau_1 + \dots + \tau_n = 1 \}$$

defined by

$$\int_{\Delta_{n-1}} f(\tau) D_n^{\kappa}(d\tau) = \frac{1}{C_n(\kappa)} \int_{\Delta_{n-1}} f(\tau) \tau_1^{\kappa_1 - 1} \dots \tau_n^{\kappa_n - 1} \lambda(d\tau)$$

where λ is the normalized uniform distribution on Δ_{n-1} , i.e. the normalized restriction to Δ_{n-1} of the Lebesgue measure on the hyperplane $\tau_1 + \cdots + \tau_n = 1$, and $C_n(\kappa)$ is a normalization constant.

For $a = (a_1, \ldots, a_n) \in \mathbb{R}^n$, the probability measure $M_n(\kappa; a)$ on \mathbb{R} is the image of the Dirichlet distribution $D_n^{(\kappa)}$ by the map

 $\Delta_{n-1} \longrightarrow \mathbb{R}, \quad \tau \longmapsto a_1 \tau_1 + \dots + a_n \tau_n.$

ISSN 0949–5932 / \$2.50 © Heldermann Verlag

^{*}The author thanks the referees for their remarks and suggestions. Work supported by the DGRST project 04/UR/15-02 and CMCU program 07G 1501

On the other hand let $\operatorname{Herm}(n, \mathbb{F})$ denote the space of $n \times n$ Hermitian matrices with entries in $\mathbb{F} = \mathbb{R}$, \mathbb{C} or \mathbb{H} , the field of quaternions. For $x \in \operatorname{Herm}(n, \mathbb{F})$ let μ_x denote the orbital measure associated to the orbit O_x of x for the action of the group $U(n, \mathbb{F})$ on $\operatorname{Herm}(n, \mathbb{F})$. The projection of the orbital measure μ_x on the straight line $\mathbb{R}E_{11}$ equals $M_n(\kappa; a)$ where $\kappa_1 = \ldots = \kappa_n = \frac{d}{2}$, $d = \dim_{\mathbb{R}}\mathbb{F} = 1$, 2 or 4 and a_1, \ldots, a_n are the eigenvalues of x.

Motivated by this fact, we investigate the measure $M_n(\kappa; a)$. First we establish a Markov-Krein type formula:

$$\int_{\mathbb{R}} \frac{1}{(z-t)^{\alpha}} M_n(\kappa; a; dt) = \prod_{i=1}^n \left(\frac{1}{z-a_i}\right)^{\kappa_i}, \quad z \in \mathbb{C} \setminus \mathbb{R},$$

where $\alpha = \kappa_1 + \cdots + \kappa_n$. Then, by taking the difference of the boundary values along \mathbb{R} of both hand sides and solving a convolution equation we obtain

$$M_n(\kappa; a) = -\frac{1}{2i\pi} \Gamma(\alpha) \check{Y}_{(\alpha-1)} \star T_{\kappa, a}$$

where $\check{Y}_{(\alpha-1)}$ is the distribution supported by $]-\infty, 0[$ with density $\frac{1}{\Gamma(\alpha-1)}(-t)^{\alpha-2}$ and the distribution $T_{\kappa,a}$ is the difference of the boundary values along \mathbb{R} of the holomorphic function

$$q_{\kappa,a}(z) = \prod_{i=1}^{n} \left(\frac{1}{z-a_i}\right)^{\kappa_i}$$

In the case $0 < \kappa_i < 1$, $\alpha = \kappa_1 + \cdots + \kappa_n = 1$, we get a formula which has been previously obtained by Cifarelli and Regazzini [3], see also [4], [7].

In the case $\kappa_1 = \ldots = \kappa_n = \frac{d}{2}$ the measures $M_n(\kappa; a)$ are the projections of orbital measures for the action of $U(n, \mathbb{F})$ on the space $\operatorname{Herm}(n, \mathbb{F})$. For $\mathbb{F} = \mathbb{C}$ (d = 2)the densities of the measures are spline functions as observed by Okounkov (see [11], page 170). For $\mathbb{F} = \mathbb{H}$ (d = 4) the densities of these measures are piecewise polynomial of degree $\leq 4n - 2$. For $\mathbb{F} = \mathbb{R}$ (d = 1) the situation is not as simple. The densities are piecewise analytic with singularities at a_1, \ldots, a_n .

Finally we compute the moments of the measure $M_n(\kappa; a)$. If $\kappa_1 = \ldots = \kappa_n = \theta$, then the moments can be expressed as normalized Jack polynomials with parameter θ .

2. Dirichlet distributions, orbital measures, and their projections

For $\kappa = (\kappa_1, \ldots, \kappa_n) \in (\mathbb{R}^*_+)^n$, $n \geq 2$, the Dirichlet distribution D_n^{κ} is the probability measure on the simplex

$$\Delta_{n-1} = \{ \tau = (\tau_1, \dots, \tau_n) \in \mathbb{R}^n \mid \tau_i \ge 0, \tau_1 + \dots + \tau_n = 1 \}$$

defined by

$$\int_{\Delta_{n-1}} f(\tau) D_n^{\kappa}(d\tau) = \frac{1}{C_n(\kappa)} \int_{\Delta_{n-1}} f(\tau) \tau_1^{\kappa_1 - 1} \dots \tau_n^{\kappa_n - 1} \alpha(d\tau) \tag{1}$$

where α is the normalized uniform distribution on Δ_{n-1} , i.e. the normalized restriction to Δ_{n-1} of the Lebesgue measure on the hyperplane $\tau_1 + \cdots + \tau_n = 1$, and

$$C_n(\kappa) = \int_{\Delta_{n-1}} \tau_1^{\kappa_1 - 1} \dots \tau_n^{\kappa_n - 1} \alpha(d\tau).$$

