Journal of Lie Theory Volume **21** (2011) 703–709 © 2011 Heldermann Verlag

The Enveloping Algebra of the Petrogradsky-Shestakov-Zelmanov Algebra is not Graded-Nil in the Critical Characteristics

Ya. S. Krylyouk

Communicated by E. Zelmanov

Abstract. It is shown that enveloping algebras of Petrogradsky-Shestakov-Zelmanov Lie algebras of characteristic $p = n^2 + n + 1$ are not graded nil. Mathematics Subject Classification 2000: 17B05, 17B50, 17B66, 16P90, 11B39. Key Words and Phrases: Enveloping Algebra, Petrogradsky-Shestakov-Zelmanov Algebra.

In [1] V. Petrogradsky found an infinite-dimensional two-generated "self-similar" Lie algebra over an arbitrary field of characteristic 2 which is nil and of Gelfand-Kirillov dimension between 1 and 2. In [2] I. P. Shestakov and E. Zelmanov generalized Petrogradsky's construction and extended it to algebras over fields of arbitrary positive characteristic. By construction, the algebra which we call the Petrogradsky-Shestakov-Zelmanov algebra is graded by $Z + Z\lambda$, where λ is the positive root of the equation $\lambda^2 - \lambda - (p-1) = 0$, where p is the characteristic of a ground field. The abelian group $Z + Z\lambda$ is free of the rank 2, unless $p = n^2 + n + 1$ for some positive integer n. In the latter case we call the characterictic p to be critical. We prove that the enveloping algebra of the Petrogradsky-Shestakov-Zelmanov algebra is not graded-nil in the critical characteristics.

Note. I was informed by E. Zelmanov that a similar result has been obtained by L. Bartholdi.

In order to formulate the result more precisely we need to introduce some notations. Let p be a prime number; F a field of characteristic p; $\hat{T} = F[t_0, t_1, ...]$ the algebra of truncated polynomials in countably many variables $t_0, t_1, ...; t_i^p = 0, i \ge 0$. Let v_1 and v_2 are two differentiation of \hat{T} given by the following formulas:

$$v_{1} = \partial_{1} + t_{0}^{p-1} \partial_{2} + (t_{0}t_{1})^{p-1} \partial_{3} + (t_{0}t_{1}t_{2})^{p-1} \partial_{4} + \dots$$
$$= \partial_{1} + \sum_{i=2}^{\infty} (t_{0} \dots t_{i-2})^{p-1} \partial_{i}.$$

ISSN 0949–5932 / \$2.50 © Heldermann Verlag

$$v_{2} = \partial_{2} + t_{1}^{p-1} \partial_{3} + (t_{1}t_{2})^{p-1} \partial_{4} + (t_{1}t_{2}t_{3})^{p-1} \partial_{5} + \dots$$
$$= \partial_{2} + \sum_{i=3}^{\infty} (t_{0} \dots t_{i-2})^{p-1} \partial_{i},$$

where $\partial_i = \partial/\partial t_i$. Then the Petrogradsky-Shestakov-Zelmanov algebra L is the Lie algebra generated by v_1 and v_2 . Since the formula for v_2 is obtained from the formula for v_1 by shifting all indices one unit up, the algebra is "self-similar". Let A be the enveloping associative algebra of L in the algebra of all linear transformations of \hat{T} , i.e. $A = Assoc < v_1, v_2 >$ is the associative subalgebra generated by v_1 and v_2 . Our main result is the following

Proposition. Let p be the characteristic of a ground field. Then $v_1^s v_2$ is not nilpotent if and only if the following two conditions hold:

p = n² + n + 1 for positive integer n,
 s =n.

We start proof of the Proposition with

Lemma 1. The element $v_1^s v_2$ is nilpotent if and only if $\partial_1^s v_2$ is nilpotent.

