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Abstract. It is shown that enveloping algebras of Petrogradsky-Shestakov-
Zelmanov Lie algebras of characteristic p = n2 + n + 1 are not graded nil.
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In [1] V. Petrogradsky found an infinite-dimensional two-generated “self-similar”
Lie algebra over an arbitrary field of characteristic 2 which is nil and of Gelfand-
Kirillov dimension between 1 and 2. In [2] I. P. Shestakov and E. Zelmanov
generalized Petrogradsky’s construction and extended it to algebras over fields of
arbitrary positive characteristic. By construction, the algebra which we call the
Petrogradsky-Shestakov-Zelmanov algebra is graded by Z + Zλ , where λ is the
positive root of the equation λ2−λ−(p−1) = 0 , where p is the characteristic of a
ground field. The abelian group Z+Zλ is free of the rank 2, unless p = n2 +n+1
for some positive integer n . In the latter case we call the characterictic p to
be critical. We prove that the enveloping algebra of the Petrogradsky-Shestakov-
Zelmanov algebra is not graded-nil in the critical characteristics.

Note. I was informed by E. Zelmanov that a similar result has been obtained by L. Bartholdi.

In order to formulate the result more precisely we need to introduce some
notations. Let p be a prime number; F a field of characteristic p ; T̂ = F [t0, t1, . . . ]
the algebra of truncated polynomials in countably many variables t0, t1, . . . ; t

p
i =

0, i ≥ 0. Let v1 and v2 are two differentiation of T̂ given by the following formulas:

v1 = ∂1 + tp−10 ∂2 + (t0t1)
p−1∂3 + (t0t1t2)

p−1∂4 + . . .

= ∂1 +
∞∑
i=2

(t0 . . . ti−2)
p−1∂i.
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v2 = ∂2 + tp−11 ∂3 + (t1t2)
p−1∂4 + (t1t2t3)

p−1∂5 + . . .

= ∂2 +
∞∑
i=3

(t0 . . . ti−2)
p−1∂i,

where ∂i = ∂/∂ti . Then the Petrogradsky-Shestakov-Zelmanov algebra L is the
Lie algebra generated by v1 and v2 . Since the formula for v2 is obtained from the
formula for v1 by shifting all indices one unit up, the algebra is “self-similar”.
Let A be the enveloping associative algebra of L in the algebra of all linear
transformations of T̂ , i.e. A = Assoc < v1, v2 > is the associative subalgebra
generated by v1 and v2 . Our main result is the following

Proposition. Let p be the characteristic of a ground field. Then vs1v2 is not
nilpotent if and only if the following two conditions hold:

1. p = n2 + n+ 1 for positive integer n ,

2. s =n.

We start proof of the Proposition with

Lemma 1. The element vs1v2 is nilpotent if and only if ∂s1v2 is nilpotent.

Proof. Let T̂k = F [tk, tk+1, . . . ], k ≥ 0. If a ∈ T̂1 , then (vs1v2)(t
p−1
0 a) =

tp−10 (∂s1v2)(a) and (∂s1v2)(a) ∈ T̂1 . Therefore, if (vs1v2)
N = 0 on T̂ , then (∂s1v2)

N =

0 on T̂1 . Since t0 is a constant with respect to differentiations ∂1 and v2 from
(∂s1v2)

N = 0 on T̂1 follows that (∂s1v2)
N = 0 on T̂ . Hence, if (vs1v2)

N = 0 on T̂

then (∂s1v2)
N = 0 on T̂ . Next assume that (∂s1v2)

N = 0 on T̂ . We will show that

(vs1v2)
2N = 0 on T̂ . Indeed, first notice that T̂ is a free T̂1 -module with a basis

t0, . . . , t
p−1
0 and we can represent the action of v1 and v2 on T̂ via p× p matrices

