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Abstract. Recalling that a topological group G is said to be almost

connected if the quotient group G/G0 is compact, where G0 is the con-
nected component of the identity, we prove that for an almost connected

pro-Lie group G , there exists a compact zero-dimensional, that is, profinite,

subgroup D of G such that G = G0D . Further for such a group G , there
are sets I , J , a compact connected semisimple group S , and a compact

connected abelian group A such that G and RI × (Z/2Z)J × S × A are

homeomorphic. En route to this powerful structure theorem it is shown
that the compact open topology makes the automorphism group Aut g of

a semisimple pro-Lie algebra g a topological group in which the identity
component (Aut g)0 is exactly the group Inn g of inner automorphisms. In

this situation, Inn(G) has a totally disconnected semidirect complement ∆

such that Aut g = (Inn g)∆ and Aut g/ Inn g ∼= ∆ as topological groups.
The group Inn g is a product of a family of connected simple centerfree Lie

groups.
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1. Introduction

A pro-Lie group is a topological group which is a projective limit of finite
dimensional real Lie groups. Equivalently, it is a topological group that is
isomorphic to a closed subgroup of a cartesian product of Lie groups. The
class of connected pro-Lie groups and its Lie theory and structure theory was
extensively discussed in [7]. The Lie theory of pro-Lie groups is an infinite
dimensional one; the way in which it overlaps differentiable Lie group theory
based on manifolds modelled on locally convex vector spaces was clarified in [9].
The upshot of the structure theory of pro-Lie groups as published so far is that
it is largely determined by the structure of pro-Lie algebras, that is, projective
limits of finite dimensional Lie algebras on the one hand, and compact groups on
the other. The Lie theory of the connection between pro-Lie groups and pro-Lie
algebras can only reach as far as the identity component. On the other hand,
compact groups reach out to compact extensions of connected pro-Lie groups,
namely, those pro-Lie groups G which are almost connected in the sense that
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G/G0 is compact. In many instances, the structure theory of connected pro-Lie
groups in [7] included almost connected pro-Lie groups. However, so far it failed
to produce one general result which one might expect if one is guided by locally
compact groups, namely, the proposition that

an almost connected pro-Lie group G has a maximal compact subgroup M , all
maximal compact subgroups are conjugate, and G = G0M .

This result we discuss and prove below. Our detailed knowledge of
compact groups then lets us demonstrate that M contains a profinite subgroup
D such that G = G0D and that the two groups G and G0 × G/G0 are
homeomorphic. From [7] we know that G0 is homeomorphic to RI × C for a
set I and a compact connected group C . From [6] we know that every profinite
group is homeomorphic to a product (Z/2Z)J for a set J , and that a compact
connected group is a semidirect product of a compact connected semisimple group
S and a compact connected abelian group A . Therefore we will be finally able
to say that

an almost connected pro-Lie group is homeomorphic to a group of the form

RI × S ×A× (Z/2Z)J .

The topological structure of an almost connected pro-Lie group is therefore
clarified as explicitly as one could desire, notably in the light of the known
structure of the compact factors S and A (see [6]).

The crucial access to this new chapter of pro-Lie group theory is provided
by a careful analysis of the structure of the automorphism group of a semisimple
pro-Lie algebra which, of course, is also of independent interest. The relevance of
this information becomes clear at once if one recalls from [7] that a connected pro-
Lie group G possesses a unique largest normal connected prosolvable subgroup
R(G), where a pro-Lie group is prosolvable if all Lie group homomorphic images

are solvable. The factor group S
def
= G0/R(G) is a connected semisimple pro-

Lie group, whose Lie algebra s is semisimple. The group G acts via inner
automorphisms on S and then via the adjoint representation on s and that,
after careful inspection of the details, gives us a representation f :G → Aut s .
That Aut s is in need of a natural topological group topology and that f is
a morphism of topological groups is established in the process, but hardly any
of the details are obvious. The structure of Aut s turns out to emulate that
of the automorphism group of a finite dimensional semisimple Lie algebra, best
known in the case of a compact semisimple Lie algebra (see [6], Lemma 6.57ff.
and Lemma 9.80ff.). The group Inn s = 〈ead s〉 ⊆ Aut s of inner automorphisms
is a product

∏
j∈J Sj of centerfree simple real connected Lie groups, and it is

the identity component of Aut s . An essential ingredient is the result that it is
a semidirect factor; indeed there is a totally disconnected semidirect cofactor ∆
such that Aut s = (Inn s)·∆. Here the theory is accelerated by a recent result of
Gündoğan’s who complemented the classical theory of a finite dimensional real
simple Lie algebra g : The automorphism group Aut g is the semidirect product
of the identity component Inn g of all inner automorphisms by a (small) finite
group. The cofactor ∆ is carefully analyzed, and we understand its structure
well. Unfortunately, as a topological group, it fails to be a prodiscrete group in
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general. Nevertheless, based on our complete insight into its compact subgroups
we shall see that

any almost connected closed subgroup G ⊆ Aut s containing Inn s does have the
form G = G0M with a maximal compact subgroup M of G .

Our knowledge of the structure of Aut s then permits us to reduce our program
concerning the structure theory of almost connected pro-Lie groups G to the
case that G0 is prosolvable. This, however, is a case that was already dealt with
in [7] and in this fashion our investigation is completed.

The results of this article answer in the affirmative a problem we posed
in [8].

Acknowledgment. We are grateful to Karl-Hermann Neeb for having drawn
our attention very clearly to the apparently open question whether the auto-
morphism group of a real simple Lie algebra splits in all cases over its identity
component, and to his student Hasan Gündoğan for detailing his results on the
automorphism group of a simple Lie algebra to us. We particularly thank the
referee for his extremely careful scrutiny of our manuscript resulting in the correc-
tion of many typographical errors, the abbreviation of one of the lengthy proofs,
his pointing out that on a power of sets the group of permutations of the factors
acts contravariantly to its action on the components of a tuple-element of the
product, and, finally, for drawing our attention to a delicate gap in our original
argument for the equation Inn

∏
j∈J sj =

∏
j∈J Inn sj which we overcame by

invoking a result of Moskowitz and Sacksteder in this journal [14] stating
that in a connected real Lie group every element is a product of at most two
exponentials.

The results of this paper were presented by the authors at the conference in Israel
on “Automorphism Groups of Topological Structures” at the Eilat campus of the
Ben Gurion University of the Negev on June 21, 2010.

The general architecture of our text is as follows:

Section 0 Abstract.

Section 1 Introduction.

Section 2 The automorphism group of semisimple pro-Lie algebras.

Section 3 The automorphism group of semisimple pro-Lie groups.

Section 4 Topological groups with pro-Lie identity component.

Section 5 Almost connected pro-Lie groups.

Section 6 Maximal compact subgroups.

Section 7 The conjugacy of maximal compact subgroups.

Section 8 The structure of almost connected pro-Lie groups.

Section 9 References.

2. The automorphism group of semisimple pro-Lie algebras

Recall from [7], Theorem 10.29 p. 435 that a connected pro-Lie group G is
semisimple iff its Lie algebra g is semisimple iff (by [7], Corollary 7.29, p. 283)
there is a family {sj : j ∈ J} of finite dimensional simple real Lie algebras
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such that g ∼=
∏
j∈J sj . Any automorphism α:G → G yields an automorphism

L(α): g→ g , and
α 7→ L(α) : AutG→ Aut g

is an injective morphism of groups. If for g ∈ G the function Ig:G → G is the
inner automorphism defined by Ig(x) = gxg−1 , then g 7→ Ig : G→ Aut(G) is a
morphism of groups whose kernel is the center Z(G) of G , and the composition
G → Aut(G) → Aut(g) given by g 7→ L(Ig) is none other than the adjoint
representation Ad:G→ Aut(g) discussed in [7], pp. 131f.

So if one wants to talk about automorphisms of connected semisimple
pro-Lie groups one must necessarily focus on the automorphism group of semisim-
ple pro-Lie algebras.

In the following we assume that

j 7→ sj is a function from a set J into the class of simple finite dimensional real
Lie algebras, that

g =
∏
j∈J

sj

and that Aut g is the group of all automorphisms of g as a topological Lie
algebra.

The Algebraic Theory of Aut g

For each k ∈ J define a function inck: sk → g by inck(X) = (Yjk)j∈J , where

Yjk =

{
X if j = k,
0j if j 6= k,

and set
mk = inck(sk).

As usual, let prk: g→ sk be the projection, given by prk((Xj)j∈J) = Xk . Then
prk ◦ inck = idsk and inck ◦ prk: g→ g is an idempotent endomorphism of g with
image mk . For each k ∈ J , the subset mk is a clearly minimal ideal of the Lie
algebra g .

Lemma 2.1. Let m be a minimal ideal of g . Then there is a k ∈ J such
that m = mk .

Proof. (Short proof, courtesy referee:) Pick a nonzero element (Xj)j∈J ∈ m
and a k ∈ J such that Xk 6= 0. Then mk ∩ m is an ideal of g contained in
mk ∩m and is nonzero because mk has trivial center. Hence m = [mk,m] by the
minimality of m . Now m = [mk,m] ⊆ mk and thus m = mk by the minimality
of mk .

Note that in the abelian pro-Lie algebra RN every one-dimensional vector
subspace is a minimal ideal and not only the subspaces

mk
def
= {(rkn)n∈N ∈ RN : rkn = 0 if n 6= k}.

In fact the abelian Lie algebra R2 has more minimal ideals than just R × {0}
and {0} × R .
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An automorphism α ∈ Aut g must permute the minimal ideals. Let P (J)
denote the group of all permutations of J . So there is an element σ(α) ∈ P (J)
such that

(∀j ∈ J)α(mj) = mσ(α)(j).

Let S be a set containing exactly one specimen of each isomorphism
class of finite dimensional simple real Lie algebras. Then each semisimple pro-
Lie algebra g is determined uniquely up to isomorphism by a partition of the
index set J :

J =
⋃
s∈S

J(s)

into subsets J(s) = Jg(s) such that we may (and will) write

g =
∏
s∈S

sJ(s)

where we call the powers Fs
def
= sJ(s) the isotypic factors. Set

PS(J) = {σ ∈ P (J) : σ(J(s)) = J(s)},

a subgroup of P (S). Notice that

(1) PS(J) ∼=
∏
s∈S

P (J(s)).

Each automorphism α must preserve the isotypic factor Fs and thus
σ(α) ∈ PS(J).

Definition of σ , ψ , and ρ

Therefore we have defined a function

(∗) σ: Aut g→ PS(J)

which is easily verified to be a morphism of groups by its definition. If τ ∈ PS(J),
define ψ(τ) ∈ Aut g by ψ(τ)((Xj)j∈J) = (Xτ−1(j))j∈J . Since sτ−1(j) = sj by the
definition of PS(J), this is a well defined automorphism satisfying ψ(τ)(mj) =
mτ(j) . Hence σ(ψ(τ)) = τ . Thus σ: Aut g→ PS(J) is a homomorphic retraction
and is, in particular, surjective; the function

(∗∗) ψ:PS(J)→ Aut g

is a right inverse of σ .

Quite generally, let σ:A → H be a homomorphic retraction of groups
and set N = kerσ . Define ψ:H → A to be the coretraction satisfying
σ ◦ ψ = idH . Then there is a morphism γ:H → AutA defined by γ(h)(a) =
ψ(h)aψ(h)−1 , and the function ρ:N×γH → A , ρ(n, h) = nψ(h) is an iso-
morphism with inverse given by ρ−1(a) = (aψσ(a)−1, σ(a)). This is verified
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directly; homomorphic retractions are, in this sense, an alternative manifesta-
tion of semidirect products.

We want to apply these arguments to the homomorphic retraction
σ: Aut g→ PS(J).

