Automorphism Groups of Some Stable Lie Algebras

Jongwoo Lee, Xueqing Chen, Seul Hee Choi, and Ki-Bong Nam

Communicated by A. Fialowski

Abstract. A degree stable Lie algebra is defined in the paper [14]. The Lie algebra automorphism group $Aut_{Lie}(S^+(2))$ of the Lie algebra $S^+(2)$ is found in the paper [14]. The Lie algebra automorphism group of the Lie algebra W(1,0,2) is also found in this paper [2]. We find the algebra automorphism groups of the Lie algebras $W(1^2, 1, 1)$ and $W(1^2, 2, 0)$ in this work. We show that the Cartan subalgebras of $W(1^2, 1, 1)$ and $W(1^2, 2, 0)$ are one dimensional. Mathematics Subject Classification 2000: 17A36.

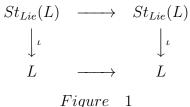
Key Words and Phrases: Simple, Witt algebra, degreeing Lie algebra, Cartan subalgebra.

1. Introduction

The automorphism groups of some self-centralizing Lie algebras are studied in the papers [9], [10], [12]. Rudakov found the continuous automorphisms of the topological Cartan type Lie algebras in the paper [16]. The automorphism group $Aut_{Lie}(S^+(2))$ of the Lie algebra $S^+(2) = S(0,0,2)$ is found in the paper [14]. In this work, we find the automorphism groups $Aut_{Lie}(W(1^2, 1, 1))$ and $Aut_{Lie}(W(1^2, 2, 0))$ of the Lie algebras $W(1^2, 1, 1)$ and $W(1^2, 2, 0)$ which contain $S^+(2) =$ S(0,0,2) (see [13]). We show that there is no automorphism θ of $W(1^2, 1, 1)$ such that $\theta(\partial_1) = c_1 \partial_1 + c_2 \partial_2$ where c_i are non-zero scalars for i = 1, 2. We also show that $Tor(W(1^2, 1, 1))$ and $Tor(W(1^2, 2, 0))$ are ones. We show that the Cartan subalgebras of $W(1^2, 1, 1)$ and $W(1^2, 2, 0)$ are one dimensional.

2. Preliminaries

Let \mathbb{F} be the field of characteristic zero (not necessarily algebraically closed). Throughout the paper, \mathbb{N} and \mathbb{Z} denote the non-negative integers and the integers, respectively. Let \mathbb{F}^{\bullet} be the multiplicative group of non-zero elements of \mathbb{F} . Let L be a Lie algebra over \mathbb{F} with a basis $S = \{s_u | u \in I\}$ where I is an index set. The Lie algebra L is degreeing if for any $s \in S$ we define the Lie degree $deg_{Lie}(s) \in \mathbb{Z}$ of s. Thus for any l of L, we may define $deg_{Lie}(l)$ as the highest Lie degree of non-zero basis terms of l. An element l of L is degree stable if for any $l_1 \in L \ deg_{Lie}([l, l_1]) \leq deg_{Lie}(l_1)$ holds. For a degreeing Lie algebra L, the degree stabilizer $St_{Lie}(L)$ of the Lie algebra L is the vector subspace of L spanned by all the elements which are degree stable. For any $\theta \in Aut_{Lie}(L)$ we have the following diagram:



where $Aut_{Lie}(L)$ is the automorphism group of the Lie algebra L and ι is an embedding from $St_{Lie}(L)$ to L as vector spaces. It is an interesting to note that the equality

$$St_{Lie}(L) = \theta(St_{Lie}(L)) \tag{1}$$

sometimes holds and sometimes does not hold for any $\theta \in Aut_{Lie}(L)$. A Lie algebra L is degree-stabilizing if $St_{Lie}(L)$ is auto-invariant, i.e., the equality (1) holds. Kaplansky generalizes the Witt algebra as follows:

Let V be a vector space over \mathbb{F} and G a total additive group of functionals on V. Let A be the vector space direct sum of copies of V, one for each element of A. An element of A is $\sum_{x \in \mathbf{V}, \alpha \in G} c_{x,\alpha}(x, \alpha)$ where $c_{x,\alpha} \in \mathbb{F}$. If we define the multiplication as $[(x, \alpha), (y, \beta)] = \alpha(y)(x, \alpha + \beta) - \beta(x)(y, \alpha + \beta)$, then we have a Lie algebra (see [7]). Kaplansky shows that if $\dim(\mathbf{V}) \neq 1$, then the Lie algebra is simple in the paper [7]. Kawamoto defines an infinite dimensional generalized Witt Lie algebra which is simple in his paper [8]. Doković and K. Zhao also define a class of infinite dimensional generalized Witt Lie algebra are defined on a stable algebra in the formal power series ring $\mathbb{F}[[x_1, \dots, x_n]]$ or on the localization of the stable algebra (see [3], [6], [12]). One of those kinds of algebras is defined as follows: for fixed positive integers $t_{11} > \cdots > t_{1p}, \cdots, t_{n1} > \cdots > t_{np}$, we define the \mathbb{F} -algebra $\mathbb{F}[n^{p+\dots+q}, m, s]$ which is spanned by

$$\{ e^{a_{11}x_1^{i_{11}}} \cdots e^{a_{1p}x_1^{i_{1p}}} \cdots e^{a_{n1}x_n^{i_{n1}}} \cdots e^{a_{nq}x_n^{i_{nq}}} x_1^{i_1} \cdots x_m^{i_m} x_{m+1}^{i_{m+1}} \cdots x_{m+s}^{i_{m+s}} | a_{11}, \cdots, a_{np}, i_1, \cdots, i_m \in \mathbb{Z}, i_{m+1}, \cdots, i_{m+s} \in \mathbb{N} \}$$

$$(2)$$

such that the algebra $\mathbb{F}[n^{p+\dots+q}, m, s] := \mathbb{F}[n^*, m, s]$ contains the polynomial ring $\mathbb{F}[x_1, x_2, \dots, x_{m+s}]$ where e^{x_r} is the exponential function for $r \in \{1, \dots, n\}$ etc. (see [1], [6], [10], [11]). For $n, m, s \in \mathbb{N}$, the Lie admissible algebra

$$NW(n^{p+\dots+q}, m, s) := NW(n^*, m, s)$$

has the standard basis

$$B_{W(n,m,s)} = \{ e^{a_{11}x_1^{t_{11}}} \cdots e^{a_{1p}x_1^{t_{1p}}} \cdots e^{a_{n1}x_n^{t_{n1}}} \cdots e^{a_{nq}x_n^{t_{nq}}} x_1^{i_1} \cdots x_m^{i_m} x_{m+1}^{i_{m+1}} \cdots x_{m+s}^{i_{m+s}} \partial_u | \\ a_{11}, \cdots, a_{np}, i_1, \cdots, i_m \in \mathbb{Z}, i_{m+1}, \cdots, i_{m+s} \in \mathbb{N}, \\ 1 \le u \le m+s, n \le max\{m,s\} \}$$
(3)

