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Abstract. The starting point of this paper is an observation by Okounkov
concerning the projection of orbital measures for the action of the unitary group
U(n) on the space Herm(n, C) of n× n Hermitian matrices. The projection of
such an orbital measure on the straight line generated by a rank one Hermitian
matrix is a probability measure whose density is a spline function. More generally
we consider the projection of orbital measures for the action of the group U(n, F)
on the space Herm(n, F) for F = R , C , H , and their relation with Dirichlet
distributions.
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1. Introduction

For κ = (κ1, . . . , κn) ∈ (R∗
+)n , the Dirichlet distribution Dκ

n is the probability
measure on the simplex

∆n−1 = {τ = (τ1, . . . , τn) ∈ Rn | τi ≥ 0, τ1 + · · ·+ τn = 1}

defined by ∫
∆n−1

f(τ)Dκ
n(dτ) =

1

Cn(κ)

∫
∆n−1

f(τ)τκ1−1
1 . . . τκn−1

n λ(dτ)

where λ is the normalized uniform distribution on ∆n−1 , i.e. the normalized
restriction to ∆n−1 of the Lebesgue measure on the hyperplane τ1 + · · ·+ τn = 1,
and Cn(κ) is a normalization constant.

For a = (a1, . . . , an) ∈ Rn , the probability measure Mn(κ; a) on R is the
image of the Dirichlet distribution D(κ)

n by the map

∆n−1 −→ R, τ 7−→ a1τ1 + · · ·+ anτn.
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On the other hand let Herm(n,F) denote the space of n× n Hermitian matrices
with entries in F = R , C or H , the field of quaternions. For x ∈ Herm(n,F) let
µx denote the orbital measure associated to the orbit Ox of x for the action of
the group U(n,F) on Herm(n,F). The projection of the orbital measure µx on
the straight line RE11 equals Mn(κ; a) where κ1 = . . . = κn = d

2
, d = dimRF = 1,

2 or 4 and a1, . . . , an are the eigenvalues of x .
Motivated by this fact, we investigate the measure Mn(κ; a). First we establish a
Markov-Krein type formula:∫

R

1

(z − t)α
Mn(κ; a; dt) =

n∏
i=1

( 1

z − ai

)κi

, z ∈ C \ R,

where α = κ1 + · · · + κn . Then, by taking the difference of the boundary values
along R of both hand sides and solving a convolution equation we obtain

Mn(κ; a) = − 1

2iπ
Γ(α)Y̌(α−1) ? Tκ,a

where Y̌(α−1) is the distribution supported by ]−∞, 0[ with density 1
Γ(α−1)

(−t)α−2

and the distribution Tκ,a is the difference of the boundary values along R of the
holomorphic function

qκ,a(z) =
n∏

i=1

( 1

z − ai

)κi .

In the case 0 < κi < 1, α = κ1 + · · · + κn = 1, we get a formula which has been
previously obtained by Cifarelli and Regazzini [3], see also [4], [7].
In the case κ1 = . . . = κn = d

2
the measures Mn(κ; a) are the projections of orbital

measures for the action of U(n,F) on the space Herm(n,F). For F = C (d = 2)
the densities of the measures are spline functions as observed by Okounkov (see
[11], page 170). For F = H (d = 4) the densities of these measures are piecewise
polynomial of degree ≤ 4n− 2. For F = R (d = 1) the situation is not as simple.
The densities are piecewise analytic with singularities at a1, . . . , an .
Finally we compute the moments of the measure Mn(κ; a). If κ1 = . . . = κn =
θ , then the moments can be expressed as normalized Jack polynomials with
parameter θ .

