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Abstract. A strong KT (SKT) manifold consists of a Hermitian structure
whose torsion three-form is closed. We classify the invariant SKT structures
on four-dimensional solvable Lie groups. The classification includes solutions on
groups that do not admit compact four-dimensional quotients. It also shows
that there are solvable groups in dimension four that admit invariant complex
structures but have no invariant SKT structure.
Mathematics Subject Classification 2000: Primary 53C55; Secondary 53C30,
32M10.
Key Words and Phrases: Hermitian metric, complex structure, strong KT ge-
ometry, Kähler with torsion, solvable Lie group.

1. Introduction

On any Hermitian manifold (M, g, J) there is a unique Hermitian connection [10],
called the Bismut connection, which has torsion a three-form. Explicitly the
Bismut connection is given by

∇B = ∇LC + 1
2
TB, cB =

(
TB

)[
= −Jdω, (1.1)

where ω = g(J ·, ·) is the fundamental two-form and Jdω = −dω(J ·, J ·, J ·). If
the torsion three-form cB is closed, we have a strong Kähler manifold with torsion,
or briefly an skt manifold. The study of skt structures has received notable
attention over recent years, see [7] for a survey and for an approach through
generalized geometry, see [3]. This has been motivated partly by the quest for
canonical choices of metric compatible with a given complex structure and partly
by the relevance of such geometries to super-symmetric theories from physics
[8, 13, 14, 15, 23].

Kähler manifolds are precisely the skt manifolds with torsion three-form
identically zero. However, most skt manifolds are non-Kähler. For example
compact semisimple Lie groups cannot be Kähler since they have second Betti
number equal to zero, but any even-dimensional compact Lie group can be endowed
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with the structure of an skt manifold, see Appendix 6. The skt geometry of
nilpotent Lie groups was studied by Fino, Parton & Salamon [6], who provided a
full classification in dimension 6 for left-invariant structures.

In this paper we classify left-invariant skt structures on four-dimensional
solvable Lie groups, showing that there are a number of new examples; see Ta-
ble 4.1, only the first two entries belong to the nilpotent classification. The greater
variety and complexity of this case is already seen from the classification results for
complex structures: Salamon [19] classified the 6-dimensional nilpotent Lie groups
with left-invariant integrable complex structure, whereas in the solvable case there
is a classification only in dimension four [1, 18, 21].

In dimension four, a Hermitian manifold (M, g, J) is an skt manifold
precisely when the associated Lee one-form θ = Jd∗ω is co-closed. When M
is compact, Gauduchon [9] showed that, up to homothety, there is a unique such
metric in each conformal class of Hermitian metrics. The situation for non-compact
manifolds is less clear. Our classification includes non-compact skt manifolds
that admit no compact quotient, and also shows that there are invariant complex
structures that admit no compatible invariant skt metric.

Acknowledgements We thank Martin Svensson for useful conversations and
gratefully acknowledge financial support from ctqm and geomaps. We appreciate
the useful comments from the referee.

2. Solvable Lie algebras

Since we are interested in invariant structures on a simply-connected Lie group G ,
it is sufficient to study the corresponding structures on the Lie algebra g . To
g one associates two series of ideals: the lower central series, which is given
by g1 = g′ = [g, g] , gk = [g, gk−1] and the derived series defined by g1 = g′ ,
gk = [gk−1, gk−1] . The Lie algebra is nilpotent (resp. solvable) if its lower (resp.
derived) series terminates after finitely many steps.

One has that gj ⊆ gj , so that nilpotent algebras are solvable. On the other
hand, consider a solvable Lie algebra g . Lie’s Theorem applied to the adjoint
representation of the complexification gC , gives a complex basis for gC with respect
to which each adX is upper triangular. One then has the well-known:

Lemma 2.1. A finite-dimensional Lie algebra g is solvable if and only if its
derived algebra g′ is nilpotent.

Remark 2.2. For g solvable of dimension four, g′ has dimension at most three
and so is one of a known list. Lemma 2.1 then implies that g′ is either Abelian
or the Heisenberg algebra h3 , which has basis elements E1, E2, E3 with only one
non-trivial Lie bracket [E1, E2] = E3 .

Identifying g with left-invariant vector fields on G , and g∗ with left-
invariant one-forms one has the relation

da(X, Y ) = −a([X,Y ])
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for all X, Y ∈ g and a ∈ g∗ . We may describe for example h3 by letting e1, e2, e3 be
the dual basis in g∗ to E1, E2, E3 and computing de1 = 0, de2 = 0, de3 = e2 ∧ e1 .
We will use the compact notation h3 = (0, 0, 21) to encode these relations.

