
Journal of Lie Theory
Volume 21 (2011) 755–769
c© 2011 Heldermann Verlag

Some Estimates of the Bergman Kernel of Minimal
Bounded Homogeneous Domains

Hideyuki Ishi and Satoshi Yamaji

Communicated by S. Gindikin

Abstract. We describe the Bergman kernel of any bounded homogeneous
domain in a minimal realization relating to the Bergman kernels of the Siegel
disks. Taking advantage of this expression, we obtain substantial estimates of
the Bergman kernel of the homogeneous domain.
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1. Introduction

In this paper, we discuss the Bergman kernel KU of a bounded homogeneous
domain U , which we assume to be minimal. One of our main results in the present
work is the following estimate of KU , which will play a key role to characterize
the boundedness of the Toeplitz operators in [15] (see also [16]).

Theorem A. Take any ρ > 0. Then, there exists Cρ > 0 such that

C−1ρ ≤
∣∣∣∣KU(z, a)

KU(a, a)

∣∣∣∣ ≤ Cρ

for all z, a ∈ U with βU(z, a) ≤ ρ , where βU means the Bergman distance on U .

In the case that U is the Harish-Chandra realization of a bounded symmet-
ric domain, the estimate is easily verified from properties of the Bergman kernel
(see section 6). Besides, an estimate similar to Theorem A is shown for a homo-
geneous Siegel domain without difficulty (Proposition 2.2). However, for a general
minimal bounded homogeneous domain, Theorem A does not seem to be trivial.

Our idea for the proof of Theorem A is to introduce certain equivariant
holomorphic maps θnj : U −→ Unj for j = 1, ..., r (:= rankU) from U into the

Siegel disks Unj := {W ∈ Sym(nj,C) | Inj −WW is positive definite} of rank nj .
Inspired by Xu [14], we obtain the following formula for the description of KU .
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Theorem B (Theorem 5.3). There exist integers s1, ..., sr such that

KU(z, w) = Vol(U)−1
r∏
j=1

{
det
(
Inj − θnj(z)θnj(w)

)}−sj
for z, w ∈ U .

Recall that the Bergman kernel KUm of the Siegel disk Um is given by

KUm(Z,W ) = Vol (Um)−1 det
(
Im − ZW

)−(m+1)
.

Thus we obtain

KU(z, w) = C

r∏
j=1

KUnj (θnj(z), θnj(w))
sj

nj+1 ,

which implies that the estimate in Theorem A for U is reduced to the ones for the
symmetric domains Unj .

Let us explain the organization of this paper. In section 2, we review prop-
erties of minimal domains, the Siegel upper half planes and homogeneous Siegel
domains. In particular, we present in section 2.3 the matrix realization of any
homogeneous Siegel domain introduced by the first author [7]. Based on this real-
ization, we observe a relation between the Bergman distances on a homogeneous
Siegel domain and the Siegel upper half planes (section 3), and introduce minor
functions on a homogeneous cone in matrix realization, which coincide with the
generalized power functions in Gindikin [5] (section 4). In section 5, we describe
the Bergman kernel of minimal bounded homogeneous domains. The formula is
expressed as a ratio of the Bergman kernels of the corresponding Siegel domain
(Lemma 5.2), which together with the Cayley transform leads us to Theorem B.
In section 6, we prove Theorem A, which yields another important estimate of KU
(Proposition 6.1).

The authors are grateful to Professors Takaaki Nomura, Takeo Ohsawa and
Khalid Koufany for helpful discussions. They also appreciate the referees’ com-
ments and suggestions which are helpful for the improvement of this paper.

Notation. For an N ×N matrix A = (aij) ∈ Mat(N,C) and n = 1, . . . , N , we
write A[n] for the n × n matrix (aij)1≤i,j≤n . For real or complex domain D , we
denote by Cl(D) the closure of D . The complexification of a real vector space V
will be denoted by VC . For a holomorphic map φ defined on a neighborhood of
z ∈ Cd , we denote by J(φ, z) the complex Jacobi matrix of φ at z .

