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Abstract. In this paper, we study an infinite-dimensional Lie algebra B ,
called local area-preserving algebra for the Klein bottle and introduced by Pope
and Romans. We show that B is a finitely generated simple Lie algebra with a
unique (up to scalars) symmetric invariant bilinear form. The derivation algebra
and the universal central extension of B are also determined.
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1. Introduction

Infinite-dimensional Lie algebras and their representations play an increasingly
important role in several branches of mathematics and physics (cf. [12, 17, 21]
and references therein). In his seminar work(cf. [3] or [4]), V. Arnold has studied
the infinite-dimensional Lie group (algebra) of area-preserving diffeomorphisms of
the two-torus in order to study a simplified model of atmospheric motion. The
area-preserving algebra L for the two-torus is a Lie algebra over C with a basis
{Lm |m ∈ Z2/(0, 0)} subject to the relation:

[Lm, Ln] = det

(
m

n

)
Lm+n ∀ m,n ∈ Z2/{(0, 0), (1)

where

m = (m1,m2), n = (n1, n2),

(
m

n

)
=

(
m1 m2

n1 n2

)
.

It is also called the Virasoro-like algebra by many authors [13, 18, 20]. In fact, L
is a special case of the Lie algebras defined by R. Block [6] in 1958. For the more
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general case, we refer the reader to [9]. From [9, 16] we know that the universal
covering algebra of L is L̃ = L ⊕ Cc1 ⊕ Cc2 with the following Lie bracket:

[Lm, Ln] = det

(
m

n

)
Lm+n + δm+n,0(m1c1 +m2c2) ∀ m,n ∈ Z2/{(0, 0),

[L, ci] = 0, i = 1, 2.

Furthermore, we extend L by two derivations d1 and d2 to get L̂ = L̃⊕Cd1⊕Cd2

with

[di, Lm] = miLm, [d1, d2] = [d1, ci] = [d2, ci] = 0, i = 1, 2.

It was shown in [18] that L is a finitely generated simple Lie algebra. The deriva-
tion algebra of L was determined by Jiang and Meng in [15]. The structure of the
automorphism group of L and L̂ were studied in [8] and [16]. The investigations
of the structure and representation theory of these Lie algebras are still under way,
though much progress was made in the references [14, 13, 19, 20].

Partly motivated by the membrane theory, groups of area-preserving dif-
feomorphisms of a 2-dimensional surface (including the two-sphere, the two-torus,
and the tetrahedron) and their Lie algebras have recently been the focus of much
attention in the physics literature [2, 5, 11, 22, 23, 24, 25, 26]. In particular, Pope
and Romans [22] introduced some infinite dimensional Lie algebras associated to
two non-orientable surfaces: the Klein bottle and the projective plane. The object
of our study will be the local area-preserving Lie algebra for the Klein bottle.

Following Pope and Romans (cf. [22]), let θ : L → L be the linear map
defined by

θ(Lm) = −(−1)m2Lm̄ ∀ m ∈ Z2/(0, 0), (2)

where m = (m1,m2) and m̄ = (−m1,m2). It is clear that θ is an automorphism
of L such that θ2 = id. The local area-preserving algebra B (Klein bottle Lie
algebra) for the Klein bottle is the fixed point subalgebra of the Lie algebra L
under the automorphism θ :

B = {x ∈ L | θ(x) = x}. (3)

This paper is mainly concerned with the structure of the Klein bottle Lie
algebra B . Next we shall describe the contents and main results of our paper.

In Section 2, we find a basis of B and show that B is a finitely generated
simple Lie algebra. In Section 3, we show that this Lie algebra possesses a
unique symmetric invariant bilinear form, up to a scalar. In Section 4, using
a result of R. Farnsteiner in [10] on derivations of finitely generated graded Lie
algebras, we give an explicit description of all derivations of B . It turns out
that dim H1(B,B) = 1. In the last section, we determine the second cohomology
group with trivial coefficients for B . It turns out that dim H2(B,C) = 1. As a

consequence, the universal covering algebra B̃ = B ⊕ CC is equipped with the
bracket:

[Bm, Bn] = det

(
m

n

)
Bm+n − (−1)n2 det

(
m

n̄

)
Bm+n̄

+ m2(δm+n,0 − (−1)n2δm+n̄,0)C, ∀ m,n ∈ Z2/(0, 0).
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where C is a central element and Bm = Lm − (−1)m2Lm̄. It is clear that the

Lie algebra B̃ is Z-graded. We plan to investigate the representations for the Lie
algebra B̃ and further applications in later work.

Throughout the paper, we shall use C,Z,N and Z+ to denote the sets of the
complex numbers, the integers, the nonnegative integers, and the positive integers,
respectively, and denote Z∗ = Z/{0} , C∗ = C/{0} , G = Z2 , and G∗ = Z2/(0, 0).

2. Klein bottle Lie algebra

Let L be the area-preserving algebra (Virasoro-like algebra) for the two-torus
defined in (1), and B the Klein bottle Lie algebra defined in (3). In this section,
we shall prove that B is a finitely generated simple Lie algebra over C . For
m = (m1,m2), m̄ = (−m1,m2) ∈ G∗ , set

Bm = Lm − (−1)m2Lm̄. (4)

Then we have the following fact:

Lemma 2.1. The Klein bottle Lie algebra B is spanned by {Bm |m ∈ G∗} and
has multiplication:

[Bm, Bn] = det

(
m

n

)
Bm+n − (−1)n2 det

(
m

n̄

)
Bm+n̄, ∀ m,n ∈ G∗. (5)

Proof. For any x =
∑

m∈G∗ amLm ∈ B , we have θ(x) = x , i.e.,

θ(x) = θ(
∑

m∈G∗

amLm) = −
∑

m∈G∗

(−1)m2amLm̄ =
∑

m∈G∗

amLm = x.