Proof. Let $\widehat{T_k} = F[t_k, t_{k+1}, \ldots], k \geq 0$. If $a \in \widehat{T_1}$, then $(v_1^s v_2)(t_0^{p-1}a) = t_0^{p-1}(\partial_1^s v_2)(a)$ and $(\partial_1^s v_2)(a) \in \widehat{T_1}$. Therefore, if $(v_1^s v_2)^N = 0$ on \widehat{T} , then $(\partial_1^s v_2)^N = 0$ on $\widehat{T_1}$. Since t_0 is a constant with respect to differentiations ∂_1 and v_2 from $(\partial_1^s v_2)^N = 0$ on $\widehat{T_1}$ follows that $(\partial_1^s v_2)^N = 0$ on \widehat{T} . Hence, if $(v_1^s v_2)^N = 0$ on \widehat{T} then $(\partial_1^s v_2)^N = 0$ on \widehat{T} . Next assume that $(\partial_1^s v_2)^N = 0$ on \widehat{T} . We will show that $(v_1^s v_2)^{2N} = 0$ on \widehat{T} . Indeed, first notice that \widehat{T} is a free $\widehat{T_1}$ -module with a basis t_0, \ldots, t_0^{p-1} and we can represent the action of v_1 and v_2 on \widehat{T} via $p \times p$ matrices V_1 and V_2 , respectively. Writing an element $a \in \widehat{T}$ in the form

$$a = a_0 + t_0 a_1 + \dots + t_0^{p-1} a_{p-1} \tag{1}$$

with $a_i \in \widehat{T}_1$, we have

$$v_2(a) = v_2(a_0) + t_0 v_2(a_1) + \dots + t_0^{p-1} v_2(a_{p-1})$$
(2)

$$v_1(a) = \partial_1(a_0) + t_0 \partial_1(a_1) + \dots + t_0^{p-1} (\partial_1(a_{p-1}) + v_2(a_0))$$
(3)

From formulas (2) and (3) follows that the matrices V_2 and V_1 are given by

$$V_2 = v_2 \otimes I_p \tag{4}$$

and

$$V_1 = \partial_1 \otimes I_p + v_2 \otimes E_{p,1} \tag{5}$$

Krylyouk

Here I_p is the $p \times p$ identity matrix, while $E_{p,1}$ is the $p \times p$ identity matrix 1 in the (p, 1)-position and zeros for the remaining entries. Actually, we suppose to use the restrictions of ∂_1 and v_2 on \widehat{T}_1 in the formulas (4) and (5), but we use the same notations for ∂_1 and v_2 . Now, $v_1^s v_2$ is represented by the matrix

$$V_1^s V_2 = c \otimes I_p + d \otimes E_{p,1} \tag{6}$$

where $c = \partial_1^s v_2$ and d is the non-commutative polynomial in ∂_1 and v_2 . We have a general formula for arbitrary elements c and d from any associative algebra:

$$(c \otimes I_p + d \otimes E_{p,1})^k = c^k \otimes I_p + \sigma_k(c,d) \otimes E_{p,1}$$
(7)

where $\sigma_k(c,d) = \sum_{i=0}^{k-1} c^i dc^{k-1-i}$. In our case $c = \partial_1^s v_2$, and if we assume that $(\partial_1^s v_2)^N = 0$ then from (6) and (7) follows that $(v_1^s v_2)^{2N} = 0$ We have finished the proof of Lemma 1.

By Lemma 1 we can work with $\partial_1^s v_2$ instead of $v_1^s v_2$ for the rest of the paper.

Remark 2. Since $\partial_1^p = 0$, then $\partial_1^s v_2 = 0$ for any $s \ge p$. In the sequel we will assume that 0 < s < p.

Remark 3. Since $\partial_1^p = 0$ from (6) and (7) follows that $v_1^{2p} = 0$. Because of "self-similarity" $v_2^{2p} = 0$, and generally $v_k^{2p} = 0$, $k \ge 1$, where v_k is obtained by shifting all indices by k - 1 units up, i.e. $v_k = \partial_k + \sum_{i=k+1}^{\infty} (t_{k-1} \dots t_{i-2})^{p-1} \partial_i$. Obviously, $v_k = \partial_k + t_{k-1}^{p-1} v_{k+1}, k \ge 1$.