2. Preliminaries

2.1. Minimal domain.
First of all, we recall the definition and properties of minimal domains (see
[8], [11]). Let D be a complex domain in Cd with finite volume and t ∈ D .
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We say that D is a minimal domain with a center t if the following condition is
satisfied: for every biholomorphism ψ : D −→ D′ with det J(ψ, t) = 1, we have

Vol (D′) ≥ Vol (D).

We have the following convenient criterion for a domain to be minimal (see
[8,Proposition 3.6], [11,Theorem 3.1]).

Proposition 2.1. Let D ⊂ Cd be a bounded domain and t ∈ D . Then, D is
a minimal domain with a center t if and only if

KD(z, t) =
1

Vol (D)

for any z ∈ D .

For example, a circular domain is minimal with a center 0, so that the
Harish-Chandra realization for a bounded symmetric domain is also minimal, while
there are many other minimal realizations for the symmetric domain. Recently
in [8], a representative domain turns out to be a nice bounded realization of a
bounded homogeneous domain, which is a generalization of the Harish-Chandra
realization. The representative bounded homogeneous domain is always a minimal
domain with a center 0 (see [8,Proposition 3.8]), though it is not circular unless
it is symmetric. Therefore, in conclusion, every bounded homogeneous domain is
biholomorphic to a minimal bounded homogeneous domain.

2.2. Siegel upper half plane.
Here we present basic facts used in this paper about the Siegel upper half plane
Dn := {Z ∈ Sym(n,C) | ImZ is positive definite} . It is well known that the real
symplectic group Sp(2n,R) acts on Dn transitively as linear fractional transforms:

α · Z = (PZ +Q)(RZ + S)−1
(
α =

(
P Q
R S

)
∈ Sp(2n,R), Z ∈ Dn

)
.

Let Hn be the group of n × n lower triangular matrices with positive diagonals.
We define

Bn :=

{(
T 0
0 tT−1

)(
In X
0 In

) ∣∣∣∣X ∈ Sym(n,R), T ∈ Hn

}
.

Then Bn is a maximal connected split solvable Lie subgroup of Sp(2n,R). The
action of Bn on Dn is described as

β · Z = T Z tT +X

(
β =

(
T 0
0 tT−1

)(
In X
0 In

)
∈ Bn, Z ∈ Dn

)
, (1)

so that the group Bn acts on Dn simply transitively.

Let Cn be the Cayley transform from Dn onto the Siegel disk Un defined
by

Cn(Z) := (Z − iIn)(Z + iIn)−1 (2)
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for Z ∈ Dn . It is easy to see that

In − Cn(Z) Cn(Z ′) =

(
Z + iIn

2i

)−1(
Z − Z ′

2i

)(
Z ′ + iIn

2i

)−1
. (3)

2.3. Homogeneous Siegel domain.
Let Ω be a regular open convex cone in a real vector space V , W a complex vector
space, and F : W ×W → VC a Hermitian map such that F (u, u) ∈ Cl(Ω) \ {0}
for u ∈ W \ {0} . Then the Siegel domain D(Ω, F ) ⊂ VC ×W is defined by

D(Ω, F ) := { (z, u) ∈ VC ×W | Im z − F (u, u) ∈ Ω }.

For the degenerate case F = 0 with W = {0} , the Siegel domain becomes a tube
domain D(Ω) = V + iΩ ⊂ VC . It is known that every bounded homogeneous
domain is biholomorphic to some homogeneous Siegel domain ([13]). On the other
hand, it is shown in [7] that every homogeneous Siegel domain is realized as a set
of complex matrices with specific block decompositions in the following way.

Let ν1, . . . , νr be positive numbers, and {Vlk}1≤k<l≤r a system of real vector
spaces Vlk ⊂ Mat(νl, νk;R) satisfying

(V1) A ∈ Vlk, B ∈ Vki =⇒ AB ∈ Vli for 1 ≤ i < k < l ≤ r,

(V2) A ∈ Vli, B ∈ Vki =⇒ A tB ∈ Vlk for 1 ≤ i < k < l ≤ r,

(V3) A ∈ Vlk =⇒ A tA ∈ RIνl for 1 ≤ k < l ≤ r.

We set ν := ν1 + · · · + νr . Let V ⊂ Sym(ν,R) be the space of real symmetric
matrices X of the form

X11
tX21 . . . tXr1

X21 X22
tXr2

...
. . .