It follows that

x =
∑

m∈G∗

1

2
am(Lm − (−1)m2Lm̄) =

∑
m∈G∗

1

2
amBm.

It follows that we have a basis of B :

Lemma 2.2. The Klein bottle Lie algebra B has a basis

{Bm |m ∈ G∗,m1 ∈ Z+} ∪ {B0,n |n ∈ 2Z + 1}.

Theorem 2.3. B is a finitely generated simple Lie algebra.

Proof. Let B′ be the Lie subalgebra of B generated by B0,1, B0,−1, and B1,0 .
Since

[B0,1, B1,0] = −2B1,1, and [B1,1, B1,0] = −B2,1 −B0,1,

then we get B1,1, B2,1 ∈ B′ . By induction and

[Bm,1, B1,0] = −Bm+1,1 −Bm−1,1, m ∈ Z,
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we get Bm,1 ∈ B′ for any m ∈ Z . Similarly one has Bm,−1 ∈ B′ for any m ∈ Z .
It follows from

[Bm1,m2 , B0,1] = 2m1Bm1,m2+1, and [Bm1,−m2 , B0,−1] = −2m1Bm1,−m2−1,

that

Bm ∈ B′, for all m ∈ Z∗ × Z.

Moreover, the relation

[Bm,1, Bm,n−1] = m(n− 2)B2m,n − (−1)n−1mnB0,n, m, n ∈ Z∗

implies that B0,n ∈ B′, for all n ∈ Z∗. Hence B′ = B . That is, B is finitely
generated.

Let I be a nonzero ideal of the Lie algebra B . We shall first show the
following claim:

Claim 1. There exists Bm,n ∈ I for some (m,n) ∈ Z∗ × Z .

In fact, suppose that

0 6= x =
k∑

i=1

aiBmi,ni
∈ I,

where (mi, ni) ∈ G∗ and ai ∈ C∗ . Without loss of generality, we may assume x is
chosen such that k is minimal and (mi, ni) ∈ Z∗ × Z . Otherwise, since

[[x,B0,1], B0,−1] =
k∑

i=1

−4aim
2
iBmi,ni

∈ I,

we have

y =
k∑

i=1

aim
2
i

m2
1

Bmi,ni
∈ I.

It is clear that the element y − x ∈ I and the minimality of k implies that

m2
1 = m2

2 = · · · = m2
k.

Hence we may assume that

x =
k∑

i=1

aiBm,ni
, for ai ∈ C∗, (m,ni) ∈ Z∗ × Z.

Next we shall show that

Claim 2.
∑k

i=1 aiBm,ni−n1 ∈ I.
In fact, this is obvious for n1 = 0. If n1 < 0, by

[B0,1, x] =
k∑

i=1

bi[B0,1, Bm,ni
] = −2m

k∑
i=1

aiBm,ni+1,
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then (adB0,1)
−n1(x) ∈ I, which implies that

∑k
i=1 aiBm,ni−n1 ∈ I . Here adx(y) =

[x, y] for any x, y ∈ B . Similarly, if n1 > 0, then (adB0,−1)
n1(x) ∈ I, which

implies that
∑k

i=1 aiBm,ni−n1 ∈ I .

¿From the claim 2, we have

z =

[[
k∑

i=1

aiBm,ni−n1 , Bm,0

]
, B0,1

]
=

k∑
i=2

4aim
2(n1 − ni)B2m,ni−n1+1 ∈ I.

The minimality of k implies that

n1 = n2 = · · · = nk.

Hence claim 1 holds.

Claim 3 Br,s ∈ I for any (r, s) ∈ G∗ .

In fact, we can assume that Bm,n ∈ I for some (m,n) ∈ Z∗ × Z . Since

(adB0,1)
l(Bm,n) ∈ I, (adB0,−1)

l(Bm,n) ∈ I, for all l ∈ Z+.

we have
Bm,l ∈ I, for any l ∈ Z. (6)

By

y1 = [Bm,0, Br−m,s] = msBr,s − (−1)smsB2m−r,s ∈ I,
y2 = [Bm,2, Br−m,s−2] = (ms− 2r)Br,s − (−1)s−2(ms+ 2r − 4m)B2m−r,s ∈ I.

for any (r, s) ∈ Z× Z∗ and r 6= m , we have

msy2 − (ms+ 2r − 4m)y1 = 4ms(m− r)Br,s ∈ I.

Hence
Br,s ∈ I, for r 6= m, s ∈ Z∗. (7)

By [Br,1, B0,−1] = −2rBr,0 ∈ I, we have

Br,0 ∈ I, for r 6= m. (8)

¿From (6), (7) and (8), claim 3 is true, which implies I = B .

3. Invariant bilinear forms

In this section we shall determine all C-valued symmetric invariant bilinear forms
on Lie algebra B . Let g be a Lie algebra over C . A symmetric bilinear forms φ
on g is called g-invariant if φ satisfies

φ([x, y], z) = φ(x, [y, z]), ∀ x, y, z ∈ g.

Let Inv(g) denote the set of all C-valued symmetric g-invariant bilinear forms on
Lie algebra g . Assume that φ ∈ Inv(B). We have the following lemmas.
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Lemma 3.1. φ(B0,1, Bm) = 0, for any m ∈ Z∗ × Z.

Proof. This follows from φ([B0,1, B0,1], Bm1,m2−1) = 0 = −2m1φ(B0,1, Bm).

Lemma 3.2. φ(Bm, Bn) = 0, for any m,n ∈ G∗,m2
1 6= n2

1 .