Let Λ∗g∗ be the exterior algebra on g∗ and write I(A) for the ideal in Λ∗g∗

generated by a subset A . We interpret the condition for g to be solvable dually
via the elementary:

Lemma 2.3. A finite-dimensional Lie algebra g is solvable if and only if there
are maximal subspaces {0} = W0 < W1 < · · · < Wr = g∗ such that

dWi ⊆ I(Wi−1) (2.1)

for each i.

Concretely W1 = ker(d : g∗ → Λ2g∗) (cf. [19]) and Wi is defined inductively
to be the maximal subspace satisfying (2.1). We will sometimes find it useful to
choose a filtration {0} = V0 < V1 < · · · < Vn = g∗ with

dimR Vi = i and dVi ⊆ I(Vi−1) for each i. (2.2)

One way to construct such filtrations is to refine the spaces Wi , however in some
cases other choices may be possible and useful.

3. The SKT structural equations

A left-invariant almost Hermitian structure on G is determined by an inner prod-
uct g on the Lie algebra g and a linear endomorphism J of g such that J2 = −1
and g(JX, JY ) = g(X, Y ) for all X, Y ∈ g . The skt condition consists of the
requirement that J be integrable and that dJdω = 0 where ω(X,Y ) = g(JX, Y ).
In the differential algebra, integrability of J may be expressed as the condition
that dΛ1,0 ⊆ Λ2,0 + Λ1,1 . If g is four-dimensional and solvable, we now show that
there is one of two choices of possible good bases {a, Ja, b, Jb} for g∗ . We will
later determine the skt condition in each case.

Lemma 3.1. Let g be a solvable Lie algebra of dimension four. If (g, J) is an
integrable Hermitian structure on g then there is an orthonormal set {a, b} in g∗

such that {a, Ja, b, Jb} is a basis for g∗ and either

Complex case: g has structural equations

da = 0, d(Ja) = x1aJa, db = y1aJa + y2ab + y3aJb + z1bJa + z2JaJb,

d(Jb) = u1aJa + u2ab + u3aJb + v1bJa + v2JaJb + w1bJb,
(3.1)

or

Real case: g has structural equations

da = 0, d(Ja) = x1aJa + x2(ab + JaJb) + x3(aJb + bJa) + y2bJb,

db = z1aJa + z2ab + z3aJb,

d(Jb) = u1aJa + u2ab + u3aJb + v1bJa + v2bJb + w1JaJb.

(3.2)
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In the complex case, {a, Ja, b, Jb} may be chosen orthonormal and ω = aJa+bJb,
omitting ∧ signs. In the real case, ω = aJa + bJb + t(ab + JaJb) for some
t ∈ (−1, 1).

Proof. Let Vi be a refined filtration of g∗ as in (2.2). As dimR V2 = 2 we
have two possibilities for the complex subspace V2 ∩JV2 , either it is non-trivial so
V2 = JV2 or it is zero. If the filtration Vi can be chosen with V2 = JV2 we will
say we are in the complex case, otherwise we are in the real case.

For the complex case, JV2 = V2 and V1 ⊆ V2 ∩ ker d , so we may take an
orthonormal basis {a, Ja} of V2 with a ∈ V1 . We have da = 0 and solvability
implies d(Ja) ∈ I(a) ∩ Λ2 = RaJa ⊕ a ∧ V ⊥

2 . As J is integrable, we must have
d(Ja) ∈ Λ1,1 too, so d(Ja) = x1aJa .

In the real case, choose a ∈ V1 and b ∈ V2 ∩ V ⊥
1 of unit length. Then

da = 0 and the form of d(Ja) follows from the condition d(Ja) ∈ Λ1,1 . The
form of ω follows from t = g(b, Ja) which has absolute value less than 1 by the
Cauchy-Schwarz inequality.

The above equations are necessary but far from sufficient. For integrability
it remains to impose d(b − iJb)0,2 = 0, and to obtain a Lie algebra the Jacobi
identity must be satisfied. The latter is equivalent to the condition d2 = 0. Both
of these conditions are straightforward to compute. We list the results below. In
each case the first line comes from the integrability condition on J , in the last line
we provide the skt condition and the remaining equations are from d2 = 0.

Lemma 3.2. The structural equations of Lemma 3.1 give an skt structure on
a solvable Lie algebra if and only if the following quantities vanish:

Complex case:

y2 − z2 − u3 + v1, y3 − z1 + u2 − v2,

x1z1 − y3v1 − z2u2, (x1 − y2 + u3)z2 − y3(z1 + v2),

y2w1, y3w1, z1w1, z2w1,

(x1 + y2 − u3)v1 − (z1 + v2)u2 + u1w1,

x1v2 + y1w1 − y3v1 − z2u2,

(x1 + y2 + u3)(y2 + u3) + (z1 − v2)
2 − u1w1.