Xr1 Xr2 Xrr


(
Xkk = xkkIνk , xkk ∈ R (k = 1, . . . , r)

Xlk ∈ Vlk (1 ≤ k < l ≤ r)

)
.

We define ΩV := {X ∈ V |X is positive definite} . Then ΩV is a regular open
convex cone in the vector space V . Let ν0 be a positive integer, and {Wk}1≤k≤r
a system of complex vector spaces Wk ⊂ Mat (νk, ν0;C) satisfying

(W1) A ∈ Vlk, C ∈ Wk =⇒ AC ∈ Wl for 1 ≤ k < l ≤ r,

(W2) C ∈ Wl, C
′ ∈ Wk =⇒ C tC ′ ∈ (Vlk)C for 1 ≤ i < l ≤ r,

(W3) C ∈ Wk =⇒ C tC + C tC ∈ RIνk for 1 ≤ k ≤ r.

Let W be the space of complex matrices U of the form

U =


U1

U2
...
Ur

 ∈ Mat(ν, ν0;C)
(
Uk ∈ Wk, k = 1, . . . , r

)
.

For U,U ′ ∈ W , we define FV,W(U,U ′) := (U tU ′ + U ′tU)/4. We see from (W1) –
(W3) that FV,W is a VC -valued Hermitian form. Furthermore, it is easy to see that
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FV,W(U,U) ∈ Cl(ΩV)\{0} for U ∈ W\{0} . Then the Siegel domain D(ΩV , FV,W)
is defined by

D(ΩV , FV,W) := {(Z,U) ∈ VC ×W | ImZ − FV,W(U,U) ∈ ΩV },

which we shall see to be homogeneous. First, let H be the set of ν × ν lower
triangular matrices T of the form

T11
T21 T22
...

. . .

Tr1 Tr2 Trr


(
Tkk = tkkIνk , tkk > 0 (k = 1, . . . , r)

Tlk ∈ Vlk (1 ≤ k < l ≤ r)

)
.

Then H is a subgroup of the solvable group Hν thanks to (V1). Moreover, H
acts on the cone ΩV simply transitively by ΩV 3 X 7→ TX tT ∈ ΩV (T ∈ H). For
X ∈ V , U ∈ W and T ∈ H , we define an affine transform b(X,U, T ) on VC ×W
by

b(X,U, T ) · ζ ′ := (T Z ′ tT +X + 2i FV,W(TU ′, U) + iFV,W(U,U), TU ′ + U)

(ζ ′ = (Z ′, U ′) ∈ VC ×W).

Then, each b(X,U, T ) preserves the domain D(ΩV , FV,W). Let B be the set
{b(X,U, T ) | X ∈ V , U ∈ W , T ∈ H} , which forms a split solvable Lie group acting
on D(ΩV , FV,W) simply transitively. Therefore the Siegel domain D(ΩV , FV,W)
is homogeneous. Since every homogeneous Siegel domain can be obtained this
way, we shall consider only the Siegel domains of this form. In particular, for the
treatment of a Siegel domain of tube type, we set Wk = {0} ⊂ Mat(νk, ν0;C) (k =
1, . . . , r). Thus we write F and D for FV,W and D(ΩV , FV,W) respectively in what
follows for simplicity.

The Siegel domain D is embedded into the Siegel upper half plane DN
(N := ν0 + ν1 + · · · + νr = ν0 + ν ) equivariantly with respect to the action of
B . Namely, if we define an injective holomorphic map Φ : D → DN and a group
homomorphism φ : B → BN by

Φ(ζ) :=

(
iIν0

tU
U Z − i

2
U tU

)
(ζ = (Z,U) ∈ D), (4)

and

φ(b(X,U, T ))

:=


Iν0 Re tU

Iν ReU X + 1
2
ImU tU

Iν0
Iν




Iν0
ImU T

Iν0 −Im tU tT−1
tT−1


respectively, we have by [7, p.601]

φ(b) · Φ(ζ) = Φ(b · ζ) (5)

for any b ∈ B and ζ ∈ D .