This constant can be evaluated:

$$C_n(\kappa) = (n-1)! \frac{\Gamma(\kappa_1) \dots \Gamma(\kappa_n)}{\Gamma(|\kappa|)},$$

where $|\kappa| = \kappa_1 + \ldots + \kappa_n$, by using the following integration formula: for an integrable function f on $(\mathbb{R}_+)^n$,

$$\int_{(\mathbb{R}_{+})^{n}} f(x)dx = \frac{1}{(n-1)!} \int_{0}^{+\infty} \int_{\Delta_{n-1}} f(r\tau)\alpha(d\tau)r^{n-1}dr.$$
 (2)

For $a = (a_1, \ldots, a_n) \in \mathbb{R}^n$ satisfying $a_1 \leq \ldots \leq a_n$, the probability measure $M_n(\kappa, a)$ on \mathbb{R} is defined as the image of the Dirichlet distribution $D_n^{(\kappa)}$ by the map

$$\Delta_{n-1} \longrightarrow \mathbb{R}, \quad \tau \longmapsto a_1 \tau_1 + \dots + a_n \tau_n.$$

This means that, for a continuous function F on \mathbb{R} ,

$$\int_{\mathbb{R}} F(t)M_n(\kappa; a; dt) = \int_{\Delta_{n-1}} F(a_1\tau_1 + \dots + a_n\tau_n)D_n^{(\kappa)}(d\tau).$$
(3)

The support of the measure $M_n(\kappa; a)$ is $[a_1, a_n]$.

Let $\operatorname{Herm}(n, \mathbb{F})$ denote the space of $n \times n$ Hermitian matrices with entries in $\mathbb{F} = \mathbb{R}$, \mathbb{C} or \mathbb{H} , the field of quaternions.

The unitary group $U(n, \mathbb{F})$ acts on $\operatorname{Herm}(n, \mathbb{F})$ by the transformations

$$x \mapsto uxu^* \quad (u \in U(n, \mathbb{F})).$$

For $x \in \text{Herm}(n, \mathbb{F})$, let O_x denote the orbit of x:

$$O_x = \{ uxu^* \mid u \in U(n, \mathbb{F}) \},\$$

and μ_x the orbital measure on $H_n = \text{Herm}(n, \mathbb{F})$ supported in O_x given by, for a continuous function f on H_n ,

$$\int_{H_n} f(y)\mu_x(dy) = \int_{U(n,\mathbb{F})} f(uxu^*)\nu(du)$$

where ν is the normalized Haar measure on $U(n, \mathbb{F})$. By the spectral theorem, the orbit O_x contains a real diagonal matrix $a = \text{diag}(a_1, \ldots, a_n)$, where a_1, \ldots, a_n are the eigenvalues of x; hence the orbit O_x , and the orbital measure μ_x only depend on the eigenvalues of x. We consider the projection of the orbital measure μ_x only the straight line generated by the rank one matrix E_{11} . We define the measure M_x on \mathbb{R} as follows: for a continuous function F on \mathbb{R} ,

$$\int_{\mathbb{R}} F(t) M_x(dt) = \int_{\text{Herm}(n,\mathbb{F})} F(y_{11}) \mu_x(dy) = \int_{U(n,\mathbb{F})} F((uxu^*)_{11}) \nu(du).$$

Theorem 2.1. Let a_1, \ldots, a_n be the eigenvalues of $x \in H_n$. Then

$$M_x = M_n(\kappa; a),$$

where $\kappa = (\frac{d}{2}, \dots, \frac{d}{2})$ with $d = \dim_{\mathbb{R}} \mathbb{F} = 1, 2, 4$.

This is stated in [11], p.170. See also [5].

Proof. We may assume that $x = a = diag(a_1, \ldots, a_n)$. By computing the product uau^* , we get

$$(uau^*)_{11} = a_1|u_{11}|^2 + \dots + a_n|u_{n1}|^2.$$

Consider the map $\psi: U(n, \mathbb{F}) \to S(\mathbb{F}^n)$ which, to $u \in U(n, \mathbb{F})$, associates the first column of $u, u \mapsto (u_{11}, \ldots, u_{n1})$ and where $S(\mathbb{F}^n)$ is the unit sphere of $\mathbb{F}^n \simeq \mathbb{R}^{dn}$. The image under ψ of the normalized Haar measure ν on $U(n, \mathbb{F})$ is the normalized uniform measure σ on $S(\mathbb{F}^n)$. Hence, for a continuous F on \mathbb{R} ,

$$\int_{\mathbb{R}} F(t) M_x(dt) = \int_{S(\mathbb{F}^n)} F(a_1 |u_1|^2 + \dots + a_n |u_n|^2) \sigma(du).$$

Consider now the map

$$\Phi: S(\mathbb{F}^n) \to \Delta_{n-1},$$
$$u = (u_1, \dots, u_n) \mapsto \tau = (\tau_1, \dots, \tau_n) = (|u_1|^2, \dots, |u_n|^2)$$