(3.3)

Real case:

z2 − u3 + v1, z3 + u2 − w1,

x2u2 − x3(z2 − v1)− y2u1, (−x1 + z2 + u3)y2 + x2
2 + x3(x3 − v2),

x2u3 − x3(w1 + z3) + y2z1, (x1 + z2 − u3)v1 − (x3 − v2)u1 − u2w1,

x2v2 − y2w1, x3z1 + z3v1, y2z1 + z3v2, x2z1 + z3w1, x2v1 − x3w1,

x2w1 + x3v1 − y2u1 + z2v2, x1w1 − x2u1 + z1v2 − z3v1,{
(x1 + z2 + u3)(−y2 + z2 + u3) + x2(x2 − z1 + tv2)

+
(
x3 − u1 + t(u2 − w1)

)
(x3 + v2) + w2

1

}
.

(3.4)

In some cases the skt structure reduces to Kähler. This occurs if and only
if the following additional conditions hold:
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Complex case:

y1 = 0 = u1, u3 = −y2, v2 = z1 (3.5)

Real case:

x2 − z1 = t(x1 + u3), x3 − u1 = −tu2, y2 − z2 − u3 = tx2,

w1 = t(x3 + v2).
(3.6)

4. The SKT classification

We are now ready to describe the simply-connected four-dimensional solvable real
Lie groups admitting invariant skt structures. The notation for and distinguishing
characteristics of all the solvable real Lie algebras in dimensions up to four are
summarised in Appendix 7 following the classification in [1].

Theorem 4.1. Let G be a simply-connected four-dimensional solvable real Lie
group. Then G admits a left-invariant skt structure if and only if its Lie algebra
g is listed in Table 4.1. Furthermore the left-invariant skt structures on G may
be explicitly determined and the dimension and number of connected components
of the moduli space up to homotheties are as in Table 4.1.

The table also indicates which groups admit invariant Kähler metrics, and
gives the dimensions of the Lie algebra cohomology.

g′ g dim π0 Kähler (b1 . . . b4)

{0} R4 0 1 X (4, 6, 4, 1)

R R× h3 0 1 × (3, 4, 3, 1)
R× r3,0 1 1 X (3, 3, 1, 0)

R2 R× r′3,0 1 1 X (2, 2, 2, 1)
affR × affR 2 1 X (2, 1, 0, 0)

R3 r′4,λ,0 (λ > 0) 1 2 X (1, 1, 1, 0)
r4,−1/2,−1/2 1 1 × (1, 0, 1, 1)
r′4,2λ,−λ (λ > 0) 1 2 × (1, 0, 1, 1)

h3 d4 2 1 × (1, 0, 1, 1)
d4,2 2 1 X (1, 1, 1, 0)
d′4,0 2 1 × (1, 0, 1, 1)
d4,1/2 1 1 X (1, 0, 0, 0)
d′4,λ (λ > 0) 1 1 X (1, 0, 0, 0)

Table 4.1: The four-dimensional solvable Lie algebras that admit an skt structure.
Of these, only R4 fails to admit an skt structure that is not Kähler. In the table,
dim and π0 are the dimension and number of components of the skt moduli space
modulo homotheties, bk denotes dim Hk(g).

The proof will occupy the rest of this section. Following Remark 2.2 we
analyse the possible solutions to the equations of §3 case by case after the type
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of g′ . We use the Lie algebra structure of g combined with the skt geometry
to determine a canonical choice of basis {a, Ja, b, Jb} with {a, b} orthonormal,
refining the approach of §3. When talking of the skt moduli space, we consider
only left-invariant structures on the given G . These are determined by (g, J)
on g . Two skt pairs (g1, J1) and (g2, J2) on g are considered equivalent if
there is a Lie algebra automorphism φ with φ∗g2 = g1 and φ ◦ J1 = J2 ◦ φ .
Equivalent structures have canonical bases with the same structure constants and
any remaining parameters in the structure equations are parameters for the SKT
moduli space.

4.1. Trivial derived algebra.

For g′ = {0} , g ∼= R4 is Abelian, d ≡ 0 so all structure constants are zero
and each almost Hermitian structure is Kähler. All these Kähler structures are
equivalent.

4.2. One-dimensional derived algebra.

For g′ = R , we have dim W1 = 3. It follows that we can choose a, Ja, b ∈
W1 and are thus in the case V2 = JV2 . The structural equations for g in this case
are

da = 0 = d(Ja) = db,

d(Jb) = u1aJa + u2(ab + JaJb) + u3(aJb + bJa) + w1bJb,

where the coefficients satisfy 0 = u2
2 + u2

3 − u1w1 and d(Jb) 6= 0. Rotating a, Ja
in V2 , we may ensure that u2 = 0 and u3 > 0, so u1w1 = u2

3 . Replacing b by −b ,
we obtain w1 > 0.

