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Abstract. Let g be a complex Lie algebra of type E6 , E7 or E8 and let
g2 × h be a dual pair in g . In this paper, we look for possible real forms of
g2× h . It turns out that for each n and for all real forms, say a0× h0 of g2× h ,
there exists a real form g0 of g such that a0 × h0 embedds into g0 . The full
description is given in Theorem 3.1.
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1. Introduction

Let g be a complex Lie algebra of type E6 , E7 or E8 . It contains a dual pair
g2×h where h is of type A2 , C3 and F4 , respectively. The main goal of this paper
is to classify real forms of these dual pairs. We will consider only noncompact real
forms of g .

The main tool of our construction are embeddings sl(2,C) ↪→ g for various
algebras g . We will introduce a notion of the norm list which will be very helpful
in the second part. Embeddings l ↪→ g , for l different from sl(2,C) are analyzed
in [2].

2. Embeddings of sl(2,C) into g

We will denote real Lie algebras with subscript 0: g0 . The complexified Lie
algebra, (g0)

C = g0 ⊗R C , will be denoted without subscript: g . Then, g0 is
called a real form of g . It is clear that g0 determines g uniquely. At the same
time, g can have several real forms. For example, sl(2,C) has two real forms:
sl(2,R) and su(2). Actually, any semisimple Lie algebra g has two distinguished
real forms: split and compact. The split real form contains a subalgebra h0 of a
Cartan subalgebra of g such that any root of g attains only real values on h0 .
The compact real form can be easily constructed from the split real form: h0 is
replaced with ih0 and root vectors, Xα and X−α , are replaced with Xα − X−α
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and i(Xα +X−α). It is usually denoted by u0 . The Killing form of u0 is negative
semidefinite and Intu0 is compact.

Let g0 be the real semisimple Lie algebra. Then the corresponding com-
plexification, g , has the compact real form, u0 . An involution of gR with respect
to u0 generates a Cartan involution θ on g0 . The Cartan involution θ on g0 gives
a Cartan decomposition g0 = k0 ⊕ p0 where k0 is the eigenspace of eigenvalue +1
and p0 corresponds to −1. The complexified Lie algebra of k0 will be denoted by
k and the complexified Lie algebra of p0 will be denoted by p . Again, more details
can be found in [5].

In this paper e6 , e7 or e8 will denote the complex Lie algebra of type E6 ,
E7 or E8 and ec6 , ec7 or ec8 its compact real form.

The list of noncompact real forms of exceptional Lie algebras is given in the
Table 1. We use [5] as a reference. We also give the terminology from [1].

Table 1: Real forms for exceptional Lie algebras.

[5] [1] Special feature R k0

E I E6(6) g0 is a split real form 6 sp(4)

E II E6(2) G/K is of quaternion type 4 su(6)⊕ su(2)

E III E6(−14) G/K is Hermitian 2 so(10)⊕ R
E IV E6(−26) 2 fc4

E V E7(7) g0 is a split real form 7 su(8)

E VI E7(−5) G/K is of quaternion type 4 so(12)⊕ su(2)

E VII E7(−25) G/K is Hermitian 3 ec6 ⊕ R
E VIII E8(8) g0 is a split real form 8 so(16)

E IX E8(−24) G/K is of quaternion type 4 ec7 ⊕ su(2)

F I F4(4) g0 is a split real form 4 sp(3)⊕ su(2)

F II F4(−20) 1 so(9)

G G2(2)
g0 is a split real form

G/K is of quaternion type
2 su(2)⊕ su(2)

R in the fourth column denotes the real rank.

An important part of our parametrization will be embeddings of sl(2,C)
into g or k . If g is equal to g2 then k is denoted by k2 . Since k2 has two roots
of different length, we will write sls2 for sl2 , which corresponds to the short root,
and sll2 for sl2 , which corresponds to the long root.