The image under Φ of the measure σ on $S(\mathbb{F}^n)$ is the Dirichlet distribution D_n^{κ} with $\kappa_i = \frac{d}{2}$: for a continuous function f on Δ_{n-1} ,

$$\int_{S^{dn-1}} f(|u_1|^2, \dots, |u_n|^2) \sigma(du) = \int_{\Delta_{n-1}} f(\tau) D_n^{\kappa}(d\tau).$$

Therefore, for a continuous function F on \mathbb{R} ,

$$\int_{S^{dn-1}} F(a_1|u_1|^2 + \dots + a_n|u_n|^2)\sigma(du) = \int_{\Delta_{n-1}} F(a_1\tau_1 + \dots + a_n\tau_n)D_n^{\kappa}(d\tau).$$

Finally $M_x = M_n(\kappa; a)$.

3. Markov-Krein type formula for the measure $M_n(\kappa; a)$

For $\alpha \in \mathbb{C}$ and $z \in \mathbb{C} \setminus]-\infty, 0]$, we define the function z^{α} as follows: if $z = re^{i\theta}$, with $r > 0, \ \theta \in]-\pi, \pi[$, then $z^{\alpha} = r^{\alpha}e^{i\alpha\theta}$.

Theorem 3.1. The measure $M_n(\kappa; a)$ satisfies the following Markov-Krein type formula:

$$\int_{\mathbb{R}} \frac{1}{(z-t)^{|\kappa|}} M_n(\kappa; a; dt) = \prod_{i=1}^n \left(\frac{1}{z-a_i}\right)^{\kappa_i}, \quad z \in \mathbb{C} \setminus] -\infty, a_n].$$

The Markov-Krein correspondence relates two probability measures ν and μ on $\mathbb{R}\colon$

$$\int_{\mathbb{R}} \frac{1}{(1+zu)^{\alpha}} \mu(du) = \exp\left(-\int_{\mathbb{R}} \log(1+zu)^{\alpha} \nu(du)\right).$$

See [8], Section 2.

In the present case $\nu = \frac{1}{|\kappa|} \sum_{i=1}^{n} \kappa_i \delta_{a_i}$, $\mu = M_n(\kappa; a)$ and $\alpha = |\kappa|$.

Proof. We first assume $Rez > a_n$. We will evaluate in two different ways the following integral

$$I(a;z) = \int_{(\mathbb{R}_+)^n} \exp\Big(-\sum_{i=1}^n (z-a_i)x_i\Big) x_1^{\kappa_1-1} \dots x_n^{\kappa_n-1} dx_1 \dots dx_n.$$

a) By the Fubini Theorem

$$I(a;z) = \prod_{j=1}^{n} \int_{0}^{+\infty} e^{-x_j(z-a_j)} x_j^{\kappa_j - 1} dx_j = \prod_{j=1}^{n} \frac{\Gamma(\kappa_j)}{(z-a_j)^{\kappa_j}}.$$

b) By the formula (2),

$$I(a;z) = \frac{1}{(n-1)!} \int_0^{+\infty} \int_{\Delta_{n-1}} e^{-r(z-a_1\tau_1-\dots-a_n\tau_n)} \tau_1^{\kappa_1-1} \dots \tau_n^{\kappa_n-1} r^{|\kappa|-1} \alpha(d\tau) dr.$$

Integrating first with respect to r we obtain

$$I(a;z) = \frac{\Gamma(|\kappa|)}{(n-1)!} \int_{\Delta_{n-1}} \frac{\tau_1^{\kappa_1-1} \dots \tau_n^{\kappa_n-1}}{(z-a_1\tau_1 - \dots - a_n\tau_n)^{|\kappa|}} \alpha(d\tau)$$

= $C_n(\kappa) \frac{\Gamma(|\kappa|)}{(n-1)!} \int_{\Delta_{n-1}} \frac{D_n^{(\kappa)}(d\tau)}{(z-a_1\tau_1 - \dots - a_n\tau_n)^{|\kappa|}}$
= $\Gamma(\kappa_1) \dots \Gamma(\kappa_n) \int_{\mathbb{R}} \frac{1}{(z-t)^{|\kappa|}} M_n(\kappa;a;dt).$

Both hand sides in the formula are defined and holomorphic in $\mathbb{C} \setminus]-\infty, a_n]$. By analytic continuation the statement holds for $z \in \mathbb{C} \setminus]-\infty, a_n]$. \Box

In [2] this formula has been established in the framework of the orbital measures. From the Markov-Krein type formula one gets the following doubling relation

$$M_{2n}(\kappa_1,\kappa_1,\ldots,\kappa_n,\kappa_n,a_1,a_1,\ldots,a_n,a_n) = M_n(2\kappa_1,\ldots,2\kappa_n,a_1,\ldots,a_n).$$

4. A few basic facts about hyperfunctions in one variable

In order to derive a formula for the measure $M_n(\kappa; a)$ we will use some elementary properties of hyperfunctions in one variable. Let us recall the definition of a hyperfunction in one variable.