Proof. Without loss of generality, we can assume that m1 ∈ Z∗ . By Lemma 3.1,

φ([B0,1, Bm1,m2−1], Bn) = −2m1φ(Bm, Bn) = φ(B0,1, [Bm1,m2−1, Bn]) = 0.

Lemma 3.3. φ(Bm, Bn) = 0, for any m,n ∈ G∗,m1 = n1 ∈ Z∗ and m2 +
n2 ∈ Z∗ .

Proof. By φ([Bm, B−2m1,0], Bn) = φ(Bm, [B−2m1,0, Bn]), m1 = n1 ∈ Z∗ and
Lemma 3.2, we have

m2φ(B−m1,m2 , Bn) = −n2φ(Bm, B−n1,n2).

It follows that(
m2 + (−1)m2+n2n2

)
φ(Bm, Bn) = 0, for m1 = n1 ∈ Z∗,

Hence

φ(Bm, Bn) = 0, for any m,n ∈ G∗,m1 = n1 ∈ Z∗,m2
2 6= n2

2.

Furthermore, it is clear that φ(Bm, Bn) = 0, for any m1 = n1,m2 = n2 ∈ Z∗ .
Therefore

φ(Bm, Bn) = 0, for any m,n ∈ G∗,m1 = n1 ∈ Z∗, m2 + n2 ∈ Z∗.

Lemma 3.4. φ(Bm, Bn) = 0 for any m,n ∈ G∗,m1 = n1 = 0, m2 +n2 ∈ Z∗.

Proof. Since φ([B1,m2 , B1,0], B0,n2) = φ(B1,m2 , [B1,0, B0,n2 ]), for m2 + n2 ∈ Z∗ ,
by Lemmas 3.2 and 3.3, one has m2φ(B0,m2 , B0,n2) = 0 for m2+n2 ∈ Z∗. It follows
that

φ(Bm, Bn) = 0 for any m,n ∈ G∗,m1 = n1 = 0, and m2 + n2 ∈ Z∗.

Lemma 3.5. φ(Bm, B−m) = φ(B1,0, B−1,0), for any m ∈ G∗,m1 ∈ Z∗.

Proof. Assume m = (m1,m2),n = (n1, n2) ∈ Z∗ × Z and m1 + n1 ∈ Z∗ .
Then

φ([Bm, Bn], B−m−n) = φ(Bm, [Bn, B−m−n]).

By Lemma 3.2,

(m1n2 −m2n1)φ(Bm+n, B−m−n) = (m1n2 −m2n1)φ(Bm, B−m). (9)

Let n2 = 0 in (9).

m2φ(Bm1+n1,m2 , B−m1−n1,−m2) = m2φ(Bm1,m2 , B−m1,−m2).
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It follows that, for m1, n1,m1 + n1,m2 ∈ Z∗ ,

φ(Bm, B−m) = φ(Bm1,m2 , B−m1,−m2) = φ(Bm1+n1,m2 , B−m1−n1,−m2). (10)

Let m2 = 0 in (9). Then

n2φ(Bm1+n1,n2 , B−m1−n1,−n2) = n2φ(Bm1,0, B−m1,0)

for m1, n1,m1 + n1 ∈ Z∗ . It follows that

φ(Bm1+n1,n2 , B−m1−n1,−n2) = φ(Bm1,0, B−m1,0). (11)

for m1, n1,m1 + n1, n2 ∈ Z∗ . By (10) and (11), we have

φ(Bm1,m2 , B−m1,−m2) = φ(Bm1,0, B−m1,0), for m1 ∈ Z∗. (12)

Let m1 = 1 in (11). Then

φ(B1+n1,n2 , B−1−n1,−n2) = φ(B1,0, B−1,0), for n1, n2, 1 + n1 ∈ Z∗. (13)

By (12) and (13), one has

φ(Bm1,0, B−m1,0) = φ(B1,0, B−1,0) for any m1 ∈ Z∗, (14)

and by (12) and (14) that

φ(Bm1,m2 B−m1,−m2) = φ(B1,0, B−1,0), for any m1 ∈ Z∗.

Lemma 3.6. φ(B0,2k+1, B0,−2k−1) = 2φ(B1,0, B−1,0), for all k ∈ Z.

Proof. Assume that m1 ∈ Z∗ and k ∈ Z . Since

φ([Bm1,2k+1, Bm1,0], B0,−2k−1) = φ(Bm1,2k+1, [Bm1,0, B0,−2k−1])

and it follows from Lemma 3.1, Lemma 3.5 and the fact Bm1,−2k−1 = B−m1,−2k−1

that we have

(2k + 1)φ(B0,2k+1, B0,−2k−1) = 2(2k + 1)φ(Bm1,2k+1, Bm1,−2k−1)

= 2(2k + 1)φ(B1,0, B−1,0),

which implies that φ(B0,2k+1, B0,−2k−1) = 2φ(B1,0, B−1,0) for any k ∈ Z .

Theorem 3.7. Let φ be any a C-valued invariant non-degenerate symmetric
bilinear form on Lie algebra B . Then, up to scalars, we have

φ(Bm, Bn) = δm+n,0 − (−1)n2δm+n̄,0, for any m,n ∈ G∗. (15)

Proof. This follows from Lemmas 3.2-3.6 and Theorem 2.3.
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4. The Derivation Algebra

The determination of derivations is an important problem in Lie algebra theory,
mainly due to the fact that one has deep connections with low dimensional co-
homology groups which frequently provide insight into the structure of the Lie
algebra(cf. [1, 6]) . In this section we shall determine the derivation algebra of the
Lie algebra B . Let us first recall some results about derivations.