Firstly, an automorphism α of g is in the kernel of σ iff α(mj) = mj , that is, iff
there is an element (αj)j∈J ∈

∏
j∈J Aut sj such that α((Xj)j∈J) = (αj(Xj))j∈J .

(†) We shall henceforth identify kerσ with
∏
j∈J Aut sj ,

and conclude

Proposition 2.2. (Algebraic Gross Structure) The function

(∗∗∗) ρ :
∏
j∈J

Aut sj×γ PS(J)→ Aut g,

defined by
ρ
(
(αj)j∈J , τ

)(
(Xj)j∈J

)
=
(
αj(Xτ−1(j))

)
j∈J ,

is an isomorphism of groups with inverse function

α 7→ (α·ψσ(α)−1, σ(α)).

Topologizing Aut g

We use the isomorphism in the Gross Structure Theorem to introduce a group
topology on Aut g . It is easy to consider the individual constituents

∏
j∈J Aut gj

and PS(J) of the formula for Aut g .

Firstly, for a simple finite dimensional Lie algebra s , the group Aut s ,
as a closed subgroup of the full linear group Gl(s) is a Lie group. Accordingly,
Aut g =

∏
j∈J Aut sj is a product of a family of finite dimensional Lie groups

and is, therefore a pro-Lie group.

We record for later reference:

Lemma 2.3a. The group
∏
j∈J Aut sj and all its closed subgroups are pro-

Lie groups.

Finally, we consider on the index set J the discrete topology. Then the
function semigroup JJ has a product topology which is nondiscrete if J is in-
finite. It induces on the subgroup P (J) the topology of pointwise convergence
which agrees here with the compact open topology, making P (J) into a topo-
logical group. Since the reader might prefer to have an independent recourse to
this claim, we insert a proof of this claim:

Lemma 2.3b. Let J be a set and let P (J) ⊆ JJ be the set of all permutations
of J with the topology of pointwise convergence, that is, the topology induced from
the product topology of JJ where J has the discrete topology. Then P (J) is a
topological group.
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Proof. The function

(f, g) 7→ f ◦ g : P (J)× P (J)→ P (J)

is continuous, since for fixed f, g ∈ P (J) and j ∈ J , the set

{(f ′, g′) ∈ P (J)× P (J) : f ′
(
g′(j)

)
= f(g(j))}

contains the open set

{f ′ ∈ P (J) : f ′
(
g(j)

)
= f

(
g(j)

)
} × {g′ ∈ P (J) : g′(j) = g(j)}.

Next we show that f 7→ f−1:P (J) → P (J) is continuous by showing
that f 7→ f−1(j) : P (J) → J is continuous for each j ∈ J . But for fixed
f ∈ P (J) and j ∈ J the set

{F ∈ P (J) : F−1(j) = f−1(j)} = {F ∈ P (J) : F
(
f−1(j)

)
= j}

is open in P (J). This proves the Lemma.

If J is finite, P (J) is finite and has the alternating group as normal
subgroup of index 2; the alternating group is simple if card J ≥ 5. If J is
infinite, in the normal subgroup of all permutations leaving a cofinite subset of J
elementwise fixed, every element, like any permutation on finitely many elements,
has a signature “even or odd”; the subgroup of even permutations is an infinite
simple subgroup. The topological group P (J) is totally disconnected.

Remark 2.4. If J is infinite, then P (J) is not closed in JJ and fails to be
complete.

Proof. Since an infinite set contains a copy of N , it suffices to show that the
subgroup P (N) of NN is not closed in NN . We depict a function f ∈ NN by

f =

(
1 2 · · · n · · ·

f(1) f(2) · · · f(n) · · ·

)
.

Then the sequence

fn =

(
1 2 · · · n− 1 n · · ·
2 3 · · · n 1 · · ·

)
, n = 2, 3, . . .

converges to

f =

(
1 2 · · · n− 1 n · · ·
2 3 · · · n n+ 1 · · ·

)
.

Moreover, fn ∈ P (N) while f(m) 6= 1 for all m ∈ N and thus F fails to be in
P (N).

The sequence (fn)n∈N is a Cauchy sequence in the sense that for every
identity neighborhood U in P (N) there is an N ∈ N such that m,n ∈ N and
m,n > N implies fnf

−1
m ∈ U . Since it does not converge in P (N), the group

P (N) fails to be complete.
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In particular, for infinite J , the group P (J) is not prodiscrete. The
group P (N) does not embed into any complete group. (Cf. [1].)

We note that despite these observations, P (N) is a Polish group.

Let us discuss the compact subgroups K ⊆ P (J). For two equivalence
relations R , R′ on a set J we say that R′ refines R , written R � R′ , iff every
equivalence class of R′ is contained in one of R .

Proposition 2.5. (a) Let R be any equivalence relation on J , giving us a
partition J/R of J into finite cosets. Then the subgroup

CR
def
= {τ ∈ P (J) : (∀j ∈ J) τ(R(j)) ⊆ R(j)}

is a compact subgroup of P (J) and is isomorphic to
∏
I∈J/R P (I) .

(b) For a subgroup K ⊆ P (J) the following statements are equivalent:

(i) K is compact.

(ii) K is closed in P (J) and has finite orbits K(j) .

(iii) K is closed in JJ and there is an equivalence relation R of J such that
the equivalence classes R(j) are finite and invariant under the action of K for
all j ∈ J .

(c) Let K be a compact subgroup of P (J) and let R be the equivalence
relation with the orbits K(j) , j ∈ J as cosets. Then K ⊆ CR .

(d) If R and R′ are equivalence relations with finite cosets such that
R � R′ , then CR ⊇ CR′ .

Proof. (a) Clearly, CR is a closed subgroup contained in
∏
j∈J R(j) ⊆ JJ

and is therefore compact. If τ ∈ CR , then for each I ∈ J/R , the permutation τ
induces a permutation τ |I : I → I . The function

τ 7→ (τ |I)I∈J/R : CR →
∏

I∈J/R

P (I)

is readily seen to be an isomorphism of topological groups.

Next we prove (b).

(i)⇒(ii): Assume (i). Then K is a compact subset of JJ and is
therefore contained in a product

∏
j∈J Jj with finite subsets Jj ⊆ J . This

implies that the orbits K(j) ⊆ Jj are finite for all j ∈ J . Since K is compact,
K is closed in P (J).

(ii) ⇒(iii): Let R be the equivalence relation whose cosets are the
orbits of K .

(iii)⇒(i): We observe that K = K ⊆ CR which proves that K is
compact by the compactness of CR according to (a).

(c) and (d) are straightforward.
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The subgroup of P (N) consisting of all
f ∈ P (N) satisfying f(2n− 1) = 2n , f(2n) = 2n− 1

for finitely many n and fixing all other elements has finite orbits but is not
compact.

Remark. Every compact totally disconnected group G has a faithful contin-
uous representation π:G→ P (J) for a suitable set J .

Proof. Every totally disconnected compact group G is profinite. (See
[6], Theorem 1.34). In other words, if N is the filter basis of open normal
subgroups N , then the natural morphism f :G →

∏
N∈N G/N is injective. Let

J =
⋃
N∈N G/N and define π:G → P (J) by π(g)(hN) = ghN for h ∈ G ,

N ∈ N . Then π is the required faithful representation.

Recall the morphisms of groups

σ : Aut g→ PS(J), σ(mj) = mσ(α)(j),

ψ : PS(J)→ Aut g, ψ(τ)((Xj)j∈J) = (Xτ−1(j))j∈J ,

satisfying σ ◦ ψ = id.

Lemma 2.6. (i) The group G
def
=
∏
j∈J Aut sj× PS(J) is a topological group.

(ii) If all sets J(s) are finite,then PS(J) is compact and

G =
∏
s∈S

(
Aut sJ(s)× P (J(s))

)
is a pro-Lie group.

(iii) If there is an s ∈ S such that J(s) is infinite, then P (J(s)) and G
are incomplete topological groups which cannot be completed.

Proof. (i) In order to show that G is a topological group we have to show that
the automorphic action of PS(J) on

∏
j∈J Aut sj =

∏
s∈S(Aut s)J(s) is jointly

continuous. We write p = (αj)j∈J ∈
∏
j∈J Aut sj and we have to verify that

(π, p) 7→ ψ(π)(p) = (απ−1(j))j∈J is a continuous function

PS(J)×
∏
j∈J

Aut sj →
∏
j∈J

Aut sj .

We recall that a function f :A→
∏
j∈J Bj from a topological space to a

product of topological spaces is continuous iff prj ◦f :A → Bj is continuous for
each j where prj is the projection onto the factor Bj . Thus, if we fix k ∈ J we
note that

(π, (αj)j∈J) 7→ ατ−1(k) : PS(J)×
∏
j∈J

Aut sj → Aut sτ−1(k)

is indeed continuous in view of the topology of pointwise convergence on P (J).
Thus G = (

∏
j∈J Aut sj)× PS(J) is a topological group.
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(ii) The compactness of PS(J) ∼=
∏

s∈S P (J(s)) is clear.

The group G is a pro-Lie group iff (Aut s)J(s)× P (J(s)) is a pro-Lie
group for all s ∈ S which is certainly the case if J(s) if finite for all s .

(iii) If J(s) is infinite for some s , then
P (J(s)) and thus Aut sJ(s)× P (J(s))

are incomplete by our Remark preceding Proposition 2.5. Hence neither of these
groups is a pro-Lie group.

Let |g| be the underlying weakly complete topological vector space of
the semisimple pro-Lie algebra g .

Let 1 be the identity automorphism of g . For a subset K ⊆ g , and an
open 0-neighborhood U ⊆ g we set

W (K,U) = {α ∈ Aut g : (∀k ∈ K)α(k)− k ∈ U} .

The compact-open topology of Aut g has a basis of sets W (K,U)·γ as
K ranges through the compact subsets of |g| , U through the zero neighborhoods
of |g| , and γ through Aut g .

Now we focus on certain basic identity neighborhoods W (K ′, U ′) as
follows: let W (K,U) be a basic identity neighborhood of Aut g . Define K ′ =∏
j∈J Cj with a compact subset Cj = prj(K) of sj ; then K ⊆ K ′ and K ′ is

compact. Let U ′ =
∏
j∈J Vj where all Vj are zero neighborhoods of sj and

where, for a suitable finite subset F of J , we have Uj = sj for j ∈ J \ F
so that U ′ ⊆ U . Then W (K ′, U ′) ⊆ W (K,U) and we shall say that a basic
identity neighborhood W (K,U) is special with respect to a finite subset F ⊆ J
if K and U are products as K ′ and U ′ above, respectively; we shall then write
g = g1 × g2 , where

(2)

g1 =
∏
j∈F

sj ,

g2 =
∏

j∈J\F

sj .

Then the definition of K ′ implies K = K1 ×K2 , where

(3)

K1 =
∏
j∈F

Cj ,

K2 =
∏

j∈J\F

Cj .

We also note U = U1 × g2 , where

(4) U1 =
∏
j∈F

Vj .

We have observed that every identity neighborhood of Aut g contains a special
one.

The right translations α 7→ αγ : Aut g → Aut g are certainly home-
omorphisms of Aut g . If f :A → B is a morphism of groups between groups
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carrying a topology such that all right translations of A , respectively, B are
homeomorphisms, then f is continuous iff f is continuous at the identity of A .

Lemma 2.7. If Aut g and its subgroup
∏
j∈J Aut sj are given the compact

open topology, then both

(∗) σ:
∏
j∈J

Aut sj → PS(J)

and

(∗∗) ψ:PS(J)→
∏
j∈J

Aut sj

are continuous.

Proof. Regarding σ : we need to establish continuity at 1 . By the definition
of the topology of pointwise convergence of PS(J) a basic open neighborhood
VF of the identity in this group is given by a finite subset F ⊆ J so that

(5) VF = {τ ∈ PS(J) : (∀j ∈ F ) τ(j) = j}.

