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Abstract. We study isometric actions on Riemannian symmetric spaces of
noncompact type which are induced by reductive algebraic subgroups of the
isometry group. We show that for such an action there exists a corresponding
isometric action on a dual compact symmetric space, which reflects many proper-
ties of the original action. For example, the principal isotropy subgroups of both
actions are locally isomorphic and the dual action is (hyper)polar if and only if
the original action is (hyper)polar. This fact provides many new examples for
polar actions on symmetric spaces of noncompact type and we use duality as a
method to study polar actions by reductive algebraic subgroups in the isometry
group of an irreducible symmetric space. Among other applications, we show
that they are hyperpolar if the space is of type III and of higher rank; we prove
that such actions are orbit equivalent to Hermann actions if they are hyperpolar
and of cohomogeneity greater than one. Furthermore, we classify polar actions
by reductive algebraic subgroups of the isometry group on noncompact symmet-
ric spaces of rank one.
Mathematics Subject Classification 2000: Primary 53C35; secondary 57S20.
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1. Introduction

A proper isometric action of a Lie group on a Riemannian manifold is called
polar if there is a complete immersed submanifold which intersects the orbits
perpendicularly and meets all orbits. Such a submanifold is called a section for
the action. A special case, which occurs in many natural examples, is when the
section is flat in its induced Riemannian metric. In this case, the action is called
hyperpolar.

Sections of polar actions are always totally geodesic submanifolds. If one
intends to study polar actions of cohomogeneity greater than one, it is therefore
natural to consider the class of Riemannian symmetric spaces, which – unlike
generic Riemannian manifolds – admit many nontrivial totally geodesic subman-
ifolds of dimension greater than one. In fact, the theory of symmetric spaces is
the main source of examples for polar actions. For instance, the action of an
isotropy group of a Riemannian symmetric space is always hyperpolar. Polar and
hyperpolar actions have been studied by many authors, see e.g. the survey [36]
for the history of the subject and a bibliography. Among the hyperpolar actions,
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the most prominent special case is the case of cohomogeneity one actions, i.e. ac-
tions where there are orbits of codimension one. Cohomogeneity one actions on
spheres, complex and quaternionic projective space and on the Cayley plane have
been classified in [20], [35], [12], [21]. Hyperpolar actions on compact irreducible
Riemannian symmetric spaces have been classified by the author in [23]. See [1],
[2], [3], [4] for classification results concerning hyperpolar actions on noncompact
symmetric spaces.

If one studies the more general case of polar actions on compact symmetric
spaces, where one does not require the sections to be flat, there is a sharp contrast
between the case of rank one symmetric spaces on the one hand and of irreducible
spaces of higher rank on the other hand. Namely, while there are many examples
of such actions on the spaces of rank one, see [11] and [33] for a classification, there
is not even one nontrivial example known on the irreducible spaces of higher rank
and it is an interesting problem to decide if there are any such actions at all.

The first result in this connection was proved in [9], where it was shown
that a polar action with a fixed point on an irreducible symmetric space of higher
rank is hyperpolar. It has been shown by the author in [24] that polar actions
are hyperpolar on the symmetric spaces with simple compact isometry group and
rank greater than one. Earlier, Biliotti [6] had completed the classification of all
coisotropic and polar actions on compact irreducible Hermitian symmetric spaces,
see also [7] and [34]. His result lead him to make the following conjecture.

Conjecture 1.1. [6] A nontrivial polar action of a connected Lie group on
an irreducible compact Riemannian symmetric space of rank greater than one is
hyperpolar.

In [25], the author has shown that the conjecture also holds for the symmet-
ric spaces given by compact simple Lie groups of exceptional type endowed with
a biinvariant Riemannian metric. This is still an open problem for compact Lie
groups of classical type. Note that we cannot drop the irreducibility assumption in
the conjecture since otherwise e.g. products of transitive with trivial actions would
be counterexamples.

It is an intriguing problem to classify polar and hyperpolar actions in more
general settings, in particular, to ask if a statement similar to Conjecture 1.1 holds
for actions on symmetric spaces of the noncompact type. However, the straight-
forward generalization of Conjecture 1.1, where one simply drops the hypothesis
that the space acted upon be compact, is known not to be true. Indeed, in [1,
Proposition 4.2], examples of homogeneous foliations (i.e. actions where all orbits
are principal) are given which are polar, but not hyperpolar. Note that there are
no homogeneous polar foliations on irreducible compact symmetric spaces, cf. [33,
Lemma 1A.2]. On the other hand, it follows from Cartan’s fixed point theorem and
the result of Brück [9] that the conjecture still holds for actions on noncompact
symmetric spaces if one requires the group which acts polarly to be compact. Thus
it is an interesting question to what extent properties of polar actions generalize
from the compact to the noncompact setting.

However, while there are a number of strong results, e.g. [23], [24], [25],
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[33] for polar and hyperpolar actions in the realm of compact symmetric spaces,
classification results on the noncompact side are only available in special cases
and for a limited class of spaces see e,g. [1], [2], [3], [4], [9], [15], [38]. At first
glance, this seems remarkable in view of the fact that there is a well known duality
between Riemannian symmetric spaces of the compact and the noncompact type.
In fact, for every symmetric space of the noncompact type M there is a dual
compact symmetric space M∗ which closely reflects some geometric aspects of its
noncompact counterpart, and vice versa. Moreover, there are many examples of
group actions on symmetric spaces for which there exist obvious analogues on the
dual space.

But the connection established by duality is far from being a complete one-
to-one correspondence if one considers isometric Lie group actions. Namely, there
is an obvious bijective map

X + Y 7−→ X + iY for X ∈ k, Y ∈ p (1)

between the Lie algebras of the isometry groups of M and M∗ , but this map is
not a Lie algebra homomorphism and does not, in general, map subalgebras onto
subalgebras. In fact, there are some phenomena like horocycle foliations on non-
compact spaces which appear not to have a counterpart on a dual compact space.
Thus the methods used in the compact case cannot be applied to noncompact
spaces in general.

Then again, there is a special case where duality can be applied, namely
when the Lie algebra h of the group H ⊆ G acting on the symmetric space
M = G/K of noncompact type is invariant under the Cartan involution. Then
the image of h under the map (1) is a subalgebra h∗ ⊆ g∗ and this defines an
action on a compact symmetric space M∗ dual to M .

It is the content of the Karpelevich-Mostow Theorem, see Section 3, that
a semisimple subalgebra h in a semisimple Lie algebra g none of whose ideals is
compact is always conjugate to a subalgebra invariant under a Cartan decompo-
sition, or equivalently, H always has a geodesic orbit. More generally, the same
conclusion holds if H ⊆ G is a reductive algebraic subgroup. Hence a dual action
exists for such actions. As we will show, such a dual action on M∗ has many
properties in common with the original action on M , in particular, the action on
M∗ is (hyper)polar if and only if the action on M is (hyper)polar. We will use
this fact to obtain a number of new results on polar and hyperpolar actions on
noncompact symmetric spaces by applying duality to earlier results in the compact
setting. Our method is a generalization of [15], where dual actions are considered
in the special case of actions with a fixed point. In a similar fashion, duality was
used in [2] to study cohomogeneity one actions on noncompact symmetric spaces.

As the correspondence between M and M∗ is defined by a map on the Lie
algebra level, the construction of dual actions depends on the choice of the reference
point. For the action of a reductive algebraic subgroup H ⊆ G on a noncompact
symmetric space M = G/K , the type of the totally geodesic orbit is unique and
therefore the dual action of H∗ on M∗ = G∗/K∗ is also unique up to coverings
of M∗ (we do not assume M∗ to be simply connected) and conjugacy of H∗ . On
the other hand, isometric actions on compact symmetric spaces may have various
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types of totally geodesic orbits or no totally geodesic orbits at all. Thus the map
(H) 7→ (H∗) which maps the conjugacy classes of reductive algebraic subgroups
H ⊆ G to conjugacy classes of subgroups H∗ ⊆ G∗ is in general neither injective
nor surjective. This phenomenon will be illustrated by several examples.

I would like to thank José Carlos Dı́az-Ramos and Antonio J. Di Scala for
discussions.

2. Preliminaries

Let g be a real semisimple Lie algebra and let B(·, ·) be its Killing form. An
involution on g is a Lie algebra automorphism θ of g such that θ2 = idg . (Note
that in our definition the involution θ may be trivial, i.e. we may have θ = idg .)
Such an involution is called a Cartan involution on g if Bθ(X, Y ) = −B(X, θY )
is a positive definite bilinear form. Any real semisimple Lie algebra has a Cartan
involution and any two Cartan involutions are conjugate by an inner automorphism
of g . For a Cartan involution θ : g→ g , we call

g = k⊕ p, (2)

where k is the (+1)-eigenspace and p is the (−1)-eigenspace of θ , the Cartan
decomposition corresponding to θ . Note that k is a maximal compact subalgebra
of g . It follows that g∗ := k⊕ ip ⊂ g(C) = g⊗C is a compact real semisimple Lie
algebra, where i =

√
−1 is the imaginary unit. We say that g∗ is the Lie algebra

dual to g with respect to the involution θ . Moreover, we say that a subalgebra
h ⊆ g is canonically embedded with respect to the Cartan decomposition (2) if
θ(h) = h or, equivalently,

h = (h ∩ k)⊕ (h ∩ p). (3)

If h ⊆ g is canonically embedded then h∗ := (h ∩ k) ⊕ i(h ∩ p) is a subalgebra
of g∗ .