Let Γ be an abelian group and suppose that g =
⊕
γ∈Γ

gγ a Γ-graded Lie

algebra. A g-module V is called Γ-graded, if

V =
⊕
γ∈Γ

Vγ, gγVγ′ ⊆ Vγ+γ′ , ∀ γ, γ′ ∈ Γ.

Let g be a Lie algebra and V a g-module. A linear map D : g → V is called a
derivation, if for any x, y ∈ g ,

D[x, y] = x.D(y)− y.D(x).

If there exists some v ∈ V such that D : x 7→ x.v , then D is called an inner
derivation. Denote by Der (g, V ) the vector space of all derivations, Inn (g, V ) the
vector space of all inner derivations. Set

H1(g, V ) = Der (g, V )/Inn (g, V ).

Next we present a theorem of R. Farnsteiner [10] on derivations of graded
Lie algebras with values in graded modules.

Theorem 4.1 (R. Farnsteiner). Let Γ be an abelian group and suppose that
g =

⊕
α∈Γ gα is a finitely generated Γ-graded Lie algebra.

(1) If V is a Γ-graded g-module, then

Der (g, V ) =
⊕
α∈Γ

Der (g, V )α.

(2) Suppose V is a Γ-graded g-module such that

(i) H1(g0, Vα) = 0, α ∈ Γ/(0),

(ii) Homg0(gβ, Vγ) = 0, for β 6= γ.

Then Der (g, V ) = Der (g, V )0 + Inn (g, V ).

Let g = B and V = g (as the adjoint g-module). It is clear that B is
equipped with a Z-grading: B =

⊕
n∈Z Bn where

Bn =
⊕
m∈N

CBm,n.

By Theorem 2.3 and Theorem 4.1, we have
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Lemma 4.2. Let DerB = Der (B,B). Then the derivation algebra of B

DerB =
⊕
n∈Z

(DerB)n

is Z-graded, i.e., (DerB)m(DerB)n ⊆ (DerB)m+n, ∀ m,n ∈ Z.

Lemma 4.3. H1(B0,Bn) = 0 for any n ∈ Z∗.

Proof. Let dn ∈ Der (B0,Bn) for n ∈ Z∗ . Without loss of generality, we can
assume that

dn(B1,0) =
s∑

i=1

aiBki,n, ai ∈ C∗, 0 ≤ k1 < · · · < ks.

If ks > 1, let

d′n = dn +
as

n
ad(Bks−1,n).

It follows that

d′n(B1,0) =
s∑

i=1

aiBki,n − asBks,n − asBks−2,n =
s−1∑
i=1

aiBki,n − asBks−2,n,

where ki < ks for i = 1, ..., s − 1 and 0 ≤ ks − 2 < ks . Hence we can assume
0 ≤ ks ≤ 1 and

dn(B1,0) = a0B0,n + a1B1,n.

Set
d′′n = dn +

a1

2n
ad(B0,n).

Case 1 n is an odd number. Then d′′n(B1,0) = a0B0,n. By

d′′n[Bm,0, B1,0] = [d′′n(Bm,0), B1,0] + [Bm,0, d
′′
n(B1,0)] = 0, for m ∈ Z∗,

we get
[d′′n(Bm,0), B1,0] + 2a0mnBm,n = 0, for m ∈ Z∗. (16)

For m = 2 in (16) we have

[d′′n(B2,0), B1,0] + 4a0nB2,n = 0. (17)

Let

d′′n(B2,0) =
t∑

i=1

biBhi,n where 0 ≤ h1 < · · · < ht, bi ∈ C∗.

It follows from (17) that

t∑
i=1

bi(Bhi+1,n +Bhi−1,n)− 4a0B2,n = 0.
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Hence ht = 1, which implies d′′n(B2,0) = b0B0,n + b1B1,n. However,

[b0B0,n + b1B1,n, B1,0] = −nb1B2,n − nb1B0,n − 2nb0B1,n = −4a0nB2,n,

which implies a0 = b0 = b1 = 0. It follows from (16) that [d′′n(Bm,0), B1,0] = 0.
That is d′′n = 0.

Case 2 n is an even number. It follows from B0,n = 0 that d′′n(B1,0) =
a1B1,n. Since

d′′n[Bm,0, B1,0] = [d′′n(Bm,0), B1,0] + [Bm,0, d
′′
n(B1,0)] = 0, for m ∈ Z∗,

we have
[d′′n(Bm,0), B1,0] + [Bm,0, a1B1,n] = 0, for m ∈ Z∗. (18)

Then
[d′′n(Bm,0), B1,0] + a1mn(Bm+1,n −Bm−1,n) = 0, for m ∈ Z∗. (19)

For m = 2 in (19) we have

[d′′n(B2,0), B1,0] + 2a1n(B3,n −B1,n) = 0. (20)

Set

d′′n(B2,0) =
t∑

i=1

biBhi,n, bi ∈ C∗, 0 ≤ h1 < · · · < ht.

Then it follows from (20) that

t∑
i=1

bi(−nBhi+1,n − nBhi−1,n) + 2a1n(B3,n −B1,n) = 0.

Therefore ht = 2. It follows that d′′n(B2,0) = b1B1,n + b2B2,n . However,

[b1B1,n + b2B2,n, B1,0] = −2a1n(B3,n −B1,n),

which implies a1 = 0. It follows from (19) that [d′′n(Bm,0), B1,0] = 0, which implies
d′′n = 0. That is, dn = − a1

2n
ad(B0,n). Hence dn is an inner derivation of B0 with

the coefficients in B0 -module Bn . It follows that

H1(B0,Bn) = 0 for n ∈ Z∗.