We have to show that σ−1(V ) is an identity neighborhood. If we let
Vj = {τ ∈ PS(J) : τ(j) = j} , then VF =

⋂
j∈F Vj , and it suffices to show

that σ−1(Vj) is an identity neighborhood for each j ∈ F . So assume now that
F = {k} and write V = Vk . Then α ∈ Aut g is in σ−1(V ) iff α(mk) = mk .
Let X 6= 0 in mk and h the closed vector subspace {0k} ×

∏
j∈J\{k} sj . Then

g = mk ⊕ h and X /∈ h . Now we find a 0-neighborhood U of g so small that

(X + U) ∩ h = Ø.

Now W ({X}, U) is an identity neighborhood of Aut g . If α ∈W ({X}, U), then
α(X) −X ∈ U , i.e. α(X) ∈ X + U . Thus (X + U) ∩ α(mk) 6= Ø. Now either
α(mk) = mk or α(mk) ⊆ h . The latter case would entail (X + U) ∩ h 6= Ø,
contrary to (X + U) ∩ h = Ø. Thus α(mk) = mk . Hence α ∈ σ−1(V ). We have
shown W ({X}, U) ⊆ σ−1(V ) and thus σ−1(V ) is an identity neighborhood.

Regarding ψ : let W (K,U) be a special basic identity–neighborhood of
Aut g with respect to F ⊆ J . We let W = {τ ∈ PS(J) : (∀j ∈ F ) τ(j) = j} .
Then W is an identity neighborhood of PS(J). If τ ∈W , then by the definition
of ψ the automorphism ψ(τ) of g = g1 × g2 leaves g1 and g2 invariant and
indeed g1 elementwise so. Now let X ∈ K , that is X = (X1, X2) with
Xi ∈ Ki , i = 1, 2. Then ψ(τ)(X) = (X1, X

′
2) for some X ′2 ∈ g2 . Thus

ψ(τ)(X)−X = (0, X2 −X ′2) ∈ U1 × g2 = U . So W ⊆ ψ−1(W (K,U)), and this
proves our claim, thereby concluding the proof of the Lemma.

Lemmas 2.6 and 2.7 imply that the groups PS(J) and ψ(PS(J)) ⊆ Aut g
are isomorphic topological groups and prove the following

Lemma 2.8. The algebraic isomorphism

ρ−1: Aut g→
∏
j∈J

Aut sj×γ PS(J), ρ−1(α) = (α ◦ ψσ(α)−1, σ(α))

is continuous.
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Lemma 2.9. The morphism

ρ:
∏
j∈J

Aut sj×γ PS(J)→ Aut g, ρ(α, τ) = α ◦ ψ(τ)

is continuous.

Proof. It suffices again to prove continuity at the identity. Let W (K,U) be
a special identity neighborhood of Aut g with respect to F ⊆ J . Recall from (7)
and (8) the compact subset K1 of g1 and the zero neighborhood U1 of g1 . Also
recall the zero neighborhood VF of PS(J) from (9). Then

W
def
= (W (K1, U1)×

∏
j∈J\F

Aut sj)× VF

is an identity neighborhood of
∏
j∈J Aut sj × PS(J). Now let

(α, τ) = (((αj)j∈F , (αj)j∈J\F ), τ) ∈W.

Then ρ(α, τ) = α ◦ψ(τ). Let (Xj)j∈J = ((Xj)j∈F , (Xj)j∈J\F ) ∈ K = K1×K2 .
Then ρ(α, τ)((Xj)j∈J)− (Xj)j∈J

= ((αj(Xj)−Xj)j∈F , (αj(Xτ−1(j))−Xj)j∈J\F ) ∈ U1 ×
∏

j∈J\F

sj = U

since (α, τ) ∈ W . This shows that ρ(W ) ⊆ W (K,U), establishing finally the
continuity of ρ .

The Topological Group Aut g .

For a pro-Lie algebra g , the inner automorphism group of g is the group

Inn g
def
= 〈ead g〉,

algebrically generated by all automorphisms of the form eadX for X ∈ g . The
group Inn g is normal in Aut g ; the factor group Aut g

Inn g is written Out g and is

called the outer automorphism group (somewhat of a misnomer!).

We are now ready for the first principal result of this section, recalling
that a topological group G is almost connected iff G/G0 is compact.

Main Theorem 2.10. Let g =
∏
j∈J sj be a semisimple pro-Lie algebra and

Aut g the group of all automorpisms of the topological Lie algebra g . Then the
compact open topology on the group Aut g makes it a topological group, and, in
the sense of topological groups, there is an isomorphism

ρ:
∏
j∈J

Aut sj×γ PS(J)→ Aut g, ρ((αj)j∈J , τ)((Xj)j∈J) = (αj(Xτ−1(j)))j∈J .
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Firstly, the group

PS(J) ∼=
∏
s∈S

P
(
J(s)

)
as defined in (1) is a permutation group endowed with the group topology of
pointwise convergence.

Secondly, the group
∏
j∈J Aut sj is an almost connected pro-Lie group

and the identity component (Aut g)0 of Aut g is the group Inn g of inner auto-
mophisms corresponding via ρ to

∏
j∈J Inn sj ∼=

∏
s∈S(Inn s)J(s) .

Proof. By Proposition 2.2, ρ is an algebraic isomorphism, and by Lemmas
2.8 and 2.9, ρ is a homeomorphism. By Lemma 2.6, the image of ρ is a topologi-
cal group. Thus the domain Aut g of ρ is a topological group as well, and ρ is an
isomorphism of topological groups. It remains to show that (Aut g)0 = Inn g and
that

∏
j∈J Aut sj is almost connected. We shall do this by considering the topo-

logical group (
∏
j∈J Aut sj)× PS(J). The group PS(J) is totally disconnected.

Hence we may concentrate on
∏
j∈J Aut sj . It is well established that the iden-

tity component (Aut sj)0 is the subgroup Inn(sj) of inner automorphisms and

that Out sj
def
= Aut sj/ Inn sj is finite. (See e.g. Murakami [15] or [4].) For

g =
∏
j∈J sj it follows that (Aut g)0 = (

∏
j∈J Aut sj)0 =

∏
j∈J(Aut sj)0 =∏

j∈J Inn sj = Inn g ; here the equation Inn g =
∏
j∈J Inn sj is a consequence of

the fact that in a real connected Lie group every element is the product of at
most two exponentials by a result of Moskowitz and Sacksteder [14]. We
conclude that ∏

j∈J Aut sj

(
∏
j∈J Aut sj)0

∼=
∏
j∈J

Out sj

as a product of finite sets is compact totally disconnected. Thus
∏
j∈J Aut sj is

an almost connected pro-Lie group in view of Lemma 2.3a.

In order to complete the picture, we add a table of the possible groups
that occur as groups Out s for a finite dimensional real simple Lie algebra apart
from the many cases that this group is singleton:

groups types orders

(1) Z(2) = Z/2Z, Z(2)2, Z(2)3 abelian 2, 4, 8.
(2) Z(4)× Z(2) ∼= D4 dihedral 8.
(3) Z(3)× Z(2) ∼= S3 symmetric group 6.
(4) S3 × Z(2) solvable 12.
(5) S4 symmetric group 24.

Detailed tables tell us where they occur; we shall not need this information.

The Ingredient of Compactness in Aut g

It is helpful to use the following convention on topological groups: Let G be a
topological group, N a closed normal subgroup and H a closed subgroup such
that G = NH . Now H acts automorphically on N via inner automorphisms, the
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semidirect product N×H and the natural surjective morphism µ:N×H → G ,

µ(n, h) = nh are well-defined; its kernel is K
def
= {(h−1, h) ∈ N×H : h ∈ N ∩H}

and the function h 7→ (h−1, h) : N ∩ H → K is an isomorphism of topological
groups. Denote the natural bijective morphism h(N ∩H) 7→ hN : H/(N ∩H)→
G/N by α and the quotient maps g 7→ gN : G→ G/N and h 7→ h(N∩H) : H →
H/(N ∩H) by p , respectively, q . Note that α is an isomorphism of topological
groups if H/(N ∩H) is compact, and thus in particular if H is compact.

We say that a morphism f :A → B of topological groups has a cross-
section s:B → A if s is a continuous function such that f ◦ s = idB and
s(1) = 1. If f has a cross-section, then f is open, and a 7→ (as(f(a))−1, f(a)) :
A→ ker f ×B is a homeomorphism with inverse map (k, b) 7→ ks(b).

Lemma FIT. (On the First Isomorphism Theorem) The following condi-
tions are equivalent:

(i) q has a cross-section s:H/(N ∩ H) → H , and α is an isomorphism of
topological groups.

(ii) p has a cross section S:G/N → G with values in H .

(iii) There is an idempotent continuous self-map P :G → G with image N and
P−1(n) = nP−1(1) ⊆ nH for n ∈ N .

These conditions imply

(iv) µ has a cross-section ν:G→ N ×H .

Proof. (i)⇒(ii): Let j:H → G be the inclusion map and define S by
S = j◦s◦α−1 . This is a continuous function. Every element of G/N is of the form
Nh with a suitable h ∈ H and so S(Nh) = s((N ∩H)h) ∈ (N ∩H)h ∈ H ∩Nh .

(ii)⇒(i): We let S′:G → H denote the corestriction of S . Then
α−1 = q ◦ S′ : indeed (N ∩ H)S(Nh) = α−1(Nh). Thus α−1 is continuous.
Further define s:H/(N ∩H) → H by s((N ∩H)h) = S(Nh), i.e., s = S′ ◦ α .
Then q ◦ s = q ◦ S′ ◦ α = α−1 ◦ α .

(ii)⇒(iii): Set P (g) = gS(p(g))−1 . Write g = nS(p(g)) for a suitable
element n ∈ N ; then P (g) = n . If g = n ∈ N , then S(p(g)) = 1 and so
P (g) = g . Assume P (g) = 1, that is g = S(p(g)). Then g ∈ H by (ii). If
P (g) = n , then g = nS(p(g)) ∈ nP−1(1) ⊆ nH .

(iii)⇒(ii): Define η(g) = P (g)−1g . Since P (g) ∈ N and g ∈ P (g)H we
can write g = P (g)h for some h ∈ H and thus η(g) = h ∈ H and therefore
Ng = Nη(g) for all g ∈ G .

(i)⇒(iv): Assume s exists, then define φ:G→ H by φ = s◦α−1◦p . Let
g = nh ∈ G with n ∈ N and h ∈ H . Then we may write α−1(p(g)) = h(N ∩H)
and φ(g) is an element h′ ∈ h(N ∩H), whence

gφ(g)−1 = nhh′−1 ∈ N(N ∩H) = N , φ(1) = 1.

Define ν:G → N×H by ν(g) = (gφ(g)−1, φ(g)). Then µ ◦ ν = idG , ν(1) =
(1, 1). Since α is assumed to be an isomorphism of topological groups, then φ
and therefore ν are continuous.

We note that in condition (i), the cross section s exists trivially if
N∩H = {1} and so, in this case, the equivalent conditions of Lemma FIT reduce
to the Open Mapping Theorem situation that the natural bijective morphism
α:H → G/N , α(h) = Nh is open. This is the case whenever H is compact,
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or, analogously, if N is compact, because then n 7→ nH : N → G/H is a
homeomorphism. Thus, if G = NH , N ∩H = {1} and α is open then we shall
write G = N •H and say that G is the intrinsic semidirect product of N and
H . This then indicates, in particular that µ:N×H → G is an isomorphism
of topological groups. The added generality about the cross-sections in Lemma
FIT is sometimes useful, notably if the assumption N ∩H = {1} is lacking while
cross-section theorems are still available.