If the pair of Lie groups (G,K) where G is a semisimple Lie group and
K a compact subgroup corresponds to the pair of Lie algebras (g, k) and the pair
of compact Lie groups (G∗, K∗) corresponds to (g∗, k), we say that the compact
symmetric space M∗ = G∗/K∗ equipped with a Riemannian metric induced by
the negative of the Killing form on g∗ is a compact dual of the symmetric space
M = G/K .

In a wider sense, we call two symmetric spaces X and Y dual to each other
if there exist decompositions of the universal coverings X̃ = X1 × . . . × Xn and
Ỹ = Y1×. . .×Yn such that for each j ∈ {1, . . . , n} , either Xj and Yj are Euclidean
of the same dimension or Xj and Yj are irreducible symmetric spaces and such
that one is the compact dual of the other.

Let the Riemannian metric on M = G/K be given by a scalar product
β : p × p → R . We will henceforth assume that a compact dual of a symmetric
space M = G/K is equipped with the corresponding dual metric given by the
scalar product β∗ : ip × ip → R , which we define by β∗(X, Y ) := β(iX, iY ). In
particular, if M is endowed with the Riemannian metric induced by the Killing
form of g , then the dual metric is the Riemannian metric induced by the negative
of the Killing form of g∗ . However, in the applications we study in Sections 6, 8,
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9, 10 and 11, the symmetric spaces under consideration are irreducible and any
G-invariant Riemannian metric is unique up to a constant scaling factor (whose
choice is irrelevant here).

Consider the action of a group H on a set M , denoted by H ×M → M ,
(h,m) 7→ h ·m . For a point p ∈M , we define Hp := {h ∈ H | h ·p = p} ⊆ H to be
the stabilizer or isotropy subgroup at the point p and by H ·p := {h ·p | h ∈ H} we
denote the orbit of the H -action through the point p . Since the isotropy subgroups
of the points along an orbit are conjugate, we may define the orbit type of the orbit
H · p as the conjugacy class (Hp) of the subgroup Hp in H . This defines a partial
order on the set of orbits: We define H ·p 4 H · q if and only if there is an element
h ∈ H such that hHph

−1 ⊇ Hq .

An action of a Lie group H on a manifold M is called proper if the map
G ×M → M ×M , (g, p) 7→ (g · p, p) is proper. A proper isometric action of a
Lie group H on a Riemannian manifold is called polar if there exists a complete
immersed submanifold Σ which meets all the orbits of the group action, i.e.
G · Σ = M , and in such a way that each intersection between Σ and an orbit
is orthogonal, i.e. TpΣ ⊥ Tp(H · p) for all p ∈ Σ. Such a submanifold Σ is called
a section for the H -action. It is well known that sections are totally geodesic
submanifolds. All sections of a polar actions are conjugate by the group action.
Obvious examples of polar actions are given by transitive actions, where the points
of the manifold are sections, and also by actions with discrete orbits, where the
manifold itself is a section. We will tacitly assume polar actions to be nontrivial
in the sense that the orbits are of positive dimension since otherwise one gets
technical counterexamples e.g. for Corollary 6.1 and Theorems 6.2, 6.3 below.

By Isom(M) we will denote the group of isometries of a Riemannian man-
ifold, by Isom(M)0 its connected component. If a Lie group H acts isometrically
and effectively on a Riemannian manifold, we may assume that H ⊆ Isom(M).
We say that two Lie group actions on two Riemannian manifolds M1 and M2 are
conjugate if there is an equivariant isometry M1 → M2 . The actions of two sub-
groups H1, H2 ⊆ Isom(M) on a Riemannian homogeneous space M are conjugate
if and only if H1 and H2 are conjugate in Isom(M).

For proper Lie group actions on connected manifolds we have the following
well known facts, see [31]. There is a uniquely determined maximal orbit type
of the H -action. The orbits which are of this type are called principal orbits of
the H -action, the corresponding isotropy subgroups are called principal isotropy
subgroups. The union of principal orbits is an open and dense subset of M . The
codimension of a principal orbit in M is called the cohomogeneity of the action.
At any point p ∈ M , the isotropy subgroup Hp acts (by the differentials at p
of the maps x 7→ g · x) on the tangent space TpM . For this linear action, the
tangent space Tp(H · p) and the normal space Np(H · p) are invariant subspaces;
the action of Hp on Np(H · p) thus defined is called the slice representation of the
H -action at the point p . The slice representation is trivial if and only if the orbit
through p is principal. The Slice Theorem asserts that a tubular neighborhood
of an orbit H · p is equivariantly diffeomorphic to a tubular neighborhood around
the zero section in the normal bundle H ×Hp Np(H · p), where Hp acts by the
slice representation on the normal space Np(H · p). In particular, the principal
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isotropy subgroup of the H -action on M is conjugate to any principal isotropy
subgroup of an arbitrary slice representation and thus the cohomogeneity of each
slice representation is the same as the cohomogeneity of the H -action on M . Slice
representations of polar actions are polar [32, Theorem 4.6]. For a polar action,
the dimension of a section equals the cohomogeneity of the action.

Let M be a Riemannian symmetric space and let p ∈ M . Let G =
Isom(M)0 and let K = Gp . An action of a closed subgroup H ⊂ G is called
Hermann action if there is an involutive automorphism σ : g→ g such that h = gσ ,
where gσ denotes the fixed point set of σ . It was shown by Hermann [19] that these
actions are hyperpolar on compact symmetric spaces. We say that two isometric
actions on two Riemannian manifolds M and N are orbit equivalent if there is an
isometry F : M → N which maps each connected component of an orbit in M
onto a connected component of an orbit in N . Obviously, the (hyper-)polarity of
an action depends only on its orbit equivalence class.

3. The Karpelevich-Mostow Theorem

The following Theorems 3.1 and 3.2 are equivalent and their content is called
the Karpelevich-Mostow Theorem. Its geometric version was proved by Karpele-
vich [22].

Theorem 3.1. Let M be a symmetric space of non-positive curvature without
flat factors. Then any connected and semisimple subgroup H ⊆ Isom(M) has a
totally geodesic orbit H · p ⊆M .

The algebraic version can be stated as follows.

Theorem 3.2. Let g be a real semisimple Lie algebra such that each simple ideal
is noncompact and let h ⊆ g be a semisimple subalgebra. Then h is canonically
embedded with respect to some Cartan decomposition of g.

In this form, the statement was proven by Mostow [30, Theorem 6]. Re-
cently, a geometric proof was obtained by Di Scala and Olmos [13]. There exists a
generalization of the Karpelevich-Mostow Theorem 3.1 for the actions of reductive
algebraic subgroups of Isom(M) on M , see [29] for details. Let us briefly review
the definitions necessary to formulate this more general statement. Let g be a
semisimple complex Lie algebra. One may identify g with the linear complex Lie
algebra ad g ⊆ gl(g) and thus one can define the notion of an algebraic subalgebra
of g . A subalgebra h ⊆ g is called an algebraic subalgebra of g if h ⊆ g is the
Lie algebra of some algebraic subgroup of the complex algebraic group GL(g).
Furthermore, a subalgebra h ⊆ g is called reductive subalgebra if the radical of h
consists of elements which are semisimple in g , i.e. the maps ad z are semisimple
linear endomorphisms of g for all z ∈ rad(h). Equivalently, h ⊆ g is called a reduc-
tive subalgebra if it can be written as h = z(h)⊕ h′ where the center z(h) consists
of semisimple elements of g and where the derived subalgebra h′ is semisimple.
If an algebraic subalgebra of g is reductive in the sense just defined, we call it a
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reductive algebraic subalgebra of g . For a real semisimple Lie algebra g we say that
a subalgebra h ⊆ g is (reductive) algebraic if its complexification h(C) = h⊗C is
a (reductive) algebraic subalgebra of g(C) = g⊗ C .

Theorem 3.3. [29, Theorem 3.6, Ch. 6]
An algebraic subalgebra of a real semisimple Lie algebra g is reductive if and only
if it is canonically embedded in g with respect to some Cartan decomposition of g.

Note that in particular any semisimple subalgebra of a real (or complex)
semisimple Lie algebra is a reductive algebraic subalgebra. The theorem holds
also for a compact Lie algebra g , but since a Cartan decomposition is trivial for
compact g , the assertion of the theorem is void in this case.

Let G be semisimple real Lie group. We say that a subgroup H ⊆ G is a
reductive algebraic subgroup if the Lie algebra h of H is a reductive algebraic Lie
algebra of g . One has to be careful not to confuse the two notions of a reductive
subalgebra of a Lie algebra on the one hand and of a reductive Lie algebra on
the other hand. (A Lie algebra is said to be reductive if it is a direct sum of an
abelian and a semisimple Lie algebra.) Indeed, each non-semisimple element of
a Lie algebra spans a one-dimensional, hence abelian subalgebra which is not a
reductive subalgebra, cf. Example 3.7.