We denote the Killing form on g by B(·, ·). Let ϕ : sl2 → g be an
embedding of sl2 into g . Let

hϕ = ϕ

(
1 0
0 −1

)
.

The norm of the embedding ϕ is defined as a positive integer

B(hϕ, hϕ).
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If ϕ corresponds to a root α of g then hϕ is denoted by hα . We normalize B
so that B(hα, hα) = 2 for any long root α . Note that the short root embedding
into g2 has the norm 6. The lists of all embeddings sl2 ↪→ g are given in [1].
Actually, in [1] is the list of nilpotent orbits, but Jacobson-Morozov and Kostant
theorems imply that these two lists are equal. In [1] are also given values of simple
roots on the semisimple element of our sl2 . It gives a way to decompose g as a
sum of simple modules under the action of sl2 . In particular, the dimension of
the centralizer, dim Zg(sl2), is the number of trivial modules that appear in that
decomposition. The norm list and dimensions of our centralizers are important
invariants that will be used throughout this paper. For example, the norm list for
G2 is

0 1 2 (3,1) (2,4) (1,3)
1 0 6 (4,2) (3,1) (1,3)
0 2 8 (5,1) (3,3)
2 2 56 (11,1) (3,1).

The first number in the first column denotes the value of the short root on the
semisimple element of embedded sl2 . The second number denotes the value of the
long root. The second column denotes the norm. The first number in brackets
denotes the dimension of the sl2 -submodule and the second number denotes its
multiplicity. We also note that the long root embedding has the smallest norm.
Sometimes, we will denote an embedding sl2 ↪→ g of norm n with sl2(n).

3. Real forms of dual pairs

Let g be the complex Lie algebra. The dual pair a× l is a pair of Lie subalgebras
a and l such that Zg(a) = l and Zg(l) = a .

We are interested in situation when g is of type E6 , E7 or E8 . For each g ,
it is possible to construct several dual pairs. Let α̃ be the highest positive root.
Then there exists a unique simple root α , not perpendicular to α̃ . If we follow
notation from [4], α = α2 for E6 , α = α1 for E7 and α = α8 for E8 . If the vertex
α is removed from the Dynkin diagram of g , the rest forms a subalgebra m . This
algebra is important for us. In the three respective cases, m is equal to

sl6, so12 and e7.

Then sll2 = sl(2,C), which corresponds to α̃ , and m form a dual pair in g . Let
sls2 ⊆ m be a norm 6 embedding, specified as follows. The algebra sl6 has one
sl2 embedding of norm 6, so12 has two norm 6 embeddings with the centralizer of
dimensions 13 and 21, and e7 has two embeddings with centralizers of dimensions
24 and 52. We always take the embedding with the larger centralizer. Let

h = Zm(sls2).

This is sl3, sp3 and f4 respectively. By a result of Rubenthaler [6], the centralizer
of h in g is g2 . An important observation is that we have

h = Zg(sl
l
2 ⊕ sls2).
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We want to find real forms of dual pairs g2 × h that lie in g of type E6 ,
E7 or E8 . Let a0 be a real form of g2 and h0 a real form of h . The Cartan
involution θ of g0 gives decompositions g0 = k0⊕ p0 and g = k⊕ p . We also have
decompositions g2 = k2 ⊕ p2 and h = k1 ⊕ p1 .

Theorem 3.1. Real forms of dual pairs of the form g2×h in g of type E6 , E7

and E8 are parametrized by the Table 2. In that table all Lie algebras are real.

