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Abstract. For a complex semisimple Lie algebra g = h ⊕ v where h is
a quadratic subalgebra and h and v are orthogonal with respect to the Killing
form, we construct a large family of (g, h)-modules with non-zero cubic Dirac co-
homology. Our method uses analogue of the construction of generalized Enright-
Varadarajan modules for what we call (h, v)-split parabolic subalgebras. This
family of modules includes discrete series representations and Aq(λ)-modules.
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1. Introduction

Since the late 1990’s, following a conjecture stated by Vogan [17], there has been
lot of interest in Dirac cohomology of irreducible unitary (g, K)-modules [18].
Here g denotes a complex semisimple Lie algebra and K is a maximal compact
subgroup of a Lie group G with complexified Lie algebra g . The conjecture of
Vogan can be stated as follows. Let K̃ be the spin double cover of K and X
an irreducible (g, K)-module. If the Dirac cohomology of X contains a K̃ -type
Eµ of highest weight µ , then the infinitesimal character of X is µ + ρk , where
ρk denotes the half sum of compact positive roots and k the complexification of
the Lie algebra of K . This conjecture was proved by Huang and Pandžić [6].
Moreover there is a link between (g, K)-cohomology and Dirac cohomology: if a
module has (g, K)-cohomology then it has Dirac cohomology [6]. In view of this
link, it is a striking fact that we know the Dirac cohomology of irreducible unitary
(g, K)-modules with nonzero (g, K)-cohomology given the classication by Vogan
and Zuckerman of [18]. More precisely, let V be an irreducible unitary (g, K)-
module, of the same infinitesimal character as a finite dimensional representation
F . Writing F ? for the dual representation of F , then V ⊗F ? has nonzero (g, K)-
cohomology if, and only if, V is an Aq(λ)-module. Later, Salamanca-Riba has
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shown that any irreducible unitary Harish-Chandra module with strongly regular
infinitesimal characters is an Aq(λ)-module [15]. These modules Aq(λ) form an
important family of irreducible unitary representations, their existence was proved
by Parthasarathy in [14] (see Section 2 of [18] for another characterization of these
modules).

Recently, Kang, Huang and Pandžić computed Dirac cohomology of cer-
tain irreducible Harish-Chandra modules [5]. Also, combining results of Huang,
Pandžić and Renard [7] with results of Enright [2], one can deduce the Dirac co-
homology of unitary highest weight modules. In this context, it is interesting to
understand how the Dirac cohomologies of representations in a coherent family are
related. In [12] and [11], we proved results in this direction in the case of discrete
series representations and cohomologically induced representations.

The proof of Vogan’s conjecture was extended by Kostant to the cubic Dirac
operator, i.e., when K is replaced by some connected reductive subgroup H of
G (Theorem 4.1 in [8]). Therefore it is important to compute Dirac cohomology
in the general setting of cubic Dirac operators. The case of finite dimensional
modules is now well understood. Indeed, for such modules Dirac cohomology has
been computed by Kostant when G and H have equal (complex) rank (Theorem
5.1 in [8]). While, in the unequal rank case, Dirac cohomology has been computed,
independently, by Kang, Huang and Pandžić (Theorem 4.2 in [5]) and by Mehdi
and Zierau (Theorem 2.4 in [13]). It should be noted that the (cubic) Dirac
cohomology of a finite dimensional module reduces to the kernel of the (cubic)
Dirac operator associated with this module. However cubic Dirac cohomology for
infinite dimensional irreducible modules is less understood. Kostant proved the
existence of irreducible quotients of Verma modules with non zero cubic Dirac
cohomology (see [8]).

The purpose of this paper is twofold. First we construct a large family
of infinite dimensional irreducible (g, h)-modules Bp(λ) that includes (K -finite
vectors of) discrete series representations and the Aq(λ)-modules. Here p stands
for a parabolic subalgebra of g and h for the complexified Lie algebra of H . Then
we prove that some of these modules Bp(λ) have non zero cubic Dirac cohomology.
Our construction generalizes the method of Enright and Varadarajan to describe
discrete series representations [3]. Let us make some comments on the construction
of the modules Bp(λ). Enright and Varadarajan first constructed these modules
in the case where p is a θ -stable Borel subalgebra of g and H = K under the
equal rank condition, i.e., g and k have equal rank. Inspired by this construction
Parthasarathy constructed the modules Bp(λ) in the case where p is a θ -stable
parabolic subalgebra and H = K [14]. Around the same time, Wallach constructed
these modules in the case where p is a θ -stable Borel subalgebra of g under the
equal rank condition, i.e., G and H have equal (complex) rank [19]. In our
construction, we only assume that the restriction of the Killing form of g to h
remains non degenerate. In particular, the Lie algebra g splits as an orthogonal
direct sum h⊕v and the parabolic subalgebra p of g is assumed to be (h, v)-split.
We do not assume that g and h have equal rank.

This paper is organized as follows. Section 2 is devoted to fixing notation
and recalling some results to be used later on. In Section 3 we construct explic-
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itly the (h, v)-split parabolic subalgebras of g we will be dealing with. We also
define the various Borel and Cartan subalgebras of g and h we will need. Then,
in Section 4, we deduce some specific chains of inclusions of Verma modules for g
and h . Section 5 contains the construction of the (infinite dimensional) irreducible
generalized Enright-Varadarajan modules Bp(λ) along with their main properties.
Finally, Section 6 contains our main result: we prove that for some weights λ , the
modules Bp(λ) have non zero cubic Dirac cohomology. For the construction of the
modules Bp(λ), we have relied to a large extent on [3] and [14] in the sense that if
an argument needed at some stage of our paper is analogous to that in [3] or [14],
then we will simply refer to [3] or [14] instead of repeating them. Nevertheless,
for the convenience of the reader, we have included the main steps of the original
construction of Enright and Varadarajan [3].

2. Preliminaries

2.1. Lie algebras, roots and Weyl groups. Let g be a complex semisimple
Lie algebra and h a reductive subalgebra of g . Since g is semisimple, its Killing
form 〈 , 〉 is non degenerate. We make the following assumption on h .