If w1 = 0 then u3 = 0 and we may take u1 > 0, after an appropriate choice
of b . Thus we have the algebra given by

da = 0 = d(Ja) = db, d(Jb) = u1aJa. (4.1)

Any other orthonormal Hermitian basis {a′, Ja′, b′, Jb′} with a′, Ja′ ∈ V2 , b′ ∈ W1

and u′1 > 0 has b′ = b , a′ = cos θ a + sin θ Ja and d(Jb′) = u′1 a′Ja′ = u1 aJa .
The parameter u1 > 0 thus describes inequivalent skt solutions. Scaling of the
metric by a homothety, g 7→ λ2g , λ > 0, is realised by a 7→ λa , b 7→ λb and
gives u1 7→ u1/λ . Thus the resulting skt metrics are all homothetic to each other.
These skt structures are not Kähler. Moreover we see that g is nilpotent and so
isomorphic to R× h3 .

If w1 > 0 then g is not nilpotent and so isomorphic to R × r3,0 . As
u1w1 = u2

3 > 0 we have the structural equations

da = 0 = d(Ja) = db, d(Jb) = u1aJa + u3(aJb + bJa) + w1bJb,

with u3 =
√

u1w1 , u1 > 0. This is Kähler only if u1 = 0. The non-Kähler solutions
have u1, u3, w1 > 0 and u2 = 0, which fixes the choice of basis {a, Ja, b, Jb} . Up
to homothety the only parameter is u1 . The moduli space is thus connected.

4.3. Two-dimensional derived algebra.

For g′ = R2 , we have dim W1 = 2, and we shall distinguish between the
cases W1 = JW1 and W1 ∩ JW1 = {0} where W1 = ker d is complex or real.
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Complex kernel We have W1 = JW1 and taking V2 = W1 thus have the
structural equations

da = 0 = d(Ja),

db = y1aJa + y3aJb + z2JaJb,

d(Jb) = u1aJa− y3ab + z2bJa

with no restrictions on the coefficients other than that db and d(Jb) are linearly
independent. Rotating a, Ja we may put z2 = 0, y3 > 0. Rotating b, Jb we can
then get u1 > 0, y1 = 0, reducing the structure to

da = 0 = d(Ja), db = y3aJb, d(Jb) = u1aJa− y3ab.

The solution is Kähler if and only if u1 = 0. For u1 > 0 the Hermitian basis is
unique. The skt moduli space is connected of dimension 1 modulo homotheties.
The Lie algebra g is isomorphic to R× r′3,0 .

Real kernel Here W1 ∩ JW1 = {0} and we again take V2 = W1 putting us in
the real case and giving the structural equations

da = 0 = db,

d(Ja) = x1aJa + x3(aJb + bJa) + y2bJb,

d(Jb) = u1aJa + u3(aJb + bJa) + v2bJb,

where the last two lines are linearly independent and the coefficients satisfy

(x1 − u3)y2 = (−v2 + x3)x3, u1(v2 − x3) = u3(u3 − x1),

u3x3 = u1y2, (u1 − x3)(v2 + x3) = (u3 + x1)(u3 − y2).
(4.2)

Lemma 4.2. We have z(g) = {0} and u(g) ∼= r3,−1 , so g ∼= affR × affR .

Proof. We compute the centre via z(g) = {X ∈ g : Xydα = 0 for all α ∈ g∗ } .
Writing X = pA + qB + p′JA + q′JB , where {A, B, JA, JB} is the dual basis to
{a, b, Ja, Jb} , one finds that X ∈ z(g) implies (p, q, 0)T and (0, p, q)T lie in the
one-dimensional null space of the rank two matrix

Q =

(
x1 x3 y2

u1 u3 v2

)
.

We conclude that p = 0 = q . The same calculation applies to p′ and q′ , so X = 0
and z(g) = {0} .

Writing a = ( x1
x3 ), b = ( x3

y2 ), c = ( u1
u3 ), d = ( u3

v2 ), equations (4.2) may be
interpreted geometrically as saying that b , c and a−d are mutually parallel and
that b − c is parallel to a + d . Imposing the constraint rank Q = 2, then leads
to the fact that a and d are linearly independent.

The map χ = Tr ad: g → R is given by χ(A) = −(x1 + u3), χ(B) =
−(x3 +v2), χ(JA) = 0 = χ(JB). This is zero only if a = −d , which by the above
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remark, is not possible. Thus g is not unimodular. Choosing a ∈ Im χ∗ 6 ker d ,
we have 0 = a(B) ∝ χ(B) and so v2 = −x3 .

Write a−d = 2kv with v = ( c
s ), c2+s2 = 1. Then (4.2) implies b, c ∈ 〈v〉 .