Table 2: Real forms of dual pairs.

n g0 a0 h0 k0 k2,0 k1,0

6 split split split sp(4) su(2)⊕ su(2) so(3)

7 split split split su(8) su(2)⊕ su(2) u(3)

8 split split split so(16) su(2)⊕ su(2) sp(3)⊕ su(2)

6 E II split su(1,2) su(6)⊕ su(2) su(2)⊕ su(2) u(2)

7 E VI split sp(1,2) so(12)⊕ su(2) su(2)⊕ su(2) so(3)⊕ so(5)

8 E IX split F II ec7 ⊕ su(2) su(2)⊕ su(2) so(9)

6 E II split su(3) su(6)⊕ su(2) su(2)⊕ su(2) su(3)

7 E VI split sp(3) so(12)⊕ su(2) su(2)⊕ su(2) sp(3)

8 E IX split fc4 ec7 ⊕ su(2) su(2)⊕ su(2) fc4

6 E IV gc2 split fc4 gc2 so(3)

7 E VII gc2 split ec6 ⊕ R gc2 u(3)

8 E IX gc2 split ec7 ⊕ su(2) gc2 sp(3)⊕ su(2)

6 E III gc2 su(1,2) so(10)⊕ R gc2 u(2)

7 E VI gc2 sp(1,2) so(12)⊕ su(2) gc2 so(3)⊕ so(5)

8 split gc2 F II so(16) gc2 so(9)

Remark. It will be proved in the next section.

4. Proof

Let us consider the real form of g2×h . Both real forms of g2 contain su(2)l⊕su(2)s .
Since, su(2)l⊕ su(2)s is the compact subalgebra of g0 , there exists g ∈ Intg0 such
that Ad(g)(su(2)l⊕ su(2)s) ⊆ k0 . Hence, we can assume that su(2)l⊕ su(2)s ⊆ k0 .
After complexifying, it gives an embedding sll2 ⊕ sls2 ⊆ k , such that

1. sll2 ⊆ k is a long root embedding.

2. sls2 ⊆ k is a norm 6 embedding.

3. The centralizer of sll2 ⊕ sls2 in g , Zg(sl
l
2 ⊕ sls2) = ZZg(sl

l
2)

(sls2) is h .

4. g|sls2 contains an sls2 submodule of dimension 4.
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We note that the last two conditions are automatically fulfilled for E6 . Also, the
last condition is automatically fulfilled for E8 . Conversely, if we have an embedding
of sll2 ⊕ sls2 into k satisfying the above four properties then it defines a real form
of g2 × h . Indeed, let su(2)l ⊕ su(2)s ⊆ k0 be the corresponding embedding of
compact Lie algebras. Then

h0 = Zg0(su(2)l ⊕ su(2)s)

and Zg0(h0) are the real form of h and g2 , respectively. It is clear that h0 is
the real form of h . Let us consider Zg0(h0). Since all sl2(2) are conjugate in
g , it remains to analyze conjugacy classes of sl2(6) in Zg(sl2(2)). If g=e6 , then
Zg(sl2(2)) = sl6 and it contains only one conjugacy class of norm 6. If g=e8 , then
Zg(sl2(2)) = e7 and it contains two conjugacy classes of norm 6, but only one class
has the property that Ze7(sl2(6)) = h . If g=e7 , then Zg(sl2(2)) = so12 and it
contains three conjugacy classes of norm 6 and two of them have the property that
dim Zso12(sl2(6)) = 21 = dim h . It is the reason why we need the last condition
because one one corresponds to g2 from the dual pair g2 × h and another class
does not correspond to g2 in g . Details will be explained later.

It is important to mention that our real form is θ -stable, since su(2)l⊕su(2)s

is θ -stable. Thus k1 (of the Cartan decomposition of h) is equal to

k1 = Zk(sl
l
2 ⊕ sls2).

In particular, since k1 determines the real form of h , we have an easy way to
determine the real form of h . Finally, as the last step, we determine a0 , the
real form of g2 . This is done as follows: Note that k2 is contained in Zk(k1). If
Zk(k1) 6⊇ g2 then k2 = sll2 ⊕ sls2 , and a0 is split. If the rank of g0 minus the rank
of h0 is 1 or 0, then a0 must be compact. However, if g is of type E VI or E VIII,
we will give a different argument.