Assumption 2.1. The restriction to h of the Killing form of g is non degen-
erate.

Such a subalgebra of g is called quadratic. It follows that the Lie algebra g splits
as the orthogonal sum

g = h⊕ q, q = h⊥

with [h, q] ⊂ q and the restriction 〈 , 〉q of 〈 , 〉 to q is non degenerate.

Given a Cartan subalgebra t of g , one defines the set ∆g of t-roots in g .
The choice of a system Pg of positive roots in ∆g fixes a Borel subalgebra b of g
that contains t :

b = t +
∑
α∈Pg

gα,

where gα denotes the root space in g associated with the root α . Conversely any
Borel subalgebra of g which contains t defines a positive system for ∆g . As usual,
the Killing form of g induces a non degenerate form on the vector dual t? of t
which we still denote by 〈 , 〉 . Write {Hα, Eα, E−α} for the triple associated with
a root α ∈ ∆g , i.e., Hα ∈ t and E±α ∈ g±α satisfy the bracket relation

[Eα, E−α] =
2

〈α , α〉
Hα. (2.2)

The R-linear span

tR =
∑
α∈∆g

RHα

is a real form of t and each root α defines a reflection

sα : t?R −→ t?R, µ 7→ µ− 2
〈µ , α〉
〈α , α〉

α
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which carries ∆g into itself. The reflections sα , α ∈ ∆g , generate a finite group
known as the Weyl group Wg associated with ∆g . An important feature of the
Weyl group is that it acts simply transitively on the set of positive systems for ∆g ,
i.e., if P and P ′ are two positive systems for ∆g , there exists a unique element w
in Wg such that wP = P ′ . Moreover if Πg denotes the set of simple roots in Pg ,
then it is known that the Weyl group Wg is actually generated by the reflections
sα with α ∈ Πg . In particular, a reduced expression for an element w in Wg is a
decomposition

w = sα1 ◦ sα2 ◦ · · · ◦ sαt
where the αj ’s are simple roots not necessarily distinct and t is the smallest integer
with this property. Recall that a linear form µ on t? which is real on tR is said
to be:

regular if 〈µ , α〉 6= 0 for all α ∈ ∆g ,

singular if 〈µ , α〉 = 0 for some α ∈ ∆g ,

(algebraically) integral if 2
〈µ , α〉
〈α , α〉

∈ Z for all α ∈ ∆g ,

Pg -dominant if 〈µ , α〉 ≥ 0 for all α ∈ Pg (i.e., for all α ∈ Πg ).
In particular, writing ρg for the half sum of positive roots: ρg = 1

2

∑
α∈Pg

α , one
easily checks that

2
〈ρg , α〉
〈α , α〉

= 1 ∀α ∈ Πg,

2
〈β , α〉
〈α , α〉

∈ Z ∀α ∈ ∆g, ∀β ∈ ∆g ∪ {0}. (2.3)

2.2. Verma modules. Let U(g) be the enveloping algebra of g . The positive
system Pg for ∆g gives rise to a decomposition

g = t⊕ n⊕ n− (2.4)

where n =
∑

α∈Pg
gα and n− =

∑
α∈Pg

g−α , and determines a Borel subalgebra

b = t ⊕ n in g . From Poincaré-Birkhoff-Witt theorem, it follows that U(g)
decomposes as

U(g) = U(n−)U(t)U(n).

Next any λ ∈ t? makes C into a left U(b)-module Cλ as follows:

Hz = λ(H)z ∀H ∈ t, ∀z ∈ C,

Xz = 0 ∀X ∈ n, ∀z ∈ C.

The algebra U(g) itself is a right U(b)-module and a left U(g)-module under
multiplication. The Verma module for g associated with λ and Pg is the left
U(g)-module Vg,Pg,λ defined as the quotient

Vg,Pg,λ = U(g)⊗U(b)Cλ =
(
U(g)⊗Cλ

)
/span{Xb⊗z−X⊗bz | X ∈ U(g), b ∈ U(b), z ∈ C}.

Let us recall some of the main features of Verma modules (see Chapter 7 of [1]).
The Verma module Vg,Pg,λ is a highest weight module under U(g) and is generated
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by the canonical vector vλ = 1 ⊗ 1 which is of weight λ . Moreover given λ and
µ in t? , there are only two possibilities, either Homg(Vg,Pg,µ, Vg,Pg,λ) = {0} or
Homg(Vg,Pg,µ, Vg,Pg,λ) is one dimensional, i.e., Vg,Pg,µ embeds in Vg,Pg,λ uniquely up
to a multiplicative scalar. In this case, we will write

Vg,Pg,µ ⊆ Vg,Pg,λ.

One can prove that (Lemme 7.6.13 in [1]):

if λ ∈ t?, α ∈ Pg and 2
〈λ , α〉
〈α , α〉

∈ N then Vg,Pg,sα(λ)−ρg ⊆ Vg,Pg,λ−ρg . (2.5)

For a complete description of all the inclusion relations between Verma modules
one needs to consider the so-called Bruhat order on Weyl groups. More precisely,
let w,w′ ∈ Wg and α ∈ Pg . We say that w

α← w′ if w = sαw
′ and `(w) = `(w′)+1,

where `(w) denotes the length of w :

`(w) = #{Pg ∩ (−wPg)} for w ∈ Wg.

We will simply write w ← w′ if there exists α ∈ Pg such that w
α← w′ . Note that

such a root α is necessarily unique. We shall say that w ≤ w′ if w = w′ or if
there exists a sequence (wi)0≤i≤t such that wi ∈ Wg , w0 = w , wt = w′ and

w ← w1 ← · · · ← wt−1 ← w′.

One can prove that if w,w′ ∈ Wg and λ ∈ t? is Pg -dominant, regular and
algebraically integral then (Théorème 7.6.23 in [1])

Vg,Pg,wλ−ρg ⊆ Vg,Pg,w′λ−ρg ⇐⇒ w ≤ w′. (2.6)

Another useful property of Verma modules is the following one. Let λ ∈ t? be
dominant integral with respect to Pg and mα = 2 〈λ ,α〉〈α ,α〉 for α ∈ ∆g . If A denotes

the largest proper U(g)-submodule of Vg,Pg,λ , we have (Lemme 7.2.5 in [1]):

A =
∑
α∈Π(g)

U(g)Emα+1
−α vλ =

∑
α∈Π(g)

U(n−)Emα+1
−α vλ

(2.7)

dim
(
Vg,Pg,λ/A

)
< +∞.