However a + d /∈ 〈v〉 but is parallel to b − c , so we find b = c = hv , for some
h ∈ R . This gives x3 = ks = hc , so we may write k = `c , h = `s for some
non-zero ` ∈ R . Changing the sign of v we may force ` > 0. We get

Q = `

(
c2 + 1 cs s2

cs s2 −cs

)
.

The last two columns specify the exterior derivative d on u(g)∗ ∼= g∗/ Im χ∗ . One
sees that u(g) ∼= r3,−1 as B acts with eigenvalues ±`s .

To summarise, we get a unique choice of basis {a, Ja, b, Jb} with {a, b}
orthonormal by taking a ∈ Im χ∗ , b ∈ ker d ∩ (Im χ∗)⊥ with x1 > 0 and v2 > 0.

We may describe the isomorphism of g with affR × affR explicitly by
introducing half-angles. Writing c = σ2 − τ 2 , s = 2στ , σ2 + τ 2 = 1, σ > 0
and using the orthogonal transformation a′ = σa + τb , b′ = −τa + σb , gives the
structural equations

d(Ja′) = 2`σ a′Ja′, d(Jb′) = −2`τ b′Jb′.

We have `, σ > 0 and, replacing b′ by −b′ if necessary, we may ensure that
τ < 0. The skt moduli space is thus parameterised by σ/τ ∈ (−1, 0), ` > 0
and the parameter t = g(b′, Ja′) ∈ (−1, 1) in the metric. Up to homotheties it is
connected of dimension 2. The solutions are Kähler precisely when t = 0.

Remark 4.3. If one considers the complex structure on affR×affR with de = 0,
d(Je) = eJe , df = 0, d(Jf) = fJf one sees that a metric with ω = eJe + fJf +
t(eJf + fJe) is skt (indeed Kähler) only if t = 0. Thus for a given complex
structure the skt condition depends on the choice of metric. This is in contrast
to the study of skt structures on six-dimensional nilmanifolds [6].

4.4. Three-dimensional Abelian derived algebra. For g′ = R3 , we have
dim W1 = 1, and moreover the assumption that g′ is Abelian implies that
d(Ja), db, d(Jb) ∈ I(a). So it is legitimate to assume that V2 = JV2 . The
structural equations are thus

da = 0, d(Ja) = x1aJa,

db = y1aJa + y2ab + y3aJb, d(Jb) = u1aJa− y3ab + y2aJb.

with coefficients satisfying the equation

0 = y2(2y2 + x1)

and non-degeneracy conditions x1 6= 0, y2
2 + y2

3 6= 0. One may choose a, b so that
x1 > 0, y1 > 0 and u1 = 0. This choice is unique if y1 > 0, for y1 = 0, b is an
arbitrary unit vector in V ⊥

2 . The solutions are then Kähler only if y1 and y2 are
zero.
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If y2 = 0, then y3 6= 0 and g ∼= r′4,|x1/y3|,0 . Thus on a given r′4,λ,0 ,
λ > 0, the skt moduli up to homothety has dimension 1, parameter y3 , with
two connected components determined by the sign of y3 , and contains the Kähler
solutions as y1 = 0.

For y2 6= 0, we have x1 = −2y2 . There are two cases. For y3 = 0, we have
g ∼= r4,−1/2,−1/2 and there is a one-dimensional connected family of solutions up to
homothety. For y3 6= 0, the Lie algebra g is r′4,2λ,−λ with λ = |y2/y3| . Again the
moduli is of dimension 1 up to homothety and has two connected components.

4.5. Three-dimensional non-Abelian derived algebra.

For g′ = h3 , as above we have dim W1 = 1. Let d′ denote the exterior
derivative on g′ . We distinguish between the complex and real cases V2 = JV2

and V2 ∩ JV2 = {0} .

Complex case We have a ∈ W1 = V1 , and Ja ∈ V2 = JV2 . Moreover it
is possible to take b ∈ V ⊥

2 with d′b = 0. The condition g′ ∼= h3 then forces
d′(Jb) ∈ 〈bJa〉 , giving the structural equations

da = 0, d(Ja) = x1aJa,

db = y1aJa + y2ab + y3aJb, d(Jb) = u1aJa + u2ab + u3aJb + v1bJa,

with x1 , y2
2 + y2

3 and v1 non-zero. Adjusting the choice of a , we may take x1 > 0.
The skt equations are now the vanishing of

y2 − u3 + v1, y3 + u2, y3v1,

v1(x1 + y2 − u3), (y2 + u3)(y2 + u3 + x1).

We deduce that y3 = 0 = u2 , v1 = x1 and u3 = y2 + x1 , leaving the condition
(2y2 + x1)(y2 + x1) = 0.