We will start with g of type E6 . Recall that h has three real forms: sl(3,R)
(k1 = so3 ), su(1, 2) (k1 = gl2 ) and su(3) (k1 = sl3 ). Dimensions of k1 are 3, 4 and
8, respectively.

Case k = sp4 . In this case g0 is the split form of g . If there is a real form a0 × h0

with a0 split or not, then k contains sll2⊕sls2⊕k1 . We know that sll2 corresponds to
a long root of k = sp4 . It follows that Zk(sl

l
2) = sp3 . We also know that the norm

of sls2 is 6. There is only one such embedding and the corresponding semisimple
element is diag(1, 1, 1,−1,−1,−1). We have Zk(sl

s
2 ⊕ sll2) = Zsp3(sl

s
2) = so3 = k1 .

This shows that h0 is split. A direct calculation shows that Zk(so3) = sll2⊕sls2 = k2 .
Therefore, we have a unique (split) real form of g2 × h when the real form of g2
is split.

Case k = sl12 ⊕ sl6 . Here sll2 can map in one of the two factors. Assume first that

sll2 = sl12 . We know that Ze6(sl
l
2) = sl6 . It gives that h = Zg(g2) ⊆ Zg(sl

l
2) =

sl6 ⊆ k . Hence h0 has to be compact and k1 = sl3 . Direct calculation gives that
Zk(sl3) = sll2 ⊕ sls2 . It gives that in this case, a0 is split and h0 is compact. This
is the dual pair from [3].

Assume now that sll2 ⊂ sl6 , corresponding to a long root. Then Zsl6(sl
l
2) =

C ⊕ sl4 = gl4 . There are no embeddings sl2 ↪→ sl4 of norm 6. Hence, sls2 maps
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to sl12 and to sl2 ↪→ sl6 which has norm 4 and is centralized by sll2 . Also,
Zsl4(sl2(4)) = sl2 . Hence Zk(sl

l
2 ⊕ sls2) = C ⊕ sl2 = gl2 = k1 . It is easy to see

that Zk(k1) = sll2⊕ sl12⊕ sl2 . This gives another form of the dual pair. In this case,
a0 is split and h0 is su(1, 2).

Hence two real forms are possible. In both cases, g2 has a split real form.
The real form h0 can be either su(1, 2) or su(3).

Case k = C⊕ so10 . We embed sll2 into so10 as a long root and get Zso10(sl
l
2) =

sl12 ⊕ sl4 . Since there is no embedding sl2 ↪→ sl4 of norm 6, sls2 must contain
sl12 and the embedding sl2 ↪→ sl4 of norm 4. Also, Zsl4(sl2(4)) = sl2 . Hence,
Zk(sl

l
2 ⊕ sls2) = C ⊕ sl2 . It corresponds to the rank one real form of h . However,

we cannot embed the split real form of g2 and a noncompact real form of h into
the real form of type E III, because its split rank is 2. This implies that a0 , the
form of g2 is compact. Thus, in this case we have one real dual pair. The real
form of g2 is compact and the real form of h is su(1, 2).

Case k = f4 . Embed sll2 into f4 using a long root. Then Zf4(sl
l
2) = sp3 . As we

know, there is only one embedding sl2 ↪→ sp3 of the norm 6. The corresponding
semisimple element has the form diag(1, 1, 1,−1,−1,−1) and Zsp3(sl2(6)) = so3 =
k1 . This shows that the form of h0 is split. Since the rank of E IV is 2, the real
form of g2 must be compact. Thus, we have one real real dual pair. The real form
of g2 is compact and the real form of h is split.

Hence, there are five possible embeddings of real forms of dual pair g2 × h
into g of type E6 . If the real form of g is split, then it is possible to find one
embedding. In this case, the real forms of h and g2 are split. If the real form
of g has a real rank 4, then two embeddings are possible. For both embeddings,
the real form of g2 is split. For one embedding, the real form of h is compact,
for another embedding the real rank of the real form of h is 1. For the real form
of type E III, one embedding is possible. The real form of g2 is compact and the
real form of h is su(1, 2). Finally, for the real form of type E IV, there is one pair.
Real form of g2 is compact and real form of h is split.