2.3. (g, F )-modules, (g, f)-modules and U(g)-modules of type Pg . Fol-
lowing [16], let us recall the definition of a (g, F )-module where F is a real Lie
group with Lie algebra f0 ⊂ g . We assume there exists an action of F on g given
by Lie algebra automorphisms

ψ : F −→ Aut(g)

which is compatible with the adjoint action of F , i.e

ψ(g)|f0 = Ad(g) ∀g ∈ F. (2.8)

A complex vector space V is a (g, F )-module if it is equipped with an action of
both g and F satisfying the following conditions:
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(i) the F -action on V is locally finite, i.e
∀v ∈ V, ∃V1 ⊂ V such that v ∈ V1, F · V1 ⊂ V1 and dim(V1) < +∞ ,

(ii) the differential of F −→ Aut(V ) is the restriction to f0 of g −→ End(V ),

(iii) g · (X · v) =
(
ψ(g)(X)

)
· (g · v) for all g ∈ F , X ∈ g , v ∈ V .

Note that (2.8) is automatically satisfied when F is a closed subgroup of a real Lie
group G with complexified Lie algebra g , by taking ψ to be the adjoint action of
G . In this case conditions (ii) and (iii) above are also satisfied. In the case where
the group F does not act on V , we simply say that V is a (g, f)-module if the
action of f on V is locally finite. Here f denotes the complexification of the Lie
algebra f0 of F .

A U(g)-module M is said to be a weight module for U(g) if M decomposes
into a direct sum of weight spaces with respect to some Cartan subalgebra of g , say
t . Such a M is said to be bounded above with respect to Pg if there are linear forms
ν1, · · · , νm in t? such that for any weight ν of M , there exists i such that νi − ν
is a sum of elements of Pg . A U(g)-module of type Pg is a weight module for U(g)
with finite dimensional weight spaces and which is bounded above with respect
to Pg . Among examples of U(g)-modules of type Pg are Verma modules Vg,Pg,ν

(with m = 1 and νi = ν) and finite sums of Verma modules. The following lemma
of Enright and Varadarajan contains an important property of U(g)-modules of
type Pg .

Lemma 2.9. (Lemma 7 in [3])
Let M and N be two U(g)-modules that are sums of U(g)-submodules of type
Pg . Write J(M) (resp. J(N)) for the set of highest weights of M (resp. N ) with
respect to Pg . Suppose N is a quotient of M . If ν ∈ J(N) is Pg -dominant then
ν ∈ J(M). If moreover v is a Pg -highest weight vector of weight ν in N , then
one can find a Pg -highest weight vector v′ in M of weight ν that lies above v .

Finally let β ∈ Pg and consider the triple {Hβ, Eβ, E−β} defined by (2.2)
which generates a Lie algebra mβ isomorphic to sl2 . A U(g)-module M is said to
be E−β -free if E−β acts injectively on M . A vector v ∈M is said to be mβ -finite
if the complex vector subspace {X ·v | X ∈ U(mβ)} is finite dimensional. A simple
argument shows that

a weight vector v is mβ-finite⇐⇒ Em
β ·v = Em

−β·v = 0 for some non negative integer m.

In particular, if M is E−β -free and v ∈ M is mβ -finite then v = 0. It should be
noted that if M is the sum of U(g)-modules of type Pg then one has

v is mβ-finite⇐⇒ Em
−β · v = 0 for some non negative integer m. (2.10)

Let us recall some useful facts on h-finite vectors in U(g)-module. First it is easy
to check that

if M is a U(g)-module then the subspace of h-finite vectors in M is a U(g)-module.
(2.11)
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Actually, in analogy with (g, K)-modules, we have (see [10]):

if h is semisimple, then an irreducible h-finite U(g)-module M is completely determined

by a non zero isotypical U(h)-submodule of M and the action of the centralizer Uh of h

in U(g) on it. (2.12)

2.4. Cubic Dirac cohomology. Suppose t̃ is a Cartan subalgebra of h such
that t = t̃ ⊕ a is a Cartan subalgebra of g with a ⊂ q . In the next section, we
will make our choice of t and t̃ precise. Let us recall the definition of the spin
representation which is built from q and the (non degenerate) restriction 〈 , 〉q to
q of the Killing form of g . First, we have

q = (n ∩ q)⊕ (q ∩ n−).

In particular, if V + denotes a maximal isotropic subspace in a then

V = (n ∩ q)⊕ V +

is a maximally isotropic subspace of q . Write so(q) for the Lie algebra of the
group of isometries of q with respect to 〈 , 〉q . If C`(q) denotes the Clifford algebra
of q , it is known that so(q) embeds in the subspace C`2(q) of degree two elements
in C`(q) (Lemma 6.2.2 in [4]). The composition of the following sequence of maps

h
ad−→ so(q) ↪→ C`2(q) ⊂ C`(q)

γ−→ End(ΛV ), (2.13)

where γ denotes the Clifford multiplication, defines the spin representation (sq, Sq)
of h .

In the Clifford algebra of q there is an element of particular interest. It is
the degree three element c defined by the Chevalley isomorphism as follows:(

q× q× q −→ C
)
−→ C`(q)(

(X, Y, Z) 7→ 〈[X, Y ] , Z〉
)
7→ c.