If y2 = −x1 , then the structural equations are

da = 0, d(Ja) = x1aJa,

db = y1aJa− x1ab, d(Jb) = u1aJa + x1bJa

subject only to x1 > 0. We see that g/z(g′) is isomorphic to r3,−1 , so g itself is
isomorphic to d4 . The only ambiguity in the basis is b 7→ −b , corresponding to
(y1, u1) 7→ (−y1,−u1). The skt moduli modulo homotheties is connected and has
dimension 2. There are no Kähler solutions.

For x1 = −2y2 , we have the structural equations

da = 0, d(Ja) = x1aJa,

db = y1aJa− 1
2
x1ab, d(Jb) = u1aJa + 1

2
x1aJb + x1bJa,

again with x1 > 0. The quotient g/z(g′) is isomorphic to r3,−1/2 , and g is thus
isomorphic to d4,2 . The solutions are Kähler only for y1 = 0 = u1 . There is the
same b 7→ −b ambiguity as above. Again the skt moduli space up to homotheties
is connected of dimension 2.
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Real case First note that dim W2 = 3, so we may choose b to be a unit vector
in W2 ∩ 〈a, Ja〉⊥ . This gives t = g(b, Ja) = 0. Now d′b = 0, where d′ is the
differential on g′ , as above. As h′3 = R , we have that d′(Ja) and d′(Jb) are linearly
dependent, but not both zero. In fact, if d′(Ja) = 0, we may take V2 = 〈a, Ja〉
and reduce to the complex case described above, so we assume instead d′(Ja) 6= 0.

Write (x2, x3, y2) = mp , (w1, v1, v2) = np for some unit vector p = (p, q, r),
m 6= 0. The structural equations of h3 , imply b ∧ d′x = 0 is zero for all x ∈ g′ ,
giving p = 0 and x2 = 0 = w1 . Now q2 + r2 = 1 and one may normalise so that
r > 0. Then

d′(Ja) = m bJc, d′(Jb) = n bJc,

where
c = qa + rb.

¿From this one sees d′(nJa − mJb) = 0 and so (nJa − mJb) ∧ d′x = 0 is zero
too. We conclude that qJa + rJb and nJa−mJb are parallel and write n = kq ,
m = −kr , for some k 6= 0.

The structural equations are now

da = 0, d(Ja) = x1aJa− kqr(aJb + bJa)− kr2 bJb,

db = z1aJa + z2ab + z3aJb,

d(Jb) = u1aJa + u2ab + u3aJb + kq2 bJa + kqr bJb,

with q2 + r2 = 1, r > 0, the forms d(Ja), db , d(Jb) non-zero, and subject to

u3 = z2 + kq, u2 = −z3, rz1 = qz3,

kq3 − qz2 − ru1 = 0, 2kq2 + x1 − z2 − u3 = 0,

q(q(x1 + z2 − u3)− 2ru1) = 0, (x1 + z2 + u3)(z2 + u3 + kr2) = 0.

(4.3)

Substituting the first three equations into the remaining four, one sees that
the first equation on the last line follows from the two on the middle line. There
are thus two cases corresponding to the two factors of the last equation.

The first case is z2 = −x1−u3 , which reduces to x1 = −kq2 = −u3 , z2 = 0,
u1 = kq3/r , giving the structural equations

da = 0, d(Ja) = −k cJc, db = z3r
−1 aJc, d(Jb) = −z3 ab + kqr−1 cJc,

with z3 6= 0. Now g̃∗ = g/z(g′)∗ ∼= 〈a, b, c〉 , with c′ = c/r , has structural equations
d̃a = 0, d̃b = z3ac′ , d̃c′ = −z3ab and so is isomorphic to r′3,0 . This gives g ∼= d′4,0 .

In this case the solutions are never Kähler. The skt moduli up to homo-
theties has dimension 2 and is connected. To see this note that a is specified up
to sign, which may be fixed by requiring k > 0. If q 6= 0, replacing b by ±b , we
may then ensure z3 > 0. This uniquely specifies b , and the remaining parameter
is given by q . For q = 0, we may rotate in the b, Jb plan, but this does not change
the solution.

The final case is z2 = −u3−kr2 . Here one finds x1 = −k(1+q2), z2 = −k/2,
u1 = −kq(2q2 + 1)/2r giving

da = 0, d(Ja) = −k(aJa + cJc), db = −1
2
k ab + z3r

−1 aJc,

d(Jb) = 1
2
kr−1 a(qJa− rJb)− z3 ab + kqr−1 cJc.

(4.4)
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This time computing the structural equations for g̃ = g/z(g′) gives d̃a = 0,
d̃b = −1

2
kab + z3ac′ , d̃c′ = −z3ab − 1

2
kac′ . If z3 6= 0, we have g̃ ∼= r′3,λ with

λ = |k/2z3| giving g ∼= d′4,λ . The analysis for the choices of a, b is as above. For
z3 = 0, we have g̃ ∼= r3,1 and g ∼= d4,1/2 . The basis analysis is similar to above:
k > 0 fixes a ; for q 6= 0, b is fixed by q > 0; for q = 0 we may rotate in the b, Jb
plane without changing the solution.