with the obvious addition such that the multiplication * is defined as follows:

$$f\partial_u * g\partial_v = f\partial_u(g)\partial_v$$

for $f, g \in NW(n^*, m, s)$ where ∂_u is the partial derivative on $\mathbb{F}[n^*, m, s]$ with respect to x_u , $1 \leq u \leq m + s$. The antisymmetrized algebra of $NW(n^*, m, s)$ is the Witt type Lie algebra $W(n^*, m, s)$. The Lie algebra $W(n^*, m, s)$ is $\mathbb{Z}^{p+\dots+q}$ graded as follows:

$$W(n^*, m, s) = \bigoplus_{a_{11}, \cdots, a_{nq}} W_{a_{11}, \cdots, a_{nq}}$$

$$\tag{4}$$

where $W_{a_{11},\dots,a_{nq}}$ is the vector subspace of $W(n^*,m,s)$ spanned by

$$\{e^{a_{11}x_1^{i_{11}}}\cdots e^{a_{1p}x_1^{i_{1p}}}\cdots e^{a_{n1}x_n^{i_{n1}}}\cdots e^{a_{nq}x_n^{i_{nq}}}x_{i_1}^{i_1}\cdots x_{m+s}^{i_{m+s}}\partial_u|$$

$$i_1,\cdots,i_m\in\mathbb{Z}, i_{m+1},\cdots,i_{m+s}\in\mathbb{N}, 1\le u\le m+s, n\le max\{m,s\}\}$$

(see [16]). For each basis element

$$e^{a_{11}x_1^{t_{11}}}\cdots e^{a_{1p}x_1^{t_{1p}}}\cdots e^{a_{n1}x_n^{t_{n1}}}\cdots e^{a_{nq}x_n^{t_{nq}}}x_1^{i_1}\cdots x_m^{i_m}x_{m+1}^{i_{m+1}}\cdots x_{m+s}^{i_{m+s}}\partial_u$$

of $W(n^*, m, s)$, we define the Lie degree of the basis element as follow:

$$deg_{Lie}(e^{a_{11}x_1^{i_{11}}}\cdots e^{a_{1p}x_1^{i_{1p}}}\cdots e^{a_{n1}x_n^{i_{n1}}}\cdots e^{a_{nq}x_n^{i_{nq}}}x_1^{i_1}\cdots x_m^{i_m}x_{m+1}^{i_{m+1}}\cdots x_{m+s}^{i_{m+s}}\partial_u) = |i_1| + \dots + |i_m| + i_{m+1} + \dots + i_{m+s}$$

(see [16]). For any l of $W(n^*, m, s)$, we can define the Lie degree $deg_{Lie}(l)$ as the highest degree of non-zero terms of l. The Witt algebra W(0, 0, 1) and the centerless Virasoro algebra W(0, 1, 0) are self-centralizing (see [15]). Furthermore they are degree-stabilizing (see [7]). Let A be a subset of a Lie algebra L. The centralizer $Cl_L(A)$ is the set $\{l \in L | [l, l_1] = 0 \text{ for any } l_1 \in A\}$. For any l in the Lie algebra L, l_1 is ad-diagonal with respect to l, if $[l, l_1] = cl$ holds where $c \in \mathbb{F}$. For a Lie algebra L, an element l in L is ad-diagonal of the set A in L, if for any $x \in A$, $[l, x] = c_x x$ holds where $c_x \in \mathbb{F}$. For a given basis B of a Lie algebra L, the toral $tor_L(B) = tor(B)$ of B is n, if there are n ad-diagonal elements $\{l_1, \cdots, l_n\}$ with respect to B such that the set $\{l_1, \cdots, l_n\}$ is the linearly independent maximal subset of L. For a Lie algebra L, Tor(L) is defined as follows:

$$Tor(L) = max\{tor(B)|B \text{ is a basis of } L\}.$$

A Lie algebra L is *n*-toral, if Tor(L) = n. The Lie algebras W(0, 1, 0) and W(0, 0, 1) are 1-toral and self-centralizing (see [9]). For an algebra A, two bases B_1 and B_2 of A are equivalent denoted by $B_1 \sim B_2$, if for any element b_1 of B_1 , there is an element b_2 of B_2 such that $b_1 = cb_2$ holds for some non-zero scalar c.

3. Automorphism group of $W(1^2, 1, 1)$

Note 1. It is well know that the non-associative algebra $NW(n^*, m, s)$ and the Lie (or its antisymmetrized) algebra $W(n^*, m, s)$ are simple (see [3], [11], [12]). Thus every non-zero endomorphism of $NW(n^*, m, s)$ or $W(n^*, m, s)$ is injective.

Note that the standard basis of $W(1^2, 1, 1)$ is

 $\{e^{ax^{t_1}}e^{bx^{t_2}}x^iy^j\partial_u|a,b,i\in\mathbb{Z},j\in\mathbb{N},1\le u\le 2\}.$

Generally, it is not easy to prove that $St_{Lie}(L)$ is a Lie subalgebra of L or not, i.e., it depends on the Lie algebra. For any basis elements $e^{a_1x^{t_1}}e^{b_1x^{t_2}}x^{i_1}y^{j_1}\partial_u$ and $e^{a_2x}e^{b_2x^{t_2}}x^{i_2}y^{j_2}\partial_v$ of $W(1^2, 1, 1)$, let us define the natural order $>_{Lie}$ as follows:

$$c_1 e^{a_1 x^{t_1}} e^{b_1 x^{t_2}} x^{i_1} y^{j_1} \partial_u >_{Lie} c_2 e^{a_2 x^{t_1}} e^{b_2 x^{t_2}} x^{i_2} y^{j_2} \partial_v, \tag{5}$$

if and only if $a_1 > a_2$, or $a_1 = a_2$ and $b_1 > b_2$, or $a_1 = a_2$, $b_1 = b_2$, and $i_1 > i_2$, or \cdots , and $a_1 = a_2$, $b_1 = b_2$, $i_1 = i_2$, $j_1 = j_2$, and u < v for any non-zero scalars c_1 and c_2 . Thus we can define the natural order on $W(1^2, 1, 1)$. In (5), note that a coefficient of a basis element does not affect the order $>_{Lie}$ of $W(1^2, 1, 1)$. Thus we may define $deg_{Lie}(l)$ of any element $l \in W(1^2, 1, 1)$ as the highest Lie degree of non-zero basis terms of l. Note that $W(1^2, 1, 1)$ is simple (see [12]). From now on, let us assume that $t_1 > t_2$.

Lemma 3.1. St_{Lie}($W(1^2, 1, 1)$) is a Lie subalgebra of the Lie algebra $W(1^2, 1, 1)$ spanned by $\{x\partial_2, y\partial_2, \partial_2\}$.