Let $U \subset \mathbb{R}$ be an open set, and $W \subset \mathbb{C}$ be a complex neighborhood of U such that $W \cap \mathbb{R} = U$. By definition, the space $\mathfrak{B}(U)$ of hyperfunctions on U is given by

$$\mathfrak{B}(U) = \mathcal{O}(W \setminus U) / \mathcal{O}(W),$$

where, for an open set $V \subset \mathbb{C}$, $\mathcal{O}(V)$ denotes the space of holomorphic functions on V. The space $\mathfrak{B}(U)$ does not depend on the choice of the complex neighborhood W. For $F \in \mathcal{O}(W \setminus U)$, [F] denotes the equivalence class of F in $\mathfrak{B}(U)$. Define

$$F^+ = \begin{cases} F & \text{in } W^+ \\ 0 & \text{in } W^- \end{cases} \quad \text{and} \quad F^- = \begin{cases} 0 & \text{in } W^+ \\ -F & \text{in } W^- \end{cases}$$

The hyperfunctions $[F^+]$ and $[F^-]$ are denoted respectively by $F^+(x+i0)$ and $F^-(x-i0)$, and called the boundary values of F. Then

$$[F] = F^+(x+i0) - F^-(x-i0).$$

Intuitively, [F] is the jump of F along U. A hyperfunction $f \in \mathfrak{B}(U)$ vanishes on $U_0 \subset U$ if there exists a representative F of f which is holomorphic on $(W \setminus U) \cup U_0$. The support $\operatorname{supp}(f)$ of a hyperfunction $f \in \mathfrak{B}(U)$ is the smallest closed set $C \subset U$ such f vanishes in $U \setminus C$. For a closed set $C \subset \mathbb{R}$, the space of hyperfunctions with $\operatorname{supp}(f) \subset C$ is denoted by $\mathfrak{B}_C(\mathbb{R})$. Let $K \subset \mathbb{R}$ be compact. We define the integral of $f \in \mathfrak{B}_K(\mathbb{R})$ on K as

$$\int_{K} f(x)dx = -\int_{\gamma} F(z)dz,$$

where $F \in \mathcal{O}(W \setminus U)$ with [F] = f $(K \subset U)$, and γ is the oriented boundary of a compact set in W containing K in its interior, the integral does not depend on the choices of either F or γ .

Let $\mathfrak{A}'(K)$ denote the space of analytic functionals supported by K. Such a functional is a linear form on the space $\mathfrak{A}(K) = \bigcap_{U \supset K} \mathcal{O}(U)$, where U is a complex neighborhood of K.

The Cauchy transform of an analytic functional $T \in \mathfrak{A}'(K)$ is defined as

$$G_T(z) = -\frac{1}{2i\pi} \langle T_t, \frac{1}{z-t} \rangle.$$

The function G_T is holomorphic on $\mathbb{C} \setminus K$, and defines a hyperfunction f_T : $f_T = [G_T]$. This gives a linear map

$$\phi: \mathfrak{A}'(K) \longrightarrow \mathfrak{B}_K(\mathbb{R}), \quad T \longmapsto f_T.$$

Now define the map

$$\psi: \mathfrak{B}_K(\mathbb{R}) \longrightarrow \mathfrak{A}'(K), \quad f \longmapsto T_f,$$

where T_f is defined as follows: for $\varphi \in \mathfrak{A}(K)$

$$\langle T_f, \varphi \rangle = \int_K f(x)\varphi(x)dx.$$

One shows that $\phi \circ \psi = Id$, and that the spaces $\mathfrak{A}'(K)$ and $\mathfrak{B}_K(\mathbb{R})$ are linearly isomorphic. Therefore the space $\mathfrak{D}'_K(\mathbb{R})$ of distributions on \mathbb{R} with support in Kcan be seen as a subspace of $\mathfrak{B}_K(\mathbb{R})$ see ([12], Chapter 1). Let $U \subset \mathbb{R}$ be an open set. A function f defined in

$$\{z=x+iy\mid x\in U,\ 0<|y|<\varepsilon\}\quad (\varepsilon>0)$$

is said to be of moderate growth along U if, for every compact set $K \subset U$, there is C > 0 and an integer N, such that

$$|f(x+iy)| \le \frac{C}{|y|^N} \quad (x \in K, \ 0 < |y| < \varepsilon).$$

Let $T \in \mathfrak{A}'(K)$ be the analytic functional associated to the hyperfunction $f = [F] \in \mathfrak{B}_K(\mathbb{R})$. Then T is a distribution if and only if F is of moderate growth along \mathbb{R} . In such a case, for $\varphi \in \mathcal{D}(\mathbb{R})$,

$$\langle T, \varphi \rangle = \lim_{\varepsilon \to 0} \int_{\mathbb{R}} \left(F(t + i\varepsilon) - F(t - i\varepsilon) \right) \varphi(t) dt.$$

Furthermore $\operatorname{supp}(T) = \operatorname{supp}(f)$ see ([1], page 39).

For $\operatorname{Re}(\alpha) > 0$, the distribution Y_{α} is defined by

$$\langle Y_{\alpha}, \varphi \rangle = \frac{1}{\Gamma(\alpha)} \int_{0}^{+\infty} \varphi(t) t^{\alpha - 1} dt$$

As a function of α , Y_{α} admits an analytical continuation for α in \mathbb{C} . Moreover

$$Y_{\alpha} * Y_{\beta} = Y_{\alpha+\beta}, \quad Y_0 = \delta, \quad Y_{-m} = \delta^m \ (m \in \mathbb{N}).$$

In particular $Y_{\alpha} * Y_{-\alpha} = \delta$.