The solutions are Kähler precisely when q = 0. The skt moduli up to
homotheties has dimension 1 and is connected both for g = d′4,λ and for g = d4,1/2 .

This completes the proof of Theorem 4.1.

5. Consequences and concluding remarks

Let us first emphasise Remark 4.3 that for four-dimensional solvable groups the
skt condition depends explicitly on both the metric and the complex structure,
in contrast to the situation [6] for six-dimensional nilpotent groups.

Corollary 5.1. There are four-dimensional solvable complex Lie groups whose
family of compatible invariant Hermitian metrics contains both skt and non-skt
structures.

An alternative approach to our classification of invariant skt structures
in Theorem 4.1 would be to start with results for complex structures on four-
dimensional solvable Lie groups (Ovando [17, 18], Snow [21]) and then to impose
the skt condition. We have used this approach to cross check our results, but
also found that the lists given in [18] for Kähler forms and algebras with complex
structures have some errors and omissions. Some of these are corrected in [1], but
we wish to emphasise that the proof given in §4 is independent of those calculations.
In contrast to the compact case we see:

Corollary 5.2. The four-dimensional solvable Lie algebras g that admit in-
variant complex structures but no compatible invariant skt metric are: R× r3,1 ,
R × r′3,λ>0 , affC , r4,1 , r4,µ,λ , (µ = λ 6= −1

2
or µ 6 λ = 1), r′4,µ,λ (λ 6= 0,−µ/2),

d4,λ (λ 6= 1
2
, 2), h4 .

Here the given constraints on the parameters are in addition to the defining
constraints for the algebras.

On the other hand if G admits a discrete co-compact subgroup Γ then
M = Γ\G is a compact manifold (a solvmanifold). By Gauduchon’s Theorem [9]
any complex structure on M admits an skt metric (indeed one in any compatible
conformal class). If G has an invariant complex structure one may then construct
a compatible invariant skt structure on G via pull-back from M (cf. [5]). A
necessary condition for Γ to exist is that G be unimodular, which is equivalent to
b4(g) = 1, but in general this is not sufficient. The correct classification of complex
solvmanifolds in dimension four has recently been provided by Hasegawa [12]. In
our notation, one obtains

1. tori from g = R4 ,
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2. primary Kodaira surfaces from g = R× h3 ,
3. hyperelliptic surfaces from g = R× r′3,0 ,
4. Inoue surfaces of type S0 from g = r4,− 1

2
,− 1

2
and from g = r′4,2λ,−λ ,

5. Inoue surfaces of type S± from g = d4 and
6. secondary Kodaira surfaces from g = d′4,0 .

Comparing this list with our classification we conclude:

Corollary 5.3. Each unimodular solvable four-dimensional Lie group G with
invariant skt structure admits a compact quotient by a lattice.

Recall that an hkt structure is given by three complex structures I , J ,
K = IJ = −JI with common Hermitian metric such that IdωI = JdωJ = KdωK .
If (g, I) is already skt then (g, J) and (g,K) are necessarily skt and the hkt
structure is strong. However the list of hkt structures on solvable Lie groups is
known in dimension four from [2].

Corollary 5.4. The only four-dimensional solvable Lie algebra that is strong
hkt is R4 , which is hyperKähler. The algebra d4,1/2 admits both hkt and skt
structures; these structures are distinct. The remaining hkt algebras affC and
r4,1,1 do not admit invariant skt structures.

In the case of d4,1/2 one may use (4.4) to check that the hkt and skt
metrics are inequivalent.

Finally, let us make the following observation which follows from case-by-
case study of the algebras found in our skt classification Theorem 4.1. The
symmetry rank of an skt manifold (M, g, J) is the dimension of the maximal
Abelian group of isometries that preserve J , cf. [11, 4].

Corollary 5.5. Each invariant skt structure on a four-dimensional solvable
Lie group G has symmetry rank at least 2.

This motivates a future study of skt structures on Abelian principal bun-
dles over Riemann surfaces.

Appendix

6. SKT structures on compact Lie groups

The existence of skt structures on compact even-dimensional Lie groups, is briefly
indicated in the introduction to [6], and attributed to [22]. However, the result
is not explicit in the latter reference and neither specifies the complex structures.
We therefore give a proof for reference.