Now we recall some facts from the theory of automorphisms of a finite
dimensional simple Lie algebra s . Dong Hoon Lee’s Supplement Theorem ([12],
Lemma 2.11) shows that for each s ∈ S there is a finite subgroup Es of Aut s
such that µ: Inn s×Es → Aut s , µ(α, ε) = α ◦ ε is a surjective morphism whose
kernel is isomorphic to Es ∩ Inn s .

For many simple real Lie algebras s , the morphism µ has been known to
be an isomorphism for a suitable choice of Es , but, surprisingly, this appeared to
be unknown in general until H. Gündoğan proved it to be true in general [3]. In
this situation, since Ej is finite for each j ∈ J , the conditions of Lemma FIT(i)
are satisfied for G =

∏
j∈J Aut sj , N =

∏
j∈J Inn sj , H =

∏
j∈J Ej .

Therefore, the subgroup
∏
j∈J Aut sj of Aut g according to (†) has the

following property for whose formulation we recall our convention on the isotypic
factors Fs = sJ(s) for each s ∈ S that we have Aut sj = Aut sk for all j, k ∈ J(s),
s ∈ S :

(6)

∏
j∈J

Aut sj =
∏
s∈S

(Aut s)J(s)

=
∏
s∈S

(Inn s • Es)
J(s)

=
(∏
s∈S

(Inn s)J(s)
)
•
(∏
s∈S

E
J(s)
s

)
,

where • is written for an intrinsic semidirect product.

It follows from this representation that the automorphic action of the
group PS(J) on

∏
j∈J Aut sj according to (∗∗) respects both the factors∏

s∈S(Inn s)J(s) and
∏

s∈S E
J(s)
s .

Let us write Ej = Es for j ∈ J(s); then we may define

(7) E
def
=
∏
j∈J

Ej =
∏
s∈S

E
J(s)
s .

Since the group PS(J) acts on E as a group of automorphisms, and E is
compact, the intrinsic semidirect product

(8) ∆
def
= E • PS(J) ∼= E× PS(J)

is a well-defined subgroup of Aut s ∼= (
∏
j∈J Aut sj)× PS(J). Also we may write

(9) Inn g =
∏
j∈J

Inn sj =
∏
s∈S

(Inn s)J(s).
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With this notation we have the following refinement of the results ob-
tained so far:

Theorem 2.11. (Refined Structure Theorem) For a semisimple pro-Lie al-
gebra g there are isomorphisms of topological groups

Inn g •∆ ∼= (Inn g • E) • PS(J) ∼= Aut g.

Proof. By Theorem 2.10 we have an isomorphism

ρ:
∏
j∈J

Aut sj×γ PS(J)→ Aut g.

By (6), (7), (9) and the Lemma above we have
∏
j∈J Aut sj =

∏
j∈J Inn sj • E

and therefore an isomorphism

(Inn g • E)× PS(J)→ Aut g.

Since E is left invariant under the action of PS(J), we have the identity

(Inn g • E)× PS(J) ∼= Inn g • (E× PS(J)) = Inn g×∆

in view of (8). This proves the Theorem.

The closed subgroup PS(J) is isomorphic to
∏

s∈S P (J(s)) and is there-
fore pro-discrete if and only if all J(s) are finite.

From the developments of Theorems 2.10 and 2.11 we obtain

Corollary 2.12. Let g =
∏
j∈J sj be a semisimple pro-Lie algebra. Then

(a) The automorphism group Aut g is isomorphic to Inn g • ∆ , where
(Aut g)0 = Inn g =

∏
j∈J Inn sj is a product of connected simple centerfree Lie

groups and is, accordingly, a connected pro-Lie group, and where ∆ is totally
disconnected.

(b) ∆ ∼= E× PS(J) is itself a semidirect product; here E is a product
of finite groups, and PS(J) is a closed subgroup of the totally disconnected full
permutation group P (J) of the index set J .

(c) ∆ is prodiscrete iff all J(s) are finite.

(d) Assume that H is a closed subgroup of Aut g containing (Aut g)0 .
Then there is a totally disconnected subgroup C of ∆ such that H = H0 •C . If
H is almost connected, then C is compact.

Proof. The Statements (a), (b) and (c) are summaries of what was shown
above. In order to prove (d) we let H be a closed subgroup with H0 = Inn g .
Let C = ∆∩H . Since ∆ is totally disconnected, C is totally disconnected. By
the Modular Law, H ∩ (Inn g)∆ = H0(H ∩∆) = H0C . From Aut g = (Inn g)•∆
we have H = H0 • C and so, in particular, C ∼= H/H0 . Thus, if H is almost
connected, C is compact.
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Automorphic Action of a Compact Group

First let us return to sJ for a set J and a simple Lie algebra s and assume that
Ω is a compact group acting automorphically on sJ , that is, there is a continuous
action

(ω, g) 7→ ω·g : Ω× sJ → sJ

such that g 7→ ω·g is in Aut(sJ) for all ω ∈ Ω.

By Proposition 2.5, every compact subgroup of P (J) is contained in
a subgroup of the form CR = {τ ∈ P (J) : (∀j ∈ J) τ(R(j)) ⊆ R(j)} for an
equivalence relation R on J with finite cosets. Consequently, if P (J) acts on
sJ by τ ·(sj)j∈J = (st−1(j))j∈J , then

sJ =
∏

ξ∈J/R

sξ

is a decomposition of sJ into a product of finite dimensional semisimple Lie
algebras which are invariant under the action of CR . Accordingly, if Ω is a
compact group acting automorphically on sJ , then there is a morphism

ω 7→ (ωj)j∈J : Ω→ (Aut s)J

of topological groups and an action (ω, j) 7→ ω·j : Ω× J → J such that

ω·(sj)j∈J = (ωj(sω−1·j))j∈J

As a consequence, sJ =
∏
ξ∈J/Ω sξ is a decomposition of sJ into a product of

finite dimensional semisimple Lie algebras which are invariant under the action
of Ω.

Continuing this notation, we shall obtain

Lemma 2.13. There is a maximal compactly embedded subalgebra k of sJ

which is invariant under Ω .

Proof. Let ξ ∈ J/R . Then there is an automorphic action of Ω on the finite
dimensional Lie algebra sξ . That is, there is a morphism of topological groups

π: Ω → Aut sξ . Since Ω is compact, L
def
= π(Ω) is a compact Lie subgroup of

the Lie group Aut sξ . We set

S
def
= Γ(s),

the simply connected Lie group with Lie algebra s which is unique up to natural
isomorphism. (See also [7], Chapters 2 and 6.) Since there is a natural isomor-
phism α 7→ L(α) : Aut s→ AutS we have an automorphic action of the compact
Lie group L on the Lie group Γ(sξ) ∼= Sξ . We can form the almost connected
Lie group Sξ× L and its quotient

G
def
= (S/Z(S))ξ× L ∼=

Sξ× L
Z(S)ξ × {1}

.

We abbreviate P
def
=
(
S/Z(S)

)ξ × {1} . Let K be a maximal compact subgroup
of the simple centerfree (adjoint) connected Lie group S/Z(S). Then K is
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connected and N(K,S/Z(S)) = K (see [17], Lemma 1.1.3.7. on p. 28.). Set

K1
def
= Kξ × {1} . It follows that N(K1, P ) = K1 , where N(K1, P ) as usual

denotes the normalizer of K1 in P .

Let us briefly pause for a recollection of the

Frattini Argument. Let Γ be a group acting on a set X and Σ ⊆ Γ
a subgroup acting transitively, then Γ = Σ·Γx where Γx is the isotropy group
{γ : γ·x = x} at any x ∈ X .

(See e.g. [6], Lemma preceding Corollary 6.35, p. 216.)

The inner automorphisms of G act transitively on the maximal compact
subgroups of P and so the Frattini Argument yields G = PN(K1, G) and
P∩N(K1, G) = K1 . We note that N(K1, G)/K1 = N(K1, G)/

(
P∩N(K1, G)

) ∼=
G/P = L is compact, and so N(K1, G) is compact. We claim that N(K1, G) is
maximal compact in G . We isolate this claim in the following

Lemma Max. Let M be a compact subgroup of G and P a closed normal
subgroup of G such that G = PM and M contains a maximal compact subgroup
Q of P . Then M is maximal compact in G .

Proof. Let C∗ be a compact subgroup of G containing M , then Q ⊆ P ∩C∗ .
By the maximality of Q in P we have Q = P ∩C∗ . But then C∗ = (P ∩C∗)M =
QM = M , as claimed.

It is known that in almost connected Lie groups the maximal compact
subgroups are conjugate (see [5], p. 380, Theorem 3.1). Consequently, there is a
g ∈ G such that {1} × L ⊆ gN(K1, G)g−1 = N(gK1g

−1, G). Let Ig ∈ Aut(P )
be the automorphism induced by the inner automorphism implemented by g on
P . Thus the maximal compact subgroup Ig(K1) is L -invariant. Its Lie algebra
kξ is a maximal compactly embedded Ω-invariant subalgebra of sξ . Now we set
k =

∏
ξ∈J/Ω kξ ⊆

∏
ξ∈J/Ω sξ = sJ . Then k is maximally compactly embedded in

s and is Ω-invariant.

Proposition 2.14. Let a compact group Ω act automorphically on a semisim-
ple pro-Lie algebra g . Then there is a maximal compactly embedded subalgebra
k ⊆ g which is Ω-invariant.

Proof. We let

g =
∏
s∈S

Fs, Fs = sJ(s)

be the isotypic decomposition of g . Since Ω acts automorphically, it preserves
the factors sJ(s) . On each of these, Ω acts automorphically and thus by Lemma
4.6, there is a maximal compactly embedded subalgebra ks ⊆ sJ(s) which is Ω-
invariant. Then k =

∏
s∈S ks is a maximal compactly embedded subalgebra that

is invariant under the action of Ω.
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3. The automorphism groups of semisimple pro-Lie groups

In the spirit of Lie theory, from the information on the automorphism group of a
pro-Lie group g we draw conclusions on the automorphism group of a connected
semisimple Lie group G . Let L be the Lie algebra functor as detailed in [7],
Chapters 2, 3 and 4. For a pro-Lie group G , we denote by

LG: AutG→ Aut g the function implemented by LG(α) = L(α),

where α:G → G is an automorphism of G . Assume first that G is simply
connected. Then we may identify G with Γ(g) as in [7], Theorem 6.5, p. 253.
By Theorem 6.6(vii) on p. 256 of [7]), Γ◦L is naturally isomorphic to the identity
functor of the category of pro-Lie groups and L ◦ Γ is naturally isomorphic to
the identity functor of the category of pro-Lie algebras. Therefore, LG: AutG→
Aut g is inverted by β 7→ Γ(β), so we conclude that LG: AutG → Aut g is an
isomorphism of topological groups.

Proposition 3.1. Let G be a simply connected semisimple pro-Lie group.
Then

(i) AutG is the semidirect product of the normal subgroup
∏
j∈J AutSj for

a family of simply connected simple real Lie groups Sj with simple Lie
algebras, and a subgroup isomorphic to PS(J) .

(ii) AutG is a topological group with respect to the compact open topology.

(iii) The morphism LG: AutG→ Aut g is an isomorphism of topological groups.

Proof. In order to prove (i), we determine the structure of AutG in complete
analogy to that of Aut g ; in the process we shall prove (ii) as well. By Theorem
10.29 on p. 435 of [7], G may be written as

∏
j∈J Sj with a family of simply con-

nected simple Lie groups Sj . Just as in Section 2, we may identify
∏
j∈J AutSj

with a subgroup of AutG . For each s ∈ S there is a simply connected simple Lie
group Ss such that L(Ss) = s . (In the terminology of [7], Ss = Γ(s).) Again as
in Section 2 we may assume that two factors Sj and Sk which are isomorphic,
are in fact equal. Then the permutation group PS(J) acts on

∏
j∈J AutSj via

a morphism γ:PS(J)→ Aut(
∏
j∈J Sj) given by

γ(τ)((αj∈J))((sj)j∈J) = (αj(sτ−1(j))j∈J).