For the Siegel domain D , it is not difficult to obtain an estimate similar to
Theorem A .
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Proposition 2.2. For any ρ > 0, there exists Aρ > 0 such that

A−1ρ ≤
∣∣∣∣KD(ζ, η)

KD(η, η)

∣∣∣∣ ≤ Aρ (6)

for all ζ, η ∈ D with βD(ζ, η) ≤ ρ.

Proof. Put p0 := (iIν , 0) ∈ D . Since the function f(ζ ′) :=
∣∣∣KD(ζ′,p0)
KD(p0,p0)

∣∣∣ is

continuous and positive on the compact set Kρ := {ζ ′ ∈ D | βD(ζ ′, p0) ≤ ρ} , we
can take Aρ > 0 for which

A−1ρ ≤ f(ζ ′) ≤ Aρ (ζ ′ ∈ Kρ). (7)

On the other hand, since the group B acts on the domain D simply transitively,
we can take b ∈ B for which b · η = p0 . Note that the Jacobian of b is constant
because b is an affine transform. Thus we get∣∣∣∣KD(ζ, η)

KD(η, η)

∣∣∣∣ =

∣∣∣∣∣KD(b · ζ, b · η) det J(b, ζ) det J(b, η)

KD(b · η, b · η) det J(b, η) det J(b, η)

∣∣∣∣∣ =

∣∣∣∣KD(b · ζ, p0)
KD(p0, p0)

∣∣∣∣
= f(b · ζ).

By the invariance of the Bergman distance, we have βD(ζ, η) = βD(b · ζ, p0), so
that βD(ζ, η) ≤ ρ implies b · ζ ∈ Kρ . Therefore the estimate (6) follows from
(7).

3. Equivariant maps into the Siegel upper half planes

For n = 1, . . . , N , let πn : DN → Dn be the surjective holomorphic map given by
πn(Z) := Z [n] (Z ∈ DN). Let us observe the equivariance of πn under actions of
solvable groups. We define ρn : BN −→ Bn by

ρn

((
T 0
0 tT−1

)(
IN X
0 IN

))
=

(
T [n] 0

0 tT [n]−1

)(
In X [n]

0 In

)
.

Then ρn is a group homomorphism, and we see from (1) that

πn(β · Z) = ρn(β) · πn(Z) (8)

for any Z ∈ DN and β ∈ BN . Now we define Φn := πn ◦ Φ and φn := ρn ◦ φ .
From (5) and (8), we obtain the following proposition.

Proposition 3.1. One has

φn(b) · Φn(ζ) = Φn(b · ζ) (9)

for all b ∈ B and ζ ∈ D .

Using the group equivariance of Φn , we shall show that the map Φn is
Lipschitz continuous with respect to the Bergman distances on D and Dn .
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Proposition 3.2. There exists Mn > 0 such that

βDn(Φn(ζ),Φn(η)) ≤Mn βD(ζ, η)

for any ζ, η ∈ D .

Proof. Let ds2Dn (resp. ds2D ) be the Bergman metric on Dn (resp. D). It
suffices to prove

ds2Dn(Φn(ζ); J(Φn, ζ)X) ≤Mn ds
2
D(ζ;X) (10)

for all ζ ∈ D and X ∈ Cd , where d := dimD .

Since Hermitian forms (ds2D)p0 and (Φ∗mds
2
Dm)p0 on Cd are positive definite

and positive semi-definite respectively, we can take Mn for which

(Φ∗nds
2
Dn)p0 ≤Mn(ds2D)p0 . (11)

Using homogeneity, we will prove (10) holds for all ζ ∈ D and X ∈ Cd . Let us
take b ∈ B such that b · ζ = p0 . Then, the right hand side of (10) is written as

ds2Dn(Φn(b · p0) ; J(Φn, b · p0)X). (12)

Substituting ζ = p0 in (9), we have

Φn(b · p0) = φn(b) · Φn(p0).

Furthermore, differentiating (9) at ζ = p0 , we obtain

J(Φn, b · p0) J(b, p0) = J(φn(b),Φm(p0)) J(Φn, p0).