Now, we will consider g of type E7 . Our h has three real forms: sp(3,R)
(k1 = gl3 ), sp(1, 2) (k1 = sl2⊕ so5 ) and sp(3) (k1 = sp3 ). Dimensions of k1 are 9,
13 and 21.

We know that m = Ze7(sl
l
2) = so12 . There are three embeddings sl2 ↪→

so12 of norm 6: so12|sl12(6) = (3, 15) (1, 21), so12|sl22(6) = (3, 15) (1, 21), and

so12|sl32(6) = (4, 2) (3, 7) (2, 12) (1, 13). Embeddings sl12(6) and sl22(6) correspond

to “very even” partition [26] ([1]). There are two embeddings sl2 ↪→ e7 of norm
6: e7|sl42(6) = (4, 2) (3, 15) (2, 28) (1, 24) and e7|sl52(6) = (3, 27) (1, 52). Since

dim Zso12(sl
3
2(6)) = 13 < dim sp3 , sl32(6) does not correspond to sls2 . Since

e7|sl52(6) does not contain a submodule of dimension 4, sl52(6) does not correspond

to sls2 . Since e7|sl52(6) does not contain an sl52(6) submodule of dimension 4, sl32(6)

corresponds to sl42(6). It is clear that at least one sli2(6), i ∈ {1, 2, 3} has to
correspond to sl52(6). Since at least one sli2(6) i ∈ {1, 2} has to correspond to sl42 ,
we conclude that sl12(6) corresponds to sl42(6) and sl22(6) corresponds to sl52(6).
It means that sl2(6) ⊂ Zk(sl2(2)) corresponds to sls2 if it corresponds to sl12(6) in
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so12 and sl42(6) in e7 . It is enough to check that sl2(6) ⊂ Zk(sl2(2)) corresponds
to sl12(6) or sl22(6) in so12 and sl42(6) in e7 . If sl2(6) corresponds to sl12(6) or
sl22(6), then the third condition is satisfied. If sl2(6) corresponds to sl42(6), then
the fourth condition is satisfied.

There is one interesting detail. Let us assume that g2 ⊂ g . We claim that
Zg(g2) = h i.e. any g2 forms a dual pair with its center. It is enough to show
that sls2 ⊂ g2 corresponds to sl12(6) or sl22(6) in Zg(sl

l
2 ⊂ g2) and sl42(6) in e7 .

Since e7|sl52(6) does not contain a submodule of dimension 4, sls2 corresponds to

sl42(6). Since g|sll2 = (3, 1) (2, 32) (1, 66), the restriction g|g2 contains V g2
0,1 = g2

(V g2
0,1|sll2 = (3, 1) (2, 4) (1, 3)), V g2

1,0 (V g2
1,0|sll2 = (2, 2) (1, 3)) and C . (Any other g2

module V g2
a,b contains sll2 submodule of dimension 3 or higher.) Hence,

g|g2 = V g2
0,1 ⊕ (V g2

1,0)
n ⊕ Cm.

Easy comparison produces that n = 14 and m = 21 i.e. dimZg(g2) = 21. Hence,
sls2 does not correspond to sl32(6).

Case k = sl8 . This is a split real form. Embed sll2 into sl8 as a long root. Then
Zsl8(sl2(2)) = gl6 . There is only one embedding sl2 ↪→ sl6 of the norm 6 and
sl6|sl2(6) = (3, 9) (1, 8). There is only one embedding sl2 ↪→ sl8 of the norm 6 and
sl8|sl2(6) = (3, 9) (2, 24) (1, 12). Since sl8|sl2(6) contains a submodule of dimension
2, sl2(6) corresponds to sl42(6) in e7 . Since the multiplicity of V3 in sl6|sl2(6) is
9 and the multiplicity of V3 in so12|sl32(6) is 7, sl2(6) corresponds to sl12 or sl22 in
so12 . Hence, sl2(6) corresponds to sls2 in k . It is a block diagonal embedding, using
three 2 × 2 blocks. Now, it is clear that Zsl6(sl

s
2) = sl3 and Zgl6(sl

s
2) = gl3 = k1 .