For $\alpha \in \mathbb{C}$

$$\langle [z^{\alpha}], \varphi \rangle = -2i\pi \frac{1}{\Gamma(-\alpha)} \langle Y_{\alpha+1}, \check{\varphi} \rangle$$

where $\check{\varphi}(t) = \varphi(-t)$. In particular, for $m \in \mathbb{N}^*$,

$$[z^{-m}] = -2i\pi \frac{1}{(m-1)!} \delta^{(m-1)}.$$

5. A formula for the measure $M_n(\kappa; a)$

For
$$\kappa = (\kappa_1, \ldots, \kappa_n)$$
, $a = (a_1, \ldots, a_n)$, $a_1 \leq \ldots \leq a_n$ the function

$$q_{\kappa,a} = \prod_{i=1}^{n} \frac{1}{(z-a_i)^{\kappa_i}}$$

is holomorphic for $z \in \mathbb{C} \setminus] - \infty, a_n]$, and of moderate growth along \mathbb{R} . Hence $[q_{\kappa,a}]$ is a distribution with $supp([q_{\kappa,a}]) \subset] - \infty, a_n]$.

If $\alpha = |\kappa|$ is an integer, then $q_{\kappa,a}$ is holomorphic at infinity, and $supp([q_{\kappa,a}]) \subset [a_1, a_n]$. Here is the the main result of the paper:

Theorem 5.1.

$$M_n(\kappa; a) = -\frac{1}{2i\pi} \Gamma(|\kappa|) \check{Y}_{(|\kappa|-1)} \star [q_{\kappa,a}].$$
(4)

Lemma 5.2. Let f be a holomorphic function on $\mathbb{C}\setminus\mathbb{R}$ with moderate growth along \mathbb{R} , and μ a measure on \mathbb{R} with compact support. Then the function F defined by

$$F(z) = \int_{\mathbb{R}} f(z-t)\mu(dt)$$

is holomorphic on $\mathbb{C}\backslash\mathbb{R}$ with moderate growth along \mathbb{R} and

$$[F] = [f] * \mu.$$

Proof of Theorem 5.1. The formula in Theorem 3.1 can be written

$$\int_{\mathbb{R}} f(z-t) M_n(\kappa; a; dt) = q_{\kappa,a}(z),$$

where $f(z) = \frac{1}{z^{\alpha}}$, hence by Lemma 5.2

$$[f] \star M_n(\kappa; a) = [q_{\kappa,a}].$$

We saw that

$$[f] = -2i\pi \frac{1}{\Gamma(\alpha)} \check{Y}_{(1-\alpha)}$$

Since

$$\check{Y}_{\alpha-1} \star (\check{Y}_{1-\alpha} \star M_n(\kappa; a)) = (\check{Y}_{\alpha-1} \star \check{Y}_{1-\alpha}) \star M_n(\kappa; a)$$

(the associativity holds since the three distributions involved have right bounded supports), we obtain finally

$$M_n(\kappa; a) = -\frac{1}{2i\pi} \Gamma(\alpha) \check{Y}_{(\alpha-1)} \star [q_{\kappa,a}].$$

From this formula it follows that $supp(M_n(\kappa; a)) \subset [-\infty, a_n]$ but at first glance it is not clear that $supp(M_n(\kappa; a)) \subset [a_1, a_n]$. However it can be seen as follows: for $x < a_1$, the function

$$F(z) = \prod_{i=1}^{n} \left(\frac{z-y}{z-a_i}\right)^{\kappa_i} \frac{1}{(z-x)^2}$$

is holomorphic in $\mathbb{C}\setminus[x,a_n]$, and its residue at infinity vanishes. Therefore, for a simple closed path γ around $[x,a_n]$, $\int_{\gamma} F(z)dz = 0$. It follows that $\int_{[x,a_n]} [F](x)dx = 0$, and this can be written

$$\int_{x}^{a_{n}} (s-x)^{\alpha-2} [q_{\kappa,a}](s) ds = 0.$$

We will make more explicit the formula (4) for several special cases. We will denote by μ the density of the measure $M_n(\kappa; a)$. If $0 < \kappa_i < 1$, then $[q_{\kappa,a}]$ is an integrable function:

$$[q_{\kappa,a}](x) = -2i\sin(\pi \sum_{\{j|a_j > x\}} \kappa_j) \prod_{j=1}^n |x - a_j|^{-\kappa_j}.$$

If therefore $\alpha := \kappa_1 + \cdots + \kappa_n = 1$, then $\check{Y}_{1-\alpha} = \delta_0$, and

$$\mu(x) = \frac{1}{\pi} \sin(\pi \sum_{a_j > x} \kappa_j) \prod_{j=1}^n |x - a_j|^{-\kappa_j}$$

This formula has been given in [4], example 5; see also [7], p 161-162 and [3]. If $\alpha > 1$, then

$$\mu(x) = \frac{\alpha - 1}{\pi} \int_{x}^{a_n} (s - x)^{\alpha - 2} (\sin(\pi \sum_{a_j > s} \kappa_j) \prod_{i=1}^{n} |s - a_i|^{-\kappa_i}) ds.$$

We come back now to the projections of the orbital measures.

a) In the case of $\mathbb{F} = \mathbb{C}$, then $\kappa_i = 1$,

Corollary 5.3. Assume that the a_i are all distinct, then

$$\mu(x) = (n-1) \sum_{a_j > x} c_j (a_j - x)^{n-2},$$

where $c_j = \prod_{k \neq j} \frac{1}{a_k - a_j}$.