Therefore, (12) is equal to

ds2Dn
(
φn(b) · Φn(p0) ; J(φn(b),Φn(p0)) J(Φn, p0)J(b, p0)

−1X
)
,

which is equal to

ds2Dn
(
Φn(p0) ; J(Φn, p0)J(b, p0)

−1X
)

because ds2Dn is invariant under the holomorphic automorphism φn(b). By (11),

ds2Dn
(
Φn(p0) ; J(Φn, p0)J(b, p0)

−1X
)
≤Mnds

2
D

(
p0 ; J(b, p0)

−1X
)

and the right hand side is equal to

Mnds
2
D (b · p0 ;X) = Mnds

2
D (ζ ;X) ,

because b ∈ B is a biholomorphic map on D . Therefore, (10) is verified, whence
Proposition 3.2 follows.



762 Ishi and Yamaji

4. Minor functions

Definition 4.1. We set µ1 := 1 and µj := ν1+ν2+ · · ·+νj−1+1 for 2 ≤ j ≤ r .
For Z ∈ ΩV + iV (⊂ VC), we define Qj(Z) (j = 1, . . . , r) by

Qj(Z) :=
detZ [µj ]

detZ [µj−1]
,

where we interpret detZ [0] = 1. We also define Qs(Z) for s := (s1, ..., sr) ∈ Rr by

Qs(Z) := Q1(Z)s1 · · ·Qr(Z)sr .

The functions Qj(Z) and Qs(Z) are denoted by χj(Z) and Zs respectively
in [5]. If D is a symmetric Siegel domain, then Qs also coincides with the
generalized power function ∆s in [4,P.122].

Example 4.2. Let V be the set of 4× 4 symmetric matrices with real entries
of the form

X =


x1 0 x4 0
0 x1 0 x5
x4 0 x2 0
0 x5 0 x3

 .

In this case, ν1 = 2, ν2 = ν3 = 1
V21 = {

(
x4 0

)
|x4 ∈ R},V31 = {

(
0 x5

)
|x5 ∈ R} and V32 = {0} .

The cone ΩV is nothing but the Vinberg cone ([2], [12]). Let W = {0} and F = 0.
Then D is the tube domain V + iΩV and we obtain

Q1(X) = x1,

Q2(X) =
x1(x1x2 − x24)

x21
= x2 −

x24
x1
,

Q3(X) =
detX

x1(x1x2 − x24)
= x3 −

x25
x1
.

These functions are considered in [2].

Take any X ∈ V . There exists a unique lower triangular matrix T ∈ H
such that T tT = X . Then we have

detX [m] = det(T tT )[m] = (detT [m])2 (13)

for any 1 ≤ m ≤ ν . Since T is a lower triangular matrix, we can easily calculate
the right hand side of (13). We have

detX [µk] = t11
2ν1t22

2ν2 · · · tk−1,k−12νk−1t2kk,

detX [µk−1] = t11
2ν1t22

2ν2 · · · tk−1,k−12νk−1 .

Therefore, we obtain Qk(X) = tkk
2 . Hence we have

detX [µk] = Q1(X)ν1Q2(X)ν2 · · ·Qk−1(X)νk−1Qk(X). (14)

Let det[m] be the polynomial function on VC defined by det[m] Z := detZ [m]

(Z ∈ VC).
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Lemma 4.3. Let 2 ≤ k ≤ r . Then, one has

Qk = (det[µ1])ck1 (det[µ2])ck2 · · · (det[µk−1])ck,k−1 det[µk], (15)

where cki = −νk
∏

i<p<k(1− νp) for i = 1, . . . , k − 1.

Proof. For 1 ≤ i < r , we obtain

det[µi+1]

det[µi]
=
Qi

νiQi+1

Qi

from (14). Therefore, we have

Qi+1 = Qi
1−νi det[µi+1]

det[µi]
. (16)

In particular,

Q2 = Q1
1−ν1 det[µ2]

det[µ1]
= (det[µ1])−ν1det[µ2].

Thus, the formula holds for k = 2 with c21 = −ν1 . Assume that the statement
holds for l = j . Substituting (15) to (16), we have

Qj+1 = det[µj+1]

{
det[µj ]

∏
i<j

(det[µi])cji

}(1−νj)

(det[µj ])−1

= det[µj+1](det[µj ])−νj
∏
i<j

(det[µi])(1−νj)cji .