V1 and V2 , respectively. Writing an element a ∈ T̂ in the form

a = a0 + t0a1 + · · ·+ tp−10 ap−1 (1)

with ai ∈ T̂1 , we have

v2(a) = v2(a0) + t0v2(a1) + · · ·+ tp−10 v2(ap−1) (2)

v1(a) = ∂1(a0) + t0∂1(a1) + · · ·+ tp−10 (∂1(ap−1) + v2(a0)) (3)

From formulas (2) and (3) follows that the matrices V2 and V1 are given by

V2 = v2 ⊗ Ip (4)

and

V1 = ∂1 ⊗ Ip + v2 ⊗ Ep,1 (5)



Krylyouk 705

Here Ip is the p× p identity matrix, while Ep,1 is the p× p identity matrix 1 in
the (p, 1)-position and zeros for the remaining entries. Actually, we suppose to

use the restrictions of ∂1 and v2 on T̂1 in the formulas (4) and (5), but we use the
same notations for ∂1 and v2 . Now, vs1v2 is represented by the matrix

V s
1 V2 = c⊗ Ip + d⊗ Ep,1 (6)

where c = ∂s1v2 and d is the non-commutative polynomial in ∂1 and v2 . We have
a general formula for arbitrary elements c and d from any associative algebra:

(c⊗ Ip + d⊗ Ep,1)
k = ck ⊗ Ip + σk(c, d)⊗ Ep,1 (7)

where σk(c, d) =
∑k−1

i=0 c
idck−1−i . In our case c = ∂s1v2 , and if we assume that

(∂s1v2)
N = 0 then from (6) and (7) follows that (vs1v2)

2N = 0 We have finished the
proof of Lemma 1.

By Lemma 1 we can work with ∂s1v2 instead of vs1v2 for the rest of the paper.

Remark 2. Since ∂p1 = 0, then ∂s1v2 = 0 for any s ≥ p . In the sequel we will
assume that 0 < s < p .

Remark 3. Since ∂p1 = 0 from (6) and (7) follows that v2p1 = 0. Because of
“self-similarity” v2p2 = 0, and generally v2pk = 0, k ≥ 1, where vk is obtained by
shifting all indices by k − 1 units up, i.e. vk = ∂k +

∑∞
i=k+1(tk−1 . . . ti−2)

p−1∂i .

Obviously, vk = ∂k + tp−1k−1vk+1, k ≥ 1.

Remark 4. Lemma 1 is a very particular case of the following general state-
ment. Let us recall that A is the associative subalgebra generated by v1 and
v2 in the algebra EndF (T̂ ) of all F -linear transformations of T̂ . Let B be

the associative subalgebra generated by ∂1 and v2 in EndF (T̂ ). Then the map
v1 → V1, v2 → V2 defines the monomorphism A → T 0

p (B) of the associative alge-
bras where T 0

p (B) is the associative algebra of the lower triangle p × p matrices
with equal elements from B along the main diagonal. The monomorphism followed
with the projection on the main diagonal supply the epimorphism ψ : A → B .
Now it is clear that an element a ∈ A is nilpotent if and only if b = ψ(a) ∈ B is
nilpotent.

Lemma 5. If 0 < s < p is not a divisor of p−1 then the linear transformation
∂s1v2 of T̂ is nilpotent.

Proof. Since t0 is a constant for the differentiation ∂1 and v2 the statement in
Lemma 5 is equivalent to the one which is obtained by replacement of T̂ by T̂1 .
Write a ∈ T̂1 in the form

a = a0 + t1a1 + t21a2 + · · ·+ tp−11 ap−1 (8)

with ai ∈ T̂2 . Then
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v2(a) = ∂2(a0) + t1∂2(a1) + t21∂2(a2) + · · ·+ tp−11 (∂2(ap−1) + v3(a0)), (9)

(∂s1v2)(a) = cs∂2(as) + cs+1t1∂2(as+1) + · · ·+ cp−1t
p−1−s
1 (∂2(ap−1) + v3(a0)), (10)

where ci = i(i − 1) . . . (i − s + 1), s ≤ i ≤ p − 1 are non-zero constants Since
we don’t need exact expressions for all coefficients by powers of t1 and we pay
attention only for possibly nonzero coefficients let us rewrite (10) in the form