Remark 4. Lemma 1 is a very particular case of the following general statement. Let us recall that A is the associative subalgebra generated by v_1 and v_2 in the algebra $\operatorname{End}_F(\widehat{T})$ of all F-linear transformations of \widehat{T} . Let B be the associative subalgebra generated by ∂_1 and v_2 in $\operatorname{End}_F(\widehat{T})$. Then the map $v_1 \to V_1, v_2 \to V_2$ defines the monomorphism $A \to T_p^0(B)$ of the associative algebras where $T_p^0(B)$ is the associative algebra of the lower triangle $p \times p$ matrices with equal elements from B along the main diagonal. The monomorphism followed with the projection on the main diagonal supply the epimorphism $\psi : A \to B$. Now it is clear that an element $a \in A$ is nilpotent if and only if $b = \psi(a) \in B$ is nilpotent.

Lemma 5. If 0 < s < p is not a divisor of p-1 then the linear transformation $\partial_1^s v_2$ of \widehat{T} is nilpotent.

Proof. Since t_0 is a constant for the differentiation ∂_1 and v_2 the statement in Lemma 5 is equivalent to the one which is obtained by replacement of \hat{T} by \hat{T}_1 . Write $a \in \hat{T}_1$ in the form

$$a = a_0 + t_1 a_1 + t_1^2 a_2 + \dots + t_1^{p-1} a_{p-1}$$
(8)

with $a_i \in \widehat{T}_2$. Then

$$v_2(a) = \partial_2(a_0) + t_1 \partial_2(a_1) + t_1^2 \partial_2(a_2) + \dots + t_1^{p-1} (\partial_2(a_{p-1}) + v_3(a_0)), \qquad (9)$$

$$(\partial_1^s v_2)(a) = c_s \partial_2(a_s) + c_{s+1} t_1 \partial_2(a_{s+1}) + \dots + c_{p-1} t_1^{p-1-s} (\partial_2(a_{p-1}) + v_3(a_0)), \quad (10)$$

where $c_i = i(i-1)...(i-s+1), s \leq i \leq p-1$ are non-zero constants Since we don't need exact expressions for all coefficients by powers of t_1 and we pay attention only for possibly nonzero coefficients let us rewrite (10) in the form

$$(\partial_1^s v_2)(a) = a_0^{(1)} + t_1 a_1^{(1)} + \dots + t_1^{p-1-s} a_{p-1-s}^{(1)}$$
(10')

where $a_i^{(1)} \in \widehat{T}_2, 0 \le i \le p - 1 - s$. Applying to (10') again $d_1^s v_2$ we have

$$(\partial_1^s v_2)^2(a) = a_0^{(2)} + t_1 a_1^{(2)} + \dots + t_1^{p-1-2s} a_{p-1-2s}^{(2)} + t_1^{p-1-s} a_{p-1-s}^{(2)}$$
(10")

Let us divide by p-1 by s with a remainder, p-1 = sq + r, 0 < r < s (r is nonzero, since in Lemma 5 we assume that s is not a divisor of p-1). Then

$$(\partial_1^s v_2)^q(a) = a_0^{(q)} + t_1 a_1^{(q)} + \dots + t_1^{p-1-sq} a_{p-1-sq}^{(q)} + t_1^{p-1-s(q-1)} a_{p-1-s(q-1)}^{(q)} + \dots + t_1^{p-1-s} a_{p-1}^{(q)}$$
(11)

Note that all terms of degree up to p - 1 - sq = r in t_1 are potentially present, while the terms of higher degree in t_1 occur only in the arithmetic progression $p - 1 - sq, p - 1 - s(q - 1), \ldots, p - 1 - s$. Hence, applying one more time $\partial_1^s v_2$ we obtain

$$(\partial_1^s v_2)^{q+1}(a) = t_1^{p-1-sq} a_{p-1-sq}^{(q+1)} + t_1^{p-1-s(q-1)} a_{p-1-s(q-1)}^{(q+1)} + \dots + t_1^{p-1-s} a_{p-1-s}^{(q+1)}$$
(12)