2. Dirichlet distributions, orbital measures, and their projections

For κ = (κ1, . . . , κn) ∈ (R∗
+)n , n ≥ 2, the Dirichlet distribution Dκ

n is the
probability measure on the simplex

∆n−1 = {τ = (τ1, . . . , τn) ∈ Rn | τi ≥ 0, τ1 + · · ·+ τn = 1}

defined by ∫
∆n−1

f(τ)Dκ
n(dτ) =

1

Cn(κ)

∫
∆n−1

f(τ)τκ1−1
1 . . . τκn−1

n α(dτ) (1)
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where α is the normalized uniform distribution on ∆n−1 , i.e. the normalized
restriction to ∆n−1 of the Lebesgue measure on the hyperplane τ1 + · · ·+ τn = 1,
and

Cn(κ) =

∫
∆n−1

τκ1−1
1 . . . τκn−1

n α(dτ).

This constant can be evaluated:

Cn(κ) = (n− 1)!
Γ(κ1) . . .Γ(κn)

Γ(|κ|)
,

where |κ| = κ1 + . . . + κn , by using the following integration formula: for an
integrable function f on (R+)n ,∫

(R+)n

f(x)dx =
1

(n− 1)!

∫ +∞

0

∫
∆n−1

f(rτ)α(dτ)rn−1dr. (2)

For a = (a1, . . . , an) ∈ Rn satisfying a1 ≤ . . . ≤ an , the probability measure
Mn(κ, a) on R is defined as the image of the Dirichlet distribution D(κ)

n by the
map

∆n−1 −→ R, τ 7−→ a1τ1 + · · ·+ anτn.

This means that, for a continuous function F on R ,∫
R
F (t)Mn(κ; a; dt) =

∫
∆n−1

F (a1τ1 + · · ·+ anτn)D(κ)
n (dτ). (3)

The support of the measure Mn(κ; a) is [a1, an] .

Let Herm(n,F) denote the space of n× n Hermitian matrices with entries
in F = R , C or H , the field of quaternions.
The unitary group U(n,F) acts on Herm(n,F) by the transformations

x 7→ uxu∗ (u ∈ U(n,F)).

For x ∈ Herm(n,F), let Ox denote the orbit of x :

Ox = {uxu∗ | u ∈ U(n,F)},

and µx the orbital measure on Hn = Herm(n,F) supported in Ox given by, for a
continuous function f on Hn ,∫

Hn

f(y)µx(dy) =

∫
U(n,F)

f(uxu∗)ν(du)

where ν is the normalized Haar measure on U(n,F). By the spectral theorem, the
orbit Ox contains a real diagonal matrix a = diag(a1, . . . , an), where a1, . . . , an

are the eigenvalues of x ; hence the orbit Ox , and the orbital measure µx only
depend on the eigenvalues of x . We consider the projection of the orbital measure
µx onto the straight line generated by the rank one matrix E11 . We define the
measure Mx on R as follows: for a continuous function F on R ,∫

R
F (t)Mx(dt) =

∫
Herm(n,F)

F (y11)µx(dy) =

∫
U(n,F)

F ((uxu∗)11)ν(du).
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Theorem 2.1. Let a1, . . . , an be the eigenvalues of x ∈ Hn . Then

Mx = Mn(κ; a),

where κ = (d
2
, . . . , d

2
) with d = dimRF = 1, 2, 4.

This is stated in [11], p.170. See also [5].

Proof. We may assume that x = a = diag(a1, . . . , an) . By computing the
product uau∗ , we get

(uau∗)11 = a1|u11|2 + · · ·+ an|un1|2.

Consider the map ψ : U(n,F) → S(Fn) which, to u ∈ U(n,F), associates the first
column of u , u 7→ (u11, . . . , un1) and where S(Fn) is the unit sphere of Fn ' Rdn .
The image under ψ of the normalized Haar measure ν on U(n,F) is the normalized
uniform measure σ on S(Fn). Hence, for a continuous F on R ,∫

R
F (t)Mx(dt) =

∫
S(Fn)

F (a1|u1|2 + · · ·+ an|un|2)σ(du).

Consider now the map
Φ : S(Fn) → ∆n−1,

u = (u1, . . . , un) 7→ τ = (τ1, . . . , τn) = (|u1|2, . . . , |un|2).
The image under Φ of the measure σ on S(Fn) is the Dirichlet distribution Dκ

n

with κi = d
2
: for a continuous function f on ∆n−1 ,∫

Sdn−1

f(|u1|2, . . . , |un|2)σ(du) =

∫
∆n−1

f(τ)Dκ
n(dτ).