(∂s1v2)(a) = a
(1)
0 + t1a

(1)
1 + · · ·+ tp−1−s1 a

(1)
p−1−s (10’)

where a
(1)
i ∈ T̂2, 0 ≤ i ≤ p− 1− s . Applying to (10’) again ds1v2 we have

(∂s1v2)
2(a) = a

(2)
0 + t1a

(2)
1 + · · ·+ tp−1−2s1 a

(2)
p−1−2s + tp−1−s1 a

(2)
p−1−s (10”)

Let us divide by p− 1 by s with a remainder, p− 1 = sq + r, 0 < r < s (r
is nonzero, since in Lemma 5 we assume that s is not a divisor of p− 1). Then

(∂s1v2)
q(a) = a

(q)
0 +t1a

(q)
1 +· · ·+tp−1−sq1 a

(q)
p−1−sq+t

p−1−s(q−1)
1 a

(q)
p−1−s(q−1)+· · ·+t

p−1−s
1 a

(q)
p−1

(11)
Note that all terms of degree up to p − 1 − sq = r in t1 are potentially present,
while the terms of higher degree in t1 occur only in the arithmetic progression
p− 1− sq, p− 1− s(q− 1), . . . , p− 1− s . Hence, applying one more time ∂s1v2 we
obtain

(∂s1v2)
q+1(a) = tp−1−sq1 a

(q+1)
p−1−sq + t

p−1−s(q−1)
1 a

(q+1)
p−1−s(q−1) + · · ·+ tp−1−s1 a

(q+1)
p−1−s (12)

Therefore, the only terms of degree in t1 from the arithmetic progression p− 1−
sq, p − 1 − s(q − 1), . . . , p − 1 − s are potentially present. Since r > 0, the term
of degree 0 in t1 is missing in (12). Therefore, when we apply one more time ∂s1v2
we obtain

(∂s1v2)
q+2(a) = tp−1−sq1 a

(q+2)
p−1−sq + t

p−1−s(q−1)
1 a

(q+2)
p−1−s(q−1) + · · ·+ tp−1−2s1 a

(q+2)
p−1 (13)

We see that now only terms of degree in t1 from the shorter arithmetic progression
p− 1− sq, p− 1− s(q − 1), . . . , p− 1− 2s are potentially present. Now it is clear
that we have required nilpotency of ∂s1v2 , namely

(∂s1v2)
2q+1 = 0. (14)

Lemma 5 has been proved.

In Lemma 6 we shall deal with the case when s > 0 is a divisor of p − 1,
i.e., p− 1 = sq .

Lemma 6. If s > 0 is a positive divisor of p − 1, p − 1 = sq and p is not of
the form n2 + n+ 1, then ∂s1v2 is nilpotent.
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Proof. Our proof of Lemma 6 is similar to the proof of Lemma 5.

Indeed let us look at the action of ∂s1v2 on the element a = tk1ak, 0 ≤ k < p where

ak ∈ T̂2 .

1. Let us consider the case that s is not a divisor of k , k = sl + r ,
where temporarily notations l and r stand for the quotient and the remainder,
respectively, of division of k by s . Hence r > 0 in this case. We have v2(a) =
tk1∂2(a) and (∂s1v2)(a) = ∗tk−s1 ∂2(ak), where ∗ stands for the nonzero element of
the simple subfield of the ground field (we will use this agreement in what follows).
From the last equation we have (∂s1v2)

l(a) = ∗tr1∂l2(ak) and (∂21v2)
l+1(a) = 0.