Therefore, if we put

cj+1,i = (1− νj)cji = −νj
∏

i<p<j+1

(1− νp) for i = 1, . . . , j,

cj+1,j = −νj,

we have (15) for k = j + 1.

Let d := (d1, . . . , dr) and b := (b1, . . . , br) be r -tuples of respectively half
integers and integers defined by

dk := 1 +
1

2

(∑
i<k

dimVki +
∑
l>k

dimVlk
)
, bk := dimWk (k = 1, . . . , r).

Then the Bergman kernel of the homogeneous Siegel domain D is given by

KD(ζ, ζ ′) = C Q−(2d+b)
(
Z − Z ′

2i
− F (U,U ′)

)
for ζ := (Z,U), ζ ′ := (Z ′, U ′) ∈ D , where C is a constant depending only on
the normalization of the Lebesgue measure on V (see [5,Proposition 5.1]). This
formula together with Lemma 4.3 tells us the following.
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Lemma 4.4. Let ckj (1 ≤ j < k ≤ r) be the integer defined as in Lemma 4.3,
and cjj = 1 for 1 ≤ j ≤ r . Setting

sj :=
∑
k≥j

(2dk + bk)ckj (j = 1, . . . , r),

one has

KD(ζ, ζ ′) = C
r∏
j=1

{
det[µj ]

(
Z − Z ′

2i
− F (U,U ′)

)}−sj
.

5. Bergman kernel of the minimal bounded homogeneous domains

By the transformation formula of the Bergman kernel, we have the following
general formula.

Lemma 5.1. Let D1 and D2 be complex domains and α a biholomorphic map
from D1 onto D2 . Then, one has

KD2(α(ζ1), α(ζ2))KD2(α(ζ3), α(ζ4))

KD2(α(ζ1), α(ζ4))KD2(α(ζ3), α(ζ2))
=
KD1(ζ1, ζ2)KD1(ζ3, ζ4)

KD1(ζ1, ζ4)KD1(ζ3, ζ2)
(17)

for ζ1, ζ2, ζ3, ζ4 ∈ D1 .

Let U be a minimal bounded homogeneous domain with a center t . By
[13], U is biholomorphic to a homogeneous Siegel domain D ⊂ VC ×W . We set
p0 := (iIν , 0) ∈ D and take a biholomorphic map σ from D onto U such that
σ(p0) = t . From Lemma 5.1, we have the following lemma, which is crucial for
the present work.

Lemma 5.2. For any ζ, ζ ′ ∈ D , one has

Vol (U)KU(σ(ζ), σ(ζ ′)) =
KD(ζ, ζ ′)KD(p0, p0)

KD(ζ, p0)KD(p0, ζ ′)
.

Proof. By Lemma 5.1, we obtain

KU(σ(ζ), σ(ζ ′))KU(t, t)

KU (σ(ζ), t) KU(t, σ(ζ ′))
=
KD(ζ, ζ ′)KD(p0, p0)

KD(ζ, p0)KD(p0, ζ ′)
. (18)

By Proposition 2.1, we obtain

KU (σ(ζ), t) = KU(t, σ(ζ ′)) = KU(t, t) =
1

Vol (U)
.

Therefore, the left hand side of (18) is equal to

Vol (U)KU(σ(ζ), σ(ζ ′)),

and we complete the proof.
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For 1 ≤ n ≤ N , let θn be the composition map Cn ◦ Φn ◦ σ−1 from U into
the Siegel disk Un . Using the maps θn , we can describe the Bergman kernel KU
as follows.

Theorem 5.3. Putting nj = ν0 + ν1 + · · ·+ νj−1 + 1, one has

KU(z, z′) =
1

Vol (U)

r∏
j=1

{
det
(
Inj − θnj(z)θnj(z

′)
)}−sj

= C
r∏
j=1

KUnj (θnj(z), θnj(z
′))

sj
nj+1

for z, z′ ∈ U , where sj are integers defined by Lemma 4.4.