Remark 3.4. Let M be a symmetric space of non-positive curvature without
flat factors. Let G = Isom(M)0 be the connected component of the isometry
group of M . Then G is semisimple. Assume that H ⊆ G is a connected reductive
algebraic subgroup. Then there is a point q such that H · q is a totally geodesic
submanifold of M .

In fact, it follows from Theorem 3.3 that there is a point q ∈M such that h
is canonically embedded, i.e. (3) holds, with respect to the Cartan decomposition
g = k ⊕ p where K = Gq is the stabilizer of q in G . In this case, h ∩ p ⊆ g is a
Lie triple system and it follows that the H -orbit through q is a totally geodesic
submanifold of M .

Proposition 3.5. Let M be a simply connected symmetric space of non-positive
curvature. Let H be a connected subgroup of the isometry group of M . Assume
there is a point q ∈ M such that the orbit H · q is a totally geodesic submanifold
of M . Then the following statements are true.

(i) As a differentiable H -manifold, M is equivariantly diffeomorphic to the
normal bundle of the orbit H · q .

(ii) The orbit type (Hq) of H · q is minimal, i.e. we have (Hp) < (Hq) for all
p ∈M .

(iii) The isotropy subgroup Hq ⊆ H is a maximal compact subgroup.

Proof. To prove part (i), we first show that the totally geodesic orbit H · q
is totally convex, i.e. each geodesic segment γ is contained in H · q whenever the
endpoints of γ are contained in H · q . Using the isometric H -action, we may
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restrict ourselves to consider geodesic segments starting at q . The Riemannian
exponential exp: TqM →M is a diffeomorphism [17, Ch. VI, Theorem 1.1(iii)] and
H ·q is the image of the linear subspace Tq(H ·q) ⊆ TqM under this diffeomorphism.
Thus any geodesic segment starting at q has its endpoint in H · q if and only if
the segment is completely contained in H · q . Moreover, it follows that H · q is a
closed subset of M . By [8, Lemma 3.1], a submanifold V of a complete Riemannian
manifold M of non-positive curvature is closed and totally convex if and only if
V is totally geodesic and the Riemannian exponential map exp: NV → M is a
diffeomorphism. To show the equivariance property, it suffices to note that for
any normal vector v ∈ N(H · q), the geodesic segment parametrized by exp(tv),
t ∈ [0, 1], is the unique shortest geodesic segment joining exp(v) and H · q . Since
H acts by isometries, we have h · exp(v) = exp(h · v).

Part(ii) follows immediately from part (i). Indeed, for each p ∈M there is
a unique v ∈ N(H · q) such that exp(v) = p and it follows that Hp ⊆ Hx where
x ∈ H · q is the unique point such that v ∈ Nx(H · q).

Let Q ⊆ H be a compact subgroup. By Cartan’s fixed point theorem, the
H -action on M restricted to Q has a fixed point p ∈ M . Then Q ⊆ Hp and it
follows from (ii) that Q is conjugate to a subgroup of Hq . This proves (iii).

From Proposition 3.5 (ii) it follows that all totally geodesic orbits of H are
of the same (minimal) orbit type.

Examples 3.6. We remark that a statement analogous to Theorem 3.3 does
not hold for symmetric spaces of compact type. In fact, there are many examples
of nontrivial actions of compact groups on compact symmetric spaces which do not
have any totally geodesic orbits at all. Note that a closed subgroup of a compact
Lie group is always a reductive algebraic subgroup.

(i) Consider a Hermann action of a closed subgroup H ⊂ G on a compact
irreducible symmetric space G/K , where the isometry group G is simple. Let
σ, θ : g → g be involutive automorphisms such that k = gσ , h = gθ are the fixed
point sets of σ and θ , respectively. It was shown in [18] that the H -action on
G/K has a totally geodesic orbit if and only if there is an element g ∈ G such
that Ad(g) ◦ σ ◦ Ad(g)−1 commutes with θ . Conlon [10] determined all pairs of
involutions on simple compact Lie groups where no such element g exists. For
example, the action of H = Sp(n) on G/K = SU(2n)/S(U(2n − 1) × U(1)) does
not have any totally geodesic orbit for n ≥ 2.

(ii) For a different type of example, note that actions on the sphere Sn

which are induced by irreducible orthogonal representations on Rn+1 do not have
any totally geodesic orbit, except Sn itself in case the action is transitive. Indeed,
the totally geodesic submanifolds of Sn are precisely the intersections of Sn with
linear subspaces of Rn+1 and hence a totally geodesic orbit spans an invariant
subspace of Rn+1 .

(iii) Even if there are totally geodesic orbits in the compact setting, there
might not be a decomposition as in (3). For example, let H = SU(m) act on
R2m+1 such that a linear action of H is given by the standard representation of H
on R2m = Cm plus a one-dimensional trivial module. Then H acts on S2m in such
a fashion that there is a totally geodesic orbit H · q and Hq

∼= SU(m − 1). But
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(SU(m), SU(m−1)) is not a symmetric pair [17]. This example also shows that in
the compact setting, the orbit type of totally geodesic orbits may not be unique:
Apart from the one principal totally geodesic orbit, there are also two fixed points.

Example 3.7. Let us give a simple example of an action on the hyperbolic
plane, where the group which acts is an algebraic, but not reductive algebraic,
subgroup of the isometry group and where there is no totally geodesic orbit. Let
H2 = {z ∈ C | =(z) > 0} be the upper half-plane endowed with the Riemannian
metric =(z)−2dzdz̄ . Consider the isometric action of SL(2,R) given by the trans-
formations (

a b
c d

)
· z =

az + b

cz + d
.

Consider the subgroup H ⊂ SL(2,R) consisting of all matrices where a = d = 1
and c = 0. This group is isomorphic to the additive group of R and it acts on
H2 by horizontal translations, hence the H -orbits are the horospheres given by
the horizontal lines =(z) = const. None of these orbits is totally geodesic, as
the geodesics in H2 are orthogonal arcs to the real axis or straight vertical half-
lines ending on the real axis. The group H is obviously an algebraic subgroup
of SL(2,R). Its Lie algebra h is not a reductive subalgebra of sl(2,R), since
ad z : g(C) → g(C) is not semisimple for z ∈ h(C) \ {0} . Note that this action is
of cohomogeneity one, hence hyperpolar.

There is the following criterion for an algebraic subalgebra of semisimple
Lie complex Lie algebra to be reductive.

Proposition 3.8. Let h ⊆ g be an algebraic subalgebra of the semisimple
complex Lie algebra g. Then h is a reductive algebraic subalgebra if and only if the
restriction of the Killing form B(x, y) := tr(ad x◦ad y) to h×h is non-degenerate.

Proof. See [29, Ch. 4, Theorem 2].

Example 3.9. The following is a generalization of Example 3.7. Consider
the upper half space Hn = {(x1, . . . , xn) ∈ Rn | xn > 0} endowed with the
Riemannian metric x−2n (dx21 + . . .+ dx2n). Let U ⊆ Rn−1 be a linear subspace and
let p ∈ Hn . Then the additive group U acts effectively on Hn such that the orbit
through a point p ∈ Hn is given by p + (U × {0}). This action has no totally
geodesic orbit and the subgroup of Isom(Hn) given by the U -action is not reductive
algebraic unless U = {0} . Let U⊥ ⊆ Rn−1 be the orthogonal complement of U
in Rn−1 with respect to the standard scalar product on Rn−1 . Then the subspace
Σ := {(v, y) ∈ Rn | v ∈ U⊥, y > 0} is a section for the U -action on Hn and we
see that the U -action on Hn is polar. This is an example of a polar homogeneous
foliation on Hn , since all points of Hn lie in a principal orbit of the U -action.

Example 3.10. Using the same notation as in Example 3.9, let % : L→ O(U⊥)
be a polar representation of the Lie group L and let the linear subspace Σ0 ⊆ U⊥

be a section. Then Σ := {(v, y) ∈ Rn | v ∈ Σ0, y > 0} is a section for the action
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of U ×L on Hn given by (u, `) · (v+w, y) := (v+u+ %(`)w, y) for (u, `) ∈ U ×L ,
v ∈ U , w ∈ U⊥ , y > 0. In the special case where % is a trivial representation,
this is Example 3.9. Obviously, this action has no totally geodesic orbits, unless
U = {0} .