2. Let us consider the case that s is a divisor of k , k = sl . First, assume
that k > 0. We have

(∂s1v2)
l(a) = ∗∂l2(ak)

(∂s1v2)
l+1(a) = ∗tp−1−s1 (v3∂

l
2(ak))

(∂s1v2)
l+2(a) = ∗tp−1−2s1 (∂2v3)(∂

l
2(ak))

Hence
(∂s1v2)

l+t(a) = ∗tp−1−st1 (∂t−12 v3)(∂
l
2(ak)), 1 ≤ t ≤ q. (15)

Taking t = q − l we have

(∂s1)l+t(a) := (∂s1v2)
q(tk1ak) = ∗tk1(∂

q− k
s
−1

2 v3)(∂
k
s
2 (ak)) (16)

provided that t = q − l > 0, that is, k < p− 1. If k = p− 1 then we have

(∂s1v2)
q(a) := (∂s1v2)(t

p−1
1 ap−1) = ∗∂q2(ap−1) (16’)

We can consider equation (16) as some kind of “self-similarity” equation. If we
iterate equation (16) we obtain

(∂s1v2)
2q(a) = ∗ (∂s1v2)

qtk1(∂
q− k

s
−1

2 v3)(∂
k
s
2 )(ak)

= ∗ tk1(∂
q− k

s
−1

2 v3)∂
k
s
2 ∂

q− k
s
−1

2 v3∂
k
s
2 (ak)

= ∗ tk1∂
q− k

s
−1

2 v3(∂
q−1
2 v3)∂

k
s
2 (ak)

and generally

(∂s1v2)
mq(a) = ∗tk1∂

q− k
s
−1

2 v3(∂
q−1
2 v3)

m−1∂
k
s
2 (ak) (17)

Actually, formulas above and their derivation are valid also for k = 0. In particular
for a0 ∈ T̂2 , we have from (17):

(∂s1v2)
q(a0) = ∗(∂q−12 v3)(a0) (18)

Formulas (17) and (18) show that the powers of ∂s1v2 are related to the powers of
∂q−12 v3 and the only way to avoid the nilpotency of ∂s1v2 is to have a nonempty
invariant subset in the set of all positive factors of p− 1 with respect to the map
f(x) = p−1

x
− 1 (the analogue of s→ q − 1).

In the next lemma 7 we will investigate and finish the proof of Lemma 6.
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Lemma 7. 1. There exists a nonempty invariant set in the set of all positive
factors of p−1 with respect to the map f(x) = p−1

x
−1 if and only if p = n2+n+1

for a positive integer n.

2. If p = n2 + n+ 1 then there exists a unique nonempty f -invariant set
of the positive factors of p−1, namely the set {n} consisting of the fixed point of f .

Proof. The iterations of f converge to the fixed point of f , that is, the positive
solution of the equation f(x) = x , i.e., p = x2 + x + 1. Since f is invertible we
immediately obtain (1) and (2).

Now we can finish the proof of Lemma 6. If p is not of the form n2 + n+ 1
then Lemma 5 and the iteration of formula (16) shows that ∂s1v2 is nilpotent since
according to Lemma 7 there is no nonempty f -invariant set consisting of positive
factors of p− 1. We have finished the proof of Lemma 6.

The next Lemma accomplishes the proof of the Proposition.

Lemma 8. Assume that p = n2 + n+ 1 for a positive integer n. Then ∂n1 v2 is

not nilpotent on T̂ .

Proof. According to (18) we have for a ∈ T̂2 :

(∂n1 v2)
q(a) = ∗(∂n2 v3)(a), q = n+ 1 (19)

Now if (∂n1 v2) is nilpotent, then we have (∂n1 v2)
qN = 0 for some positive N . Then

for a ∈ T̂N+1 we have

0 = (∂n1 v2)
qN (a) = [(∂n1 v2)

q]q
N−1

(a) (20)

= ∗(∂n2 v3)q
N−1

(a) = ∗(∂n3 v4)q
N−2

(a) = · · · = ∗(∂nN+1vN+2)(a)

But (20) is not valid for a = tp−1N+1tN+2 , since (∂nN+1vN+2)(t
p−1
N+1tN+2) = ∗tp−1−nN+1 .

Lemma 5 has been proved.
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