Since k does not contain g2 , k2 = sll2 ⊕ sls2 . This shows that the split dual pair is
the only possibility here.

Case k = sl12 ⊕ so12 . Since dim Zg(sl2(k)) ≤ 52 for k > 2, the norm of sl12 is 2.

There are two cases: sll2 = sl12 and sll2 ⊂ so12 . Let us consider the first case. There
are three embeddings sl2 ↪→ so12 of norm 6 and one embedding (sl12 ) corresponds
to sls2 . Since so12 = Zg(sl

l
2) and h = Zg(g2) ⊆ Zg(sl

l
2) the real form of h is

compact. It shows that k1 = sp3 . Since Zso12(sp3) = sl2 , the real form of g2 is
split. This gives our embedding of sls2 × sp3 into so12 . Thus, we have only one
dual pair here with split g2 and compact h .

In the second case, sll2 ⊂ so12 . The norm list shows that Zso12(sl
l
2) =

sl22⊕so8 . Since dimZso8(sl2(6)) = 3, sls2 cannot be contained in so8 (dimk1 ≥ 13).
Hence, there are three subcases: sls2 contains sl12 and sl22 (and an embedding
sl2 ↪→ so8 of norm 2), sls2 contains sl12 (and an embedding sl2 ↪→ so8 of norm 4)
and sls2 contains sl22 (and an embedding sl2 ↪→ so8 of norm 4).

The first subcase does not produce another pair because Zso8(sl2(2)) =
sl2 + sl2 + sl2 .

Let us consider the second subcase. There are three embeddings sli2(4) ↪→
so8 . If we denote simple roots of so8 by βi , then our three embeddings have the
value 2 on β1 , β3 andβ4 and the value 0 on other simple roots. The corresponding
restrictions, so8|sli2(4) , are equal: so8|sli2(4) = (3, 6) (1, 10). However, restrictions

of g and so112 = Zg(sl
l
2) to sli2(4) ⊕ sl12 are not equal. It is easy to calculate

restrictions g|sli2(4)⊕sl12
and so112|sli2(4)⊕sl12

and conclude that sl12(4)⊕ sl12 corresponds
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to sls2 . The next step is to calculate k1 = Zk(sl
l
2 ⊕ sls2) = sl22 ⊕ Zso8(sl2(4)). It is

clear that so8 contains so5 ⊕ so3 . Therefore, there exists embedding sl2 ↪→ so8
such that Zso8(sl2) = so5 . A list of all embeddings shows that our sl2 has the
norm 4 (dim Zso8(sl2(m)) ≤ 9 for m 6= 4). Hence, Zk(sl

l
2 ⊕ sls2) = sl22 ⊕ so5 = k1 .

Also, Zk(k1) = sl12 ⊕ Zso12

(
sl22 ⊕ so5

)
= sl12 ⊕ sll2 ⊕ Zso8(so5) = sl12 ⊕ sl2(4) ⊕ sll2 .

We conclude that it is possible to embed the split form of g2 and sp(1, 2) into the
real form of g of type E VI.