4. Dual actions

Let g be a semi-simple real Lie algebra all of whose simple ideals are noncompact
and let g = k ⊕ p be a Cartan decomposition. Then the Lie algebra g∗ , defined
by g∗ := k ⊕ ip ⊂ g(C) is a compact real form of g(C). We may define a map
ψ : g → g∗ by X + Y 7→ X + iY for X ∈ k , Y ∈ p as in (1). Obviously, ψ is
a bijective R-linear map, but not a homomorphism of Lie algebras. If h ⊆ g is
a reductive algebraic subalgebra, it is possible to apply the duality of symmetric
spaces to the H -action on M . First note that we may assume, by replacing H
with a suitable conjugate subgroup, that the point q as given in Remark 3.4 agrees
with [e] = eK . It follows that

h∗ := ψ(h) ⊆ g∗ (4)

is a subalgebra and h ∩ ip ⊆ g∗ is a Lie triple system. Now let G∗ be some
compact Lie group with Lie algebra g∗ and let K∗ be the connected subgroup
of G∗ corresponding to the subalgebra k ⊆ g∗ . Let H∗ be the connected subgroup
of G∗ corresponding to h∗ . Then we say that the H∗ -action on G∗/K∗ is dual to
the H -action on G/K . It follows that H∗ ⊆ G∗ is a reductive algebraic subgroup
of G∗ and hence compact.

Theorem 4.1. Let M be a symmetric space of non-positive curvature without
flat factors. Let H be a connected reductive algebraic subgroup of the isometry
group of M . Let M∗ be a compact symmetric space dual to M and let H∗ be a
subgroup of the isometry group of M∗ such that the H∗ -action on M∗ is dual to
the H -action on M . Then there exist points q ∈ M and q∗ ∈ M∗ such that the
following are true.

(i) The H -orbit through q is of minimal orbit type.

(ii) The orbits H · q ⊆M and H∗ · q∗ ⊆M∗ are totally geodesic.

(iii) The symmetric space H∗ · q∗ is dual to the symmetric space H · q

(iv) The isotropy subgroups Hq ⊆ H and H∗q∗ ⊆ H∗ are locally isomorphic.

(v) The slice representations of Hq and H∗q∗ are equivalent on the Lie algebra
level. In particular, the H -action on M and the H∗ -action on M∗ have the
same cohomogeneity.

Proof. Assume the orbit H · q is as described in Remark 3.4. Part (i) was
shown in Proposition 3.5. We may assume without limitation of generality that
q = [e] and q∗ = [e∗] = K∗ . We have

h∗ = (h∗ ∩ k)⊕ (h∗ ∩ ip). (5)
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It follows that h∗ ∩ ip ⊆ g∗ is a Lie triple system and it is easy to see that H∗ -
orbit through [e∗] coincides with the totally geodesic exponential image of h∗∩ ip .
Parts (iii), (iv) and (v) are obvious from the construction of the dual action. (Note
that the slice representations of Hq and H∗q∗ are given – on the Lie algebra level
– by the action of h ∩ k on the orthogonal complement of h ∩ p in p and on
the orthogonal complement of h∗ ∩ ip in ip , respectively, and are thus obviously
equivalent.)

Example 4.2. To illustrate the concept, let us describe the dual actions for all
connected reductive algebraic subgroups in the isometry group of the hyperbolic
plane. The hyperbolic plane M = H2 and the two-sphere M∗ = S2 are symmet-
ric spaces dual to each other. Consider the presentation H2 = SL(2,R)/SO(2)
corresponding to the isometric action of G = SL(2,R) on the upper half plane
as described in Example 3.7, where K = SO(2) is the stabilizer of the imaginary
unit i . Identifying S2 with the unit sphere in R3 , let G∗ = SO(3) and let K∗ be
the stabilizer of the first canonical basis vector e1 of R3 under the standard SO(3)-
action. We make the choices q = i ∈ H2 and q∗ = e1 ∈ S2 for the points q, q∗

as in Theorem 4.1. Assume H ⊆ G is a connected reductive algebraic subgroup.
If H is nontrivial, then either H = G or H is one-dimensional. If H = G then
the H -action on M is dual to the SO(3)-action on S2 . If H is one-dimensional,
we may assume that h ⊂ g is canonically embedded. This means either h = k
or h ⊂ p holds. In the first case we have H = K . Then the H -action has i as
a fixed point and is dual to the K∗ -action on S2 , which has e1 as a fixed point.
In the latter case, since H2 is isotropic, we may assume that H is given by the
matrices b = c = 0 and ad = 1 with the notation as in Example 3.7; its orbits
are the rays in the upper half plane emanating from 0. The totally geodesic orbit
H · i is the vertical ray and H is the group which consists of all transvections
along this geodesic. A dual action on S2 is given by choosing H∗ as any group of
rotations conjugate to K∗ such that the orbit through q∗ is a great circle. Finally,
the trivial action on S2 is obviously dual to the trivial action on H2 .

The example above shows in particular that the action of SO(2) on the
two-sphere by rotations is dual to two different actions on the hyperbolic plane. In
Section 7 we will consider another example of an action on a compact symmetric
space which is dual to several different actions.

Remark 4.3. It should be noted that any compact subgroup of a semisimple
Lie group is a reductive algebraic subgroup. Hence the condition that a subgroup
H ⊆ Isom(M) is reductive algebraic is necessary for the existence of a dual action
of a compact group H∗ on M∗ .

5. Polar actions and duality

Theorem 5.1. Let M be a symmetric space of non-positive curvature without
flat factors. Let H be a connected reductive algebraic subgroup of the isometry
group of M . Let M∗ be a compact dual of M endowed with the dual Riemannian
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metric and let H∗ be a subgroup of the isometry group of M∗ such that the H∗ -
action on M∗ is dual to the H -action on M . Then the H -action on M is polar
if and only if the H∗ -action on M∗ is polar. In this case, a section Σ∗ of the
H∗ -action on M∗ is a symmetric space dual to a section Σ of the H -action on
M . In particular, the H -action on M is hyperpolar if and only if the H∗ -action
on M∗ is hyperpolar.

We will prove this theorem at the end of this section. The following is a
useful observation.

Lemma 5.2. Let M be a Riemannian manifold and let Σ be a connected totally
geodesic submanifold of M . Let p ∈ Σ and let X be a Killing vector field. Then
X(q) ∈ NqΣ holds for all q ∈ Σ if and only if X(p) ∈ NpΣ and ∇vX ∈ NpΣ for
all v ∈ TpΣ.

Proof. See [15, Lemma 5].

Proposition 5.3. Let M be a connected Riemannian manifold and let p ∈M .
Let s be a linear subspace of TpM such that the exponential image Σ := expp(s) is
a totally geodesic submanifold of M . Let H be a connected closed subgroup of the
isotropy group Isom(M)p . Let % : H → O(TpM) be the orthogonal representation
of H on TpM where we define %(g) : TpM → TpM to be the differential at p of
the map x 7→ g · x for each g ∈ H . Then the following are equivalent:

(i) The submanifold Σ ⊆M intersects the H -orbits orthogonally.

(ii) The linear subspace s ⊆ TpM intersects the orbits of %(H) orthogonally.

Proof. Let x be an element of the Lie algebra of H . Then for all q ∈M , the
Killing vector field X corresponding to x is given by X(q) = d

ds

∣∣
s=0

(hs(q)) , where
hs denotes the isometry of M given by the group element exp(sx), s ∈ R . Let
expp : TpM → M denote the Riemannian exponential map of M at the point p
and let v ∈ s . Then we have

∇vX =
∇
∂t

∂

∂s
hs(expp(tv))

∣∣∣∣
s=t=0

=
∇
∂s

∂

∂t
hs(expp(tv))

∣∣∣∣
s=t=0

=

=
∇
∂s

(
∂

∂t
hs(expp(tv))

∣∣
t=0

)∣∣∣∣
s=0

=
∇
∂s

(hs)∗p(v)|s=0 =
∇
∂s

%(hs)(v)|s=0 .

From this, it is clear that ∇vX ∈ NpΣ for all v ∈ s and all Killing fields X
induced by the H -action on M if and only if the subspace s ⊆ TpM intersects
the orbits of the H -representation on TpM orthogonally. Since X(p) = 0, the
statement of the proposition follows from Lemma 5.2.

Proof of Theorem 5.1 Assume the H -action on G/K is polar. As above, we
may assume q = [e] and q∗ = [e∗] , where e ∈ G and e∗ ∈ G∗ denote the identity
elements. Identifying as usual the tangent space T[e]M with p , where g = k⊕ p is
a Cartan decomposition, we may identify the tangent space of T[e∗]M

∗ with ip in
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the obvious way. Let Σ be a section containing [e] of the H -action on M . Since
Σ is a totally geodesic submanifold, its tangent space T[e]Σ is given by a Lie triple
system s ⊆ p . It follows from Proposition 5.3 that s intersects the orbits of the
linear H[e] -action on T[e]M = p orthogonally. Now consider the H∗ -action on M∗ .
Obviously, is intersects the orbits of H∗[e∗] on T[e∗]M

∗ = ip orthogonally and thus
it follows from Proposition 5.3 that the totally geodesic submanifold Σ∗ , which
is defined as the exponential image exp[e∗](is) of the Lie triple system is ⊆ ip ,
intersects the orbits of H∗[e∗] in M∗ orthogonally. The involution σ∗ : g∗ → g∗ ,

defined by σ∗(X) = X for X ∈ k and σ∗(Y ) = −Y for Y ∈ ip , restricts to an
involution of h∗ . Hence any Killing vector field of M∗ induced by the action of H∗

can be uniquely written as X = X ′ + X ′′ such that X ′ and X ′′ are induced by
the action of H and X ′([e∗]) = 0, ∇X ′′([e∗]) = 0. We have already seen that
X ′(p∗) ⊥ Tp∗Σ∗ for all p∗ ∈ Σ∗ as X ′ is induced by the H∗[e∗] -action on M∗ .