Lemma 4.4. HomB0(Bm,Bn) = 0 for m 6= n.

Proof. Let dm,n ∈ HomB0(Bm,Bn). Then

[Bs,0, dm,n(Bh,m)] = dm,n[Bs,0, Bh,m], for any s ∈ Z∗, h ∈ Z. (21)

Case 1 Let m = 0 and n 6= 0. Then in (21), [Bs,0, d0,n(Bh,0)] = 0. It
follows from d0,n(Bh,0) ∈ Bn that d0,n(Bh,0) = 0. Therefore

HomB0(B0,Bn) = 0 for n ∈ Z∗.
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Case 2 Let m 6= 0 and n = 0. Then

[Bs,0, dm,0(Bh,m)] = 0 = dm,0[Bs,0, Bh,m].

Hence
dm,0(Bs+h,m) + dm,0(Bh−s,m) = 0, ∀ s ∈ Z∗, h ∈ Z. (22)

Let s = 1 in (22), we have

dm,0(B1,m) = −dm,0(B3,m) = · · · = (−1)kdm,0(B2k+1,m),

dm,0(B0,m) = −dm,0(B2,m) = · · · = (−1)kdm,0(B2k,m).

Let s = 2 in (22), we have

dm,0(B1,m) = −dm,0(B5,m) = · · · = (−1)kdm,0(B4k+1,m),

dm,0(B0,m) = −dm,0(B4,m) = · · · = (−1)kdm,0(B4k,m).

Hence dm,0(Bh,m) = 0, which implies dm,0 = 0.

Case 3 Let m 6= 0 and n 6= 0. Since

[B1,0, dm,n(B1,m)] = mdm,n(B2,m) +mdm,n(B0,m),

i.e.

dm,n(B2,m) = [B1,0,
1

m
dm,n(B1,m)]− dm,n(B0,m),

we have

[B1,0, dm,n(B2,m)] = [B1,0, [B1,0,
1

m
dm,n(B1,m)]]−m[1− (−1)m]dm,n(B1,m)

= mdm,n(B3,m) +mdm,n(B1,m).

Hence

dm,n(B3,m) =
1

m2
[B1,0, [B1,0, dm,n(B1,m)]]− [2− (−1)m]dm,n(B1,m).

Let

dm,n(B1,m) =
t∑

i=1

aiBki,n, where 0 ≤ k1 < · · · < kt.

Then

[B2,0, dm,n(B1,m)] = 2mdm,n(B3,m)− (−1)m2mdm,n(B1,m)

=
2

m
[B1,0, [B1,0, dm,n(B1,m)]]− 4mdm,n(B1,m).

That is

2n
t∑

i=1

ai(Bki+2,n +Bki−2,n)

=
2n2

m

t∑
i=1

ai(Bki+2,n +Bki−2,n + 2Bki,n)− 4m
t∑

i=1

aiBki,n.
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Hence

(2n− 2n2

m
)

t∑
i=1

ai(Bki+2,n +Bki−2,n) + (4m− 4n2

m
)

t∑
i=1

aiBki,n = 0. (23)

Subcase 1 If kt ≥ 1, the coefficient of Bkt+2,n is (2n − 2n2

m
)at = 0. For

n 6= m , at = 0, it follows that dm,n(B1,m) = 0.

Subcase 2 If kt = 0, then dm,n(B1,m) = a0B0,n . If n is an even integer,
then dm,n(B1,m) = 0. If n is an odd integer, it follows from (23) that

(2n− 2n2

m
)2a0B2,n + (4m− 4n2

m
)a0B0,n = 0.

Since n 6= m , it follows that a0 = 0. Hence dm,n(B1,m) = 0. Since

[Bs,0, dm,n(B1,m)] = 0 = smdm,n(Bs+1,m) + smdm,n(B1−s,m),

we have
dm,n(Bs+1,m) = (−1)mdm,n(Bs−1,m) for s ∈ Z∗.

Hence
dm,n(B2k+1,m) = (−1)kmdm,n(B1,m) = 0, ∀ k ∈ Z.

Since
[B1,0, dm,n(B2k,m)] = mdm,n(B2k+1,m) +mdm,n(B2k−1,m) = 0,

we have
dm,n(B2k,m) = 0, ∀ k ∈ Z∗.

Therefore we have dm,n = 0.

By Lemma 4.3, Lemma 4.4 and Theorem 4.1, we have

Proposition 4.5. DerB = (DerB)0 + InnB.

Lemma 4.6. For β ∈ C∗ , the linear operator D(β) on B defined by

D(β)(Bm,n) = βnBm,n. (24)

Then D(β) is an outer derivation of B .

Proof. It is clear that D(β) is a derivation of B . If it is not an outer derivation
of B , then there exists x ∈ B such that D(β) = adx . Let

x =
∑

am,nBm,n, for am,n ∈ C∗.

Since
adx(B0,1) =

∑
2am,nmBm,n+1 = D(β)(B0,1) = βB0,1,

we have β = 0, which is impossible. Hence D(β) is an outer derivation of B .
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Theorem 4.7. The derivation algebra of B is

DerB = adB ⊕ CD(1),

where D(1) is defined as (24) for β = 1. In the language of cohomology, we have

H1(B,B) = CD(1).

Proof. Let d′ ∈ (DerB)0 . Since [Bm,0, B0,1] = 2mBm,1 for m ∈ Z∗, there
exists x ∈ B0 such that

(d′ − adx)(B0,1) = aB0,1, for some a ∈ C∗.

Let d′′ = d′ − adx . Then

d′′(B0,1) = aB0,1.

Since

[B0,1, B0,−1] = 0,

and

[d′′(B0,1), B0,−1] + [B0,1, d
′′(B0,−1)] = 0,

we have

d′′(B0,−1) = bB0,−1.