Now, given a g-module (π,W ), there is a first order differential operator (see [9])

DW : W ⊗ Sq −→ W ⊗ Sq

defined by

DW =
∑
j

〈Xj , Xj〉qπ(Xj)⊗ γ(Xj) + 1⊗ γ(c) (2.14)

known as the algebraic cubic Dirac operator associated with W , where {Xj} is an
orthonormal basis of q with 〈Xj , Xj〉q = ±δjk . We refer to c as the cubic term.
Note that when h is the set of fixed points of an involution of g then the cubic
term vanishes. The (cubic) Dirac cohomology of the g-module W is now defined
as the quotient (see [8])

H(W ) = Ker(DW )/Ker(DW ) ∩ Im(DW ). (2.15)
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3. Special parabolic subalgebras

In this section, we describe parabolic subalgebras of g that have some particular
properties. Let us first observe that if b is a complex Lie algebra, c , d and e
subalgebras of b such that b = c⊕ d⊕ e , where c⊕ d and c⊕ e are subalgebras,
d is a nilpotent ideal in c ⊕ d and e is a nilpotent ideal in c ⊕ e , then c ⊕ d and
c⊕ e are both parabolic subalgebras of b .

Proposition 3.1.
Let p be a parabolic subalgebra of g which is (h, q)-split, i.e., p = (p∩h)⊕(p∩q).
Then,

(i) p ∩ h is a parabolic subalgebra in h .
For any such p , one can choose a Levi decomposition p = l ⊕ u of p , a Borel
subalgebra b and a Cartan subalgebra t of g such that

(ii) p ∩ h = (l ∩ h)⊕ (u ∩ h) is a Levi decomposition of p ∩ h ,

(iii) b ∩ h is a Borel subalgebra of h ,

(iv) b is (h, q)-split, i.e., b = (b ∩ h)⊕ (b ∩ q),

(v) t ⊂ b ∩ l ,

(vi) t ∩ h ⊂ b ∩ l ∩ h is a Cartan subalgebra of h ,

(vii) t is (h, q)-split, i.e., t = (t ∩ h)⊕ (t ∩ q).

Proof. Suppose p is an (h, q)-split parabolic subalgebra of g . Choose a
compact real form gc of g such that h ∩ gc is a compact real form of h and
write τ : g −→ g for the corresponding conjugation of g :

τ : gc +
√
−1gc −→ gc +

√
−1gc, X +

√
−1Y 7→ X −

√
−1Y.

In particular, since the Killing form of g satisfies

〈X , τ(Y )〉 = 〈τ(X) , Y 〉 ∀X, Y ∈ g

the subspaces h and q are both τ -stable so that gc is (h, q)-split:

gc = (h ∩ gc)⊕ (q ∩ gc).

Since p is a parabolic subalgebra, it is a fact that

p = {X ∈ g | 〈X , Y 〉 = 0, ∀ Y ∈ u}

where u is the nilradical of p , and

u = {X ∈ p | 〈X , Y 〉 = 0, ∀ Y ∈ p}.

One deduces from this that

u = (u ∩ h)⊕ (u ∩ q) and u = (u ∩ h)⊕ (u ∩ q).

Therefore the intersection p∩gc , given by p∩gc = {X ∈ gc | 〈X , Y 〉 = 0 ∀ Y ∈ u} ,
is a (h, q)-split compact real form dc of a (h, q)-split Levi factor d of p . Thus

g = d⊕ u⊕ u = (d ∩ h)⊕ (u ∩ h)⊕ (u ∩ h)⊕ (d ∩ q)⊕ (u ∩ q)⊕ (u ∩ q).
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From the observation preceding the proposition, we deduce that

p ∩ h = (d ∩ h)⊕ (u ∩ h)

is a parabolic subalgebra of h . This proves (i) and (ii).

Before we turn to the proof of the remaining assertions, let us show how
one can construct (h, q)-split parabolic subalgebras of g satisfying properties (i)
and (ii). Let t̃0 be the subspace of τ -fixed vectors in a τ -stable Cartan subalgebra
t̃ of h , where τ is the complex conjugation of g described in the beginning of
the proof. Write ∆(h, t̃) for the set of roots of h with respect to t̃ . It is well
known that roots in ∆(h, t̃) take real values on (

√
−1)̃t0 . So pick an element T

of (
√
−1)̃t0 and define pT to be the sum of all eigenspaces of adg(T ) with non

negative eigenvalues

pT =
∑
λ≥0

{X ∈ g | [T,X] = λX}.

Since T ∈ h and [h, q] ⊂ q , we deduce that

pT = (pT ∩ h)⊕ (pT ∩ q) and pT ∩ h =
∑
λ≥0

{X ∈ h | [T,X] = λX}.

Moreover, if we let

lT = Zg(T ) = {X ∈ g | [T,X] = 0} and uT =
∑
λ>0

{X ∈ g | [T,X] = λX}

then
pT = lT ⊕ uT . (3.2)

Again, since T ∈ h and [h, q] ⊂ q , we have

lT = (lT ∩ h)⊕ (lT ∩ q) and uT = (uT ∩ h)⊕ (uT ∩ q).

In particular, pT ∩ h decomposes as

pT ∩ h = (lT ∩ h)⊕ (uT ∩ h) (3.3)

and we have

g = lT ⊕ uT ⊕ uT and h = (lT ∩ h)⊕ (uT ∩ h)⊕ (uT ∩ h),

where
uT = τ(uT ) =

∑
λ<0

{X ∈ g | [T,X] = λX}.

We deduce, from the observation preceding the proposition, that pT is a parabolic
subalgebra, which is (h, q)-split by construction, with Levi decomposition (3.2).
We also immediately obtain that pT ∩ h is a parabolic subalgebra in h with Levi
decomposition (3.3).

Finally we prove (iii)-(vii) at once. Suppose we are given a (h, q)-split
parabolic subalgebra p in g with (h, q)-split Levi decomposition p = l⊕ u so that
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p∩h is a parabolic subalgebra of h with Levi decomposition p∩h = (l∩h)⊕(u∩h).
Choose a compact real form gc of g such that h ∩ gc is a compact real form of h
and l ∩ gc is a (h, q)-split compact real form of l . Let c̃0 be a Cartan subalgebra
of l ∩ h such that

c̃0 = (c̃0 ∩ gc)⊕
√
−1(c̃0 ∩ gc)

and let b̃0 be a Borel subalgebra of l ∩ h with Levi decomposition

b̃0 = c̃0 ⊕ ũ0.

It is known that if Y ∈
√
−1(c̃0 ∩ gc) then ad(Y ) takes real values on l ∩ h . Let

η be the unique element in
√
−1(c̃0 ∩ gc) such that

Tr(ad(X)|ũ0) = 〈η ,X〉, ∀X ∈ c̃0.