Since Σ intersects in particular the orbit through [e] orthogonally, it follows that
X ′′([e∗]) ⊥ Σ∗ with respect to the dual metric. Hence by Lemma 5.2 we get that
X ′′(p∗) ⊥ Tp∗Σ∗ for all p∗ ∈ Σ∗ . We have shown that Σ∗ intersects all H∗ -orbits
orthogonally. Since dim(Σ∗) equals the cohomogeneity of the H∗ -action on M∗ ,
it follows by a standard argument that Σ∗ meets all H∗ -orbits. One may proceed
in an exactly analogous fashion to show that the H -action on M is polar if the
H∗ -action on M∗ is. It is obvious that the symmetric space Σ∗ is dual to Σ.

6. Some applications

We will now state some direct applications of Theorem 5.1. Henceforth we will
always assume that a polar action is nontrivial in the sense that the orbits are of
positive dimension.

Corollary 6.1. Let M be an irreducible symmetric space of noncompact type
and let H ⊆ Isom(M) be a reductive algebraic subgroup acting polarly on M .
Let Σ be the section of the H -action on M . Then Σ is isometric to a product
Rn0 × Hn1 × . . .× Hnk .

Proof. Follows from Theorem 5.1 and [24, Theorem 5.4].

Corollary 6.1 and [24, Theorem 5.4] can be combined by saying each section
of a polar action of a reductive algebraic subgroup of the isometry group on an
irreducible symmetric space is locally isometric to a Riemannian product of spaces
of constant curvature. We can also show that the Conjecture 1.1 of Biliotti holds
also for a large class of noncompact symmetric spaces if one considers only actions
of reductive algebraic subgroups of the isometry group.

Theorem 6.2. Let M be an irreducible symmetric space of type III such that
rk(X) ≥ 2. Let H ⊆ Isom(M) be a reductive algebraic subgroup acting polarly
on M . Then the sections are flat, i.e. the action is hyperpolar.

Proof. Follows from Theorem 5.1 and the results of [24].
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Theorem 6.3. Let M be an exceptional symmetric space of type IV, i.e. X =
EC
6 /E6 , EC

7 /E7 , EC
8 /E8 , FC

4 /F4 , GC
2 /G2 . Let H ⊆ Isom(M) be a reductive

algebraic subgroup acting polarly on M . Then the sections are flat, i.e. the action
is hyperpolar.

Proof. Follows from Theorem 5.1 and the results of [25].

Theorem 6.4. Let M be an irreducible Riemannian symmetric space. Assume
the reductive algebraic subgroup H ⊆ G = Isom(M) acts hyperpolarly and with
cohomogeneity greater than one on M . Then the action of H on M is orbit
equivalent to a Hermann action.

Proof. It was shown in [23] that a hyperpolar action on an irreducible com-
pact symmetric space of cohomogeneity greater than one is orbit equivalent to
a Hermann action. Now assume M is noncompact. Consider a dual action of
a subgroup H∗ on a compact dual symmetric space M∗ = G∗/K∗ . Assume
that h is canonically embedded as in (3) with respect to a Cartan decomposition
g = k ⊕ p . We have h∗ = (h ∩ k) ⊕ i(h ∩ p). By the result of [23], it follows
that the action of H∗ on M∗ is orbit equivalent to the action of L∗ ⊆ G∗ , where
l∗ := LieL∗ ⊇ h∗ and where l∗ is the fixed point set of some involutive automor-
phism τ : g∗ → g∗ . The connected components containing [e∗] of the H∗ -orbit
and of the L∗ -orbit through [e∗] agree, thus the projections of h∗ and l∗ on ip
agree as well. Hence we have l∗∩ ip = h∗∩ ip and l∗ = (l∗∩ k)⊕ (l∗∩ ip). It follows
that l := ψ−1(l∗) = (l∗ ∩ k)⊕ i(l∗ ∩ ip) is a subalgebra of g . Let g∗ = l∗ ⊕ m∗ be
the decomposition of g∗ into eigenspaces of τ . Then we have the decomposition

g = (l∗ ∩ k)⊕ i(l∗ ∩ ip)⊕ (m∗ ∩ k)⊕ i(m∗ ∩ ip). (6)

Let m := (m∗ ∩ k) ⊕ i(m∗ ∩ ip) and define σ : g → g by σ(X) = X for X ∈ l ,
σ(Y ) = −Y for Y ∈ m . Then σ is an involutive automorphism of g such that l
is the fixed point set of σ . This follows from the fact that σ is just the restriction
τ̂ |g of the automorphism τ̂ : g(C) → g(C) defined by τ̂(X + iY ) = τ(X) + iτ(Y )
for X, Y ∈ g∗ , as can be see from (6). Hence the action of the connected
subgroup L of G corresponding to l is a Hermann action. By construction, we
have L ⊇ H and the H -orbits are thus contained in the L-orbits on M . It
follows from Proposition 3.5 (i) and Theorem 4.1 (v) that for each p ∈M we have
dim(L · p) = dim(H · p). We conclude that the L-action and the H -action on M
are orbit equivalent.

7. The inverse construction

Let M∗ = G∗/K∗ be a symmetric space of compact type and let G∗ be the
connected component of the isometry group of M∗ . Let H∗ be a closed subgroup
of G∗ . Let M = G/K be a Riemannian globally symmetric space such that
M∗ is a compact dual of M and such that G is the connected component of the
isometry group of M . Obviously, the action of H∗ is the dual of an action of a
subgroup H ⊆ G on M if and only if H∗ is conjugate to a subgroup such that
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(5) holds. We have already seen in Example 4.2 that an action on a compact
symmetric space can be dual to different – and nonconjugate – actions on the dual
space. In Example 7.1 we will look at a specific type of Hermann action from this
point of view. As it will turn out, this action has several dual actions of various
(non-isomorphic) groups on the noncompact dual space, cf. [2], where the same
phenomenon arises in the context of cohomogeneity one actions.

Example 7.1. Let m, p, q be integers such that 1 ≤ p, q ≤ m and let n =
2m + 1. We consider the Hermann action of H∗ = SO(q) × SO(n − q) on
the Grassmannian of oriented p-dimensional linear subspaces in Rn , which we
denote by Gp(Rn) = SO(n)/SO(p) × SO(n − p) = G∗/K∗ . We will determine all
conjugates of H∗ for which (5) holds. This is equivalent to determining all types
of totally geodesic H∗ -orbits on G∗/K∗ . The decomposition (5) holds if and only
if the involutions σ and θ commute, where σ, θ ∈ Aut(g∗) are chosen such that
k = Lie(K∗) = (g∗)σ and h∗ = (g∗)θ . Define the diagonal matrices

Ik,n−k :=

(
−Ek

En−k

)
∈ O(n),

where Ek denotes the (k× k)-identity matrix. Then Ad(Ik,n−k) : SO(n)→ SO(n)
is an inner automorphism of SO(n) and we have θ = Ad(Iq,n−q), σ = Ad(Ip,n−p).
The adjoint representation Ad: SO(n) → Aut(so(n)) is faithful since n is odd.
Thus for A,B ∈ SO(n) we have Ad(AB) = Ad(BA) if and only if A and B
commute. Now let Ag = g · Iq,n−q · g−1 for g ∈ G∗ and let B = Ip,n−p . Then the
connected component of the fixed point set of θg := Ad(Ag) is gH∗g−1 .

Assume now that g ∈ G∗ is such that σ ◦ θg = θg ◦ σ . We will determine
the type of the H∗ -orbit through [g−1] = g−1K∗ , i.e. we compute the isotropy
subgroup

H∗[g−1] = {h ∈ H∗ | hg−1K∗ = g−1K∗},
which is conjugate to gH∗g−1 ∩ K∗ . If the matrices Ag and B commute, then
there is a decomposition Rn = V00⊕V01⊕V10⊕V11 such that Ag|Vεδ = (−1)ε · idVεδ
and B|Vεδ = (−1)δ · idVεδ . Let r := dim(V00). Then we have 0 ≤ r ≤ min(p, q) and
r attains all values in this range for suitable g ∈ G∗ . We obtain gHg−1 ∩K∗ =

=


SO(r)× SO(p− r)× SO(q − r)× SO(n− p− q + r), if 1 ≤ r < min(p, q);
SO(p)× SO(q)× SO(n− p− q), if r = 0;
SO(p)× SO(q − p)× SO(n− q), if r = p < q;
SO(q)× SO(p− q)× SO(n− p), if r = q < p;
SO(p)× SO(n− p), if r = p = q.