Therefore, for a continuous function F on R ,

∫
Sdn−1

F (a1|u1|2 + · · ·+ an|un|2)σ(du) =

∫
∆n−1

F (a1τ1 + · · ·+ anτn)Dκ
n(dτ).

Finally Mx = Mn(κ; a). �

3. Markov-Krein type formula for the measure Mn(κ; a)

For α ∈ C and z ∈ C\]−∞, 0], we define the function zα as follows: if z = reiθ ,
with r > 0, θ ∈]− π, π[ , then zα = rαeiαθ .

Theorem 3.1. The measure Mn(κ; a) satisfies the following Markov-Krein type
formula: ∫

R

1

(z − t)|κ|
Mn(κ; a; dt) =

n∏
i=1

( 1

z − ai

)κi

, z ∈ C\]−∞, an].
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The Markov-Krein correspondence relates two probability measures ν and
µ on R : ∫

R

1

(1 + zu)α
µ(du) = exp

(
−

∫
R

log(1 + zu)αν(du)
)
.

See [8], Section 2.

In the present case ν = 1
|κ|

∑n
i=1 κiδai

, µ = Mn(κ; a) and α = |κ|.

Proof. We first assume Rez > an . We will evaluate in two different ways the
following integral

I(a; z) =

∫
(R+)n

exp
(
−

n∑
i=1

(z − ai)xi

)
xκ1−1

1 . . . xκn−1
n dx1 . . . dxn.

a) By the Fubini Theorem

I(a; z) =
n∏

j=1

∫ +∞

0

e−xj(z−aj)x
κj−1
j dxj =

n∏
j=1

Γ(κj)

(z − aj)κj
.

b) By the formula (2),

I(a; z) =
1

(n− 1)!

∫ +∞

0

∫
∆n−1

e−r(z−a1τ1−···−anτn)τκ1−1
1 . . . τκn−1

n r|κ|−1α(dτ)dr.

Integrating first with respect to r we obtain

I(a; z) =
Γ(|κ|)

(n− 1)!

∫
∆n−1

τκ1−1
1 . . . τκn−1

n

(z − a1τ1 − · · · − anτn)|κ|
α(dτ)

= Cn(κ)
Γ(|κ|)

(n− 1)!

∫
∆n−1

D(κ)
n (dτ)

(z − a1τ1 − · · · − anτn)|κ|

= Γ(κ1) . . .Γ(κn)

∫
R

1

(z − t)|κ|
Mn(κ; a; dt).

Both handsides in the formula are defined and holomorphic in C\]−∞, an] .
By analytic continuation the statement holds for z ∈ C\]−∞, an] . �

In [2] this formula has been established in the framework of the orbital
measures. From the Markov-Krein type formula one gets the following doubling
relation

M2n(κ1, κ1, . . . , κn, κn, a1, a1, . . . , an, an) = Mn(2κ1, . . . , 2κn, a1, . . . , an).
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4. A few basic facts about hyperfunctions in one variable

In order to derive a formula for the measure Mn(κ; a) we will use some elementary
properties of hyperfunctions in one variable. Let us recall the definition of a
hyperfunction in one variable.
Let U ⊂ R be an open set, and W ⊂ C be a complex neighborhood of U such
that W ∩R = U . By definition, the space B(U) of hyperfunctions on U is given
by

B(U) = O(W\U)/O(W ),

where, for an open set V ⊂ C , O(V ) denotes the space of holomorphic functions on
V . The space B(U) does not depend on the choice of the complex neighborhood
W . For F ∈ O(W \ U), [F ] denotes the equivalence class of F in B(U). Define

F+ =

{
F in W+

0 in W− and F− =

{
0 in W+

−F in W−

The hyperfunctions [F+] and [F−] are denoted respectively by F+(x + i0) and
F−(x− i0), and called the boundary values of F . Then

[F ] = F+(x+ i0)− F−(x− i0).