Proof. It is obvious that the Lie subalgebra $\langle \{x\partial_2, y\partial_2, ,\partial_2\} \rangle$ of $W(1^2, 1, 1)$ spanned by $\{x\partial_2, y\partial_2, \partial_2\}$ is in $St_{Lie}(W(1^2, 1, 1))$. It is trivial to prove that every element which is not in $\langle \{x\partial_2, y\partial_2, \partial_1, \partial_2\} \rangle$ cannot be degree stable. This implies that $St_{Lie}(W(1^2, 1, 1)) = \langle \{x\partial_2, y\partial_2, \partial_2\} \rangle$. Therefore we have proven the lemma.

To find the automorphism group $Aut_{Lie}(W(1^2, 1, 1))$ of the Lie algebra $W(1^2, 1, 1)$, we will find the stable Lie subalgebra of $W(1^2, 1, 1)$ and an autoinvariant set of $W(1^2, 1, 1)$.

Lemma 3.2. For any $\theta \in Aut_{Lie}(W(1^2, 1, 1))$, the element $\theta(y\partial_2)$ is in the stabilizer $St_{Lie}(W(1^2, 1, 1))$ of the Lie algebra $W(1^2, 1, 1)$.

Proof. For any $\theta \in Aut_{Lie}(W(1^2, 1, 1))$ and a basis element $e^{ax^{t_1}}e^{bx^{t_2}}x^iy^j\partial_u$ of the algebra $W(1^2, 1, 1)$, we have that

$$\theta([y\partial_2, e^{ax^{t_1}}e^{bx^{t_2}}x^iy^j\partial_u] = (j - \delta_{2,u})\theta(e^{ax^{t_1}}e^{bx^{t_2}}x^iy^j\partial_u)$$
(6)

where $\delta_{2,u}$ is the Kronecker delta. By (6) and the fact that $W(1^2, 1, 1)$ is simple, for any $l \in W(1^2, 1, 1)$, we have that

$$deg_{Lie}([\theta(y\partial_2), \theta(l)]) \le deg_{Lie}(\theta(l)).$$

This implies that $\theta(y\partial_2) \in St_{Lie}(W(1^2, 1, 1))$ and so $\theta(y\partial_2)$ can be written as follows:

$$\theta(y\partial_2) = d_1 x \partial_2 + d_2 y \partial_2 + d_3 \partial_2 \tag{7}$$

where $d_1, d_2, d_3 \in \mathbb{F}$.

Lemma 3.3. There is no automorphism θ of $W(1^2, 1, 1)$ such that

$$\theta(y\partial_2) = d_1x\partial_2 + d_2y\partial_2 + d_3\partial_2 \tag{8}$$

where $d_1, d_2 \in \mathbb{F}^{\bullet}$ and $d_3 \in \mathbb{F}$.

Proof. Let θ be the automorphism of $W(1^2, 1, 1)$ such that it holds the conditions of the lemma for the element in the lemma. $\theta(x^u \partial_1)$ can be written as follow:

$$\theta(x^{u}\partial_{1}) = c(a_{u1}, b_{u1}, i_{u1}, j_{u1}, 1)e^{a_{u1}x^{t_{1}}}e^{b_{u1}x^{t_{2}}}x^{i_{u1}}y^{j_{u1}}\partial_{1} + c(a_{u1}, b_{u1}, i_{u1}, j_{u1}, 1)e^{a_{u1}x^{t_{1}}}e^{b_{u1}x^{t_{2}}}x^{i_{u1}}y^{j_{u1}}\partial_{2} + \#_{1}$$
(9)

where either $e^{a_1x^{t_1}}e^{b_1x^{t_2}}x^{i_{u_1}}y^{j_{u_1}}\partial_1$ or $e^{a_1x^{t_1}}e^{b_1x^{t_2}}x^{i_{u_1}}y^{j_{u_1}}\partial_2$ is the maximal term of the element $\theta(x^u\partial_1)$ depending on their coefficients and $\#_1$ is the sum of the remaining terms of $\theta(\partial_1)$ with appropriate coefficients using the order $>_{Lie}$ and $u \in \mathbb{N}$. Furthermore, by Lemma 3 of [2], we can assume that $b_{u_1} \neq 0$. If $j_{u_1} \neq 0$, then $x^u\partial_1$ cannot centralize $y\partial_2$. We have that

$$\theta(x^{u}\partial_{1}) = c(a_{u1}, b_{u1}, i_{u1}, 0, 1)e^{a_{u1}x^{t_{1}}}e^{b_{u1}x^{t_{2}}}x^{i_{u1}}\partial_{1} + c(a_{u1}, b_{u1}, i_{u1}, 0, 1)e^{a_{u1}x^{t_{1}}}e^{b_{u1}x^{t_{2}}}x^{i_{u1}}\partial_{2} + \#_{1}.$$
(10)

Since $\theta(x\partial_1)$ is an ad-diagonal element with respect to $\{\theta(x^v\partial_1)|v\in\mathbb{N}\}$, every maximal term of $\theta(x^v \partial_1)$ is in the (a_{u1}, b_{u1}) -homogeneous component $W_{a_{u1}, b_{u1}}$. Since $\theta(y\partial_2)$ centralizes $\theta(x^u\partial_1)$ and $d_1, d_2 \neq 0$, if $c(a_{u1}, b_{u1}, i_{u1}, j_{u1}, 1) \neq 0$, then $c(a_{u1}, b_{u1}, i_{u1}, j_{u1}, 2) \neq 0$ and vice versa. Since $\theta(x\partial_1)$ is an ad-diagonal element with respect to $\{\theta(x^v\partial_1)|v \in \mathbb{N}\}, \ \theta(x^v\partial_1)$ and $\theta(\partial_1)$ have terms in the same homogeneous components. This implies that all terms of the elements $\theta(x^u \partial_1)$, $u \in \mathbb{N}$, have the same maximal terms with appropriate coefficients. Let us prove the lemma by induction on the number $H(\theta(x\partial_1))$ of homogeneous components of $\theta(x\partial_1)$ such that the homogeneous components have a non-zero term of $\theta(x\partial_1)$. Let us assume that $H(\theta(x\partial_1))$ is one. Since $\theta(x\partial_1)$ is an ad-diagonal element with respect to $\{\theta(x^v\partial_1)|v\in\mathbb{N}\}$, it has a term in the (0,0)-homogeneous component $W_{0,0}$. By assumption, there is no room of $\theta(x\partial_1)$ to have a term of $W_{0,0}$. This contradiction shows that we can assume that $H(\theta(x\partial_1)) \geq 2$. This implies that $\theta(x\partial_1)$ has a non-zero term of $W_{0,0}$. There is an element $\theta(x^u\partial_1)$ which also has a non-zero term of $W_{0,0}$ such that the degree of the maximal term of $\theta(x^u \partial_1)$ is greater than zero where $u \neq 1$. $\theta(x\partial_1)$ and $\theta(x^u\partial_1)$ have the same maximal terms of $W_{0,0}$ with appropriate scalars. Thus every non-zero term of $\theta(x\partial_1)$ which is not in $W_{0,0}$ is a non-zero term of $\theta(x^u \partial_1)$ with appropriate coefficients and vice versa. Since $H(\theta(x\partial_1)) = H(\theta(x\partial_1)) \ge 2$, there are $c \in \mathbb{F}$ and $u \in \mathbb{N}$ such that

$$[\theta(x\partial_1) - c\theta(x^u\partial_1), \theta(x^u\partial_1)] \neq (u-1)\theta(x^u\partial_1).$$
(11)

This contradiction shows that we can assume that $x^r \partial_1$ is the maximal term of $\theta(x\partial_1)$ for an integer r > 1. This gives a similar contradiction as (11). This implies that $\theta(x\partial_1) \in W_{0,0}$. This implies that $\theta(y\partial_2)$ cannot centralize $\theta(x^u\partial_1)$. This contradiction shows that there is no automorphism θ of $W(1^2, 0, 2)$ which holds (3.7). Therefore we have proven the lemma.