Note that the value of r determines the orbit type of the H∗ -orbit through [g−1] .
Finally, we can determine the conjugacy classes of connected closed subgroups H
of G = SO0(p, n − p) with the property the H∗ -action on M∗ is dual to the H -
action on M = SO0(p, n − p)/SO(p) × SO(n − p). In case p < q they are given
by

SO0(p, n− p− q)× SO(q);

SO0(r, q − r)× SO0(p− r, n− p− q + r), 1 ≤ r < p;

SO0(p, q − p)× SO(n− q).
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If q < p we obtain

SO0(p, n− p− q)× SO(q);

SO0(r, q − r)× SO0(p− r, n− p− q + r), 1 ≤ r < q;

SO0(p− q, n− p)× SO(q).

Finally, in case p = q they are

SO0(p, n− 2p)× SO(p);

SO0(r, p− r)× SO0(p− r, n− 2p+ r), 1 ≤ r < p;

SO(p)× SO(n− p).

This example nicely illustrates how one action on a compact symmetric space can
be the dual of several nonconjugate actions on the noncompact dual symmetric
space. In this case, the data determining the various actions on the noncompact
space is encoded into just one action on the compact dual. This imbalance is
made up for by the fact that the various actions on the noncompact space are of
a simpler structure in that the whole space is equivariantly diffeomorphic to the
normal bundle of a totally geodesic orbit, which is not true for the dual action on
the compact space.

8. Polar actions on real hyperbolic space

Using duality and the classification of polar actions on compact rank one symmetric
spaces by Podestà and Thorbergsson [33], we will obtain a classification of polar
actions of reductive algebraic subgroups of the isometry group on noncompact
rank one symmetric spaces. We start with real hyperbolic space. Note that
polar actions on real hyperbolic space have been classified by Bingle Wu [38]
without assuming that the action is induced by a reductive algebraic subgroup
of the isometry group. However, the duality method we are using here is not
restricted to spaces of constant curvature and we will obtain classification results
also for the other noncompact rank one symmetric spaces in Sections 9–11.

Theorem 8.1. Let H ⊆ G := SO0(1, n) be a connected reductive algebraic
subgroup. Then the H -action on hyperbolic space Hn = SO0(1, n)/SO(n) is polar
if and only if one the following is true.

(i) The subgroup H is conjugate to SO0(1, k) × L ⊆ SO(1, n), k = 1, . . . n,
where L ⊆ SO(n− k) is a subgroup acting polarly on Rn−k .

(ii) The subgroup H is conjugate to a subgroup L ⊆ SO(n) acting polarly on
Rn .

In case (i) the H -action has a totally geodesic orbit isometric to Hk , in case (ii)
it has a fixed point.

Proof. Assume H acts polarly on Hn . It follows from Theorem 5.1 that there
is a dual polar action of a compact connected group H∗ ⊆ SO(n+1) on the sphere
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Sn = SO(n + 1)/SO(n) and we may assume that the orbit H∗ · [e∗] is a totally
geodesic submanifold of Sn such that (5) holds. We may identify the sphere Sn

with a sphere around the origin in the Euclidean space Rn+1 and assume the action
of H∗ on Sn is given by restriction of the standard representation of SO(n + 1).
The totally geodesic orbit H∗ · [e∗] is then given by the intersection of Sn with
some linear subspace V ⊆ Rn+1 . This space V is an invariant subspace for the
H∗ -action on Rn+1 and the orbit H∗ · [e∗] is a great sphere Sk ⊆ Sn , where
0 ≤ k ≤ n . We may assume that V is spanned by the first k + 1 canonical basis
vectors of Rn+1 . Let V ⊥ be the orthogonal complement of V in Rn+1 . It follows
from (5) that H∗ is of the form SO(k+ 1)×L , where the first factor is standardly
embedded and where the factor L is contained in the centralizer of the first factor.
Hence SO(k + 1) acts by the standard representation on V and trivially on V ⊥ ,
while the second factor acts trivially on V . Since polar representations act polarly
on their invariant submodules [11], it follows that L ⊆ SO(n − k) is a compact
connected group whose action on Rn−k is polar. It follows that H is as in item (i)
if k ≥ 1 and as in item (ii) if k = 0 and the corresponding orbit H · [e] is isometric
to Hk in case k = 1, . . . , n , or a point in case k = 0.

Conversely, it is easy to see that the actions as described in (i) and (ii) have
polar dual actions and are hence polar by Theorem 5.1.

Let us compare the above theorem with the result of Bingle Wu [38, The-
orem 3.3], which is very similar and which was proven without assuming that the
subgroup of SO0(1, n) given by the action is reductive algebraic. Instead it was
assumed in [38] that the principal orbits of the polar action are full isoparametric
submanifolds of Hn , i.e. they are not contained in a totally umbilic submanifold;
however it is shown in [38, Corollary 2.6] that such an action always has a totally
geodesic orbit and that it is orbit equivalent to an action of some subgroup of
SO0(1, n) conjugate to SO0(1, k)×L , where L is a compact Lie group. In partic-
ular, the action is orbit equivalent to the action of a reductive algebraic subgroup
of the isometry group. It follows from [38, Theorem 3.1] that polar actions on Hn

whose principal orbits are not full are given by polar actions on a totally umbilic
submanifold U of Hn . Such a totally umbilic submanifold U ⊂ Hn is either a
totally geodesic Hk ⊂ Hn , a round sphere, or a submanifold which is flat in its
induced metric. In the last case, it follows from [38, Theorem 3.1] that the action
is as described in Example 3.10. The case where the principal orbits of an action
are contained in a round sphere corresponds to the case of actions with a fixed
point.

Corollary 8.2. The principal orbits of a polar action on Hn are full isopara-
metric submanifolds of Hn if and only if the action is orbit equivalent to an action
of a reductive algebraic subgroup of Isom(Hn) such that a dual action on Sn is
polar with full isoparametric submanifolds of Sn as principal orbits.

Proof. It suffices to observe that the orbits of the orbits of the H -action on
Hn are full if and only if the action is as described in part (i) of Theorem 8.1 and
such the representation of L on Rn−k does not have any nonzero fixed vectors.
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9. Polar actions on complex hyperbolic space

To study polar actions on complex hyperbolic space, we will proceed in a similar
fashion as in the proof of Theorem 8.1. Polar actions on complex projective space
have been classified by Podestà and Thorbergsson [33]. Their result says that polar
actions on CPn are orbit equivalent to actions given by the following construction.
Let (G,K) = (Πν

µ=1Gµ,Π
ν
µ=1Kµ) be a Hermitian symmetric pair such that Gµ/Kµ

are irreducible compact Hermitian symmetric spaces. Let gµ = kµ ⊕ pµ be the
corresponding decompositions. On each pµ there exists a complex structure Jµ ,
which is unique up to sign, and we may identify p = p1⊕ . . .⊕ pν with Cd , where
d is the complex dimension of G/K . Then the action of the group K on Cd thus
defined descends to a polar action on CPd−1 and conversely [33, Theorem 3.1],
every polar action on CPd−1 is orbit equivalent to such an action. We will say
that a representation of a compact Lie group K on Cd is induced by a Hermitian
symmetric space if the K -action on Cd is given by the construction just described.
The irreducible Hermitian symmetric spaces of compact type are

SU(p+ q)/S(U(p)× U(q)), SO(k + 2)/SO(2)× SO(k), Sp(k)/U(k),
SO(2k)/U(k), E6/U(1) · Spin(10), E7/U(1) · E6,

(7)

see [17, Ch. X, §6.3]. Recall that there is some overlap between the different types
in (7), cf. [17, Ch. X, § 6.4].

Theorem 9.1. Let H ⊂ G := SU(1, n) be a reductive algebraic subgroup. Then
the H -action on complex hyperbolic space CHn = SU(1, n)/S(U(1)×U(n)) is polar
if and only if it is orbit equivalent to one of the following actions.

(i) The action of S(U(1, k)× L) ⊆ SU(1, n), k = 1, . . . n, where L ⊆ U(n− k)
is a subgroup whose action on Cn−k is induced by a Hermitian symmetric
space.

(ii) The action of S((U(1)·SO0(1, k)) × L) ⊆ SU(1, n), k = 1, . . . n, where
L ⊆ U(n−k) is a subgroup whose action on Cn−k is induced by a Hermitian
symmetric space.

(iii) The action of a subgroup L ⊆ S(U(1) × U(n)) ∼= U(n) whose action on Cn

is induced by a Hermitian symmetric space.

In case (i) the H -action on CHn has a totally geodesic orbit isometric to CHk , in
case (ii) it has a totally geodesic orbit isometric to Hk , in case (iii) it has a fixed
point.