Intuitively, [F ] is the jump of F along U . A hyperfunction f ∈ B(U)
vanishes on U0 ⊂ U if there exists a representative F of f which is holomorphic
on (W \ U) ∪ U0 . The support supp(f) of a hyperfunction f ∈ B(U) is the
smallest closed set C ⊂ U such f vanishes in U \C . For a closed set C ⊂ R , the
space of hyperfunctions with supp(f) ⊂ C is denoted by BC(R). Let K ⊂ R be
compact. We define the integral of f ∈ BK(R) on K as∫

K

f(x)dx = −
∫

γ

F (z)dz,

where F ∈ O(W \ U) with [F ] = f (K ⊂ U), and γ is the oriented boundary of
a compact set in W containing K in its interior, the integral does not depend on
the choices of either F or γ .
Let A

′
(K) denote the space of analytic functionals supported by K . Such a func-

tional is a linear form on the space A(K) =
⋂

U⊃K

O(U), where U is a complex

neighborhood of K .

The Cauchy transform of an analytic functional T ∈ A
′
(K) is defined as

GT (z) = − 1

2iπ
〈Tt,

1

z − t
〉.

The function GT is holomorphic on C \ K , and defines a hyperfunction fT :
fT = [GT ] . This gives a linear map

φ : A
′
(K) −→ BK(R), T 7−→ fT .
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Now define the map

ψ : BK(R) −→ A
′
(K), f 7−→ Tf ,

where Tf is defined as follows: for ϕ ∈ A(K)

〈Tf , ϕ〉 =

∫
K

f(x)ϕ(x)dx.

One shows that φ ◦ ψ = Id , and that the spaces A
′
(K) and BK(R) are linearly

isomorphic. Therefore the space D
′
K(R) of distributions on R with support in K

can be seen as a subspace of BK(R) see ([12], Chapter 1).
Let U ⊂ R be an open set. A function f defined in

{z = x+ iy | x ∈ U, 0 < |y| < ε} (ε > 0)

is said to be of moderate growth along U if, for every compact set K ⊂ U , there
is C > 0 and an integer N , such that

|f(x+ iy)| ≤ C

|y|N
(x ∈ K, 0 < |y| < ε).

Let T ∈ A′(K) be the analytic functional associated to the hyperfunction
f = [F ] ∈ BK(R). Then T is a distribution if and only if F is of moderate growth
along R . In such a case, for ϕ ∈ D(R),

〈T, ϕ〉 = lim
ε→0

∫
R

(
F (t+ iε)− F (t− iε)

)
ϕ(t)dt.

Furthermore supp(T ) = supp(f) see ([1], page 39).

For Re(α) > 0, the distribution Yα is defined by

〈Yα, ϕ〉 =
1

Γ(α)

∫ +∞

0

ϕ(t)tα−1dt.

As a function of α , Yα admits an analytical continuation for α in C . Moreover

Yα ∗ Yβ = Yα+β, Y0 = δ, Y−m = δm (m ∈ N).

In particular Yα ∗ Y−α = δ .

For α ∈ C
〈[zα], ϕ〉 = −2iπ

1

Γ(−α)
〈Yα+1, ϕ̌〉

where ϕ̌(t) = ϕ(−t).
In particular, for m ∈ N∗ ,

[z−m] = −2iπ
1

(m− 1)!
δ(m−1).
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5. A formula for the measure Mn(κ; a)

For κ = (κ1, . . . , κn), a = (a1, . . . , an), a1 ≤ . . . ≤ an the function

qκ,a =
n∏

i=1

1

(z − ai)κi

is holomorphic for z ∈ C\] − ∞, an] , and of moderate growth along R . Hence
[qκ,a] is a distribution with supp([qκ,a]) ⊂]−∞, an] .
If α = |κ| is an integer, then qκ,a is holomorphic at infinity, and supp([qκ,a]) ⊂
[a1, an] . Here is the the main result of the paper:

Theorem 5.1.