Proof. In this case, we have

$$q_{\kappa,a}(z) = \prod_{i=1}^{n} \frac{1}{(z-a_i)},$$

and $supp([q_{\kappa,a}]) = \{a_1, ..., a_n\}.$

If the real numbers a_1, \ldots, a_n are all distinct, then the poles of $q_{\kappa,a}$ are simple and

$$q_{\kappa,a} = \sum_{j=1}^{n} c_j \frac{1}{z - a_j}, \text{ with } c_j = \prod_{k \neq j} \frac{1}{a_k - a_j}$$

Therefore

$$[q_{\kappa,a}] = -2i\pi \sum_{j=1}^{n} c_i \delta_{a_j}.$$

Theorem 5.1, gives

$$M_n(\kappa, a) = (n-1)! \check{Y}_{n-1} \star \left(\sum_{j=1}^n c_j \delta_{a_j}\right).$$

Since

$$\check{Y}_{n-1} \star \delta_a = \frac{1}{(n-2)!} (a-x)_+^{n-2},$$

we see that the measure μ has a density $\mu(x)$ which is a spline function

$$\mu(x) = (n-1) \sum_{a_j > x} c_j (a_j - x)^{n-2}.$$

Hence, if $n \ge 3$ μ is a spline function with knots a_1, \ldots, a_n supported by $[a_1, a_n]$. Its restriction to each interval $[a_i, a_{i+1}]$ is a polynomial of degree $\le n-2$, and μ is of class C^{n-3} . It can be shown that these conditions, with furthermore $\int_{a_1}^{a_n} \mu(x) dx = 1$, determine the function μ .

b) In the case of $\mathbb{F} = \mathbb{H}$, then $\kappa_i = 2$,

Corollary 5.4. Assume that the a_i are all distinct, then

$$\mu(x) = (2n-1)\sum_{a_j > x} (c_j(a_j - x)^{2n-2} + (2n-2)d_j(a_j - x)^{2n-3})$$

where
$$d_j = \prod_{k \neq j} \frac{1}{(a_k - a_j)^2}$$
, and $c_j = 2d_j \sum_{k \neq j} \frac{1}{(a_k - a_j)^2}$

Proof. In this case,

$$q_{\kappa,a}(z) = \prod_{i=1}^{n} \frac{1}{(z-a_i)^2}$$

and $supp([q_{\kappa,a}]) = \{a_1, \ldots, a_n\}$. If the real numbers a_1, \cdots, a_n are all distinct, then the poles of $q_{\kappa,a}$ are double and

$$q_{\kappa,a}(z) = \sum_{j=1}^{n} \frac{c_j}{z - a_j} + \sum_{j=1}^{n} \frac{d_j}{(z - a_j)^2},$$

Thus

$$[q_{\kappa,a}] = -2i\pi \sum_{j=1}^n (c_j \delta_{a_j} + d_j \delta'_{a_j}).$$

Theorem 5.1 gives

$$M_n(\kappa, a) = (2n - 1)! \check{Y}_{2n-1} \star \sum_{j=1}^n (c_j \delta_{a_j} + d_j \delta'_{a_j}).$$

Since

$$\check{Y}_{2n-1} \star \delta_a = \frac{1}{(2n-2)!} (a-x)_+^{2n-2} \text{ and } \check{Y}_{2n-1} \star \delta'_a = \frac{1}{(2n-3)!} (a-x)_+^{2n-3},$$

we can see that

$$\mu(x) = (2n-1) \sum_{a_j > x} (c_j(a_j - x)^{2n-2} + (2n-2)d_j(a_j - x)^{2n-3}).$$

The restriction of μ to each interval $[a_i, a_{i+1}]$ is a polynomial of degree $\leq 2n-2$, and μ is of class C^{2n-4} . Similarly, these conditions, with furthermore $\int_{\mathbb{R}} \mu(x) dx = 1$ determine the function μ .

c) In the case of $\mathbb{F} = \mathbb{R}$, then $\kappa_i = \frac{1}{2}$. If the numbers a_i are distinct, then $[q_{\kappa,a}]$ is a locally integrable function.

Corollary 5.5. Assume that the numbers a_i are distinct, then

$$\mu(x) = \frac{n-2}{2\pi} \int_{x}^{a_n} (s-x)^{\frac{n}{2}-2} \sin(\frac{\pi}{2} \sharp\{a_k > s\}) \prod_{j=1}^{n} |s-a_j|^{-\frac{1}{2}} ds$$

If n is even, $n = 2m, n \ge 4$, then

$$[q_{\kappa,a}](x) = -2i\sum_{j=1}^{m} \frac{(-1)^{m-j}}{\sqrt{\prod_{i=1}^{n} |x-a_i|}} \chi_{]a_{2j-1},a_{2j}[}(x).$$

Observe that the support of $[q_{\kappa,a}]$ is the union of the intervals $[a_{2j-1}, a_{2j}]$. The density μ is, up to a constant factor, a primitive of order m-1 of $[q_{\kappa,a}]$. In particular its restriction to each interval $]a_{2j}, a_{2j+1}[$ $(1 \leq j \leq n-1)$ is a polynomial of degree $\leq m-2$

$$\mu(x) = \frac{n-2}{2\pi} \sum_{j=1}^{m} (-1)^{m-j} \int_{x}^{a_n} \frac{(s-x)^{m-2}}{\sqrt{\prod_{i=1}^{n} |s-a_i|}} \chi_{]a_{2j-1}, a_{2j}[}(s) ds.$$