Proof. Let G∗ = SU(n + 1) and let K∗ = S(U(1) × U(n)). Proceeding as in
the proof of Theorem 8.1, we may assume H∗ · [e∗] is a totally geodesic orbit and
H∗ acts polarly on CPn = G∗/K∗ by Theorem 5.1. Using the natural projection
map S2n+1 → CPn , (z1, . . . , zn+1) 7→ [z1 : . . . : zn+1] , we may identify the points
in CPn with the fibers of the Hopf fibration on the unit sphere S2n+1 ⊂ Cn+1

around the origin, i.e. with orbits of unit vectors in Cn+1 under multiplication
with complex scalars of unit norm. Replacing H∗ with a group whose action
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on CPn is orbit equivalent to the H∗ -action, if necessary, we may assume the
subgroup H∗ ⊆ SU(n+ 1) is such that the action of U(1) ·H∗ on Cn+1 is induced
by a Hermitian symmetric space [33]. As it was shown in [37], the totally geodesic
submanifolds of positive dimension in CPn are isometric to either CPk where
k = 1, . . . , n or RPk where k = 1, . . . , n and any such totally geodesic submanifold
is conjugate by an isometry to the standard embedding of SU(k+1)/S(U(1)×U(k))
or SO(k + 1)/S(O(1)×O(k)) into SU(n+ 1)/S(U(1)× U(n)).

Let us first consider the case where H∗ · [e∗] is isometric to CPk . It follows
that the action of H∗ on Cn+1 leaves a complex (k+1)-dimensional linear subspace
invariant, i.e. there is an H∗ -invariant decomposition Cn+1 = Ck+1⊕Cn−k , where
H∗ acts irreducibly on the first summand Ck+1 . Thus the action of H∗ on Ck+1 is
induced by an irreducible Hermitian symmetric space of complex dimension k+ 1
such that the action induced on CPk is transitive. Since any compact subgroup
of SU(k + 1) acting transitively on CPk also acts transitively on the unit sphere
in Ck+1 by [27], the action of H∗ on Ck+1 is induced by a Hermitian symmetric
space of rank one, hence by CPk+1 . Furthermore, the action of H∗ on Cn−k is
induced by some complex (n − k)-dimensional Hermitian symmetric space Q/L .
This shows that the H -action on CHn is as described in item (i).

Let us now assume H∗ · [e∗] is isometric to RPk . Since the embedding
RPk ⊂ CPn is given by the standard embedding of SO(k + 1)/S(O(1) × O(k))
into SU(n+ 1)/S(U(1)×U(n)) and the span of an orbit of a representation is an
invariant subspace, we may assume that we have an H∗ -invariant decomposition
Cn+1 = Ck+1⊕Cn−k . The action of H∗ on Cn−k is induced by a complex (n−k)-
dimensional Hermitian symmetric space Q/L . The action of H∗ on the first
summand Ck+1 is obviously irreducible and H∗/H∗ ∩ K∗ is a – possibly non-
effective – homogeneous presentation of SO(k + 1)/S(O(1) × O(k)). Thus the
action of H∗ on Ck+1 is induced by an irreducible Hermitian symmetric space
of real dimension 2(k + 1) whose isotropy group contains a normal factor locally
isomorphic to SO(k + 1). From (7) we deduce that the action of H∗ on Ck+1 is
induced by the complex quadric SO(k+3)/SO(2)×SO(k+1). Thus the H -action
on CHn is as described in item (ii).

It was shown in [15] that polar actions with a fixed point on CHn are exactly
the actions as described in item (iii).

Now let H ⊆ SU(1, n) be a closed connected subgroup as described in parts
(i) or (ii) of the theorem. Then obviously the H -action on CHn has a totally
geodesic orbit which can be identified with S(U(1, k)×L)/S(U(1)×U(k)×L) or
S(U(1) · SO0(1, k) × L)/S(U(1) · SO(k) × L) where in both cases L is a compact
Lie group and we see that the group H∗ is of the form S(U(k + 1) × L) or
S(U(1)·SO(k+1)×L). In view of Theorem 5.1 and [33, Proposition 2A.1], it suffices
to show that the action of U(1) ·H∗ on Cn+1 is induced by a Hermitian symmetric
space. The action of U(1) ·L on Cn−k is induced by a Hermitian symmetric space
Q/L by the hypothesis and we see that the action of U(1) ·H∗ on Cn+1 is induced
by the Hermitian symmetric space (SU(k + 2)/S(U(1) × U(k + 1))) × (Q/L) or
(SO(k + 3)/SO(2)× SO(k + 1))× (Q/L).
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10. Polar actions on quaternionic hyperbolic space

Let us first briefly review the results of [33, Theorem 4.1]. Let

(G,K) = (Πν
µ=1Gµ,Π

ν
µ=1Kµ)

be a symmetric pair such that Gµ/Kµ are compact quaternion-Kähler symmetric
spaces. Let gµ = kµ ⊕ pµ be the corresponding decompositions. Then we have
Kµ = Sp(1) ·Hµ , where both factors are normal subgroups. Using the quaternionic
structure induced by ad(sp(1)) on pµ , we may identify p = p1 ⊕ . . . ⊕ pν with
Hd , where d = 1

4
dim(G/K) and where H = H1 × . . . × Hν acts linearly on

Hd = R4d in such a fashion that the H -action commutes with the Sp(1)-action
defined by right multiplication with the unit quaternions in Sp(1). This action
of H on Hd descends to an action on HPd−1 and we will say that a representation
of a compact Lie group K on Hd is induced by a product of ν quaternion Kähler
symmetric spaces if the H -action on Hd is given by the above construction; we
say that it is induced by a quaternion-Kähler symmetric space if ν = 1. Under
the additional assumption that at most one of the factors G1/K1, . . . , Gν/Kν is
of rank greater than one, the action of H on HPd−1 just defined is polar and
conversely, every polar action on HPd−1 is orbit equivalent to an action of some
group K ⊆ Sp(d) whose action on Cd is induced by a product of ν quaternion
Kähler symmetric spaces where at most one of the factors is of rank greater than
one. The compact quaternion-Kähler symmetric spaces are the following:

Sp(n+ 1)/Sp(1) · Sp(n), SU(n+ 2)/S(U(2)× U(n)),
SO(n+ 4)/SO(4)× SO(n), G2/SO(4), F4/Sp(1) · Sp(3),

E6/Sp(1) · SU(6), E7/Sp(1) · Spin(12), E8/Sp(1) · E7,

see [5, Ch. 14 E].

Theorem 10.1. Let H ⊂ G := Sp(1, n) be a reductive algebraic subgroup.
Then the H -action on complex hyperbolic space HHn = Sp(1, n)/Sp(1)× Sp(n) is
polar if and only if it is orbit equivalent to one of the following actions.

(i) The action of Sp(1, k)× Sp(n1)× . . .× Sp(nν)×L ⊆ Sp(1, n), where L is a
subgroup of Sp(m) whose action on Hm is induced by a quaternion Kähler
symmetric space, where 1 ≤ k ≤ n and k + n1 + . . .+ nν +m = n.

(ii) The action of U(1, k)× Sp(n1)× . . .× Sp(nν) ⊆ Sp(1, n), where 1 ≤ k ≤ n
and k + n1 + . . .+ nν = n.

(iii) The action of (Sp(1) · SO0(1, k))× Sp(n1)× . . .× Sp(nν) ⊆ Sp(1, n), where
1 ≤ k ≤ n and k + n1 + . . .+ nν = n.

(iv) The action of Sp(1) × L ⊆ Sp(n) where L is a subgroup whose action on
Hn is induced by a product of quaternion Kähler symmetric spaces where at
most one of the factors is of rank greater than one.

The H -action on HHn has a totally geodesic orbit isometric to HHk in case (i),
CHk in case (ii), Hk in case (iii), a point in case (iv).
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Proof. The proof is mostly analogous to the proof of Theorem 9.1. As the
case of polar actions on HHn with a fixed point was settled in [15], where it was
shown they are all orbit equivalent to the actions as described in item (iv), we may
restrict ourselves to actions without fixed points.

According to [37], the totally geodesic submanifolds of positive dimension
in HPn are isometric to Sk , k = 1, . . . , 4, or RPk , CPk , HPk , where k = 2, . . . , n
and any two homeomorphic totally geodesic submanifolds are conjugate by an
isometry. Hence the totally geodesic subspaces RPk , CPk , HPk are given by the
standard embeddings SO(k) ⊂ SU(k) ⊂ Sp(k) ⊆ Sp(n) for k = 2, . . . , n and also
the totally geodesic spheres S1 = RP1 ⊂ S2 = CP1 ⊂ S3 ⊂ S4 = HP1 ⊆ HPn are
given by the standard embeddings.

First assume the totally geodesic orbit H∗ · [e∗] is isometric to HPk , where
k ∈ {1, . . . , n} . By an analogous argument as in the proof of Theorem 9.1, we see
that H = Sp(1, k) × L and H ∩K = Sp(1) × Sp(n) × L , where L ⊆ Sp(n − k).
Since H∗ is of the form Sp(k + 1) × L , it follows from [33, Theorem 4.1] that
the action of L on Hn−k is induced by a product of quaternion Kähler symmetric
spaces where at most one factor is of rank greater than one. Hence we have an
action as described in item (i) of the theorem.

Now consider the case where the totally geodesic orbit H∗ · [e∗] is isometric
to CPk or RPk , where 1 ≤ k ≤ n . An argument analogous as in the proof of
Theorem 9.1 shows that the H -action on M is as described in items (ii) or (iii).