Mn(κ; a) = − 1

2iπ
Γ(|κ|)Y̌(|κ|−1) ? [qκ,a]. (4)

Lemma 5.2. Let f be a holomorphic function on C\R with moderate growth
along R, and µ a measure on R with compact support. Then the function F
defined by

F (z) =

∫
R
f(z − t)µ(dt)

is holomorphic on C\R with moderate growth along R and

[F ] = [f ] ∗ µ.

Proof of Theorem 5.1. The formula in Theorem 3.1 can be written∫
R
f(z − t)Mn(κ; a; dt) = qκ,a(z),

where f(z) = 1
zα , hence by Lemma 5.2

[f ] ? Mn(κ; a) = [qκ,a].

We saw that

[f ] = −2iπ
1

Γ(α)
Y̌(1−α).

Since

Y̌α−1 ? (Y̌1−α ? Mn(κ; a)) = (Y̌α−1 ? Y̌1−α) ? Mn(κ; a)

(the associativity holds since the three distributions involved have right bounded
supports), we obtain finally

Mn(κ; a) = − 1

2iπ
Γ(α)Y̌(α−1) ? [qκ,a]. �

From this formula it follows that supp(Mn(κ; a)) ⊂]−∞, an] but at first glance it
is not clear that supp(Mn(κ; a)) ⊂ [a1, an] . However it can be seen as follows: for
x < a1 , the function
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F (z) =
n∏

i=1

( z − y

z − ai

)κi 1

(z − x)2

is holomorphic in C\[x, an] , and its residue at infinity vanishes. Therefore,
for a simple closed path γ around [x, an] ,

∫
γ
F (z)dz = 0. It follows that∫

[x,an]
[F ](x)dx = 0, and this can be written∫ an

x

(s− x)α−2[qκ,a](s)ds = 0.

We will make more explicit the formula (4) for several special cases.
We will denote by µ the density of the measure Mn(κ; a).
If 0 < κi < 1, then [qκ,a] is an integrable function:

[qκ,a](x) = −2i sin(π
∑

{j|aj>x}

κj)
n∏

j=1

|x− aj|−κj .

If therefore α := κ1 + · · ·+ κn = 1, then Y̌1−α = δ0 , and

µ(x) =
1

π
sin(π

∑
aj>x

κj)
n∏

j=1

|x− aj|−κj

This formula has been given in [4], example 5; see also [7], p 161-162 and [3].
If α > 1, then

µ(x) =
α− 1

π

∫ an

x

(s− x)α−2(sin(π
∑
aj>s

κj)
n∏

i=1

|s− ai|−κi)ds.

We come back now to the projections of the orbital measures.

a) In the case of F = C , then κi = 1,

Corollary 5.3. Assume that the ai are all distinct, then

µ(x) = (n− 1)
∑
aj>x

cj(aj − x)n−2,

where cj =
∏
k 6=j

1

ak − aj

.

Proof. In this case, we have

qκ,a(z) =
n∏

i=1

1

(z − ai)
,
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and supp([qκ,a]) = {a1, . . . , an} .
If the real numbers a1, . . . , an are all distinct, then the poles of qκ,a are simple and

qκ,a =
n∑

j=1

cj
1

z − aj

, with cj =
∏
k 6=j

1

ak − aj

.

Therefore

[qκ,a] = −2iπ
n∑

j=1

ciδaj
.

Theorem 5.1, gives

Mn(κ, a) = (n− 1)!Y̌n−1 ?
( n∑

j=1

cjδaj

)
.

Since

Y̌n−1 ? δa =
1

(n− 2)!
(a− x)n−2

+ ,

we see that the measure µ has a density µ(x) which is a spline function

µ(x) = (n− 1)
∑
aj>x

cj(aj − x)n−2.

Hence, if n ≥ 3 µ is a spline function with knots a1, . . . , an supported by
[a1, an] . Its restriction to each interval [ai, ai+1] is a polynomial of degree ≤ n−2,
and µ is of class Cn−3 . It can be shown that these conditions, with furthermore∫ an

a1
µ(x)dx = 1, determine the function µ .

b) In the case of F = H , then κi = 2,

Corollary 5.4. Assume that the ai are all distinct, then

µ(x) = (2n− 1)
∑
aj>x

(cj(aj − x)2n−2 + (2n− 2)dj(aj − x)2n−3)

where dj =
∏
k 6=j

1

(ak − aj)2
, and cj = 2dj

∑
k 6=j

1

(ak − aj)
.