By definition η is regular with respect to l ∩ h , therefore Zl∩h(η) = c̃0 which
implies that

Zl(η) = c̃0 ⊕Zl∩q(η).

Actually b̃0 is the sum of all eigenspaces of ad(η)|l∩h with non negative eigenvalues:

c̃0 = {X ∈ l ∩ h | [η,X] = 0} and b̃0 =
∑
λ≥0

{X ∈ l ∩ h | [η,X] = λX}.

On the other hand, the sum of all eigenspaces of ad(η)|l with non negative eigen-
values is a parabolic subalgebra p′l of l with Levi decomposition

p′l = a0 ⊕ a+

with
a0 = {X ∈ l | [η,X] = 0} and a+ =

∑
λ>0

{X ∈ l | [η,X] = λX},

i.e.
a+ = ũ0 ⊕ {positive eigenspaces for ad(η)|l∩q}.

Note that a0 is (h, q)-split and a0 ∩ h = c̃0 . Hence, the orthogonal complement
of c̃0 in a0 equals a0 ∩ q . Thus, any vector subspace of a0 containing c̃0 is
automatically (h, q)-split. Observe that Zl(c̃0) ⊂ Zl(η). In particular any Cartan
subalgebra of Zl(c̃0) is (h, q)-split. Let b̃1 be a Borel subalgebra in Zl(c̃0). Then
its nil-radical [b̃1, b̃1] , being orthogonal to its Cartan subalgebra which contains
c̃0 , is automatically contained in Zl(c̃0) ∩ q . As a consequence, we conclude that
b̃1 is (h, q)-split. Let b1 be a Borel subalgebra of Zl(η) extending b̃1 . Again, its
nil-radical [b1, b1] , being orthogonal to a Cartan subalgebra of b̃1 which contains
c̃0 , is automatically contained in Zl(η) ∩ q . So, if we let

b̃ = b1 ⊕ a+

then b̃ is a (h, q)-split Borel subalgebra of l , whose intersection with h is b̃0 .
Therefore

b = b̃⊕ u
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is a (h, q)-split Borel subalgebra of g contained in p . Moreover

b ∩ h = b̃0 ⊕ (u ∩ h)

is a Borel subalgebra of h contained in p∩ h . Finally if t̃1 is a Cartan subalgebra
of b̃1 then it is a (h, q)-split Cartan subalgebra of g contained in l . Moreover
t̃1 ∩ h = c̃0 is a Cartan subalgebra of h contained in l ∩ h .

4. Special chains of Verma modules

Following Proposition 3.1, we fix a (h, q)-split parabolic subalgebra p of g with
Levi decomposition g = l⊕ u , a (h, q)-split Borel subalgebra b of g and a (h, q)-
split Cartan subalgebra t of g contained in b ∩ l such that p ∩ h is a parabolic
subalgebra of h , b ∩ h a Borel subalgebra of h contained in p ∩ h and t ∩ h is a
Cartan subalgebra of h contained in b ∩ l ∩ h . Write ∆g (resp. ∆l , ∆u ) for the
set of t-roots in g (resp. l , u) and ∆h (resp. ∆l∩h , ∆u∩h ) for the set of t∩h-roots
in h (resp. l ∩ h , u ∩ h). The Borel subalgebra b of g defines a unique positive
system Pg (resp. Pl , Pu ) for ∆g (resp. ∆l , ∆u ) so that

Pg = Pl ∪ Pu.

Similarly the Borel subalgebra b∩h of h defines a unique positive system Ph (resp.
Pl∩h , Pu∩h ) for ∆h (resp. ∆l∩h , ∆u∩h ) so that

Ph = Pl∩h ∪ Pu∩h.

As in Section 2, write Wg (resp. Wh ) for the Weyl group associated with ∆g (resp.
∆h ), Πg (resp. Πh ) for the set of simple roots in Pg (resp. Ph ) and ρg (resp. ρh )
for the half sum of positive roots in ∆g (resp. ∆h ).
Since Pl ∪ (−Pu) and Pl∩h ∪ (−Pu∩h) are also positive systems for ∆g and ∆h

respectively, there exist unique elements w ∈ Wg and σ ∈ Wh such that

wPg = Pl ∪ (−Pu) and σPh = Pl∩h ∪ (−Pu∩h). (4.1)

Proposition 4.2.

Let λ ∈ t? be a Pg -dominant integral weight, i.e., 2
〈λ , α〉
〈α , α〉

∈ N for all α ∈ Pg .

Then the weight µ ∈ (t ∩ h)? defined by

σ−1
(
w(λ+ ρg)|t∩h − ρg|t∩h + ρh

)
− ρh

is Ph -dominant integral.

Proof. Integrality is obvious. Indeed since w(λ+ ρg)− ρg is wPg -integral, so
the restriction

(
w(λ+ ρg)− ρg

)
|t∩h to t ∩ h is σPh -integral, and µ is Ph -integral.

Next t ∩ h is a Cartan subalgebra of both h and l ∩ h . In particular, the Weyl
group Wl∩h associated with ∆(l ∩ h, t ∩ h) = Pl∩h ∪ (−Pl∩h) is contained in Wh :

Wl∩h ⊂ Wh.
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Let τ be the unique element of maximal length in Wl∩h , i.e.,

τ(Pl∩h) = −Pl∩h and τ(Pu∩h) = Pu∩h. (4.3)

Observing that

τ ◦ σ(Ph) = τ(Pl∩h ∪ (−Pu∩h)) = (−Pl∩h) ∪ (−Pu∩h) = −Ph

and writing

γ
def.
= τ ◦ σ,

one has γ2(Ph) = Ph , i.e., γ2 = e and therefore

σ−1 = γ ◦ τ.

We now proceed in four steps.

(i) γ ◦ τ
(
w(λ+ ρg)|t∩h

)
− ρh is −γ(Pu∩h)-dominant.