Lemma 3.4. There is no automorphism θ of $W(1^2, 1, 1)$ such that

$$\theta(y\partial_2) = d_1x\partial_2 + d_2\partial_2 = (d_1x + d_2)\partial_2 \tag{12}$$

holds where $d_1 \in \mathbb{F}^{\bullet}$ and $d_2 \in \mathbb{F}$.

Proof. Let θ be the automorphism of $W(1^2, 0, 2)$ such that it holds (12). By Lemma 3.3, we are able to prove that $\theta(y\partial_2)$ cannot centralize an element $\theta(x^u\partial_1)$, u > 1. This contradiction shows that there is no automorphism θ of $W(1^2, 0, 2)$ which holds (12). Therefore we have proven the lemma.

Lemma 3.5. For any automorphism θ of $W(1^2, 1, 1)$ and any basis element $y^k \partial_2$ of $W(1^2, 1, 1)$,

$$\theta(y^k \partial_2) = d^{1-k} (y+d_1)^k \partial_2 \tag{13}$$

holds where $d_1 \in \mathbb{F}$ and $d \in \mathbb{F}^{\bullet}$.

Proof. Let θ be the automorphism of $W(1^2, 1, 1)$. By Lemmas 3.1, 3.2, 3.3, 3.4, we have that $\theta(y\partial_2) = (y+d_1)\partial_2$ holds for $d_1 \in \mathbb{F}$. This implies that $\theta(\partial_2) = d\partial_2$ holds for $d \in \mathbb{F}^{\bullet}$. By induction on $k \in \mathbb{N}$ of $y^k \partial_2$, we are able to prove that $\theta(y^k \partial_2) = d^{1-k}(y+d_1)^k \partial_2$ holds. Therefore we have proven the lemma.

Lemma 3.6. For any automorphism θ of $W(1^2, 1, 1)$ and any basis element $x^i \partial_1$ of $W(1^2, 1, 1)$,

$$\theta(x^i\partial_1) = c^{1-i}x^i\partial_1 \tag{14}$$

holds where $c \in \mathbb{F}^{\bullet}$.

Proof. Let θ be the automorphism of $W(1^2, 1, 1)$. By Lemma 3.5, we have that $\theta(y^k \partial_2) = d^{1-k}(y+d_1)^k \partial_2$ holds for $d_1 \in \mathbb{F}$ and $d \in \mathbb{F}^{\bullet}$. So we are able to prove that $\theta(\partial_1) = c\partial_1$ holds for $c \in \mathbb{F}^{\bullet}$. Since the Lie subalgebra W(0, 1, 0) of $W(1^2, 1, 1)$ spanned by $\{x^u \partial_1 | u \in \mathbb{Z}\}$ is a self-centralizing Lie algebra, we have two cases, Case I: $\theta(x\partial_1) = -(x+c_1)\partial_1$ and Case II: $\theta(x\partial_1) = (x+c_1)\partial_1$ for $c_1 \in \mathbb{F}$.

Case I. Let us assume that $\theta(x\partial_1) = -(x+c_1)\partial_1$ holds. By $\theta([\partial_1, x\partial_1]) = \theta(\partial_1)$, we have that $-[\theta(\partial), (x+c_1)\partial_1] = \theta(\partial_1)$, we have that $\theta(\partial_1) = \alpha_0(x+c_1)^2\partial_1$ for $\alpha_0 \in \mathbb{F}^{\bullet}$. This implies that $\theta(x^2\partial_1) = \alpha_2\partial_1$ for $\alpha_2 \in \mathbb{F}^{\bullet}$. By $\theta([x^{-1}\partial_1, x^2\partial_1]) = 3\theta(\partial_1)$, we have that $c_1 = 0$ and $\theta(x^{-1}\partial_1) = \alpha_1x^3\partial_1$ $\alpha_1 \in \mathbb{F}^{\bullet}$. By induction on i of $x^{-i}\partial_1$, we have that $\theta(x^{-i}\partial_1) = \alpha_{-i}x^{i+2}\partial_1$ for $\alpha_{-i} \in \mathbb{F}^{\bullet}$. By $\theta([x^{-t_1+1}\partial_1, e^{x^{t_1}}\partial_1]) = \theta(e^{x^{t_1}}\partial_1)$, we are able to prove that

$$[\alpha_{-t_1+1}x^{t_1+1}\partial_1, \theta(e^{x^{t_1}}\partial_1)] = \theta(e^{x^{t_1}}\partial_1)$$
(15)

holds. Since $\theta(e^{x^{t_1}}\partial_1) \notin W_{0,0}$ and $t_1 + 1$ is positive, there is no element $\theta(e^{x^{t_1}}\partial_1)$ of the algebra which holds the equality (15). This contradiction shows that there is no automorphism which holds $\theta(x\partial_1) = -(x+c_1)\partial_1$.

Case II. Let us assume that $\theta(x\partial_1) = (x+c_1)\partial_1$ holds. By induction on $i \in \mathbb{N}$, we are able to prove that $\theta(x^i\partial_1) = c^{1-i}(x+c_1)^i\partial_1$ holds. By $\theta([x^{-2}\partial_1, x^3\partial_1]) = 5\theta(\partial_1)$, we have that $[\theta(x^{-2}\partial_1), c^{-2}(x+c_1)^3\partial_1] = 5c\partial_1$. This implies that $c_1 = 0$ and $\theta(x^{-2}\partial_1) = c^3(x^{-2}\partial_1)$. By induction on i of $x^i\partial_1$, we can prove that $\theta(x^i\partial_1) = c^{1-i}x^i\partial_1$ easily. Therefore we have proven the lemma.