The third subcase is similar to the second subcase. This time sl22(4) ⊕ sl22
corresponds to sls2 and Zk(sl

l
2⊕ sls2) = sl12⊕ so5 = k1 . It is clear that so7⊕ so5 can

be embedded into so12 . The norm of the regular embedding sl2 ↪→ so5 is 20. There
are two embeddings sl2 ↪→ so12 of norm 20. For one embedding, the dimension of
the centralizer is 9 and it is too small. For the second embedding, the dimension of
the centralizer is 21 = dim so7 . It shows that Zso12(so5) = so7 and Zk(k1) = so7 .
We do not know the real form of g2 yet because the real rank argument does
not give the answer. However, there is only one embedding sl2(20) ↪→ g and
dim Zg(so5) = 24. It shows that Zg(so5) = sl12 ⊕ so7 ⊂ k . Hence, the real form
of g2 is compact. There is another approach. Let gc2 ⊂ so(7) ⊂ so(12). We have
mentioned that g2 = (gc2)

C and Zg(g2) = h form a dual pair in g . The real form
of g2 is compact. Since the third subcase is the last case and in all other cases,
the real form of g2 is split, the real form of g2 is compact for the third subcase.
We conclude that it is possible to embed the compact form of g2 and sp(1, 2) into
the real form of g of type E VI.

Case k = e6 ⊕ C . Embed sll2 into k using a long root of e6 . Then, Ze6(sl
l
2) = sl6

and Zsl6(sl2(6)) = sl3 . Hence, there is a unique embedding sl2(2)⊕sl2(6) ↪→ k and
Zk(sl

l
2 ⊕ sls2) = gl3 . We know that the embedding gc2 ↪→ ec6 is possible (actually,

the embedding gc2 × so3 ↪→ ec6 is possible). It shows that our unique embedding
sl2(2)⊕ sl2(6) ↪→ k corresponds to g2 from the dual pair g2 × h ↪→ g . Hence, our
sl2(2) and sl2(6) satisfy conditons 3 and 4, the real form of g2 is compact and the
real form of h is split. We can, also, apply the real rank argument since the real
rank of sp(3,R) is 3 and the real rank of g0 is 3. It yields the fifth real form of
the dual pair g2 × h in g of type E7 .

Summarizing, there are five possible embeddings of real forms of the dual
pair g2 × h into g of type E7 . If the real form of g is split then it is possible to
find one embedding. For that case, real forms of h and g2 are split. If the real
form of g has real rank 4, then three embeddings are possible. For the first two
embeddings the real form of g2 is split. For the first embedding, the real form of
h is compact, for the second embedding h is su(1, 2). Also, Zg(k2) = h for both
cases. For the third embedding of E VI, the real form of g2 is compact and the
real form of h is su(1, 2). If the real form of g is of real rank 3, it is possible to
find one embedding. In that situation, real form of g2 is compact and real form of
h is split.

Finally, we will consider g of type E8 . Our h has three real forms: F I
(k1 = sp3⊕ sl2 ), F II (k1 = so9 ) and fc4 (k1 = f4 ). Dimensions of k1 are 24, 36 and
52. Also, m = Ze8(sl

l
2) = e7 .
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Case k = so16 . Our g0 is the split real form of g . Since dimZso16(sl2(2)) = 69 and
α̃ is nonperpendicular only to α2 , Zso16(sl2(2)) = sl12 ⊕ so12 . There are two cases:
sl2(6) ⊂ so12 and sl2(6) is formed from sl12 and sl2(4) ⊂ so12 . Let us consider
the first case. We have already seen that there are three embeddings of sl2(6)
into so12 : sl12(6), sl22(6) and sl32(6) (see the beginning of the previous section).
Also, there are two embeddings of sl2(6) into e7 : sl42(6) and sl52(6). We know that
sl12(6) corresponds to sl42(6) and sl22(6) corresponds to sl52(6). Hence, there exists
sl2(6) ⊂ so12 such that the third condition is satisfied (ZZg(sl

l
2)

(sl2(6)) = h). It
shows that the real form of the dual pair g2 × f4 exists in this case and the real
form of f4 is split. It remains to determine the real form of g2 . There exists an
embedding sl2(70) ↪→ sp3 . The norm list of k = so16 shows that there is only one
embedding sl2(70) ↪→ so16 and the dimension of the center of this embedding is
9. It shows that the real form of g2 is not compact.