Indeed it suffices to show that γ ◦ τ
(
w(λ + ρg)|t∩h

)
is Ph -dominant regular since

one has the inclusion −γ(Pu∩h) ⊂ −γ(Ph) = Ph . Recall that w(λ+ρg) is dominant
regular integral with respect to Pl ∪ (−Pu), so w(λ + ρg)|t∩h is dominant regular
integral with respect to Pl∩h ∪ (−Pu∩h) and τ

(
w(λ + ρg)|t∩h

)
is dominant regular

integral with respect to (−Pl∩h)∪ (−Pu∩h) which implies that γ ◦ τ
(
w(λ+ ρg)|t∩h

)
is dominant regular integral with respect to γ(−Ph) = Ph .

(ii) γ ◦ τ
(
− ρg|t∩h + ρh

)
is −γ(Pu∩h)-dominant.

Indeed, by (2.3), ρg is dominant regular integral with respect to Pg , so ρg|t∩h
is dominant regular integral with respect to Ph , i.e., ρg|t∩h − ρh is dominant
integral with respect to Ph and −ρg|t∩h + ρh is dominant integral with respect
to −Ph which implies that γ ◦ τ

(
− ρg|t∩h + ρh

)
is dominant integral with respect

to −γ ◦ τ(Ph) ⊇ −γ ◦ τ(Pu∩h) = −γ(Pu∩h).

(iii) γ ◦ τ
(
w(λ+ ρg)|t∩h − ρg|t∩h

)
is −γ(Pl∩h)-dominant.

Indeed observe that Πl ⊆ Πg , where Πl denotes the set of simple roots in Pl .

In particular one has: 2
〈ρg , α〉
〈α , α〉

= 1 for all α ∈ Πl . Now w(λ + ρg) is dominant

regular integral with respect to wPg = Pl ∪ (−Pu), so w(λ + ρg) is dominant
regular integral with respect to Pl and w(λ + ρg) − ρg is dominant integral with
respect to Pl , i.e.,

(
w(λ + ρg) − ρg

)
|t∩h is dominant integral with respect to Pl∩h

which implies that γ ◦ τ
((
w(λ + ρg) − ρg

)
|t∩h
)

is dominant integral with respect
to γ ◦ τ(Pl∩h) = −γ(Pl∩h).

(iv) γ ◦ τ(ρh)− ρh is −γ(Pl∩h)-dominant.
Indeed we have

γ ◦ τ(ρh)− ρh = γ(τ(ρh) + ρh)

= γ(τ(ρl∩h + ρu∩h) + ρh)

= γ(−ρl∩h + ρu∩h + ρh)

= γ(2ρu∩h).

Since 2ρu∩h is the highest weight of the one dimensional representation Λtop(u∩h)
of l ∩ h , we obtain that

〈2ρu∩h , α〉 = 0 ∀ α ∈ Pl∩h
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i.e., γ ◦ τ(ρh)−ρh vanishes on γ ◦ τ(Pl∩h) = −γ(Pl∩h), and therefore it is dominant
with respect to −γ(Pl∩h).

Finally adding up (i) and (ii), we see that µ is −γ(Pu∩h)-dominant, while adding
(iii) and (iv) shows that µ is −γ(Pl∩h)-dominant, which implies that µ is dominant
with respect to

(
− γ(Pu∩h)

)
∪
(
− γ(Pl∩h)

)
= −γ(Pu∩h ∪ Pl∩h) = −γ(Ph) = Ph .

Now Proposition 4.2 may be restated as follows. If vw(λ+ρg)−ρg is the
canonical generator of the Verma module Vg,Pg,w(λ+ρg)−ρg for g , then the U(h)-
module generated by vw(λ+ρg)−ρg is isomorphic to the Verma module Vh,Ph,σ(µ+ρh)−ρh
for h . On the other hand, write

w = sαt ◦ · · · ◦ sα1 and σ = sβs ◦ · · · ◦ sβ1

for reduced expressions of w and σ , where αj ∈ Πg and βj ∈ Πh are not necessarily
distinct and define

wi = sαi ◦ · · · ◦ sα1 and σj = sβj ◦ · · · ◦ sβ1 for i = 1, · · · , t and j = 1, · · · , s,

with w0 = e and σ0 = e , so that

w
αt←− wt−1

αt−1←− · · · · · · α3←− w2
α2←− w1

α1←− e

σ
βs←− σs−1

βs−1←− · · · · · · β3←− σ2
β2←− σ1

β1←− e (4.4)

Then, from (2.5) and (2.6), we deduce the following chains of inclusions of Verma
modules

Vh,Ph,σ(µ+ρh)−ρh ⊆ Vh,Ph,σs−1(µ+ρh)−ρh ⊆ Vh,Ph,σs−2(µ+ρh)−ρh ⊆ · · · · · · ⊆ Vh,Ph,µ

p ∩ (4.5)

Vg,Pg,w(λ+ρg)−ρg ⊆ Vg,Pg,wt−1(λ+ρg)−ρg ⊆ Vg,Pg,wt−2(λ+ρg)−ρg ⊆ · · · · · · · · · · · · ⊆ Vg,Pg,λ

It should be noted that these two chains need not have the same length. However
there is a natural chain of g-modules of the same length as the above chain of
Verma modules for h which is compatible with this chain

Vh,Ph,σ(µ+ρh)−ρh ⊆ Vh,Ph,σs−1(µ+ρh)−ρh ⊆ · · · · · · · · · · · · · · ⊆ Vh,Ph,µ

p ∩ p ∩ p ∩
U(g)⊗U(h) Vh,Ph,σ(µ+ρh)−ρh ⊆ U(g)⊗U(h) Vh,Ph,σs−1(µ+ρh)−ρh ⊆ · · · ⊆ U(g)⊗U(h) Vh,Ph,µ

But the g-modules U(g)⊗U(h) Vh,Ph,σj(µ+ρh)−ρh , j = 0, 1, · · · , s , are not interesting
from the point of view of representation theory. One needs to construct a more
refined chain of g-modules compatible with the above chain of Verma modules for
h . To construct discrete series modules for a real semisimple Lie algebra, Enright
and Varadarajan devised a method in [3]. We follow a similar approach for our
needs. This will be the object of the next section.
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5. Generalized Enright-Varadarajan modules

The following technical lemma will be crucial for the construction of our modules.
It was proved by Enright and Varadarajan in the case where g and h have equal
rank, and the proof is exactly the same in the unequal rank case.