For m ∈ Z∗ , let

d′′(Bm,0) =
∑

ckBk,0.

Since

[Bm,0, B0,1] = 2mBm,1, [Bm,1, B0,−1] = −2mBm,0,

2md′′(Bm,1) = [d′′(Bm,0), B0,1] + [Bm,0, d
′′(B0,1)] =

∑
2ckkBk,1 + 2amBm,1.

Hence, for m ∈ Z∗ , we have

d′′(Bm,1) =
1

m

∑
ckkBk,1 + aBm,1.

Since

−2md′′(Bm,0) = [d′′(Bm,1), B0,−1] + [Bm,1, d
′′(B0,−1)], for m ∈ Z∗,

−2m
∑

ckBk,0 = [
1

m

∑
ckkBk,1 + aBm,1, B0,−1] + [Bm,1, bB0,−1]

=
1

m

∑
−2ckk

2Bk,0 − 2amBm,0 − 2bmBm,0.

Therefore, k2 = m2 and a = −b . Since Bm,n = (−1)n+1B−m,n ,

d′′(Bm,0) = c(m)Bm,0.
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Let d = d′′ −D(a) . Then

d(B0,1) = 0, d(B0,−1) = 0, d(Bm,0) = c(m)Bm,0.

Now we will prove d = 0. Since 2mBm,1 = [Bm,0, B0,1] for m ∈ Z∗ , we have

d(Bm,1) = c(m)Bm,1, m ∈ Z∗.

Since 2mBm,n+1 = [Bm,n, B0,1] , by induction, we have

d(Bm,n) = c(m)Bm,n.

Since

−2mBm,−1 = [Bm,0, B0,−1] and − 2mBm,n−1 = [Bm,n, B0,−1]

for m ∈ Z∗ , we have
d(Bm,n) = c(m)Bm,n.

Hence d(Bm,n) = c(m)Bm,n for m 6= 0.

If m ≥ 1, then

d([Bm,0, B1,1]) = md(Bm+1,1) +md(Bm−1,1) = mc(m+1)Bm+1,1 +mc(m−1)Bm−1,1.
(25)

On the other hand,

d([Bm,0, B1,1]) = [d(Bm,0), B1,1]+ [Bm,0, d(B1,1)] = (c(m) + c(1))m(Bm+1,1 +Bm−1,1).
(26)

Comparing (25) and (26), we have

c(m+1) = c(m) + c(1), c(m−1) = c(m) + c(1).

Hence c(m) = 0. Then

d(B0,1) = d(B0,−1) = 0, d(Bm,n) = 0, for m ∈ Z∗, n ∈ Z.

It follows from the fact

d([Bm,n, Bm,0]) = d(−mnB2m,n −mnB0,n) = 0, d(B0,n) = 0

that d = 0.

5. The universal central extensions

In this section, we determine the universal central extension of B . Let us recall
some basic concepts. Let g be a Lie algebra over C . A bilinear function
ψ : g × g → C is called a 2-cocycle on g if for all x, y, z ∈ g , the following
two conditions are satisfied:

ψ(x, y) = −ψ(y, x), (27)

ψ([x, y], z) + ψ([y, z], x) + ψ([z, x], y) = 0. (28)
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For any linear function f : g → C , one can define a 2-cocycle ψf as follows

ψf (x, y) = f([x, y]), ∀ x, y ∈ g.

Such a 2-cocycle is called a 2-coboudary on g . Denote by C2(g,C) the vector
space of 2-cocycles on g . The quotient space

H2(g,C) = C2(g,C)/B2(g,C)

is called the second cohomology group of g .

A central extension of g is a Lie algebra g̃ with a surjective homomorphism
π : g̃ → g , whose kernel lies in the center of g̃ . There exists a one-to-one
correspondence between the set of equivalent classes of one-dimensional central
extensions of g by C and the second cohomology group H2(g,C). A central
extension (g̃, π) of g is called a universal central extension if for every central
extension (g′, π′) of g there is a unique homomorphism ϕ : g̃ → g′ , for which
π′ϕ = π . It is known that each perfect Lie algebra has a universal central extension.

Let D = D(1) ∈ Der (B) in (24) for β = 1 and φ defined by (15). Then,
∀ m,n ∈ G∗ , we have

φ(D(Bm), Bn) + φ(Bm, D(Bn)) = φ(m2Bm, Bn) + φ(Bm, n2Bn)

= (m2 + n2)(δm+n,0 − (−1)m2δm+n̄,0) = 0,

which implies that D is a skew derivation with respect to φ .

Lemma 5.1. Let αφ : B × B → C be the bilinear form defined by

αφ(x, y) = φ(D(x), y) ∀ x, y ∈ B.

Then
αφ(Bm, Bn) = m2(δm+n,0 − (−1)n2δm+n̄,0), ∀ m,n ∈ G∗,

is a nontrivial 2-cocycle of B .

Proof. It is straightforward to check that αφ is a nontrivial 2-cocycle of B .

Remark 5.2. By examining its embedding in the area-preserving algebra for
the torus, Pope and Romans [22] constructed this 2-cocycle for B .

Let α′ be any a 2-cocycle on B and f : B → C a linear function on B
defined by

f(Bm) =

{
1

2m1
α′(Bm1,m2−1, B0,1), m1 ∈ Z∗,m2 ∈ Z;

− 1
m2
α′(B1,m2 , B1,0)− 1

4
α′(B2,m2−1, B0,1), m1 = 0,m2 is odd.

Let ψf : B × B → C be a bilinear form on B defined by

ψf (Bm, Bn) = f([Bm, Bn]), ∀ m,n ∈ G∗.