If n, odd n = 2m + 1, then

$$[q_{\kappa,a}](x) = -2i\Big(\sum_{j=1}^{m} (-1)^{m-j} \chi_{]a_{2j},a_{2j+1}[}(x) + (-1)^m \chi_{]-\infty,a_1[}(x)\Big) \frac{1}{\sqrt{\prod_{i=1}^{n} |x-a_i|}}$$

The support of $[q_{\kappa,a}]$ is the union of the intervals $]a_{2j}, a_{2j+1}[$ and of the half line $] - \infty, a_1[$

$$\mu(x) = \frac{2m}{\pi} \int_{x}^{a_n} (s-x)^{m-\frac{3}{2}} [q_{\kappa,a}](s) ds.$$

Finally we consider the limit of the measure $M_n(\kappa; a)$ as κ goes to 0.

Proposition 5.6. Assume $\kappa_i = \varepsilon \nu_i \ (\varepsilon > 0, \nu_i > 0).$ Then,

$$\lim_{\varepsilon \to 0} M_n(\varepsilon |\nu|; a) = \frac{1}{|\nu|} \sum_{i=1}^n \nu_i \delta_{a_i}$$

where $\nu = (\nu_1, \ldots, \nu_n)$, and $|\nu| = \nu_1 + \cdots + \nu_n$, for the weak convergence.

Proof. It is enough to prove this limit in the distribution sense. By Theorem 5.1

$$M_n(\varepsilon\nu;a) = \frac{\Gamma(\varepsilon|\nu|)}{\pi} \check{Y}_{(\varepsilon|\nu|-1)} \star \left(-\frac{1}{2i} [q_{(\varepsilon\nu;a)}]\right).$$

We will use

$$\lim_{\varepsilon \to 0} \check{Y}_{(\varepsilon|\nu|-1)} = \check{Y}_{-1} = -\delta'.$$

Further, since $0 < \varepsilon \nu_i < 1$ for ε small enough,

$$-\frac{1}{2i}[q_{(\varepsilon\nu;a)}](x) = \sin(\varepsilon\pi\sum_{a_j>x}\nu_j)(\prod_{i=1}^n |x-a_i|^{-\varepsilon\nu_i}).$$

Since $\Gamma(\varepsilon|\nu|) \sim \frac{1}{\varepsilon|\nu|}$, then

$$\lim_{\varepsilon \to 0} \Gamma(\varepsilon |\nu|) \sin(\varepsilon \pi \sum_{a_j > x} \nu_j) = \frac{\pi}{|\nu|} \sum_{a_j > x} \nu_j$$

and

$$\lim_{\varepsilon \to 0} \prod_{i=1}^{n} |x - a_i|^{-\varepsilon \nu_i} = 1 \qquad a.e.$$

By the Lebesgue dominated convergence Theorem, it follows that, in the distribution sense

$$\lim_{\varepsilon \to 0} -\frac{\Gamma(\varepsilon|\nu|)}{2i} [q_{(\varepsilon\nu;a)}](x) = \frac{\pi}{|\nu|} \sum_{a_j > x} \nu_j$$

This limit is a step function with jumps $-\nu_k$ at $a_k,$ therefore

$$\delta'(\sum_{a_j>x}\nu_j)=-\sum_{j=1}^n\nu_j\delta_{a_j}.$$

Finally

$$\lim_{\varepsilon \to 0} M_n(\varepsilon \nu; a) = \frac{1}{|\nu|} \sum_{i=1}^n \nu_i \delta_{a_i}.$$

6. Moments of the measure $M_n(\kappa; a)$

We denote the moment of order m of the measure $M_n(\kappa; a)$ by:

$$\mathfrak{M}_n(\kappa, a, m) = \int_{\mathbb{R}} t^m M_n(\kappa; a; dt).$$

Proposition 6.1.

$$\mathfrak{M}_n(\kappa, a; m) = \frac{m!}{(\alpha)_m} \sum_{|\lambda|=m} \frac{(\kappa_1)_{\lambda_1} \dots (\kappa_n)_{\lambda_n}}{\lambda_1! \cdots \lambda_n!} a_1^{\lambda_1} \dots a_n^{\lambda_n}.$$

Proof.

The Markov-Krein type formula of Theorem 3.1 can be written

$$\int_{\mathbb{R}} \frac{1}{(1-\frac{t}{z})^{\alpha}} M_n(\kappa; a; dt) = \prod_{i=1}^n \frac{1}{(1-\frac{a_i}{z})^{\kappa_i}}.$$

From the binomial expansion

$$\frac{1}{(1-\frac{a}{z})^{\theta}} = \sum_{k=0}^{\infty} \frac{(\theta)_k}{k!} a^k \frac{1}{z^k}, \quad |z| \ge a$$

we obtain for $|z| > \sup |a_i|$

$$\sum_{m=0}^{\infty} \frac{(\alpha)_m}{m!} \mathfrak{M}_n(\kappa, a; m) \frac{1}{z^m} = \sum_{m=0}^{\infty} \Big(\sum_{\lambda_1 + \dots + \lambda_n = m} \frac{(\kappa_1)_{\lambda_1} \dots (\kappa_n)_{\lambda_n}}{\lambda_1! \cdots \lambda_n!} a_1^{\lambda_1} \cdots a_n^{\lambda_n} \Big) \frac{1}{z^m}.$$

Recall the notation:

$$(x)_m = x(x+1)\cdots(x+m-1).$$

The formula follows by identification.