Note 2. For any basis elements $e^{ax^{t_1}}e^{bx^{t_2}}x^iy^j\partial_1$ and $e^{ax^{t_1}}e^{bx^{t_2}}x^iy^j\partial_1$ of $W(1^2, 1, 1)$, $c_{11}, c_{12}, d_{11}, d_{12} \in \mathbb{F}^{\bullet}$, and $c_{13} \in \mathbb{F}$, if we define a linear map $\theta_{c_{11},c_{12},c_{13},d_{11},d_{12},1}$ from $W(1^2, 1, 1)$ to itself as follows:

$$\begin{aligned} \theta_{c_{11},c_{12},c_{13},d_{11},d_{12},1}(e^{ax^{t_1}}e^{bx^{t_2}}x^iy^j\partial_1) &= c_{11}^{1-i}c_{12}^{-j}d_{11}^ad_{12}^be^{ax^{t_1}}e^{bx^{t_2}}x^i(y+c_{13})^j\partial_1,\\ \theta_{c_{11},c_{12},c_{13},d_{11},d_{12},1}(e^{ax^{t_1}}e^{bx^{t_2}}x^iy^j\partial_2) &= c_{11}^{-i}c_{12}^{1-j}d_{11}^ad_{12}^be^{ax^{t_1}}e^{bx^{t_2}}x^i(y+c_{13})^j\partial_2, \end{aligned}$$
(16)

then $\theta_{c_{11},c_{12},c_{13},d_{11},d_{12},1}$ can be linearly extended to a Lie automorphism of $W(1^2, 1, 1)$ such that $c_{11}^{t_1} = c_{11}^{t_2} = 1$.

Note 3. For any basis elements $e^{ax^{t_1}}e^{bx^{t_2}}x^iy^j\partial_1$ and $e^{ax^{t_1}}e^{bx^{t_2}}x^iy^j\partial_1$ of $W(1^2, 1, 1)$, $c_{21}, c_{22}, d_{21}, d_{22} \in \mathbb{F}^{\bullet}$, and $c_{23} \in \mathbb{F}$, if we define a linear map $\theta_{c_{21}, c_{22}, c_{23}, d_{21}, d_{22}, 2}$ from $W(1^2, 1, 1)$ to itself as follows:

$$\begin{aligned} \theta_{c_{21},c_{22},c_{23},d_{21},d_{22},2}(e^{ax^{t_1}}e^{bx^{t_2}}x^iy^j\partial_1) &= c_{21}^{1-i}c_{22}^{-j}d_{21}^ad_{22}^be^{-ax^{t_1}}e^{bx^{t_2}}x^i(y+c_{23})^j\partial_1,\\ \theta_{c_{21},c_{22},c_{23},d_{21},d_{22},2}(e^{ax^{t_1}}e^{bx^{t_2}}x^iy^j\partial_2) &= c_{21}^{-i}c_{22}^{1-j}d_{21}^ad_{22}^be^{-ax^{t_1}}e^{bx^{t_2}}x^i(y+c_{23})^j\partial_2, (17) \end{aligned}$$

then $\theta_{c_{21},c_{22},c_{23},d_{21},d_{22},2}$ can be linearly extended to a Lie automorphism of $W(1^2, 1, 1)$ such that $c_{21}^{t_1} = -1$ and $c_{21}^{t_2} = 1$.

Note 4. For any basis elements $e^{ax^{t_1}}e^{bx^{t_2}}x^iy^j\partial_1$ and $e^{ax^{t_1}}e^{bx^{t_2}}x^iy^j\partial_1$ of $W(1^2, 1, 1)$, $c_{31}, c_{32}, d_{31}, d_{32} \in \mathbb{F}^{\bullet}$, and $c_{33} \in \mathbb{F}$, if we define a linear map $\theta_{c_{31}, c_{32}, c_{33}, d_{31}, d_{32}, 3}$ from $W(1^2, 1, 1)$ to itself as follows:

$$\begin{aligned} \theta_{c_{31},c_{32},c_{33},d_{31},d_{32},3}(e^{ax^{t_1}}e^{bx^{t_2}}x^iy^j\partial_1) &= c_{31}^{1-i}c_{32}^{-j}d_{31}^ad_{32}^be^{ax^{t_1}}e^{-bx^{t_2}}x^i(y+c_{33})^j\partial_1,\\ \theta_{c_{31},c_{32},c_{33},d_{31},d_{32},3}(e^{ax^{t_1}}e^{bx^{t_2}}x^iy^j\partial_2) &= c_{31}^{-i}c_{32}^{1-j}d_{31}^ad_{32}^be^{ax^{t_1}}e^{-bx^{t_2}}x^i(y+c_{33})^j\partial_2, (18) \end{aligned}$$

then $\theta_{c_{31},c_{32},c_{33},d_{31},d_{32},3}$ can be linearly extended to a Lie automorphism of $W(1^2, 1, 1)$ such that $c_{31}^{t_1} = 1$ and $c_{31}^{t_2} = -1$. \Box

Note 5. For any basis elements $e^{ax^{t_1}}e^{bx^{t_2}}x^iy^j\partial_1$ and $e^{ax^{t_1}}e^{bx^{t_2}}x^iy^j\partial_1$ of $W(1^2, 1, 1)$, $c_{41}, c_{42}, d_{41}, d_{42} \in \mathbb{F}^{\bullet}$, and $c_{43} \in \mathbb{F}$, if we define a linear map $\theta_{c_{41}, c_{42}, c_{43}, d_{41}, d_{42}, 4}$ from $W(1^2, 1, 1)$ to itself as follows:

$$\begin{aligned} \theta_{c_{41},c_{42},c_{43},d_{41},d_{42},4}(e^{ax^{t_1}}e^{bx^{t_2}}x^iy^j\partial_1) &= c_{41}^{1-i}c_{42}^{-j}d_{41}^ad_{42}^be^{-ax^{t_1}}e^{-bx^{t_2}}x^i(y+c_{43})^j\partial_1,\\ \theta_{c_{41},c_{42},c_{43},d_{41},d_{42},4}(e^{ax^{t_1}}e^{bx^{t_2}}x^iy^j\partial_2) &= c_{41}^{-i}c_{42}^{1-j}d_{41}^ad_{42}^be^{-ax^{t_1}}e^{-bx^{t_2}}x^i(y+c_{43})^j\partial_2, (19) \end{aligned}$$

then $\theta_{c_{41},c_{42},c_{43},d_{41},d_{42},4}$ can be linearly extended to a Lie automorphism of $W(1^2, 1, 1)$ such that $c_{41}^{t_1} = c_{41}^{t_2} = -1$.

Lemma 3.7. For any automorphism θ of $W(1^2, 1, 1)$, θ is one of the automorphisms $\theta_{c_{11},c_{12},c_{13},d_{11},d_{12},1}$, $\theta_{c_{21},c_{22},c_{23},d_{21},d_{22},2}$, $\theta_{c_{31},c_{32},c_{33},d_{31},d_{32},3}$, and $\theta_{c_{41},c_{42},c_{43},d_{41},d_{42},4}$ as shown in Notes 2-5 with appropriate constant conditions.