Therefore, the only terms of degree in t_1 from the arithmetic progression $p-1-sq, p-1-s(q-1), \ldots, p-1-s$ are potentially present. Since r > 0, the term of degree 0 in t_1 is missing in (12). Therefore, when we apply one more time $\partial_1^s v_2$ we obtain

$$(\partial_1^s v_2)^{q+2}(a) = t_1^{p-1-sq} a_{p-1-sq}^{(q+2)} + t_1^{p-1-s(q-1)} a_{p-1-s(q-1)}^{(q+2)} + \dots + t_1^{p-1-2s} a_{p-1}^{(q+2)}$$
(13)

We see that now only terms of degree in t_1 from the shorter arithmetic progression $p-1-sq, p-1-s(q-1), \ldots, p-1-2s$ are potentially present. Now it is clear that we have required nilpotency of $\partial_1^s v_2$, namely

$$(\partial_1^s v_2)^{2q+1} = 0. (14)$$

Lemma 5 has been proved.

In Lemma 6 we shall deal with the case when s > 0 is a divisor of p - 1, i.e., p - 1 = sq.

Lemma 6. If s > 0 is a positive divisor of p - 1, p - 1 = sq and p is not of the form $n^2 + n + 1$, then $\partial_1^s v_2$ is nilpotent.

Krylyouk

Proof. Our proof of Lemma 6 is similar to the proof of Lemma 5. Indeed let us look at the action of $\partial_1^s v_2$ on the element $a = t_1^k a_k, 0 \le k < p$ where $a_k \in \widehat{T}_2$.

1. Let us consider the case that s is not a divisor of k, k = sl + r, where temporarily notations l and r stand for the quotient and the remainder, respectively, of division of k by s. Hence r > 0 in this case. We have $v_2(a) = t_1^k \partial_2(a)$ and $(\partial_1^s v_2)(a) = *t_1^{k-s} \partial_2(a_k)$, where * stands for the nonzero element of the simple subfield of the ground field (we will use this agreement in what follows). From the last equation we have $(\partial_1^s v_2)^l(a) = *t_1^r \partial_2^l(a_k)$ and $(\partial_1^2 v_2)^{l+1}(a) = 0$.

2. Let us consider the case that s is a divisor of k, k = sl. First, assume that k > 0. We have

$$\begin{aligned} (\partial_1^s v_2)^l(a) &= *\partial_2^l(a_k) \\ (\partial_1^s v_2)^{l+1}(a) &= *t_1^{p-1-s}(v_3\partial_2^l(a_k)) \\ (\partial_1^s v_2)^{l+2}(a) &= *t_1^{p-1-2s}(\partial_2 v_3)(\partial_2^l(a_k)) \end{aligned}$$

Hence

$$(\partial_1^s v_2)^{l+t}(a) = *t_1^{p-1-st}(\partial_2^{t-1} v_3)(\partial_2^l(a_k)), 1 \le t \le q.$$
(15)

Taking t = q - l we have

$$(\partial_1^s)^{l+t}(a) := (\partial_1^s v_2)^q (t_1^k a_k) = *t_1^k (\partial_2^{q-\frac{k}{s}-1} v_3) (\partial_2^{\frac{k}{s}}(a_k))$$
(16)

provided that t = q - l > 0, that is, k . If <math>k = p - 1 then we have

$$(\partial_1^s v_2)^q(a) := (\partial_1^s v_2)(t_1^{p-1}a_{p-1}) = *\partial_2^q(a_{p-1})$$
(16')

We can consider equation (16) as some kind of "self-similarity" equation. If we iterate equation (16) we obtain

$$(\partial_1^s v_2)^{2q}(a) = * (\partial_1^s v_2)^q t_1^k (\partial_2^{q-\frac{k}{s}-1} v_3) (\partial_2^{\frac{k}{s}})(a_k)$$

= $* t_1^k (\partial_2^{q-\frac{k}{s}-1} v_3) \partial_2^{\frac{k}{s}} \partial_2^{q-\frac{k}{s}-1} v_3 \partial_2^{\frac{k}{s}}(a_k)$
= $* t_1^k \partial_2^{q-\frac{k}{s}-1} v_3 (\partial_2^{q-1} v_3) \partial_2^{\frac{k}{s}}(a_k)$

and generally

$$(\partial_1^s v_2)^{mq}(a) = *t_1^k \partial_2^{q-\frac{k}{s}-1} v_3 (\partial_2^{q-1} v_3)^{m-1} \partial_2^{\frac{k}{s}}(a_k)$$
(17)