Proposition 6.1. Any even-dimensional compact Lie group G admits a left-
invariant skt structure. Moreover each left-invariant complex structure on G
admits a compatible invariant skt metric.
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Proof. Let tC be a Cartan subalgebra of gC . By [20], left-invariant complex
structures J on G are in one-to-one correspondence with pairs (Jt, P ), where Jt

is any complex structure on t and P ⊆ ∆ is a system of positive roots: one defines

g1,0 = t1,0 ⊕
⊕
α∈P

gC
α. (6.1)

Extend the negative of the Killing form on [g, g] to a J -compatible positive
definite inner product g on g . The associated Levi-Civita connection on G has
∇LC

X Y = 1
2
[X, Y ] , for X, Y ∈ g . Consider now the left-invariant connection given

by
∇XY = 0, for X, Y ∈ g . (6.2)

This connection preserves the metric g and the complex structure J and has
torsion T∇(X, Y ) = −[X, Y ] , so (T∇)[(X, Y, Z) = −g([X,Y ], Z), which is a closed
three-form. Thus (G, g, J) is an skt manifold.

7. Low-dimensional solvable Lie algebras

The four-dimensional solvable real Lie algebras are classified in [1]. In this section
we summarise the classification and provide the notation for §4.

The map χ : g → R , χ(x) = Tr(ad(x)), is a Lie algebra homomorphism.
Its kernel u(g), the unimodular kernel of g , is an ideal in g containing the derived
algebra g′ . The Lie algebra g is said to be unimodular if χ ≡ 0. Note that if G
admits a co-compact discrete subgroup then g is necessarily unimodular [16].

Our notation for the three-dimensional solvable Lie algebras will be as given
in Table 7.1. Note that r3,0

∼= R× affR .

affR (0, 21)
h3 (0, 0, 21)
r3 (0, 21 + 31, 31)
r3,λ (0, 21, λ31) |λ| 6 1
r′3,λ (0, λ21 + 31,−21 + λ31) λ > 0

Table 7.1: Non-Abelian solvable Lie algebras of dimension at most three that are
not of product type.

The four dimensional solvable Lie algebras are classified as follows.

Theorem 7.1 ([1]). Let g be a four dimensional solvable real Lie algebra. Then
g is isomorphic to one and only one of the following Lie algebras: R4 , affR×affR ,
R × h3 , R × r3 , R × r3,λ (|λ| 6 1), R × r′3,λ (λ > 0), or one of the algebras in
Table 7.2.

Among these the unimodular algebras are: R4 , R× h3 , R× r3,−1 , R× r′3,0 ,
n4 , r4,−1/2 , r4,µ,−1−µ (−1 < µ 6 −1

2
), r′4,µ,−µ/2 , d4 , d′4,0 .

In the Table 7.3 the four-dimensional solvable real Lie algebras are sorted
by their derived algebra g′ . In some cases it is easy to recognise which algebra is
at hand using the following observations:
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n4 (0, 0, 21, 31)
affC (0, 0, 31− 42, 41 + 32)
r4 (0, 21 + 31, 31 + 41, 41)
r4,λ (0, 21, λ31 + 41, λ41)
r4,µ,λ (0, 21, µ31, λ41) µ, λ ∈ R4

r′4,µ,λ (0, µ21, λ31 + 41,−31 + λ41) µ > 0
d4 (0, 21,−31, 32)
d4,λ (0, λ21, (1− λ)31, 41 + 32) λ > 1

2

d′4,λ (0, λ21 + 31,−21 + λ31, 2λ.41 + 32) λ > 0
h4 (0, 21 + 31, 31, 2.41 + 32)

Table 7.2: Four-dimensional solvable Lie algebras not of product type. The set
R4 consists of the (µ, λ) ∈ [−1, 1]2 with λ > µ and µ, λ 6= 0 and satisfying λ < 0
if µ = −1.

g′ z(g) g

{0} R4

R R× h3, R× r3,0

R2 {0} affR × affR, affC, d4,1

R R× r3, R× r3,λ6=0, R× r′3,λ, r4,0, n4

R3 r4, r4,λ6=0, r4,µ,λ, r′4,µ,λ

h3 d4, d4,λ 6=1, d′4,λ, h4

Table 7.3: The four-dimensional solvable Lie algebras sorted by g′ and, where
necessary, z(g). The conditions on the parameters are in addition to those from
Tables 7.1 and 7.2.

g′ = R: R× h3 is nilpotent, R× r3,0 is not.

g′ = R2, z(g) = {0}: affR × affR and d4,1 are completely solvable, affC is
not. Moreover these algebras have different unimodular kernels:

u(affR × affR) ∼= r3,−1, u(d4,1) ∼= h3, u(affC) ∼= r′3,0.

g′ = h3 : the algebras are distinguished by g̃ = g/z(g′) as follows:

d̃4
∼= r3,−1, d̃4,λ6=1

∼= r3,(1−λ)/λ, d̃′4,λ
∼= r′3,λ, h̃4

∼= r3.
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