Proof. Let θ be the automorphism of $W(1^2, 1, 1)$ in the theorem. By Lemma 3.5 and Lemma 3.6, we can assume that (13) and (14) hold with the same constants. Thus by induction on i, j of $x^i y^j \partial_u$, $1 \leq u \leq 2$, we are able to prove that $\theta(W(0,0,2)) = W(0,0,2)$ holds, i.e., W(0,0,2) is θ -invariant or auto-invariant. Since $y^u \partial_2$ centralizes $e^{x^{i_1}} \partial_1$ and $y \partial_2 \in St_{Lie}(W(1^2,1,1))$, we have that

$$\theta(e^{x^{t_1}}\partial_1) = c_{a,b,i,0,1}e^{ax^{t_1}}e^{bx^{t_2}}x^i\partial_1 + \#_1$$
(20)

holds where $e^{ax^{t_1}}e^{bx^{t_2}}x^i\partial_1$ is the maximal term of $\theta(e^{x^{t_1}}\partial_1)$ and $\#_1$ does not have a term with ∂_2 . We have three cases, Case I: $a, b \neq 0$, Case II: a = 0 and $b \neq 0$, and Case III: $a \neq 0$ and b = 0.

Case I. Let us assume that $a, b \neq 0$. We have that $\theta(e^{-x^{t_1}}\partial_1)$ has a similar form as (20). By

$$\theta([e^{x^{t_1}}\partial_1, e^{x^{t_1}}\partial_1]) \in W(0, 0, 2),$$
(21)

we have that the maximal term of $\theta(e^{-x^{t_1}}\partial_1)$ is in W_{a_1,b_1} or in $W_{-a_1,-b_1}$. Let us assume that the maximal term of $\theta(e^{-x^{t_1}}\partial_1)$ is in W_{a_1,b_1} . Thus by (22), $\theta(e^{x^{t_1}}\partial_1)$ and $\theta(e^{-x^{t_1}}\partial_1)$ have terms in the same homogeneous components. Furthermore we can assume that $H(\theta(e^{x^{t_1}}\partial_1) = \theta(e^{-x^{t_1}}\partial_1) \ge 2$. This implies that there is non-zero constant c such that

$$[\theta(e^{x^{t_1}}\partial_1), \theta(e^{x^{t_1}}\partial_1 - ce^{-x^{t_1}}\partial_1)] \neq -2ct_1\theta(x^{t_1-1}\partial_1).$$
(22)

Thus we can assume that the maximal term of $\theta(e^{-x^{t_1}}\partial_1)$ is in $W_{-a_1,-b_1}$. If $H(\theta(e^{x^{t_1}}\partial_1) \neq 1$, then we can derive a contradiction because of the minimal term of $\theta([e^{t_1}\partial_1, e^{-x^{t_1}}])$. If $H(\theta(e^{x^{t_1}}\partial_1) = 1$, then we have that $\theta([e^{t_1}\partial_1, e^{-x^{t_1}}]) \neq -2t_1\theta(x^{t_1-1}\partial_1)$. This gives a contradiction. Thus $a, b \neq 0$ does not hold.

Case II. Let us assume that a = 0 and $b \neq 0$. This implies that $\theta(e^{x^{t_1}}\partial_1) = c'e^{x^{bt_2}}\partial_1 + \#_2$ holds. By $\theta([\partial_1, e^{x^{t_1}}\partial_1]) = t_1\theta(e^{x^{t_1}}x^{t_1-1}\partial_1)$, we have that

$$[c\partial_1, c'e^{x^{bt_2}}\partial_1 + \#_2] = cc'bt_2e^{x^{t_1}}x^{i+t_1-1}\partial_1 + \#_3$$

holds. This implies that

$$\theta(e^{x^{t_1}}x^{t_1-1}\partial_1) = cc'b\frac{t_2}{t_1}e^{x^{t_1}}x^{i+t_1-1}\partial_1 + \frac{\#_3}{t_1}$$

This implies that

$$\begin{aligned} \theta([x\partial_1, e^{x^{t_1}}x^{t_1-1}\partial_1]) &= t_1\theta(e^{x^{t_1}}x^{2t_1-1}\partial_1) + (t_1-2)\theta(e^{x^{t_1}}x^{t_1-1}\partial_1) \\ &= [(x+c_1)\partial_1, cc'b\frac{t_2}{t_1}e^{x^{t_1}}x^{i+t_1-1}\partial_1 + \frac{\#_3}{t_1}] \end{aligned}$$

holds. This implies that $\theta(e^{x^{t_1}}x^{2t_1-1}\partial_1) = cc'b^2 \frac{t_2^2}{t_1^2}e^{bx^{t_1}}x^{i+2t_1-1}\partial_1 + \#_4$. Note that

$$\theta([x^{t_1}\partial_1, e^{x^{t_1}}\partial_1]) = t_1\theta(e^{x^{t_1}}x^{2t_1-1}\partial_1) - t_1 + \theta(e^{x^{t_1}}x^{t_1-1}\partial_1)$$

This implies that

$$[c^{1-t_1}(x+c_1)^{t_1}\partial_1, c_1e^{bx^{t_2}}x^i\partial_1] = cc'b^2\frac{t_2^2}{t_1^2}e^{bx^{t_1}}x^{i+2t_2-1}\partial_1 + \#_5$$
(23)

holds. Since $i + t_1 + t_2 - 1 \neq i + 2t_2 - 1$, the equality (23) does not hold. So we have a contradiction. Thus there is no automorphism of $W(1^2, 1, 1)$ which holds a = 0 and $b \neq 0$.

Case III. Let us assume that $a \neq 0$ and b = 0. This implies that $\theta(e^{x^{t_1}}\partial_1) = c'e^{x^{at_1}}\partial_1 + \#_6$. Let us assume that $\#_6 \neq 0$. Let us assume that $H(e^{x^{t_1}}\partial_1) \geq 1$. This implies that $H(e^{x^{-t_1}}\partial_1) = H(e^{x^{t_1}}\partial_1)$ holds. This implies that there is a non-zero scalar c such that

$$\theta([e^{-x^{-t_1}}\partial_1, e^{x^{-t_1}}\partial_1 - ce^{x^{-t_1}}\partial_1]) \neq 2t_1\theta(e^{x^{-t_1}}\partial_1).$$
(24)

This contradiction shows that $H(e^{x^{-t_1}}\partial_1) = 1$. Similarly we can prove that $\theta(e^{x^{t_1}}\partial_1) = de^{ax^{t_1}}\partial_1$ and $\theta(e^{-x^{t_1}}\partial_1) = d_1e^{-ax^{t_1}}\partial_1$. This implies that $\theta(x^i\partial_1) = c^{1-i}x^i\partial_1$. By induction on i, k of $x^iy^k\partial_u$, $1 \le u \le 2$, we are able to prove that

$$\theta(x^i y^k \partial_u) = c^{\delta_{1u} - i} d^{\delta_{2u} - k} x^i (y + c)^k \partial_u \tag{25}$$

where δ_{1u} and δ_{2u} are Kronecker deltas. Since

$$\{x^p y^j \partial_u, e^{x^{t_1}} \partial_1, e^{-x^{t_1}} \partial_1 | a, i \in \mathbb{Z}, u, i \in \mathbb{N}, 1 \le u \le 2\}$$

is a generator of the Lie subalgebra $W(1^1, 1, 1)$ of $W(1^2, 1, 1)$, we have that a is either 1 or -1. So we have two subcases, Subcase I: a = 1 and Subcase II: a = -1.