As in the case of pro-Lie algebras, this morphism is continuous as is the function
(τ, α) 7→ Ψ(τ)(α) for α abbreviating (αj)j∈J . Thus (

∏
j∈J AutSj)×γ PS(J) is

a topological group. As in the proof of 2.10, the morphism

ρ:
∏
j∈J

AutSj×γ PS(J)→ AutG, ρ(α, τ) = α ◦ γ(τ)

is an isomorphism of groups and a homeomorphism if AutG is given the compact
open topology. This means that AutG is in fact a topological group. This
establishes (ii).
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Proof of (iii). We notice that by construction, we have a commutative
diagram ∏

j∈J Aut sj×γPS(J)
ρ−−−−→ Aut g∏

j∈J
LSj
×idPS (J)

y
yLG∏

j∈J AutSj×γPS(J)
ρ

−−−−→ AutG

From the theory of finite dimensional Lie groups we know that all maps
LSj : AutSj → Aut sj

are isomorphisms of topological groups. Thus the left vertical map is a homeo-
morphism. The two horizontal maps are isomorphisms. It follows that the right
vertical map LG is an isomorphism as well.

Corollary 3.2. Let G be a connected centerfree semisimple pro-Lie group.
Then

(i) AutG is the semidirect product of the normal subgroup
∏
j∈J AutSj for

a family of connected simple (and centerfree) real Lie groups Sj , and a
subgroup isomorphic to PS(J) .

(ii) AutG is a topological group with respect to the compact open topology.

(iii) The morphism LG: AutG→ Aut g is an isomorphism of topological groups.

Proof. Let G̃ be the universal group of G (see [7], paragraph following the end
of the proof of Theorem 6.6 on p. 259) which happens to be the universal covering
group (see [6], Definitions A.2.19 on p. 701 (2nd ed.)) of G as well. (Note in
passing that every pro-Lie group has a universal group, but not every pro-Lie
group, not even every compact one, has a universal covering group.) We invoke
Theorem 10.29 on p. 435 of [7] and observe that we have natural isomorphisms

G ∼= G̃/Z(G̃) =

∏
j∈J S̃j∏

j∈J Z(S̃j)
∼=
∏
j∈J

Sj ,

for a famliy of centerfree adjoint simple connected Lie groups Sj ∼= S̃j/Z(S̃j).

Every morphism α of G̃ satisfies α(Z(G̃)) ⊆ Z(G̃) and thus induces a morphism

ζ(α) of G and this yields a morphism of groups ζ: Aut G̃ → AutG . The
morphism

t: AutG→ Aut G̃, t(α) = α̃

obtained from the functoriality of G 7→ G̃ inverts ζ , and thus ζ is an isomor-
phism of groups with ζ−1 = t . The isomorphism ζ maps

∏
j∈J Aut S̃j onto∏

j∈J AutSj and preserves the copies of PS(J) in Aut G̃ , respectively, AutG ,
giving us a commutative diagram∏

j∈J Aut S̃j×γPS(J)
ρ

−−−−→ Aut G̃∏
j∈J

ζj×id

y
yζ∏

j∈J AutSj×γ′PS(J)
ρ′

−−−−→ AutG.
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The left downmap is an isomorphism of topological groups; the morphism ρ we
know to be an isomorphism of topological groups. That ρ′ is an isomorphism
of groups is verified as in 3.1 (respectively, 2.10), and likewise that it is a
homeomorphism, if AutG is given the compact open topology. Thus we know
that AutG is a topological group with respect to the compact open topology
and that ρ′ is an isomorphism. It follows from the commutativity of the diagram
that the right downmap ζ is an isomorphism as well.

We recall from [7], Chapter 2ff. that each pro-Lie algebra g determines
functorially a simply connected pro-Lie group Γ(g) such that g ∼= L

(
Γ(g)

)
. If g

is semisimple, so are Γ(g) and G
def
= Γ(g)/Z

(
Γ(g)

) ∼= Ad
(
Γ(g)

)
. The upshot of

these supplementary results is that all three of g , Γ(g) and G have “the same”
topological group as automorphism group. Theorem 2.10 gives additional details
on the fine structure of this automorphism group, notably on the fact that it
splits over its identity component.

We now wish to extend the structure theory to connected semisimple
pro-Lie groups in general. We endow the automorphism group AutG of a pro-
Lie group with the compact-open topology without claiming that, in general,
this will make it a topological group. The subgroup of all inner automorphisms
IG(g), IG(g)(x) = gxg−1 will be denoted InnG ⊆ AutG . We shall denote the
composition

G
IG−−−−→AutG

LG−−−−→Aut g

by Ad:G→ Aut g , as is customary.

Lemma 3.3. Let G be a topological group. Then the following statements
hold:

(i) The function IG:G → AutG is continuous if AutG is given the compact
open topology.

(ii) Let N be a characteristic closed subgroup of G and resN : AutG → AutN
the function defined by resN (f)(n) = f(n) , n ∈ N . Then resN is a
continuous function and a morphism of groups.

(iii) Let M and N ⊆M be closed characteristic subgroups of G . Then the func-
tion f :G → AutM/N , f(g)(mN) = gmg−1N is a continuous morphism
of groups.

Proof. (i) Since translations are continuous in AutG , it suffices to observe
continuity of I at the origin. Thus let K be a compact subset of G and V and
identity neighborhood of G . Then W (K,V ) = {α ∈ AutG : (∀k ∈ K)α(k) ⊆
V k} is a subbasic and indeed a basic identity neighborhood of AutG . For each
k ∈ K we now find an identity neighborhood Uk of G and a neighborhood
Ck of k such that [u, c] = ucu−1c−1 ∈ V for all u ∈ U and c ∈ Ck . By
compactness of K , there is a finite subset F ⊆ K such that K ⊆

⋃
k∈F Ck . Let

U =
⋂
k∈F Uk . Then U is an identity neighborhood satisfying [U,K] ⊆ V , and

thus uku−1 ∈ V k for all u ∈ U and k ∈ K . Thus IG(U) ⊆ W (K,V ), proving
the continuity of IG .

(ii) Restriction of automorphisms to a characteristic subgroup imple-
ments a morphisms of groups. We must show continuity at the origin. A basic
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identity neighborhood WN (C, V ) of AutN is given by a compact subset C ⊆ N
and an open identity neighborhood V of N so that β ∈ WN (C, V ) is given by
β(c)c−1 ∈ V for all c ∈ C . If we pick an open identity neighborhood U of G
such that U ∩N ⊆ V , then WG(C,U) is an identity neighborhood of AutG and
res
(
WG(C,U)

)
⊆WN (C, V ).

(iii) Let q:G → G/N be the quotient morphism. Then the function f
is the composition

G
q−−−−→G

N

IG/N−−−−→Aut
G

N

resM/N−−−−→ Aut
M

N
.

Clearly all maps in sight are group morphisms, q is continuous, IG/N is contin-
uous by (i) and resM/N is continuous by (ii).

For the following summary recall the notation N • H for a topological
group with a normal subgroup N and subgroup H : it means the existence of an
isomorphism ν:G→ N×H such that µ ◦ ν = idG , µ(n, h) = nh .

Main Theorem 3.4. Let G be a connected semisimple pro-Lie group. Then

(i) the function Ad
def
= LG ◦ IG : G → Aut g implements an open morphism

from G onto Inn g and an isomorphism of topological groups G/Z(G) →
Inn g . In particular, G/Z(G) is a pro-Lie group.

(ii) The morphism LG: AutG→ Aut g is an embedding of topological groups.

(iii) AutG is a topological group with respect to the compact open topology.

(iv) AutG is the intrinsic semidirect product (AutG)0•D of a normal subgroup
(AutG)0 isomorphic to Inn g ∼=

∏
j∈J Sj for a family of connected simple

(and centerfree) real Lie groups Sj , and a totally disconnected topological
group D isomorphic to a subgroup of ∆ = E× PS(J) .

Proof. (i) The groups G and Inn g are connected pro-Lie groups by hypothesis,
respectively, Corollary 2.11. Thus the Open Mapping Theorem for pro-Lie
Groups [7], 9.60 on p. 409 applies to the morphism Ad:G→ Inn g and shows that
it is open. For g ∈ G we have (∀x ∈ g) Ad(g)(x) = x and thus g(expx)g−1 =
exp Ad(g)(x) = expx ; since 〈exp g〉 is dense in G (see [7], Corollary 4.22(i)),
this is the case if g commutes with all y ∈ G , that is, y ∈ Z(G). Thus
ker Ad = Z(G). Therefore the corestriction Ad:G → Inn g of Ad induces an
embedding G/Z(G) → Inn g . Now let α ∈ Inn g be an inner automorphism of
the pro-Lie algebra g . We know that we may write g =

∏
j∈J gj for simple real

(finite dimensional) Lie algebras gj . Accordingly, we may identitify Inn g with∏
j∈J Inn gj . In that sense we can write α = (αj)j∈J with αj ∈ Inn gj . Let

G̃ = Γ(g) be the universal group of G with the universal morphism πG: G̃→ G

([7], p. 259). We know G̃ =
∏
j∈J G̃j with simply connected real simple Lie

groups G̃j and that the exponential function decomposes accordingly

exp
G̃

=
∏
j∈J

exp
G̃j

: g =
∏
j∈J

gj →
∏
j∈J

G̃j = G̃.

From the theory of finite dimensional Lie groups one knows that for each j there
is an element gj ∈ G̃j such that AdGj (gj) = αj . Set g̃ = (gj)j∈J ∈ G̃ . Then
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Ad
G̃

(g̃) = α . Now set g
def
= πG(g̃) ∈ G . Then AdG(g) = α , as we deduce from

our identifying L(G̃) = g = L(G) and the commuting of the diagram

G̃
Ad

G̃−−−−→ Inn g

πG

y
yidG

G −−−−→
AdG

Inn g.

Therefore Inn g = AdG(G), and

gZ(G) 7→ Ad(g):G/Z(G)→ Inn g

is an isomorphism of topological groups. Since Inn g is a pro-Lie group by Lemma
2.5, the factor group G/Z(G) is a pro-Lie group.

(ii) We abbreviate the center Z(G) of G by Z . Set G = G/Z . Then
G is isomorphic to the topological group Inn g by (i), a centerfree semisimple
connected pro-Lie group and we know from 3.2(iii) that LG: AutG → Aut g is
an isomorphism of topological groups. It therefore suffices to guarantee that the
morphism θ: AutG→ AutG , θ(α)(gZ) = α(g)Z is an embedding. Firstly, it is
injective: θ(α) = idG means (∀g ∈ G)α(g)Z = gZ , that is,

(∀g ∈ G) g−1α(g) ∈ Z .

But G is connected, Z is totally disconnected and g 7→ g−1α(g) : G → Z is
continuous, hence constant. It follows that α = idG . This proves that θ is
injective. Secondly, we claim that θ is continuous. Let q:G → G , q(g) = gZ
denote the quotient morphism.

Lemma. (a) For each compact set K in G there is a compact set C in G
such that K ⊆ q(C) .

(b) For any compact subset C of G there is a compact connected subset
C∗ of G containing C .

Proof of the Lemma. (a) We may write G =
∏
j∈J Sj with a family of

connected, centerfree simple Lie groups Sj . Let Kj be the projection of K into

Sj . Then K ⊆
∏
j∈J Kj and the right hand side is compact. Now let S̃j be the

simply connected covering group of Sj and let K̃j be a compact subset of S̃j
such that its image in Sj contains Kj . Let πG: G̃ =

∏
j∈J S̃j → G denote the

universal morphism of G . Set C = πG(
∏
j∈J K̃j). Then

q(C) = πG(
∏
j∈J K̃j) ⊇

∏
j∈J Kj ⊇ K .