Proof. In this case,

qκ,a(z) =
n∏

i=1

1

(z − ai)2

and supp([qκ,a]) = {a1, . . . , an} . If the real numbers a1, · · · , an are all distinct,
then the poles of qκ,a are double and

qκ,a(z) =
n∑

j=1

cj
z − aj

+
n∑

j=1

dj

(z − aj)2
,
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Thus

[qκ,a] = −2iπ
n∑

j=1

(cjδaj
+ djδ

′

aj
).

Theorem 5.1 gives

Mn(κ, a) = (2n− 1)!Y̌2n−1 ?

n∑
j=1

(cjδaj
+ djδ

′

aj
).

Since

Y̌2n−1 ? δa =
1

(2n− 2)!
(a− x)2n−2

+ and Y̌2n−1 ? δ
′

a =
1

(2n− 3)!
(a− x)2n−3

+ ,

we can see that

µ(x) = (2n− 1)
∑
aj>x

(cj(aj − x)2n−2 + (2n− 2)dj(aj − x)2n−3).

The restriction of µ to each interval [ai, ai+1] is a polynomial of degree ≤ 2n− 2,
and µ is of class C2n−4 . Similarly, these conditions, with furthermore

∫
R µ(x)dx =

1 determine the function µ .

c) In the case of F = R , then κi = 1
2
. If the numbers ai are distinct, then

[qκ,a] is a locally integrable function.

Corollary 5.5. Assume that the numbers ai are distinct, then

µ(x) =
n− 2

2π

∫ an

x

(s− x)
n
2
−2 sin(

π

2
]{ak > s})

n∏
j=1

|s− ai|−
1
2ds.

If n is even, n = 2m , n ≥ 4, then

[qκ,a](x) = −2i
m∑

j=1

(−1)m−j√∏n
i=1 |x− ai|

χ]a2j−1,a2j [(x).

Observe that the support of [qκ,a] is the union of the intervals [a2j−1, a2j] . The
density µ is, up to a constant factor, a primitive of order m − 1 of [qκ,a] . In
particular its restriction to each interval ]a2j, a2j+1[ (1 ≤ j ≤ n−1) is a polynomial
of degree ≤ m− 2

µ(x) =
n− 2

2π

m∑
j=1

(−1)m−j

∫ an

x

(s− x)m−2√∏n
i=1 |s− ai|

χ]a2j−1,a2j [(s)ds.

If n , odd n = 2m+ 1, then

[qκ,a](x) = −2i
( m∑

j=1

(−1)m−jχ]a2j ,a2j+1[(x) + (−1)mχ]−∞,a1[(x)
) 1√∏n

i=1 |x− ai|
.
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The support of [qκ,a] is the union of the intervals ]a2j, a2j+1[ and of the half
line ]−∞, a1[

µ(x) =
2m

π

∫ an

x

(s− x)m− 3
2 [qκ,a](s)ds.

Finally we consider the limit of the measure Mn(κ; a) as κ goes to 0.

Proposition 5.6. Assume κi = ενi (ε > 0, νi > 0).

Then,

lim
ε−→0

Mn(ε|ν|; a) =
1

|ν|

n∑
i=1

νiδai

where ν = (ν1, . . . , νn), and |ν| = ν1 + · · ·+ νn , for the weak convergence.

Proof. It is enough to prove this limit in the distribution sense. By Theorem
5.1

Mn(εν; a) =
Γ(ε|ν|)
π

Y̌(ε|ν|−1) ? (− 1

2i
[q(εν;a)]).

We will use
lim

ε−→0
Y̌(ε|ν|−1) = Y̌−1 = −δ′ .

Further, since 0 < ενi < 1 for ε small enough,

− 1

2i
[q(εν;a)](x) = sin(επ

∑
aj>x

νj)(
n∏

i=1

|x− ai|−ενi).