 $\begin{array}{l} Subcase \ I. \ \text{Let us assume that } \theta(e^{x^{t_1}}\partial_1) = d_1e^{x^{t_1}}\partial_1 \ \text{holds for } d_1 \in \mathbb{F}^{\bullet}. \\ & \text{By } \theta([e^{-x^{t_1}}\partial_1, e^{x^{t_1}}\partial_1]) = 2t_1\theta(x^{t_1-1}\partial_1), \\ & \text{we have that } [\theta(e^{-x^{t_1}}\partial_1), d_1e^{x^{t_1}}\partial_1] = 2c^{2-t_1}t_1(x+c_1)^{t_1-1}\partial_1 \\ & \text{holds. Therefore } c_1 = 0 \ \text{and } \theta(e^{-x^{t_1}}\partial_1) = \frac{c^{2-t_1}}{d_1}e^{-x^{t_1}}\partial_1 \ \text{hold. By } \theta([x\partial_1, e^{x^{t_1}}\partial_1]) = \\ & t_1\theta(e^{x^{t_1}}x^{t_1}\partial_1) - \theta(e^{x^{t_1}}\partial_1), \text{ we have that } \theta(e^{x^{t_1}}x^{t_1}\partial_1) = de^{x^{t_1}}x^{t_1}\partial_1 \ \text{holds. By Lemma} \\ & 3.6 \ \text{and } \theta([x^{-t_1+1}\partial_1, e^{x^{-t_1}}\partial_1]) = t_1\theta(e^{x^{t_1}}\partial_1) - (-t_1+1)\theta(e^{x^{t_1}}x^{-t_1}\partial_1), \text{ we have that } \\ & [c^{t_1}x^{-t_1+1}\partial_1, d_1e^{x^{-t_1}}\partial_1] = t_1d_1e^{x^{t_1}}\partial_1 + (t_1-1)\theta(e^{x^{t_1}}x^{-t_1}\partial_1), \text{ This implies that } c = 1. \\ & \text{Similarly we can prove that } A: \ \theta(e^{x^{t_2}}\partial_1) = d_2e^{x^{t_2}}\partial_1 \ \text{and } B: \ \theta(e^{x^{t_2}}\partial_1) = d_2e^{-x^{t_2}}\partial_1 \\ & \text{where } d_2 \in \mathbb{F}^{\bullet}. \end{array}$

A. Let us assume that $\theta(e^{x^{t_2}}\partial_1) = d_2 e^{x^{t_2}}\partial_1$ holds. Since $x^{-t_2+1}\partial_1$ is an ad-diagonal element with respect to $e^{x^{t_2}}\partial_1$, we can prove that $c^{t_2} = 1$ holds. By induction on b of $e^{x^{bt_2}}\partial_1$, we can prove that $\theta(e^{x^{bt_2}}\partial_1) = d_2^b e^{x^{bt_2}}\partial_1$. So we have that

$$\theta(e^{x^{at_1}}e^{x^{bt_2}}x^i\partial_1) = c^{1-i}d_1^a d_2^b e^{x^{at_1}}e^{x^{bt_2}}x^i\partial_1$$
(26)

holds. So by (25) and (26), we can prove that θ can be linearly extended to the automorphism $\theta_{c_{11},c_{12},c_{13},d_{11},d_{12},1}$ as shown Note 2 with appropriate constants.

B. Let us assume that $\theta(e^{x^{t_2}}\partial_1) = d_2 e^{-x^{t_2}}\partial_1$. Similarly we can prove that $c^{t_2} = -1$. Similarly to A, we are able to prove that θ can be linearly extended to the automorphism $\theta_{c_{31},c_{32},c_{33},d_{31},d_{32},3}$ as shown Note 4 with appropriate constants.

Subcase II. Let us assume that $\theta(e^{x^{t_1}}\partial_1) = d_1e^{-x^{t_1}}\partial_1$ holds for $d_1 \in \mathbb{F}^{\bullet}$. Similarly to Subcase I, we have that C: $\theta(e^{x^{t_2}}\partial_1) = d_2e^{x^{t_2}}\partial_1$ and D: $\theta(e^{x^{t_2}}\partial_1) = d_2e^{-x^{t_2}}\partial_1$ where $d_2 \in \mathbb{F}^{\bullet}$.

C. If we assume that $\theta(e^{x^{t_2}}\partial_1) = d_2 e^{x^{t_2}}\partial_1$, then similarly to A, θ can be linearly extended to the automorphism $\theta_{c_{21},c_{22},c_{23},d_{21},d_{22},2}$ as shown Note 3 with appropriate constants.

D. If we assume that $\theta(e^{x^{t_2}}\partial_1) = d_2 e^{-x^{t_2}}\partial_1$, then similarly to A, θ can be linearly extended to the automorphism $\theta_{c_{41},c_{42},c_{43},d_{41},d_{42},4}$ as shown Note 5 with appropriate constants.

This implies that θ can be linearly extended to one of the the automorphisms $\theta_{c_{11},c_{12},c_{13},d_{11},d_{12},1}$, $\theta_{c_{21},c_{22},c_{23},d_{21},d_{22},2}$, $\theta_{c_{31},c_{32},c_{33},d_{31},d_{32},3}$, and $\theta_{c_{41},c_{42},c_{43},d_{41},d_{42},4}$ as shown in Notes 2-5. Therefore we have proven the lemma.

Theorem 3.8. The automorphism group of the algebra $W(1^2, 1, 1)$ is generated by the automorphisms $\theta_{c_{11},c_{12},c_{13},d_{11},d_{12},1}$, $\theta_{c_{21},c_{22},c_{23},d_{21},d_{22},2}$, $\theta_{c_{31},c_{32},c_{33},d_{31},d_{32},3}$, and $\theta_{c_{41},c_{42},c_{43},d_{41},d_{42},4}$ as shown in Notes 2-5 with appropriate constant conditions.

Proof. Let θ be an automorphism of $W(1^2, 1, 1)$. By Lemma 3.7, θ is one of the automorphisms $\theta_{c_{11},c_{12},c_{13},d_{11},d_{12},1}$, $\theta_{c_{21},c_{22},c_{23},d_{21},d_{22},2}$, $\theta_{c_{31},c_{32},c_{33},d_{31},d_{32},3}$, and $\theta_{c_{41},c_{42},c_{43},d_{41},d_{42},4}$ as shown in Notes 2-5 with appropriate constant conditions. Thus the automorphism group $Aut(W(1^2, 1, 1))$ of the algebra $W(1^2, 1, 1)$ is generated by the automorphisms $\theta_{c_{11},c_{12},c_{13},d_{11},d_{12},1}$, $\theta_{c_{21},c_{22},c_{23},d_{21},d_{22},2}$, $\theta_{c_{31},c_{32},c_{33},d_{31},d_{32},3}$, and $\theta_{c_{41},c_{42},c_{43},d_{41},d_{42},4}$ as shown in Notes 2-5 with appropriate constant conditions. Thus therefore we have proven the theorem.