(b) (This assertion does not depend on semisimplicity!) By [7], Theorem
12.81, p.551, G is homeomorphic to RJ×M where J is a set and M a (maximal)
compact connected subgroup of G . If C ⊆ RJ ×M is compact, and Cj is the
projction of C into the j -th factor R of RJ , j ∈ J , then we find a connected

compact subset C∗j in that factor containing Cj . Then C∗
def
= (

∏
j∈J C

∗
j ) ×M

is compact, connected and contains C . This finishes the proof of the Lemma.

Now the continuity of θ ! Let W (K,V ) for a compact subset K of G and
an open identity neighborhood V of G be a basic open identity neighborhood of
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G for the compact-open topology. By part (a) of the Lemma, we find a compact
subset C of G with q(C) ⊇ K and an open identity neighborhood U of G such
that q(U) ⊆ V . Now let α ∈ W (C,U) implies α(c)c−1 ∈ U for all c ∈ C ; if
k ∈ K then by the choice of C there is c ∈ C such that k = q(c) = cZ , and
thus θ(α)(k)k−1 = α(c)c−1Z ∈ UZ/Z ⊆ V .

Thirdly, we show that the morphism θ is open onto its image. Let
C be a compact set in G , and U an open identity neighborhood in G . We
must find a compact subset K of G and an open identity neighborhood V
of G , such that W (K,V ) ∩ im θ ⊆ W (C, V ), that is, such that for every
α ∈ AutG with θ(α)(k)k−1 ∈ V for all k ∈ K we have α(c)c−1 ∈ U for
all c ∈ C . By Part (b) of the Lemma we pick a compact connected subset C∗

of G containing C and choose K = q(C∗) = C∗Z/Z and we propose to find a
suitable open identity neighborhood U ′ of G and choose V = q(U ′) = U ′Z/Z ,
so that whenever we assume that θ(α)(k)k−1 ∈ V for all k ∈ K we shall

be able to conclude α(c)c−1 ∈ U . Now let c ∈ C∗ . Then k
def
= cZ ∈ K

and thus α(c)c−1Z ∈ V = U ′Z/Z , that is, α(c)c−1 ∈ U ′Z ; since the set
{α(c)c−1 : c ∈ C∗} is connected we actually have α(c)c−1 ∈ (U ′Z)0 , the
connected component of U ′Z containing the identity. Our task is to find U ′

in such a fashion that this will imply α(c)c−1 ∈ U for all c ∈ C∗ . This will be
accomplished whenever (U ′Z)0 ⊆ U .

Since G is a pro-Lie group, we find a closed normal subgroup N ⊆ U ⊆ G
such that G/N is a Lie group which, by the assumptions on G , is connected and
semisimple. By making U smaller, if necessary, we may assume that UN = U
(see [7], Proposition 3.26(iii), p. 150). We then let U ′ ⊆ U be an open subset of
G containing 1 such that NU ′ = U ′ and that U ′N/N is an open cell contained
in U/N . The quotient morphism G→ G/N maps Z onto the finitely generated
discrete center ZN/N ∼= Z/(Z∩N). By making U ′ smaller, if necessary, we may
assume that U ′z1/N∩U ′z2/N 6= Ø in G/N for z1, z2 ∈ Z implies z2z

−1
1 ∈ N∩Z ;

that is, U ′z1 ∩ U ′z2 6= Ø in G for z1, z2 ∈ Z implies z2z
−1
1 ∈ N ∩ Z . Thus

U ′Z = U ′∪(U ′Z \U ′) is a disjoint union of open subsets of U ′Z . In other words,
U ′ is open and closed in U ′Z . Therefore (U ′Z)0 ⊆ U ′ ⊆ U , and this is what we
had to accomplish for the proof of (ii).

(iii) By (ii) above, AutG is algebraically and topologically isomorphic
to a subgroup of Aut g . By Theorem 2.10, Aut g is a topological group, and
thus AutG is a topological group with respect to the compact open topology.

(iv) From (ii) we know that AutG is isomorphic as a topological group
to a subgroup A of Aut g which contains Inn g . The assertion then follows from
Corollary 2.12(d).

We notice that D = E× PS(J) if G is simply connected or centerfree
by 3.1 and 3.2.

If G is a pro-Lie group and N a closed normal subgroup, then G/N
sometimes fails to be a pro-Lie group due to the possible lack of completeness
([7], Corollary 4.11, p. 179). If G is connected, then [7], Theorem 4.28 on p. 202
gives sufficient conditions for G/N to be a pro-Lie group: such as N being
almost connected, or first countable, or locally compact. None of these apply to
Z(G) for a semisimple connected pro-Lie group G . It is therefore not a priori
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obvious that G/Z(G) is a pro-Lie group. It does however satisfy condition (iv)
of Theorem 4.28 = Corollary 9.57 of [7] by our Main Theorem 3.4(i).

For examples of connected semisimple pro-Lie groups we refer to [7],
p. 608ff.

Compact Automorphic Actions on Semisimple Pro-Lie Groups

Recall that we say that a topological group Ω acts automorphically on a topo-
logical group G if there is a continuous action (ω, g) 7→ ω·g : Ω × G → G such
that g 7→ ω·g is in Aut(G) for all ω ∈ Ω.

Corollary 3.5. Let G be a connected semisimple pro-Lie group and Ω a
compact group acting automorphically on G . Then there is a maximal compactly
embedded connected subgroup K of G with Ω·K ⊆ K .

Proof The compact group Ω acts linearly and automorphically on g via

expG(ω·X) = ω· expGX for all X ∈ g.

Then, by Proposition 2.14, there is a maximal compactly embedded subalgebra

k of g that is Ω-invariant. Then K
def
= exp k is a maximal compactly embedded

closed subgroup, and it is Ω-invariant. (See [7], Proposition 12.52, p. 524.)

4. Topological Groups with Pro-Lie Identity Component

In this and the next section we apply our results about the structure of the
automorphism groups of semisimple pro-Lie algebras and pro-Lie groups to the
structure theory of pro-Lie groups in general.

First we consider an arbitrary topological group G about which we
assume nothing except that the identity component G0 is a pro-Lie group. We
recall from [7], Definition 10.23ff., notably, Theorem 10.25, that we have a unique
largest connected prosolvable characteristic subgroup R(G). Let G0 denote the
identity component of G , also a characteristic subgroup of G . We know that
G0/R(G) is a connected semisimple pro-Lie group (See [7], Theorem 10.28ff.)
Let R(G) be that subgroup of G0 containing R(G) for which R(G)/R(G) is
the prodiscrete center of G0/R(G). That is, R(G) is the largest prosolvable
normal subgroup of G0 , another characteristic subgroup of G0 . We define

S
def
= G0/R(G) and denote the Lie algebra of S by s . Then S is a centerfree

semisimple pro-Lie group.

The group G acts on S via inner automorphisms:

γ:G→ AutS, γ(g)(g0R(G)) = gg0g
−1R(G).

By Lemma 3.3(iii), γ is a morphism of topological groups. An element g ∈ G is
in the kernel of γ iff γ(g) = id iff [g, x] = gxg−1x−1 ∈ R(G) for all x ∈ G0 , and
so

ker γ = {g ∈ G : [g, x] ∈ R(G) for all x ∈ G0},
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the centralizer of G0 mod R(G). Obviously, R(G) ⊆ ker γ .

The key link to the previous discussion is now provided by the morphism

LS : AutS → Aut s

of topological groups implemented by the Lie algebra functor L (see Proposition
3.1), which is an embedding of topological groups by Theorem 3.4(ii).

Definition 4.1. Let G be a topological group whose identity component G0 is
a pro-Lie group. The composition LS ◦ γ is called the standard representation
ΦG:G→ Aut s .

The standard representation is a morphism of topological groups

Proposition 4.2. The standard representation Φ of a topological group G
with pro-Lie identity component G0 maps this identity component openly onto

Inn g , implementing an isomorphism of topological groups S
def
= G0/R(G) →

Inn s . The kernel of Φ satisfies G0 ∩ ker Φ = R(G)

Proof By Theorem 2.20, the group Inn s is the identity component of Aut s .
By Theorem 3.4(i) it is an isomorphic image of S implemented by Φ since S is
centerfree.

It follows, among other things, that G0 ∩ ker Φ ⊆ R(G); on the other
hand we noticed above that R(G) ⊆ ker γ ⊆ ker Φ. Hence G0 ∩ ker Φ = R(G).

Almost Connectedly Prosolvable Groups

Recall that a topological group G is called almost connected if G/G0 is compact.
Examples we have encountered here include the groups

∏
j∈J Aut sj . In the end,

we want to show that in any almost connected pro-Lie group G there are maximal
compact subgroups C , that any two of them are conjugate and, notably, that
G = G0C ; these results hold for connected pro-Lie groups according to [7]. Let
us first record that in [7] we have also provided these pieces of information for a
special class of almost connected pro-Lie groups which we introduce now:

Definition 4.3. A topological group G is called almost connectedly prosolv-
able if G/R(G) is compact for the radical R(G), the largest connected prosolv-
able normal subgroup (see [7], Proposition 7.45 and Definition 7.46 on p. 291 and
Theorem 7.53 on p. 295).

Clearly, every almost connectedly prosolvable pro-Lie group is almost
connected.

We have rather good structural information on almost prosolvable groups
through [7], Theorem 11.28.B on p. 486 and Remark 11.33 on p. 490 (holding for
almost prosolvable pro-Lie groups). We summarize the information we have in
the following

Proposition 4.4. Let G be an almost connectedly prosolvable pro-Lie group.
Then G has a maximal compact subgroup C and all compact subgroups have a
conjugate inside C . Moreover, G = G0C .
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Now the following result is an outgrowth of our preceding discussions.

Theorem 4.5. Let G be a topological group whose identity component G0

is a pro-Lie group, and let C be any compact subgroup of G . Then G0C is an
almost connected subgroup of G and C is contained in a closed subgroup A with
the following properties:

(i) A = A0C and A0 contains R(G) .

(ii) A is almost connectedly prosolvable.

(iii) The factor group A/R(G) is compact and A0/R(G) is maximal compact
in G0/R(G) .

(iv) A0 contains a maximal compact subgroup of G0 .

(v) A/R(G) is a maximal compact subgroup of G0C/R(G) .

Proof. The group C acts automorphically on G under inner automorphisms
and hence it acts automorphically on the semisimple pro-Lie group G0/R(G),
and so by Corollary 3.5, there is a subgroup K of G0 containing R(G) such that
K/R(G) is a maximal compactly embedded connected subgroup of G0/R(G) so

that K is normalized by C . Hence A
def
= KC is a closed subgroup of G .

(i) The group K/R(G), being maximally compactly embedded into the
factor group G0/R(G), is connected, and since R(G) is likewise connected, K
is connected and so K ⊆ A0 , whence A = KC ⊆ A0C . Moreover, K/R(G)
contains the center Z

(
G/Z(G)

)
, and so R(G) ⊆ K ⊆ A0 by the definition of

R(G).

(ii) Next we show that A is almost connectedly prosolvable. A compactly
embedded subgroup like K/R(G) is potentially compact (see [7], Definition 12.46
on p. 521). Let B be that closed subgroup of K containing R(G) for which
B/R(G) = R

(
K/R(G)

)
= Z

(
K/R(G)

)
0

(see [7], Theorem 12.48 on p. 522).
Then, firstly, B is connected and prosolvable, for instance by [7], Theorem 10.18,
pp. 427, 428, since L(B) does not contain a finite dimensional simple Lie algebra
by its definition. Hence B ⊆ R(K). Moreover, K/B ∼=

(
K/R(G)

)
/R
(
K/R(G)

)
is compact by Theorem 12.48 of [7]. Then A/B = KC/B is compact. This
shows that A is almost connectedly prosolvable.