There are two embeddings sl2(4) ↪→ so12 . For one of them, the central-
izer, Zso12(sl2(4)) is too small (dim Zso12(sl2(4)) = 16). For another embedding,
dim Zso12(sl2(4)) = 36. We have to check the third condition. Since the dimen-
sion of the centralizer of sll2 ⊕ sl2(6) in k is 36, our sl2(6) = sl12 ⊕ sl2(4) does
not correspond to sl42(6). Since so3 ⊕ so9 ⊂ so12 and dim Zso12(sl2(2k)) < 36 for
k 6= 2, Zso12(sl2(4)) = so9 . This shows that the real form of h is of type F II. It
remains to determine the real form of g2 . We know that so9⊕ so7 ⊃ so9⊕ g2 can
be embedded into so16 . Also, there is an embedding sl2(120) ↪→ so9 of norm 120.
Since dim Zso16(sl2(120)) = 21, Zso16(so9) = so7 . Since dim Ze8(sl2(120)) = 21,
Ze8(so9) = so7 . Hence, Ze8(h) ⊂ Ze8(so9) = Zso16(so9) ⊂ k . This shows that the
real form of g2 is compact.

We conclude that split real form g0 of type E8 can contain two real forms
of dual pair g2× h . In the first case, both real forms are split. In the second case,
the real form of g2 is compact and the real form of h is of type F II.

Case k = sl12 ⊕ e7 . Since Ze8(sl
1
2) ⊆ e7 and dim Ze8(sl2(k)) < 133 for any k > 1,

the norm of sl12 is 2. There are two cases: sll2 = sl12 and sll2 ⊂ e7 .

Let us consider the first case. Since Zk(sl
l
2) = Zg(sl

l
2) = e7 , there exists

sl2(6) ⊂ e7 such that ZZg(sl
l
2)

(sl2(6)) = h . Hence, our third condition is satisfied.
Since h ⊂ k , the real form of h is compact. There is an embedding sl2(312) ↪→ f4 .
Since dim Ze7(sl2(312)) = 3, Ze7(f4) = sl2(6) = sls2 . It shows that the real form of
g2 in this case is split.

The centralizer of sll2 in e7 is so12 . There are two subcases: our sl2(6) is
contained in so12 and sl2(6) is the sum of sl12 and sl2(4) ⊂ so12 .

There are three embeddings sl2(6) ↪→ so12 of norm 6. We already know
that sl22(6) corresponds to sl52(6) ⊂ e7 = Zg(sl2(2)). This shows that the third
condition is satisfied and Zk(sl

l
2 ⊕ sls2) = sl12 ⊕ sp3 . Hence, the real form of h is

split. Since the real rank of the real form of h is 4 and the real rank of the real
form of g is also 4, the real form of g is compact.

The first part of the second subcase is the same as the first part of the
second case for the split real form of g . (Zk(sl

l
2) = sl2(2) ⊕ sl12 and sls2 is the

sum of sl2(2) and sl2(4) ⊂ sl12 .) Hence, there exists the real form of the dual
pair g2× h and the real form of h is of type F II. It remains to determine the real
form of g2 . Since so9 contains the embedding sl2(120) ↪→ so9 of norm 120 and
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the dimension of the centralizer of sl2(120) in k is 6, the centralizer of so9 in k
cannot be gc2 . It shows that the real form of g2 is split.

Hence, there are five possible embeddings of real forms of dual pair g2 × h
into g of type E8 . If the real form of g is split, then it is possible to find two
embeddings. For both embeddings, the real form of g2 is split and the real form
of h is noncompact. If the real form of g has real rank 4, then two embeddings
are possible. For both embeddings the real form of g2 is split. For one embedding,
the real form of h is compact, for another embedding the real rank of real form of
h is 1. Also, Zg(k2) = h for both cases. If the real form of g of real rank 3, it is
possible to find one embedding. In that situation, the real form of g2 is compact
and the real form of h is split.
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