Remark 3.9. Thanks to Theorem 3.8, we have that the automorphism group of $W(1^2, 2, 0)$ is generated by the automorphisms $\theta_{c_{11},c_{12},0,d_{11},d_{12},1}$, $\theta_{c_{21},c_{22},0,d_{21},d_{22},2}$, $\theta_{c_{31},c_{32},0,d_{31},d_{32},3}$, and $\theta_{c_{41},c_{42},0,d_{41},d_{42},4}$ which are defined on the algebra $W(1^2, 2, 0)$ as similar Notes 2-5 of $W(1^2, 2, 0)$.

4. Cartan Subalgebra

A Cartan subalgebra \mathfrak{C} of the algebra $W(1^2, 1, 1)$ (resp. $W(1^2, 2, 0)$) is spanned by $y\partial_2 + c\partial_2$ (resp. $y\partial_2$) where $c \in \mathbb{F}$. Note that \mathfrak{C} is one dimensional and $Tor(W(1^2, 1, 1))$ (resp. $Tor(W(1^2, 2, 0))$) is one. The root space decomposition of $W(1^2, 1, 1)$ (resp. $W(1^2, 2, 0)$) with respect to \mathfrak{C} is the following:

$$W(1^2, 1, 1) = \bigoplus_{j \in \mathbb{N} \cup \{-1\}} W_j \qquad (\text{ resp. } W(1^2, 2, 0) = \bigoplus_{j \in \mathbb{Z}} W_j) \qquad (27)$$

where W_j is a vector subspace of $W(1^2, 1, 1)$ (resp. W(1, 2, 0)) spanned by $\{e^{a_1x^{t_1}}e^{a_2x^{t_2}}x^{i_1}(y+c)^{j}\partial_1, e^{a_1x^{t_1}}e^{a_2x^{t_2}}x^{i_2}(y+c)^{j+1}\partial_2|a_1, a_2, i_1 \in \mathbb{Z}, i_2 \in \mathbb{N}\}$ and $[y\partial_2 + c\partial_2, W_j] \subset W_j$ (resp. $\{e^{a_1x^{t_1}}e^{a_2x^{t_2}}x^{i_1}y^{j}\partial_1, e^{a_1x^{t_1}}e^{a_2x^{t_2}}x^{i_2}e^{a_2x^{t_2}}y^{j+1}\partial_2|a_1, a_2, i_1, i_2 \in \mathbb{Z}\}$ and $[y\partial_2, W_j] \subset W_j$). We have the following proposition.

Proposition 4.1. For any automorphism θ of the algebra $W(1^2, 1, 1)$ (resp. W(1, 2, 0)), $\theta(y\partial_2) = y\partial_2 + c\partial_2$ (resp. $y\partial_2$) where $c \in \mathbb{F}$.

Proof. Since any Cartan subalgebra \mathfrak{C} of $W(1^2, 1, 1)$ (resp. $W(1^2, 2, 0)$) is one dimensional, the Cartan subalgebra \mathfrak{C} is auto-invariant. Thus the proof of the proposition is obvious.

Remark 4.2. Thanks to Proposition 4.1, we are also able to find the automorphism groups of the algebras $W(1^2, 1, 1)$ and $W(1^2, 2, 0)$.

References

- Chang, H. J., Über Wittsche Lie-Ringe (German), Abh. Math. Sem. Hansischen Univ. 14, (1941). 151–184.
- [2] Choi, Seul Hee, and Ki-Bong Nam, Grade Stable Lie Algebras I, Rocky Mountain Journal of Mathematics 40 (2010), 813–824.
- [3] Choi, Seul Hee, Jongwoo Lee, and Ki-Bong Nam, Derivations of a restricted Weyl-type algebra containing the polynomial ring, Comm. Algebra 36 (2008), 3435–3446.
- [4] Doković, D. Ž., and K. Zhao, Derivations, isomorphisms, and second cohomology of generalized Witt algebras Trans. Amer. Math. Soc. 350 (1998), 643-664.
- [5] —, Generalized Cartan type W Lie algebras in characteristic zero, J. Algebra 195 (1997), 170–210.
- [6] Kac, V. G., Description of Filtered Lie Algebra with which Graded Lie algebras of Cartan type are Associated, Izv. Akad. Nauk SSSR, Ser. Mat. Tom 38 (1974), 832–834.
- [7] Kaplansky, I., Seminar on simple Lie algebras, Bull. Amer. Math. Soc. 60 (1954), 470–471.
- [8] Kawamoto, N., Generalizations of Witt algebras over a field of characteristic zero, Hiroshima Math. J. 16 (1986), 417–426.
- [9] —, On G-graded automorphisms of generalized Witt algebras, Contemp. Math. Amer. Math. Soc. 184 (1995), 225–230.
- [10] Kawamoto, Naoki, Atsushi Mitsukawa, Ki-Bong Nam, and Moon-Ok Wang, *The automorphisms of generalized Witt type Lie algebras*, Journal of Lie Theory, **13** (2003), 571–576.

- [11] Lee, Jongwoo, and Ki-Bong Nam, Non-associative algebras containing the matrix ring, Linear Algebra Appl. 429 (2008), 72–78.
- [12] Nam, Ki-Bong, Generalized W and H Type Lie Algebras, Algebra Colloquium 6 (1999), 329–340.
- [13] —, Generalized S-type Lie Algebras, Rocky Mountain Journal of Mathematics 37 (2007), 1291–1230.
- [14] Nam, Ki-Bong, and Seul Hee Choi, Degree Stable Lie Algebras I, Algebra Colloquium 13 (2006), 487–494.
- [15] Nam, Ki-Bong, and Jonathan Pakianathan, On generalized Witt algebras in one variable, Turkish Journal of Mathematics (2010), to appear.
- [16] Rudakov, A. N., Groups of automorphisms of infinite-dimensional simple Lie algebras, Math. USSR-Izvestija 3 (1969), 707–722.
- [17] Zhao, K., Isomorphisms between generalized Cartan type W Lie algebras in characteristic 0, Canad. J. Math. 50 (1998), 210–224.

Jongwoo Lee Graduate School of Railroad Seoul National Univ. of Technology 172 Kongneung-dong Nowongu Seoul, Korea saganlee@snut.ac.kr

Seul Hee Choi Dept. of Mathematics Univ. of Jeonju Jeonju 560-759, Korea chois@jj.ac.kr

Received November 11, 2009 and in final form January 20, 2011 Xueqing Chen Dept. of Math and Computer Sciences Univ. of Wisconsin-Whitewater Whitewater, WI 53190, USA chenx@uww.edu

Ki-Bong Nam Dept. of Math and Computer Sciences Univ. of Wisconsin-Whitewater Whitewater, WI 53190, USA namk@uww.edu