It is clear that ψf is 2-coboundary of B . Let α = α′ − ψf . Then we have the
following lemmas:
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Lemma 5.3.

α(Bm, B0,1) = 0, ∀ m = (m1,m2) ∈ Z∗ × Z,
α(B1,k, B1,0) = 0, ∀ k ∈ Z, k is odd.

Proof. For m1 ∈ Z∗,m2 ∈ Z , we have

α(Bm1,m2 , B0,1) = α′(Bm1,m2 , B0,1)− f(2m1Bm1,m2+1) = 0.

If k is odd, we have

α(B1,k, B1,0) = α′(B1,k, B1,0) + kf(B2,k)− α′(B1,k, B1,0)− kf(B2,k) = 0.

Lemma 5.4. α(Bm, Bn) = 0, ∀ m,n ∈ G∗,m1 ∈ Z∗, n1 = 0.

Proof. Let n2 = 2k + 1, k ∈ Z . Then

α([Bm1,m2−1, B0,1], B0,2k+1) + α([B0,2k+1, Bm1,m2−1], B0,1) = 0,

α(2m1Bm1,m2 , B0,2k+1) + α(−2m1(2k + 1)Bm1,m2+2k, B0,1) = 0.

By Lemma 5.3, we have α(Bm1,m2 , B0,2k+1) = (2k + 1)α(Bm1,m2+2k, B0,1) = 0.

Lemma 5.5. α(Bm, Bn) = 0, ∀ m,n ∈ G∗,m2
1 6= n2

1.

Proof. By Eq. (28),

α([Bm, Bn1,n2−1], B0,1) + α([Bn1,n2−1, B0,1], Bm) + α([B0,1, Bm], Bn1,n2−1) = 0.

Then

(m1n2 −m2n1 −m)α(Bm1+n1,m2+n2−1, B0,1) + 2n1α(Bn1,n2 , Bm)

+(−1)n2(m1n2 +m2n1 −m)α(Bm1−n1,m2+n2−1, B0,1)

−2m1α(Bm1,m2+1, Bn1,n2−1) = 0.

By Lemma 5.4 and m2
1 6= n2

1 , we have

α((m1n2 −m2n1 −m)Bm1+n1,m2+n2−1

+(−1)n2(m1n2 +m2n1 −m)Bm1−n1,m2+n2−1, B0,1) = 0.

Then
n1α(Bn1,n2 , Bm) = m1α(Bm1,m2+1, Bn1,n2−1). (29)

By Eq. (28),

α([Bm1,m2+1, Bn], B0,−1) + α([Bn, B0,−1], Bm1,m2+1) + α([B0,−1, Bm1,m2+1], Bn) = 0.

By Lemma 5.4 and m2
1 6= n2

1 ,

n1α(Bm1,m2+1, Bn1,n2−1) = m1α(Bm1,m2 , Bn1,n2). (30)

Combining(29) with (30), we have

α(Bm, Bn) = 0, ∀ m,n ∈ G∗,m2
1 6= n2

1.
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Lemma 5.6. α(B1,2k, B1,0) = 0, ∀ k ∈ Z.

Proof. The case k = 0 is clear. Let k ∈ Z∗ . By Eq. (28),

α([B2,k, B1,k], B1,0) + α([B1,k, B1,0], B2,k) + α([B1,0, B2,k], B1,k) = 0.

By Lemma 5.5, we have

−(−1)k3kα(B1,2k, B1,0)− kα(B2,k, B2,k) + kα(B1,k, B1,k) = 0.

Hence
α(B1,2k, B1,0) = 0, k ∈ Z∗.

Lemma 5.7. α(Bm, Bn) = 0, ∀ m,n ∈ G∗,m1 = n1 = 0, and m2 + n2 ∈ Z∗.

Proof. By Eq. (28),

α([B1,m2 , B1,0], B0,n2) + α([B1,0, B0,n2 ], B1,m2) + α([B0,n2 , B1,m2 ], B1,0) = 0,

where m2 and n2 are odd. Then

α(−m2B2,m2 −m2B0,m2 , B0,n2) + α(n2B1,n2 − (−1)n2n2B1,n2 , B1,m2)

+α(−n2B1,m2+n2 + (−1)n2n2B1,m2+n2 , B1,0) = 0.

By Lemma 5.4 and Lemma 5.6, we have

m2α(B0,m2 , B0,n2) = 2n2α(B1,n2 , B1,m2).

Similarly, one has

n2α(B0,n2 , B0,m2) = 2m2α(B1,m2 , B1,n2).

Then
α(B0,m2 , B0,n2) = 0, m2 + n2 ∈ Z∗.

Lemma 5.8. α(B−m1,m2 , Bm1,0) = 0, m1 ∈ Z,m2 ∈ Z∗.

Proof. If m1 = 1 or m1 = −1 , the claim is clear by Lemmas 5.3 and 5.6.
Hence we can assume m1 6= ±1. By Eq. (28),

α([B−m1−1,m2 , B1,0], Bm1,0) + α([Bm1,0, B−m1−1,m2 ], B1,0) = 0.

Then

α(−m2B−m1,m2 −m2B−m1−2,m2 , Bm1,0)

+ α(m1m2B−1,m2 − (−1)m2m1m2B2m1+1,m2 , B1,0) = 0.

Since −m1 − 2 6= ±m1, 2m1 + 1 6= ±1, Lemma 5.5 implies

α(B−m1,m2 , Bm1,0) = m1α(B−1,m2 , B1,0).