(iii) Since the group K/R(G) is a maximal compactly embedded con-
nected subgroup of G0/R(G), the factor group

K/R(G) =
(
K/R(G)

)
/Z
(
K/R(G)

)
is compact. Since A/K = KC/K is compact, the compactness of A/R(G)
follows.

(iv) Let M be a maximal compact subgroup of G0 . Then K ′R(G)/R(G)
is compact and thus is contained in a compact subgroup of G0/R(G) and, in
particular, a compactly embedded connected subgroup of G0/R(G). It follows
that a conjugate is contained in the maximal compactly embedded connected
subgroup K/R(G) of G0/R(G) (see [7], Theorem 12.53, p. 525). Therefore a
conjugate of M is contained in A0 .

(v) Note G0C = G0A and so G0C/R(G) = (G0/R(G))(A/R(G)).

Then by Lemma Max in the proof of Lemma 2.13, A/R(G) is maximal compact
in G/R(G).

Before we secure the existence of a compact subgroup C such that
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G = G0C we temporarily return to the general case of a topological group
G where we merely assume that G0 is a pro-Lie group.

We consider the standard representation ΦG:G → Aut s . From The-
orem 3.4 and Proposition 4.2 we know that Φ implements an isomorphism of
topological groups G0/R(G)→ Inn s and that Aut s = Inn s •D for a subgroup
D of the totally disconnected subgroup E× PS(J).

We define G1 = Φ−1
G (D) = Φ−1

G (E× PS(J)).

Theorem 4.6. Let G be a topological group whose identity component G0 is
a pro-Lie group. Then there is a closed subgroup G1 containing R(G) with the
following properties:

(i) G0 ∩G1 = R(G) .

(ii) G = G0G1 .

(iii) G/R(G) = (G0/R(G)) • (G1/R(G)) . In particular, G1/R(G) ∼= G/G0

(iv) (G1)0 = R(G) .

Proof. (i) By 4.2, R(G) = G0∩ker ΦG ⊆ G0∩G1 . Since G0/R(G) is mapped
isomorphically onto Inn s and G1 = Φ−1

G (D), we have G0∩G1

R(G)
∼= (Inn s)∩D = {1}

and (i) follows.

(ii) Let g ∈ G . Then ΦG(g) = θδ for an inner automorphism θ and
an element δ ∈ H . Hence we find a g0 ∈ G0 mapped onto θ and an element

g1 ∈ G1 mapped onto δ . Then k
def
= g−1

1 g−1
0 g is in the kernel of ΦG which is

contained in G1 = Φ−1
G (D). Hence g = g0(g1k) ∈ G0G1 . Thus G = G0G1 .

(iii) Let φ:G/R(G) → Aut s be the morphism induced by ΦG , and let
P : Aut s → Aut s be the continuous idempotent map with image Inn s given
by the projection of Aut s = (Inn g) • ∆ along ∆ which we have according to

Theorem 3.4. Recall that f
def
= (φ|G0/R(G)):G0/R(G) → Inn s is an isomor-

phism of topological groups. Let j:G0/R(G) → G/R(G) be the inclusion and
P ′: Aut s→ Inn s the corestriction of P .

Now define the function Q:G/R(G) → G/R(G) as the map given
by Q = j ◦ f−1 ◦ P ′ ◦ φ . Let g0 ∈ G0 and set g = g0R(G). Then
one computes readily that Q(g) = g . Thus Q is idempotent with image
G0/RG . Moreover, Q−1(g) = φ−1(P−1(φ(g))) = φ−1(φ(g)P−1(1)) = gQ−1(1).
Thus Q is the projection onto G0/R(G) in the algebraic semidirect product
G/R(G) = (G0/R(G)).(G1/R(G)), and this means that we have an intrisic
semidirect product of topological groups.

(vi) G1/R(G) is totally disconnected by (iii), and R(G)/R(G) is totally
disconnected by the definition of R(G). Hence G1/R(G) is totally disconnected
while R(G) is connected. Thus (G1)0 = R(G).

This theorem is a by-product of the structure theory of Aut s and will
not be used in the special case that G is almost connected below. One of the
conclusions at this point is the fact that for a pro-Lie group G , the quotient
G/G0 is isomorphic to a quotient G1/R(G) where G1 is likely to have more
special properties than G : For instance, G1 is a pro-Lie group whose identity
component is prosolvable. Since we do not know in general whether G/G0 is
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complete and therefore is a pro-Lie group (i.e., prodiscrete in this case), this may
be a useful piece of information which we do not pursue at this point.

5. Almost Connected Pro-Lie Groups

We apply the Theorem 4.5 above to the situation of Corollary 2.12(d).

Proposition 5.1. Assume that G is an almost connected closed subgroup
of the group Aut s for a semisimple pro-Lie algebra s and assume that G0 =
(Aut s)0 = Inn s . Then there is a compact subgroup C of G such that G = G0C ,
and there is a maximal compact subgroup M of G containing C such that
M0 = G0 ∩M is maximal compact in G0 .

Moreover, Aut s = (Inn s)M .

Proof. We obtain C from 2.12(d) and then apply Theorem 4.5, noting that
R(G) = {1} in the present situation and calling here the subgroup A of 4.5
rather M , for “maximal compact.”

Theorem 5.2. Let G be an almost connected pro-Lie group. Then there is a
compact subgroup C such that G = G0C .

Proof. Let again S = G0/R(G) and consider the standard representation
ΦG:G → Aut s . By Proposition 4.2 we have S ∼= Inn s = (Aut s)0 = ΦG(G0),
whence ΦG(G) is an almost connected subgroup of Aut s . From Proposition 5.1
we derive ΦG(G) = ΦG(G0)·M for a maximal compact subgroup M of ΦG(G)
such that M0 = M ∩ ΦG(G0) is a maximal compact subgroup of ΦG(G0).

Now we set A
def
= Φ−1

G (M) and apply Theorem 4.5. Thus

(i) G0 ∩ A contains R(G) and (G0 ∩ A)/R(G) ∼= Inn s ∩M = M0 is a
compact connected group,

(ii) G = G0·A and G/(G0 ∩A) = (G0/(G0 ∩A)) • (A/(G0 ∩A)).

(iii) A/(G0 ∩A) ∼= G/G0 is compact totally disconnected.

If g0 ∈ G0 ∩ A , then ΦG(g0) ∈ M ∩ ΦG(G0) = M0 and so G0 ∩ A =
G0 ∩ Φ−1

G (M0).

Now

(G0 ∩A)

R(G)

/
Z
( G0

R(G)

)
=

(G0 ∩A)

R(G)

/
R(G)

R(G)
∼= (G0 ∩A)/R(G) ∼= M0

is a maximal compact subgroup of the semisimple centerfree pro-Lie group
G0/R(G) ∼= Inn(s). Then (G0 ∩ A)/R(G) is a maximally compactly embedded
subgroup of the semisimple pro-Lie group G0/R(G).

Lemma. Assume that H is a connected, semisimple pro-Lie group and K a
closed subgroup containing the center Z(H) such that K/Z(H) is a maximally
compact subgroup of H/Z(H) . Then K is connected.

Proof. By [7], Theorem 10.29, p. 439 there is a family {Sj : j ∈ J} of simply
connected simple real Lie groups and morphisms∏

j∈J
Sj

α−−−−→H β−−−−→H/Z(H) ∼=
∏
j∈J

Sj/Z(Sj)
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inducing isomorphisms on the pro-Lie algebra level such that for each j ∈ J
there is a maximally compactly embedded subgroup Kj of Sj containing Z(Sj)
such that α and β induce the sequence∏

j∈J
Kj

α′−−−−→K β′−−−−→K/Z(H) ∼=
∏
j∈J

Kj/Z(Sj).

Now all Kj are connected and thus

K = α(
∏
j∈J

Kj)

is connected. This proves the Lemma.

The Lemma shows that G0 ∩A is connected, and thus

A0 = G0 ∩A.
Now A0/R(G) is compactly embedded into G0/R(G) and is therefore

potentially compact and thus almost connectedly prosolvable. The group R(G)
is prosolvable, and so A0 is connectedly almost prosolvable. By (ii) above,
G = G0·A such that the continuous bijection A/A0 = A/(A∩G0)→ G0A/G0 =
G/G0 is an isomorphism. Therefore A/A0 is compact. Hence the group A is
connectedly almost prosolvable, and thus there is a compact group such that
A = A0C by Theorem 4.5. Then G = G0A = G0A0C = G0C .

6. Maximal compact subgroups

We have touched maximal compact subgroups in preceding articles and in [7] they
play an important role. In this section we collect some general and systematic
remarks.

A partially ordered set (P,≤) is called inductive, if every totally ordered
subset has an upper bound. Let G be a topological group and C(G) the collection
of its compact subgroups. Then C(G) is a partially ordered set with respect to
inclusion ⊆ . The set (C(G),⊆) may or may not be inductive.

Definition 6.1. (a) If a subgroup M of a topological group G is a maximal
element of C(G) then it is called a maximal compact subgroup of G . The set of
maximal compact subgroups of G will be written max C(G).

(b) A topological group G is said to be compactly inductive if C(G) is
inductive. The full subcategory of compactly inductive groups in the category
TOPGR of topological groups is denoted ICG .

The group G acts on C(G) by conjugation:

(g, C) 7→ gCg−1 : G× C(G)→ C(G).

Since this action preserves partial order, it leaves max C(G) invariant. In [7] it is
shown that G acts transitively on max C(G) if G is a connected pro-Lie group
(see [7], Theorem 12.77, p. 547). If G is locally compact and almost connected
then G does act transitively on max C(G) (see [10]). One of our goals here is
that this holds also for almost connected pro-Lie groups.

Remark 6.2. In a compactly inductive topological group G , every compact
subgroup is contained in a maximal one.

Proof. Zorn’s Lemma.
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The category ICG was investigated in [10]. If G is locally compact
and almost connected, then G is compactly inductive and thus every compact
subgroup is contained in a maximal one (see [10]); indeed more generally, a locally
compact group is compactly inductive if G/G0 is compactly inductive. In [10] a
discrete (hence locally compact) example of a group D was presented, in which
every finite subgroup is contained in a member of max C(D) but which is not
compactly inductive.

In a connected pro-Lie group G every compact subgroup is contained
in a maximal compact subgroup. The group Qp of p -adic rationals is locally
compact but fails to have this property (see e.g. [7], Example 14.2, p. 588). In
the light of the development of pro-Lie groups in the meantime, the following is
relevant:

Proposition 6.3. (i) The category ICG is complete.

(ii) An almost connected pro-Lie group is an ICG-group.

Proof (i) Clearly, if G is an ICG -group, then every closed subgroup of G is an
ICG -group as well. By [7], Theorem 1.11(ii), p. 72, it suffices, therefore, to verify
that ICG is closed under the formation of arbitrary products. Let {Gj : j ∈ J}
be a family of compactly inductive groups. Now let T be a tower of compact

subgroups of P
def
=
∏
j∈J Gj . Now prj({C : C ∈ T }) = {prj(C) : C ∈ T } is a

tower of compact subgroups of Gj . Since Gj is compactly inductive, there is a

compact subgroup Cj ⊆ Gj containing all prj(C), C ∈ T . Then K
def
=
∏
j∈J Cj

is compact by the Theorem of Tychonov. Now C ⊂ K for all C ∈ T . Then
⋃
T

is compact and this completes the proof of (i).

(ii) Let G be an almost connected pro-Lie group. As in [7], let N (G)
denote the filterbasis of normal subgroups N of G such that G/N is a Lie group.
Then G = limN∈N (G)G/N and all G/N are almost connected (see [7]). Then
all G/N are compactly inductive by [10], and so G is compactly inductive by (i)
above.

From 6.2 and 6.3 we have as immediate consequence:

Corollary 6.4. A compact subgroup of an almost connected pro-Lie group is
contained in a maximal compact subgroup.