In case $\kappa_1 = \ldots = \kappa_n = \theta$, the moments $\mathfrak{M}_n^{\theta}(a, m)$ can be expressed as normalized Jack polynomials. Following Macdonald [9], and Okounkov-Olshanski [10], we use the notation $P_m(x_1, \ldots, x_n; \theta)$ for the Jack polynomial with parameter θ associated to the partition $m = (m_1, \ldots, m_n)$. For $m \in \mathbb{N}$, [m] denotes the partition $(m, 0, \ldots, 0)$. Recall the Cauchy identity

$$\prod_{i=1}^{n} (1 - x_i u)^{-\theta} = \sum_{m=0}^{\infty} \frac{(\theta)_m}{m!} P_{[m]}(x_1, \dots, x_n; \theta) u^m$$

and the formulae

$$P_{[m]}(x_1, \dots, x_n; \theta) = \frac{m!}{(\theta)_m} \sum_{|\lambda|=m} \frac{(\theta)_{\lambda_1} \dots (\theta)_{\lambda_n}}{\lambda_1 \dots \lambda_n} x_1^{\lambda_1} \dots x_n^{\lambda_n}, \quad P_{[m]}(1, \dots, 1; \theta) = \frac{(n\theta)_m}{(\theta)_m}$$

Corollary 6.2.

$$\mathfrak{M}_{n}^{\theta}(a;m) = \frac{(\theta)_{m}}{(n\theta)_{m}} P_{[m]}(a_{1},\ldots a_{n};\theta)$$
$$= \frac{P_{[m]}(a_{1},\ldots a_{n};\theta)}{P_{[m]}(1,\ldots,1;\theta)}.$$

In case $\theta = 1$, the Jack polynomial $P_{[m]}$ reduces to the complete symmetric function:

$$P_{[m]}(x_1, \dots, x_n; 1) = h_m(x_1, \dots, x_n)$$

= $\sum_{k_1 + \dots + k_n = m} x_1^{k_1} x_2^{k_2} \dots x_n^{\kappa_n}$

Hence, for $\kappa = 1$, $\mathfrak{M}_n^1(a_1, \cdots, a_n, m) = h_m(a_1, \cdots, a_n)$. It can be written

$$\mathfrak{M}_{n}^{1}(a_{1},\ldots,a_{n},m) = \frac{m!(n-1)!}{(m+n-1)!} \frac{1}{V(a_{1},\ldots,a_{n})} \begin{vmatrix} 1 & 1 & \ddots & \ddots & 1 \\ a_{1} & a_{2} & \ddots & \ddots & a_{n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_{1}^{n-2} & a_{2}^{n-2} & \ddots & \vdots & a_{n}^{n-2} \\ a_{1}^{m+n-1} & a_{2}^{m+n-1} & \ddots & \vdots & a_{n}^{m+n-1} \end{vmatrix}$$

where V denotes the Vandermonde polynomial

$$V(a_1,\ldots,a_n) = \prod_{i < j} (a_j - a_i).$$

References

- [1] Bony, J. M., *Hyperfonctions et équations aux dérivées partielles*. Cours de troisième cycle (1974–1975).
- [2] Bouali, M., "Analyse harmonique en dimension infinie," Thèse, Univ. de Paris 6, 2006.
- [3] Cifarelli, D. M., and E. Regazzini, Distribution functions of means of a Dirichlet process, Ann. Statist. 18 (1990), 429–442.
- [4] Diaconis, P., and J. Kemperman, Some new tools for Dirichlet priors, Bayesian Statics, 5, (1996) 97–106.
- [5] Faraut, J., Noyau de Peano et intégrales orbitales, Global Journal of Pure and Applied Mathematics 1 (2005), 306-320.
- [6] James, L., Functionals of Dirichlet processes, the Cifarilli-Regazzini identity and beta-gamma processes, Ann. Statist. **33** (2005), 647–660.

202

- [7] Kerov, S., Asymptotic Representation Theory of the Symmetric Group and its Applications in Analysis, Translations of Mathematical Monographs, American Mathematical Society **219** (2003).
- [8] Kerov, S. V., and N. V. Tsilevich., The Markov-Krein correspondence in several dimensions, J. of Math. Sciences 121 (2004), 2345–2359.
- [9] Macdonald, I. G., Symmetric Functions and Hall Polynomials, Oxford University Press, 1995.
- [10] Okounkov, A., and G. Olshanski, Shifted Jack polynomials, binomial formula, and applications, Math. Res. Letters 4 (1997) 69–78.
- [11] Olshanski, G., and A. Vershik, Ergodic unitarily invariant measures on the space of infinite Hermitian matrices, in Contemporary Mathematical Physics, Amer. Math. Soc. Transl. Series 2, 175 (1996), 137–175.
- [12] Schlichtkrull, H., Hyperfunctions and Harmonic Analysis on Symmetric Spaces, Birkhåuser, Boston (1984).

Faïza Fourati University of Tunis Preparatory Institute of Engineer Studies of Tunis Department of Mathematics 1089 Monfleury Tunis, Tunisia fayza.fourati@ipeit.rnu.tn

Received June 27, 2010 and in final form October 21, 2010