It remains the case where the totally geodesic orbit H∗ · [e∗] is isometric to
a three-sphere, which is a great sphere in a standardly embedded totally geodesic
S4 = HP1 ⊆ HPn . It follows that the action of H∗ on Hn+1 leaves a quaternionic
subspace isomorphic to H2 invariant on which H∗ acts by the standard Sp(2)-
representation. But this action does not have a three-dimensional orbit and thus
we have arrived at a contradiction.

Conversely, it is easy to see by an analogous argument as in the proof
of Theorem 9.1 that the actions as described in parts (i) to (iv) have polar
dual actions on HPn and are thus polar by Theorem 5.1. Indeed, the polar
dual action on HPn is induced by (Sp(k + 2)/Sp(1) × Sp(k + 1)) × (Q/L) in
case (i), it is induced by (SU(k+ 3)/S(U(2)×U(k+ 1)))× (Q/L) in case (ii), it is
induced by (SO(k + 5)/SO(4)× SO(k + 1))× (Q/L) in case (iii) and induced by
(Sp(2)/Sp(1)× Sp(1))× (Q/L) in case (iv), where Q/L is in each case a product
of quaternion Kähler symmetric spaces.

11. Polar actions on the Cayley hyperbolic plane

In this section we classify polar actions on the Cayley hyperbolic plane OH2 =
F4(−20)/Spin(9) by reductive algebraic subgroups of the isometry group. Polar
actions on the Cayley plane OP2 = F4/Spin(9) – which is the compact dual
of OH2 – were classified by Podestà and Thorbergsson, see [33, Theorem 5.1].
Their result is the following. A connected subgroup H of F4 acts polarly and
with a fixed point on OP2 if and only if it is conjugate to one of Spin(9), Spin(8),
SO(2) · Spin(7), or Spin(3) · Spin(6); it acts polarly and without fixed point if and
only if it is conjugate to one of Sp(3) ·Sp(1), Sp(3) ·U(1), Sp(3), or SU(3) ·SU(3),
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where the first three groups act with cohomogeneity one. In fact, the actions of the
first three groups are orbit equivalent. The action of the last group SU(3) · SU(3)
is of cohomogeneity two.

Let us also review the results of [37] concerning totally geodesic submani-
folds of OP2 . All totally geodesic submanifolds of positive dimension in OP2 are
homothetic to one of S1 , S2, . . . , S8 , RP2 , CP2 , HP2 , or OP2 . Moreover, any two
homeomorphic totally geodesic subspaces are conjugate by an isometry.

Our proof of the theorem below does not proceed analogously as for The-
orems 8.1, 9.1 and 10.1, instead we will consider the polar actions on M∗ and
classify all actions dual to them.

Theorem 11.1. Let H ⊂ F4(−20) be a connected reductive algebraic subgroup.
Then the H -action on the Cayley hyperbolic plane OH2 = F4(−20)/Spin(9) is polar
if and only if H is conjugate to one of the subgroups H as given in Table 1.

H cohomo-
geneity

totally
geodesic orbit

Spin(9) 1 {pt.}
Spin(1, 8) 1 H8

Spin(8) 2 {pt.}
Spin(1, 7) 2 H7

SO(2) · Spin(7) 2 {pt.}
SO0(1, 1) · Spin(7) 2 R

SO(2) · Spin(1, 6) 2 H6

Spin(3) · Spin(6) 2 {pt.}
Spin(1, 2) · Spin(6) 2 H2

Spin(3) · Spin(1, 5) 2 H5

Sp(1, 2) · Sp(1)
Sp(1, 2) · U(1)
Sp(1, 2)

1 HH2

SU(1, 2) · SU(3) 2 CH2

Table 1: Polar actions on the Cayley hyperbolic plane

For each action in Table 1 the cohomogeneity and the (uniquely defined)
type of totally geodesic orbit is given. Actions which are orbit equivalent to each
other are listed in consecutive rows of the table without separating horizontal lines.

Proof. The case of a polar action on OH2 with a fixed point was already settled
in [15], the result is that the subgroups of Spin(9) acting polarly with a fixed point
on M = OH2 are exactly the same as those acting polarly with a fixed point on
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M∗ = OP2 . Hence we may assume for the remaining part of the proof that the
action of H on M has a totally geodesic orbit of positive dimension. Let G∗ be
the compact Lie group of type F4 and let K∗ = Spin(9). Let g∗ = k∗ ⊕ p∗ be the
usual decomposition. We will determine all closed connected subgroups H∗ ⊂ G∗

acting polarly on M∗ = G∗/K∗ and such that h∗ = (h∗∩k∗)⊕(h∗∩p∗), proceeding
similarly as in Example 7.1. As we do not need to consider fixed points, we may
ignore the cases where h∗ ⊆ k∗ . As pointed out above, the conjugacy classes of
connected closed subgroups H∗ ⊂ G∗ acting polarly on M∗ have been determined
in [33].

Let us start with the isotropy action, i.e. the action of Spin(9) on M∗ =
F4/Spin(9). As this is a Hermann action, the desired information can be read off
from [26, Table 1]. We see that, apart from the fixed point of this action, the only
other type of totally geodesic orbit which occurs is S8 = Spin(9)/Spin(8); since
we are looking at an action of cohomogeneity one, there are only two singular
orbits. It follows that there is exactly one subgroup of F4 conjugate to Spin(9)
whose orbit through [e∗] is totally geodesic and this action is dual to the action of
Spin(1, 8) on M∗ .

Let us now consider the proper subgroups of Spin(9) which act polarly on
OP2 . Consider the action of H∗ = Spin(8) on OP2 . If h∗ = (h∗ ∩ k∗)⊕ (h∗ ∩ p∗)
and h∗ 6⊂ k∗ then it follows that h∗∩k∗ = spin(7) by the classification of symmetric
spaces [17], since H∗/H∗∩K∗ is a rank one symmetric space in this case. From the
argument on the isotropy action of Spin(9) above, we see that a suitable conjugate
of Spin(8) ⊂ F4 actually has a totally geodesic orbit of type S7 . The other cases
are similar.

We will now consider the Hermann action of Sp(3) ·Sp(1) on M∗ . It follows
from [26, Table 1] that it has only one totally geodesic orbit which is homothetic
to HP2 = Sp(3)/Sp(1) × Sp(2). This action is obviously dual to the action of
Sp(1, 2) · Sp(1) on OH2 ; the Sp(1)-factor acts trivially on the totally geodesic
orbit and we see that more generally the action of Sp(1, 2) · L on OH2 is dual to
the action of Sp(3) · L , where L ⊆ Sp(1) is a closed connected subgroup.

Finally, it remains to consider the action of H∗ = SU(3)·SU(3) on M∗ . Note
that the two isomorphic SU(3)-factors are not conjugate by any automorphism
of F4 . In fact, the two simple factors correspond to two subsystems both of
type A2 inside the root system of type F4 , which are orthogonal to each other, one
consisting of long roots, the other consisting of short roots, see e.g. [28, Ch. §3.11].
Assume we have h∗ = (h∗∩k∗)⊕(h∗∩p∗). Then (H∗, H∗∩K∗) is a symmetric pair
such that H∗/H∗ ∩K∗ is a rank one symmetric space, the only possibility being
h∗ ∩ k∗ ∼= s(u(1)+u(2)) ⊕ su(3). In fact, it has been shown in [33, Lemma 2B.3]
that the action under consideration has a totally geodesic orbit of type CP2 . This
shows that the action of SU(1, 2) · SU(3) on M is dual to the H∗ -action on M∗ .
Furthermore, there are no other totally geodesic orbits. To see this, it suffices to
note that only one of the SU(3)-factors is conjugate to a subgroup of Spin(9) ⊂ F4 ,
namely the one whose roots are short.

Corollary 11.2. A polar action of a compact Lie group on OP2 has a totally
geodesic orbit.
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Proof. Follows from the proof of Theorem 11.1.

12. Conclusion

The method of dual actions turns out to be a useful tool for the study of isomet-
ric Lie group actions on symmetric spaces of the noncompact type. Under the
hypothesis that the action is induced by a reductive algebraic subgroup of the
isometry group, the study of such actions is reduced to considering the action of a
compact Lie group on a dual compact symmetric space. This method is especially
convenient for studying polar and hyperpolar actions, since we have proved that
an action is (hyper)polar if and only if its dual action is (hyper)polar. Using this
fact we are able to generalize a number of classification results from the compact to
the noncompact setting. In particular, this provides many new examples of polar
and hyperpolar actions on symmetric spaces of the noncompact type. However,
the relation given by duality between isometric Lie group actions on a symmetric
space of the noncompact type on the one hand and on a compact dual on the other
hand is only a partially defined map, as there are examples of (polar) actions on
noncompact symmetric spaces, e.g. homogenous foliations by horospheres on hy-
perbolic space, for which no dual action exists. Nevertheless, the method covers
an important aspect of polar actions in the noncompact setting. Indeed, it is an
interesting question if the methods developed by Berndt, Dı́az-Ramos and Tamaru
[1], [2], [3], [4] can be combined with our approach to obtain complete classifica-
tion results for (hyper)polar actions on symmetric spaces of the noncompact type.
It is conceivable that the method described in this article has further potential
applications beyond the theory of polar actions.
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