By Lemma 5.3 and Lemma 5.6, we have α(B−1,m2 , B1,0) = 0. Hence

α(B−m1,m2 , Bm1,0) = 0, for m1 ∈ Z,m2 ∈ Z∗.
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Lemma 5.9. α(Bm, Bn) = 0, ∀ m,n ∈ G∗,m1 + n1 = 0, m2 + n2 ∈ Z∗.

Proof. If m1 = 0, this follows from Lemma 5.7. Next we assume m1 ∈ Z∗ .
By Eq. (28),

α([Bm1,m2 , B−2m1,0], Bm1,n2)

+ α([B−2m1,0, Bm1,n2 ], Bm1,m2) + α([Bm1,n2 , Bm1,m2 ], B−2m1,0) = 0.

Then

α(2m1m2B−m1,m2 − 2m1m2B3m1,m2 , Bm1,n2)

+ α(−2m1n2B−m1,n2 + (−1)n22m1n2B−3m1,n2 , Bm1,m2)

+ α(m1(m2 − n2)B2m1,m2+n2 − (−1)m2m1(m2 + n2)B0,m2+n2 , B−2m1,0) = 0.

By Lemma 5.5,

2m1m2α(B−m1,m2 , Bm1,n2)

− 2m1n2α(B−m1,n2 , Bm1,m2) +m1(m2 − n2)α(B2m1,m2+n2 , B−2m1,0) = 0.

By Lemma 5.8,
α(B2m1,m2+n2 , B−2m1,0) = 0.

Hence
−m2α(B−m1,m2 , Bm1,n2) + n2α(B−m1,n2 , Bm1,m2) = 0.

Since Bm = (−1)m2+1Bm̄, ∀ m ∈ G∗ ,

−(−1)m2+n2m2α(Bm1,m2 , B−m1,n2)− n2α(Bm1,m2 , B−m1,n2) = 0.

That is
[(−1)m2+n2m2 + n2]α(Bm1,m2 , B−m1,n2) = 0.

Therefore
α(Bm1,m2 , B−m1,n2) = 0, for m2 + n2 ∈ Z∗.

By Lemmas 5.3–5.9, we have

Proposition 5.10. α(Bm, Bn) = 0, ∀ m,n ∈ G∗,m2
1 6= n2

1 or m2 + n2 ∈ Z∗.

Theorem 5.11. For the Lie algebra B , we have H2(B,C) = Cα, where

α(Bm, Bn) = m2(δm+n,0 − (−1)m2δm+n̄,0), ∀ m,n ∈ G∗.

Proof. By Eq. (28),

α([Bm, Bn], B−m−n) + α([Bn, B−m−n], Bm) + α([B−m−n, Bm], Bn) = 0,

for m,n ∈ G∗ . Assume that m1, n1 ∈ Z∗ and m1+n1 ∈ Z∗ . Then, by Proposition
5.10,

(m1n2 −m2n1)[α(Bm+n, B−m−n)− α(Bm, B−m)− α(Bn, B−n)] = 0. (31)
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In (31), we assume m1n2 −m2n1 6= 0. Then

α(Bm+n, B−m−n) = α(Bm, B−m) + α(Bn, B−n). (32)

In particular, let n2 = 0 and m1 = 1 in (32). Then we have

α(Bn1+1,m2 , B−n1−1,−m2) = α(B1,m2 , B−1,−m2), n1 + 1,m2 ∈ Z∗. (33)

Assume that m2, n2,m2 + n2 ∈ Z∗ . Then by (32) and (33),

α(B1,m2+n2 , B−1,−m2−n2) = α(B1,m2 , B−1,−m2) + α(B1,n2 , B−1,−n2).

Hence
α(B1,m, B−1,−m) = mα(B1,1, B−1,−1). (34)

It follows from (33) and (34) that

α(Bm1,m2 , B−m1,−m2) = m2α(B1,1, B−1,−1), for any m1 ∈ Z∗,m2 ∈ Z. (35)

By Eq. (28) again,

α([Bm1,m2 , Bm1,0], B0,−m2)

+ α([Bm1,0, B0,−m2 ], Bm1,m2) + α([B0,−m2 , Bm1,m2 ], Bm1,0) = 0

for m ∈ G∗. Assume that m2 is an odd number and m1 ∈ Z∗ . Then

−m1m2α(B0,m2 , B0,−m2) + 2m1m2α(Bm1,m2 , Bm1,−m2) = 0.

By (35), we have

α(B0,m2 , B0,−m2) = 2m2α(B1,1, B−1,−1), for any m2 ∈ Z∗.

Hence

α(Bm1,m2 , B−m1,−m2) =

{
m2α(B1,1, B−1,−1) m1 6= 0

2m2α(B1,1, B−1,−1) m1 = 0.

That is

α(Bm1,m2 , Bm1,−m2) =

{
(−1)m2+1m2α(B1,1, B−1,−1) m1 6= 0

2m2α(B1,1, B−1,−1) m1 = 0.

Hence
α(Bm, Bn) = m2(δm+n,0 − (−1)n2δm+n̄,0), ∀ m,n ∈ G∗.

Now we consider the vector space B̃ = B ⊕CC equipped with the bracket:

[Bm, Bn] = det

(
m

n

)
Bm+n − (−1)n2 det

(
m

n̄

)
Bm+n̄

+ m2(δm+n,0 − (−1)n2δm+n̄,0)C, ∀ m,n ∈ G∗.

where C is a central element. It is clear that B̃ is a Lie algebra. Let ϕ : B̃ → B
be the projection, then (B̃, ϕ) is a central extension of B and kerϕ = CC .
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Theorem 5.12. (B̃, ϕ) is the universal central extension of B .

Proof. It follows from kerϕ ' H2(B,C) ' H2(B,C)∗ and

dim H2(B,C) = 1.
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