Lemma 5.1. (Lemma 4 in [3])
Let V0 = U(g)v0 be a cyclic U(g)-module with cyclic vector v0 and write U0 =
U(h)v0 . Let U = U(h)v be a cyclic U(h)-module with cyclic vector v . Suppose
that ψ : U0 −→ U is a U(h)-module injection. Then there exist a U(g)-module
V containing U and a U(g)-injection φ : V0 −→ V such that

(i) V = U(g)v .

(ii) φ|U0 = ψ .

Suppose further that U is a U(h)-module of type Ph and that both U and V0 are
E−β -free for all β ∈ Ph .

(iii) One can choose V such that it is E−β -free for all β ∈ Ph and is the sum of
U(h)-modules of type Ph .

Fix λ ∈ t? a Pg -dominant integral weight and write Vi for the Verma
module Vh,Ph,σs+1−i(µ+ρh)−ρh , with i = 1, · · · , s + 1 and where σj is defined by
(4.4). In particular the top chain in (4.5) reads as follows

V1 ⊆ V2 ⊆ · · · · · · ⊆ Vs ⊆ Vs+1.

Put W1 = Vg,Pg,w(λ+ρg)−ρg and apply Lemma 5.1 with U0 = V1 , V0 = W1 and
U = V2 , where v0 is the canonical generator of the Verma module W1 and v is the
canonical generator of the Verma module V2 . Then one obtains a U(g)-module
W2 and a U(g)-module injection so that:

V1 ⊆ V2

p ∩ p ∩
W1 ⊆ W2

Moreover W2 is Eβ -free for all β ∈ Ph and is the sum of U(h)-modules of type
Ph . By induction, we obtain a chain W1 ⊆ W2 ⊆ · · · ⊆ Ws+1 of U(g)-modules,
where each Wi is E−β -free for all β ∈ Ph and is the sum of U(h)-modules of type
Ph so that

V1 ⊆ V2 ⊆ · · · · · · · ⊆ Vs ⊆ Vs+1

p ∩ p ∩ p ∩ p ∩ (5.2)

W1 ⊆ W2 ⊆ · · · · · · ⊆ Ws ⊆ Ws+1

It should be noted that W1 = Vg,Pg,w(λ+ρg)−ρg is, by definition, a Verma module for
g , but in general none of the other Wi ’s is a Verma module for g . Next, observe
that

Wi+1/Wi is mβs+1−i-finite for i = 1, 2, · · · , s. (5.3)
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Indeed if vi denotes the canonical generator of the Verma module Vi , then

• Hβs+1−ivi+1 = ν(Hβs+1−i)vi+1 for some ν ∈ (t ∩ h)? ,

• Ek
βs+1−i

vi+1 = 0 for some positive integer k (since Vi is bounded above
with respect to Ph ), and

• Emi+1
−βs+1−i

vi+1 ∈ Wi by (2.5) with mi = 2 〈µi+1 ,βs+1−i〉
〈βs+1−i ,βs+1−i〉 and µi = σs+1−i(µ+

ρh)− ρh .

We shall now make an extra assumption on our parabolic subalgebra p =
l⊕ u . Let Xp be the element of t uniquely defined by

〈Xp , X〉 = Tr(ad(X)|u) ∀X ∈ t.

Assumption 5.4. The element Xp belongs to t ∩ h .

Note that this assumption is automatically satisfied when h is the set of fixed
points of an involution of g or when g and h have equal rank. Moreover it is easy
to check that

α(Xp) = 0 ∀α ∈ Ph ∩ (−τ(Ph)) and α(Xp) > 0 ∀α ∈ Ph ∩ (τ(Ph)),

since one has τ(Ph) = (−Pl∩h)∪ Pu∩h by (4.3) and u∩ h is the nilradical of p∩ h .

On the other hand, it is known that parabolic subalgebras of g containing
the Borel subalgebra b are parametrized by subsets of Πg . Write Π(p) for the
subset corresponding to our parabolic subalgebra p :

Π(p) = {Γ(p) ∩ (−Γ(p))} ∩ Πg

where Γ(p) = {α ∈ ∆g|gα ⊂ p} . For all α in Π(p), we have

Vg,Pg,sαw(λ+ρg)−ρg ⊆ W1 (5.5)

since
Pg ∩ (wPg) = Pl and Pg ∩ (−wPg) = Pu.

Indeed, since λ+ ρg is Pg -dominant integral regular, w(λ+ ρg) is wPg -dominant
integral regular. On the other hand, for all α ∈ Pl , we have

2
〈w(λ+ ρg)− ρg , α〉

〈α , α〉
= 2

〈w(λ+ ρg) , α〉
〈α , α〉

− 2
〈ρg , α〉
〈α , α〉

= 2
〈w(λ+ ρg) , α〉
〈α , α〉

− 1

∈ N since Pl ⊂ wPg

i.e., w(λ + ρg) − ρg is dominant integral with respect to Pg ∩ (wPg). Next, since
Π(p) ⊂ Pg ∩ (wPg) we see that

2
〈w(λ+ ρg) , α〉
〈α , α〉

∈ N \ {0} ∀α ∈ Π(p)

and (5.5) follows by (2.5). Therefore, we may define the following U(g)-submodule
of W1 :

W0 =
∑
α∈Π(p)

Vg,Pg,sαw(λ+ρg)−ρg . (5.6)
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In particular the following subspace of Ws+1 :

W1,0 = {v ∈ Ws+1 | v is mβs-finite modulo W0}
= {v ∈ Ws+1 | Em

−βsv ∈ W0 for some m ∈ N} by (2.10)

is a U(g)-submodule of Ws+1 by (2.11). We let

W1,1 = {v ∈ Ws+1 | v is mβs−1-finite modulo W1,0}
= {v ∈ Ws+1 | Em

−βs−1
v ∈ W1,0 for some m ∈ N}

and, by induction

W1,i = {v ∈ Ws+1 | v is mβs−i-finite modulo W1,i−1} for i = 1, · · · , s− 1.