Proof. Let ζ = (Z,U) and ζ ′ = (Z ′, U ′) be elements σ−1(z) ∈ D and
σ−1(z′) ∈ D respectively. By Lemma 5.2, we have

KU(z, z′) = KU(σ(ζ), σ(ζ ′))

=
1

Vol (U)

KD(ζ, ζ ′)KD(p0, p0)

KD(ζ, p0)KD(p0, ζ ′)

=
1

Vol (U)

Q−(2d+b)
(
Z−Z′
2i
− F (U,U ′)

)
Q−(2d+b)

(
iIν−iIν

2i
− F (0, 0)

)
Q−(2d+b)

(
Z−iIν

2i
− F (U, 0)

)
Q−(2d+b)

(
iIν−Z′

2i
− F (0, U ′)

)
=

1

Vol (U)

Q−(2d+b)
(
Z−Z′
2i
− F (U,U ′)

)
Q−(2d+b)

(
Z−iIν

2i

)
Q−(2d+b)

(
iIν−Z′

2i

) . (19)

By Lemma 4.4, the right hand side of (19) is equal to

1

Vol (U)

r∏
j=1

 det[µj ]
(
Z−Z′
2i
− F (U,U ′)

)
det[µj ]

(
Z−iIν

2i

)
det[µj ]

(
iIν−Z′

2i

)

−sj

.

We see from (4) that

det

(
Z − Z ′

2i
− F (U,U ′)

)
= det

(
Φ(ζ)− Φ(ζ ′)

2i

)
.

Moreover, it is not difficult to check that

det[m]

(
Z − Z ′

2i
− F (U,U ′)

)
= det

(
Φm+ν0(ζ)− Φm+ν0(ζ

′)

2i

)
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for 1 ≤ m ≤ ν . Since nj = ν0 + µj , we have

det[µj ]
(
Z−Z′
2i
− F (U,U ′)

)
det[µj ]

(
Z−iIν

2i

)
det[µj ]

(
iIν−Z′

2i

)
= det


(

Φnj(ζ)− Φnj(p0)

2i

)−1(
Φnj(ζ)− Φnj(ζ

′)

2i

)(
Φnj(p0)− Φnj(ζ

′)

2i

)−1
= det

{(
Φnj(ζ) + iInj

2i

)−1(Φnj(ζ)− Φnj(ζ
′)

2i

)(
Φnj(ζ

′) + iInj
2i

)−1}
. (20)

By (3), the last term of (20) is equal to

det
(
Inj − Cnj(Φnj(ζ)) Cnj(Φnj(ζ

′))
)
.

Since θm = Cm ◦ Φm ◦ σ−1 , we have

KU(z, z′) =
1

Vol (U)

r∏
j=1

{
det
(
Inj − θnj(z) θnj(z

′)
)}−sj

.

The second equality in the statement follows from the above and the formula ([6])

KUnj (w,w
′) =

1

Vol(Unj)
det
(
Inj − ww′

)−(nj+1)
(w,w′ ∈ Unj).

6. Estimates of the Bergman kernel of minimal bounded
homogeneous domains

In this section, we prove Theorem A . Let U be a minimal bounded homogeneous
domain with a center t as in the previous section. For each a ∈ U , we take ϕa an
automorphism on U such that ϕa(a) = t . Since KU(·, t) is a constant function,
we have

KU(z, a)

KU(a, a)
=

KU(z, a)KU(a, t)

KU(a, a)KU(z, t)

=
KU(ϕa(z), t)KU(t, ϕa(t))

KU(t, t)KU(ϕa(z), ϕa(t))

=
KU(t, t)

KU(ϕa(z), ϕa(t))
, (21)

where the second equality follows from Lemma 5.1. For ρ > 0, let B(t, ρ) denote
the closed Bergman disk {z ∈ U | βU(z, t) ≤ ρ} , which is a compact subset of U .
For any z, a ∈ U with βU(z, a) ≤ ρ , we have (ϕa(z), ϕa(t)) ∈ B(t, ρ)× U because
βU(ϕa(z), t) = βU(ϕa(z), ϕa(a)) = βU(z, a) ≤ ρ . If U is a bounded symmetric
domain, we know that

(P ) KU(z1, z2) extends to the compact set B(t, ρ)× Cl(U) as a continuous and
non-zero function
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(see [10,Theorem 2.10]). Therefore, we obtain Theorem A from (21). However,
we don’t know whether a nonsymmetric homogeneous domain has the property
(P). Therefore, we take advantage of Theorem 5.3, which describes the Bergman
kernel of the minimal homogeneous domain U in terms of the Bergman kernel of
the Siegel disks Unj . Moreover, we have an estimate of the Bergman distance in
Proposition 3.2. Using these results, we will prove our main theorem.