For the purposes of our present discussion it will be convenient to have
some technical notation. First we notice that for a maximal compact subgroup
M of an almost connected pro-Lie group it is not clear that G0 ∩M is maximal
compact in G0 .

Definition 6.5. A compact subgroup K ∈ C(G) of a topological group G is
called standard if K ∩G0 ∈ max C(G0).

Notice that K0 ⊆ K ∩ G0 and that therefore K0 ∈ max C(G0) implies
K0 = K ∩G0 .

Generalities

Lemma 6.6. (i) If K is a compact subgroup of G then K is standard iff K0

is maximal compact in G0 .
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(ii) Every ICG-group (and in particular, every almost connected pro-Lie
group) has standard maximal compact subgroups.

(iii) If K is a standard compact subgroup such that G = G0K , then K
is maximal compact in G .

(iv) In an ICG-group in which all maximal compact subgroups are con-
jugate, all maximal compact subgroups are standard.

Proof. (i) Let K ∈ C(G) be standard. Since K ∩G0 ∈ max C(G0), the group
K∩G0 is connected by [7], Theorem 12.77 on p. 547. (In the formulation of that
theorem, the word “connected” is erroneously missing in the hypotheses for G .)
Thus K ∩ G0 ⊆ K0 ⊆ K ∩ G0 . So K ∩ G0 = K0 and thus K0 ∈ max C(G0).
Conversely, assume that K0 ∈ max C(G0). We noticed already that this implies
the equality K0 = K ∩G0 , whence K is standard.

(ii) We consider a maximal compact subgroup C of G0 ; then C is
connected (see [7], Theorem 12.77, p. 547). By Corollary 6.4, C is contained in
some M ∈ max C(G). Since C is connected, C ⊆ M0 . Clearly M0 is compact
and contained in G0 , then by the maximality of C we conclude C = M0 . Since
C ⊆M∩G0 and M∩G0 is compact, by maximality of C once more, C = M∩G0 .

(iii) By 6.6(i) this is Lemma Max above.

(iv) In any ICG -group G there exist standard maximal compact sub-
groups by (ii) above. If all maximal compact subgroups are conjugate the asser-
tion follows.

Theorem 6.7. An almost connected pro-Lie group has standard maximal
compact subgroups satisfying G = G0C .

Proof. By Theorem 5.2 we find a maximal compact group C such that
G = G0C . Now by Theorem 4.5 we find an almost prosolvable closed subgroup
containing C and R(G). We have A = A0C and if M is a maximal compact
connected normal abelian subgroup of A , then M ⊆ C and there is a connected
closed subgroup V such that A/M = (V/M)× (C/M) and V/M is simply
connected and compact free by Theorem 11.28.B of [7] on p. 486. It follows that
(C/M)0 = C0/M is maximal compact in A0/M and therefore C0 is maximal
compact in A0 . Since A0 contains maximal compact subgroups of G0 by 4.10(v)
and since maximal compact subgroups of A0 are conjugate (see [7], Theorem
12.77, p. 547), C0 is maximal compact in G0 . Thus C is standard.

At this stage it is not obvious that, in general, an almost connected
pro-Lie group cannot contain nonstandard maximal compact subgroups.

7. The conjugacy of maximal compact subgroups
in almost connected pro-Lie groups

We have information on maximal compact subgroups in an almost con-
nected Lie group G . Firstly, they exist by 6.4. Secondly, standard maximal
compact subgroups exist by 6.6(ii). Most importantly, there are standard maxi-
mal subgroups C such that G = G0C by Theorem 6.7.

Theorem 7.1. The maximal compact subgroups of an almost connected pro-
Lie group G are conjugate.
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Proof. By Theorem 6.7 there exists a standard maximal compact subgroup
C such that G = G0C and that C is contained in an almost prosolvable closed
subgroup A of G which contains R(G) (see 4.5). Since A is a prosolvable pro-
Lie group, every compact subgroup of A has a conjugate in A that is contained
in C by Remark 11.33 of [7] on p. 490. (We should observe that Remark 11.33
is formulated for prosolvable pro-Lie groups, but is valid for almost prosolvable
pro-Lie groups as it is based on [7], Corollary 11.32 on p. 489, dealing with almost
prosolvable pro-Lie groups.)

It follows that we must show that every compact subgroup K of G has
a conjugate in A . From Theorem 4.5 we know that K is contained in an almost
prosolvable subgroup B containing R(G). In order to show that a conjugate
of B is contained in A , it suffices to prove that B/R(G) has a conjugate in
A/R(G). Instead of considering G we are allowed to consider G/R(G). It is
therefore no loss of generality to assume that G0 is centerfree semisimple, that
is, we have G0 =

∏
j∈J Sj for a family of centerfree simple connected Lie groups

Sj . Then A = C and C0
∼=
∏
j∈J Kj for maximal compact subgroups Kj of Sj .

Since Kj is its own normalizer as we have observed in the proof of 2.13, we have
C ⊆ N(C0, G) and N(C0, G) ∩G0 = N(C0, G0) = C0 and G = G0N(C0, G). It
follows that C = N(C0, G). Similarly, K1 is a maximal compact subgroup of G0 .
By 4.10(iii) the group B contains a maximal compact subgroup of G0 , that is,
B0 ∈ max C(G0). Hence by [7], Theorem 12.77, p. 547, C0 and B0 are conjugate.
We may assume that B0 = C0 . But then B ⊆ N(B0, G) = N(C0, G) = C which
is what we had to show.

8. The structure of almost connected pro-Lie groups

First we summarize what we have achieved

Main Theorem 8.1. Let G be an almost connected pro-Lie group. Then G
has maximal compact subgroups and all of these are conjugate. If M is one of
them, then

(1) G = G0M .

(2) M0 = G0 ∩M , and this subgroup is maximal compact in G0 .

We also record that

N(M0, G) = N(M0, G0)M and N(M0, G)/N(M0, G0) ∼= G/G0 .

We recall from [6], Theorems 9.41, p. 479 and Corollary 10.38, p. 559:

Facts 8.2. Let G be a compact group. Then

(1) there is a profinite subgroup D of G such that G = G0D , G0∩D is normal
in G and central in G0 ;

(2) there is a compact zero-dimensional subset ∆ ⊆ G such that m: ∆×G0 → G ,
m(δ, g) = δg , is a homeomorphism. In particular, δ 7→ δG0 : ∆→ G/G0 is
a homeomorphism, and the groups G and G/G0 ×G0 are homeomorphic.

From Fact 8.2(1) we obtain:

Corollary 8.3. Let G be an almost connected pro-Lie group. Then there is
a profinite subgroup D such that G = G0D and that N(G0 ∩D,G) contains at
least one maximal compact subgroup.
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Proof. Let M be a maximal compact subgroup according to Theorem 8.1 and
apply Fact 8.2(1) in order to obtain a profinite subgroup D such that M = M0D
and M0 = G0 ∩ M . Then G = G0M = G0(G0 ∩ M)D = G0D . Further,
G0 ∩D = G0 ∩M ∩D = M0 ∩D , whence N(G0 ∩D,G) = N(M0 ∩D, ) ⊇M .

With Facts 8.2 (2) we prove the following topological splitting theorem
for almost connected pro-Lie groups.

Theorem 8.4. Let G be an almost connected pro-Lie group with pro-Lie
algebra g and let M be a maximal compact subgroup. Then for some p ≤ 4
there are vector subspaces vk ⊆ g , k ≤ p such that the function

(m,X1, . . . , Xp) 7→ m expGX1 · · · expGXp : M × v1 × · · · × vp → G

is a homeomorphism.

Proof. Let C = M0 ; then C is a maximal compact subgroup of G0 by
Theorem 8.1. Thus [7], Theorem 12.81, p. 551 secures the existence of the vj ,
1 ≤ j ≤ p such that the function

(c,X1, . . . , Xp) 7→ c expGX1 · · · expGXp : C × v1 × · · · × vp → G0

is a homeomorphism. Now let ∆ ⊆M be as in Facts 8.2 (2). Then

∆C expG v1 · · · expG vp = ∆G0 = MG0 = G

and the function

(δ,m,X1, . . . , Xp) 7→ δm : expGX1 · · · expGXp : M × v1 × · · · × vp → G

is a homeomorphism.

Corollary 8.5. In an almost connected pro-Lie group G there is a closed
subset E ⊆ G which is homeomorphic to RJ for a set J and a maximal compact
subgroup M of G such that (m, e) 7→ me : M × E → G is a homeomorphism.

Proof. In Theorem 8.4 we set E = expG v1 · · · expG vp ; accordingly, this set
is homeomorphic to v1×· · ·×vp , that is, to a weakly complete vector space and
thus is homeomorphic to RJ (see [7], Corollary A2.9, p. 638). The assertion
now follows from Theorem 8.4.

Theorem 8.6. Let G be an almost connected pro-Lie group. Then there is a
set J such that G is homeomorphic to RJ ×C for a maximal compact subgroup
C , and to RJ × C0 × C/C0 .

Proof. From Corollary 8.5 we know that there is a set J and a maximal
compact subgroup C such that G is homeomorphic to C × RJ . Since C is
homeomorphic to ∆ × C0 Facts 8.2 (2)) which in turn is homeomorphic to
(C/C0)× C0 .
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Corollary 8.7. Any almost connected pro-Lie group is homotopy equivalent
to a compact group.

Proof. By Theorem 8.6, an almost connected pro-Lie group is homeomorphic
to RJ ×C for some set J and a compact group C . Since the topological vector
space RJ is homotopy equivalent to a point, the assertion follows.

For more detailed information we recall the following facts on compact
groups:

Facts 8.8. (i) Let G be a compact connected group. Then G is the semidirect
product of the commutator group G′ which is a compact connected semisimple
group and a connected compact abelian subgroup A ∼= G/G′ .

(ii) Let G be a compact totally disconnected group. Then there is a set
J such that G and {0, 1}J are homeomorphic.

Proof. See [6], for (i): Theorem 9.39, and for (ii) 10.40.

Corollary 8.9. Let G be an almost connected pro-Lie group. Then there are
sets I and J , a compact connected semisimple group S , and a connected compact
abelian group A such that G and RI × (Z/2Z)J × S ×A are homeomorphic.

Proof. This is now an immediate consequence of Theorem 8.6 and Facts
8.8.

Corollary 8.10. The underlying space of an almost connected pro-Lie group
is a Baire space.

Proof. Again the assertion follows from the fact that an almost connected
pro-Lie group is homeomorphic to a product of a product of lines and a compact
space. (See [16], Theorem 6.)

We draw attention to the fact that the structure theorems on almost
connected pro-Lie groups permit us to draw some conclusions on the wider class
of pro-Lie groups G for which G/G0 is locally compact. Indeed we invoke the
following comparatively elementary

Fact 8.11. A locally compact totally disconnected group possesses a compact
open subgroup.

For a proof see, for instance, [13]. We conclude immediately

Corollary 8.12. A pro-Lie group G whose component factor group G/G0 is
locally compact has an almost connected open subgroup H .

As an open subgroup of a topological group is closed, and every closed
subgroup of a pro-Lie group is a pro-Lie group ([7], Theorem 3,35), H is an
almost connected pro-Lie group to which Corollary 8.9 applies. If G is itself
almost connected, then we may take H = G . If not, G/H is an infinite discrete
space and G is homeomorphic to H ×G/H . If the set G/H is countable, then
card(G/H) = cardZ . If not then card(G/H) = cardZ(G/H) . Thus we may
generalize Corollary 8.9 at once to the following
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Proposition 8.13. Let G be a pro-Lie group with a locally compact com-
ponent factor group G/G0 . Then there are cardinals I , J , and K , a compact
connected semisimple group S and a compact connected abelian group A such
that G and the group RI × S ×A× (Z/2Z)J × Z(K) are homeomorphic.
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