Actually, formulas above and their derivation are valid also for k = 0. In particular for $a_0 \in \hat{T}_2$, we have from (17):

$$(\partial_1^s v_2)^q(a_0) = *(\partial_2^{q-1} v_3)(a_0) \tag{18}$$

Formulas (17) and (18) show that the powers of $\partial_1^s v_2$ are related to the powers of $\partial_2^{q-1}v_3$ and the only way to avoid the nilpotency of $\partial_1^s v_2$ is to have a nonempty invariant subset in the set of all positive factors of p-1 with respect to the map $f(x) = \frac{p-1}{x} - 1$ (the analogue of $s \to q-1$).

In the next lemma 7 we will investigate and finish the proof of Lemma 6.

Krylyouk

Lemma 7. 1. There exists a nonempty invariant set in the set of all positive factors of p-1 with respect to the map $f(x) = \frac{p-1}{x} - 1$ if and only if $p = n^2 + n + 1$ for a positive integer n.

2. If $p = n^2 + n + 1$ then there exists a unique nonempty f-invariant set of the positive factors of p-1, namely the set $\{n\}$ consisting of the fixed point of f.

Proof. The iterations of f converge to the fixed point of f, that is, the positive solution of the equation f(x) = x, i.e., $p = x^2 + x + 1$. Since f is invertible we immediately obtain (1) and (2).

Now we can finish the proof of Lemma 6. If p is not of the form $n^2 + n + 1$ then Lemma 5 and the iteration of formula (16) shows that $\partial_1^s v_2$ is nilpotent since according to Lemma 7 there is no nonempty f-invariant set consisting of positive factors of p - 1. We have finished the proof of Lemma 6.

The next Lemma accomplishes the proof of the Proposition.

Lemma 8. Assume that $p = n^2 + n + 1$ for a positive integer n. Then $\partial_1^n v_2$ is not nilpotent on \widehat{T} .

Proof. According to (18) we have for $a \in \widehat{T}_2$:

$$(\partial_1^n v_2)^q(a) = *(\partial_2^n v_3)(a), \quad q = n+1$$
(19)

Now if $(\partial_1^n v_2)$ is nilpotent, then we have $(\partial_1^n v_2)^{q^N} = 0$ for some positive N. Then for $a \in \widehat{T}_{N+1}$ we have

$$0 = (\partial_1^n v_2)^{q^N}(a) = [(\partial_1^n v_2)^q]^{q^{N-1}}(a)$$

$$= *(\partial_2^n v_3)^{q^{N-1}}(a) = *(\partial_3^n v_4)^{q^{N-2}}(a) = \dots = *(\partial_{N+1}^n v_{N+2})(a)$$
(20)

But (20) is not valid for $a = t_{N+1}^{p-1} t_{N+2}$, since $(\partial_{N+1}^n v_{N+2})(t_{N+1}^{p-1} t_{N+2}) = *t_{N+1}^{p-1-n}$. Lemma 5 has been proved.

Acknowledgements. I am grateful to E. Zelmanov for sending me a copy of [2]. Also I would like to thank R.I. Grigorchuk and H. Melikyan for inviting me on the conferences in 2005 and 2007, respectively, where my attention to the Petrogradsky-Shestakov-Zelmanov algebra has been attracted by Zelmanov's talks.

References

- Petrogradsky, V. M., Examples of self-iterating Lie algebras, J. Algebra, 302 (2006), 881–886.
- [2] Shestakov, I. P., and E. Zelmanov, Some examples of nil Lie algebras, J. Eur. Math. Soc. 10 (2008), 391–398.

[3] Zelmanov, E., Some open problems in the theory of infinite dimensional algebras, J. Korean Math. Soc., 44 (2007), 1185–1195.

Iaroslav Kryliouk De Anza College 21250 Stevens Creek Blvd. Cupertino, CA 95014 krylioukiaroslav@deanza.edu

Received October 1, 2009 and in final form February 7, 2011