Proof of Theorem A. Take any z, a ∈ U with βU(z, a) ≤ ρ . Then, there
exist ζ, η ∈ D such that σ(ζ) = z and σ(η) = a . By Theorem 5.3, we have∣∣∣∣KU(z, a)

KU(a, a)

∣∣∣∣ =
r∏
j=1

∣∣∣∣∣KUnj (θnj(z), θnj(a))

KUnj (θnj(a), θnj(a))

∣∣∣∣∣
sj

nj+1

. (22)

On the other hand, since βD(ζ, η) = βU(z, a) ≤ ρ and βDnj (Φnj(ζ),Φhj(η)) =

βUnj (θnj(z), θnj(a)), we obtain

βUnj (θnj(z), θnj(a)) ≤Mnjρ (23)

from Proposition 3.2. Since Unj is a bounded symmetric domain, there exists a
positive constant Cj such that

C−1j ≤

∣∣∣∣∣KUnj (w,w
′)

KUnj (w
′, w′)

∣∣∣∣∣ ≤ Cj

holds for any w,w′ ∈ Unj with βUj(w,w
′) ≤Mnjρ . Therefore, thanks to (23), we

have

C−1j ≤

∣∣∣∣∣KUnj (θnj(z), θnj(a))

KUnj (θnj(a), θnj(a))

∣∣∣∣∣ ≤ Cj.

In view of (22), we have

C−1ρ ≤
∣∣∣∣KU(z, a)

KU(a, a)

∣∣∣∣ ≤ Cρ

with

Cρ =
r∏
j=1

C

sj
nj+1

j .

As an application of Theorem A, we obtain another important estimate of KU .

Proposition 6.1. For any ρ > 0, there exists Mρ > 0 such that M−1
ρ ≤

|KU(z, w)| ≤Mρ for any z ∈ B(t, ρ) and w ∈ U .

Proof. Similarly to (21), we obtain∣∣∣∣KU(z, w)

KU(t, t)

∣∣∣∣ =

∣∣∣∣KU(z, w)KU(t, t)

KU(z, t)KU(t, w)

∣∣∣∣ =

∣∣∣∣KU(ϕw(t), ϕw(t))

KU(ϕw(z), ϕw(t))

∣∣∣∣ . (24)
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Since βU(ϕw(z), ϕw(t)) = βU(z, t) ≤ ρ , there exists Cρ > 0 such that the right
hand side of (24) is estimated by Cρ and C−1ρ as in Theorem A. Note that the
constant Cρ is independent of z and w . Therefore, we obtain

C−1ρ KU(t, t) ≤ |KU(z, w)| ≤ CρKU(t, t)

for any z ∈ B(t, ρ) and w ∈ U .
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[4] Faraut, J., and A. Korányi, “Analysis on symmetric cones,” Clarendon Press,
1994.

[5] Gindikin, S. G., Analysis in homogeneous domains, Russian Math. Surveys
19-4 (1964), 1–89.

[6] Hua, L. K., “Harmonic analysis of functions of several complex variables on
the classical domains,” Amer. Math. Soc., 1963.

[7] Ishi, H., On symplectic representations of normal j -algebras and their ap-
plication to Xu’s realizations of Siegel domains, Differential Geom. Appl. 24
(2006), 588–612.

[8] Ishi, H., and C. Kai, The representative domain of a homogeneous bounded
domain, Kyushu J. Math. 64 (2010), 35–47.

[9] Jarnicki, M., and P. Pflug, “Invariant distances and metrics in complex anal-
ysis,” Walter de Gruyter, 1993.

[10] Loos, O., “Bounded symmetric domains and Jordan pairs”, Lecture Notes,
Univ. California, Irvine, 1997.

[11] Maschler, M., Minimal domains and their Bergman kernel function, Pacific
J. Math. 6 (1956), 501–516.

[12] Vinberg, È. B., The theory of convex homogeneous cones, Trans. Moscow
Math. Soc. 12 (1963), 340–403.
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