Since Γ(ε|ν|) ∼ 1

ε|ν|
, then

lim
ε−→0

Γ(ε|ν|) sin(επ
∑
aj>x

νj) =
π

|ν|
∑
aj>x

νj.

and

lim
ε−→0

n∏
i=1

|x− ai|−ενi = 1 a.e.

By the Lebesgue dominated convergence Theorem, it follows that, in the distribu-
tion sense

lim
ε−→0

−Γ(ε|ν|)
2i

[q(εν;a)](x) =
π

|ν|
∑
aj>x

νj.

This limit is a step function with jumps -νk at ak , therefore

δ
′
(
∑
aj>x

νj) = −
n∑

j=1

νjδaj
.

Finally

lim
ε−→0

Mn(εν; a) =
1

|ν|

n∑
i=1

νiδai
. �
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6. Moments of the measure Mn(κ; a)

We denote the moment of order m of the measure Mn(κ; a) by:

Mn(κ, a,m) =

∫
R
tmMn(κ; a; dt).

Proposition 6.1.

Mn(κ, a;m) =
m!

(α)m

∑
|λ|=m

(κ1)λ1 . . . (κn)λn

λ1! · · ·λn!
aλ1

1 . . . aλn
n .

Proof.

The Markov-Krein type formula of Theorem 3.1 can be written∫
R

1

(1− t
z
)α
Mn(κ; a; dt) =

n∏
i=1

1

(1− ai

z
)κi
.

From the binomial expansion

1

(1− a
z
)θ

=
∞∑

k=0

(θ)k

k!
ak 1

zk
, |z| ≥ a

we obtain for |z| > sup |ai|

∞∑
m=0

(α)m

m!
Mn(κ, a;m)

1

zm
=

∞∑
m=0

( ∑
λ1+···+λn=m

(κ1)λ1 ...(κn)λn

λ1! · · ·λn!
aλ1

1 · · · aλn
n

) 1

zm
.

Recall the notation:

(x)m = x(x+ 1) · · · (x+m− 1).

The formula follows by identification. �

In case κ1 = . . . = κn = θ , the moments Mθ
n(a,m) can be expressed as

normalized Jack polynomials. Following Macdonald [9], and Okounkov-Olshanski
[10], we use the notation Pm(x1, . . . xn; θ) for the Jack polynomial with parameter
θ associated to the partition m = (m1, . . . ,mn). For m ∈ N , [m] denotes the
partition (m, 0, . . . , 0). Recall the Cauchy identity

n∏
i=1

(1− xiu)
−θ =

∞∑
m=0

(θ)m

m!
P[m](x1, . . . xn; θ)um

and the formulae

P[m](x1, . . . xn; θ) =
m!

(θ)m

∑
|λ|=m

(θ)λ1 . . . (θ)λn

λ1 . . . λn

xλ1
1 . . . xλn

n , P[m](1, . . . 1; θ) =
(nθ)m

(θ)m

.
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Corollary 6.2.

Mθ
n(a;m) =

(θ)m

(nθ)m

P[m](a1, . . . an; θ)

=
P[m](a1, . . . an; θ)

P[m](1, . . . , 1; θ)
.

In case θ = 1, the Jack polynomial P[m] reduces to the complete symmetric
function:

P[m](x1, . . . xn; 1) = hm(x1, . . . , xn)

=
∑

k1+···+kn=m

xk1
1 x

k2
2 . . . xκn

n .

Hence, for κ = 1, M1
n(a1, · · · , an,m) = hm(a1, · · · , an). It can be written

M1
n(a1, . . . , an,m) =

m!(n− 1)!

(m+ n− 1)!

1

V (a1, ..., an)

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
a1 a2 . . . an

. . . . . .

. . . . . .
an−2

1 an−2
2 . . . an−2

n

am+n−1
1 am+n−1

2 . . . am+n−1
n

∣∣∣∣∣∣∣∣∣∣∣∣
where V denotes the Vandermonde polynomial

V (a1, . . . , an) =
∏
i<j

(aj − ai).
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