One obtains the following chain of U(g)-submodules of Ws+1 :

W1,0 ⊆ W1,1 ⊆ · · · · · · ⊆ W1,s−1.

In a similar way, we define

Wi,0 = {v ∈ Ws+1 | v is mβs−i+1
-finite modulo Wi−1} for i = 1, · · · , s

and

Wi,j = {v ∈ Ws+1 | v is mβs−i+1−j -finite modulo Wi,j−1} for j = 1, · · · , s− i.

so that
Wi,0 ⊆ Wi,1 ⊆ · · · · · · ⊆ Wi,s−i for i = 1, · · · , s.

Finally we put
W i = Wi,s−i for i = 1, · · · , s

and we define the U(g)-submodule of Ws+1 :

W = Ws +W 1 +W 2 + · · ·+W s. (5.7)

This module depends on the reduced expression (4.4) of σ . Therefore we define
the following U(g)-submodule of Ws+1 :

W =
∑

reduced expressions of σ

W. (5.8)

We observe, from definitions, the following important property of the modules
Ws and W i which plays a critical role in the proof of our main result in Section 6.

For any Ph-dominant integral weight ν, if Vh,Ph,ν ⊆ Wi for some i then (5.9)

Vh,Ph,σ′(ν+ρh)−ρh ⊆ Vh,Ph,ν ∩W1, for σ′ ∈ Wh with `(σ′) < s.

The same property certainly also holds if Wi is replaced by Ws .

Next let WPg,λ be the following quotient

WPg,λ
def.
= Ws+1/W . (5.10)
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Lemma 5.11. The U(g)-module WPg,λ is non zero and h-finite.

Proof. By Lemma 4.6 of [14], we know that the canonical generator vs+1

of the Verma module Vs+1 does not belong to W . Moreover, by the inductive
construction (5.2) of the U(g)-modules Wi , we know that Ws+1 = U(g)vs+1 . This
proves that the quotient Ws+1/W is a non zero U(g)-module. On the other hand,
let vs+1 denote the image of vs+1 in Ws+1/W , so that U(g)vs+1 = Ws+1/W .
In particular, it suffices to prove that the non zero vector vs+1 is h-finite, i.e.,
dim(U(h)vs+1) < +∞ . For this, using (2.7), it is enough to prove that the

annihilator of vs+1 in U(h) contains Emα+1
−α for all α ∈ Πh , where mα = 2 〈µ ,α〉〈α ,α〉 ,

i.e.,

Emα+1
−α vs+1 ∈ W ∀α ∈ Πh. (5.12)

Suppose this is not true, and let α ∈ Πh be such that Emα+1
−α vs+1 6∈ W . Then

Emα+1
−α vs+1 is a Ph -highest weight vector in Ws+1 which is non zero modulo W

and with highest weight

µ− 2
〈µ , α〉
〈α , α〉

α− α = µ− 2
〈µ+ ρh , α〉
〈α , α〉

α = sα(µ+ ρh)− ρh.

We apply Lemma 4.6 of [14] to see that σsα(µ+ρh)−ρh is dominant integral with
respect to Ph∩(−τ(Ph)). Recall that τ is the unique element of maximal length in
the Weyl group Wl∩h defined by (4.3). Moreover there exists a reduced expression
σ = sψ1sψ2 · · · · · · sψm for σ such that ψj ∈ Πh and ψm = α (see Remark 4.12 of
[14]). Consider the U(g)-modules Ws and W associated, by (5.2) and (5.7), with
this reduced expression of σ . By definition we have Ws = U(g)Emα+1

−α vs+1 ⊂ W ⊂
W . It follows that Emα+1

−α vs+1 ∈ W which is a contradiction. This proves (5.12)
and implies the lemma.

Let τν be the finite dimensional U(h)-module of highest weight ν with
respect to Ph and write [WPg,λ : τν ] for the multiplicity of τν in WPg,λ . Let
J(WPg,λ) be the set of Ph -highest weights of WPg,λ .

Lemma 5.13. Let ν ∈ J(WPg,λ). Then one has the following assertions.

(i) [WPg,λ : τν ] cannot exceed the maximum number of linearly independant Ph -
highest weight vectors in Vg,Pg,w(λ+ρg)−ρg with highest weight σ(ν + ρh)− ρh .

(ii) The multiplicity [WPg,λ : τν ] is finite.

(iii) If ν 6= µ−
∑

β∈σ(Ph) cββ|t∩h , with cβ ∈ N , then [WPg,λ : τν ] = 0.

(iv) [WPg,λ : τµ] = 1.

(v) µ− α|t∩h 6∈ J(WPg,λ
) for all α ∈ Pu .

Proof. The proof of these assertions is essentially the same as that of Theorems
5.6 and 5.7 in [14].
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The decomposition (2.4) of g induces the following decomposition at the
level of the enveloping algebras

U(g) = U(t + n−)⊕ U(g)n. (5.14)

Write S(g) (resp. S(t), S(t+n−)) for the symmetric algebra of g (resp. t , t+n− )
and

R : S(g) −→ U(g)

for the symmetrization map. Let U t∩h = ZU(g)(t ∩ h) be the centralizer of t ∩ h in
U(g). Following (5.14), write any y ∈ U t∩h as y = y0 + y1 , with y0 ∈ U(t + n−)
and y1 ∈ U(g)n . Since the decomposition (5.14) is stable under ad(t) then both y0

and y1 belong to U t∩h . In particular R−1(y0) is annihilated by ad(t). Therefore,
from our assumption 5.4,

Pg = {α ∈ ∆g | α(Xp) > 0} and t = Ker(ad(Xp))

for some Xp ∈ t ∩ h , we deduce that R−1(y0) ∈ S(t) and y0 ∈ U(t). This defines
a linear map:

βPg : U t∩h −→ U(t), y 7→ y0

which turns out to be a homomorphism of algebras (Lemma 5.1 in [14]). Observe
that the centralizer Uh of h in U(g) is contained in U t∩h . As is customary, view
the elements of the symmetric algebra S(t) as polynomials on t? . Hence, for the
above choice of Pg and for each α ∈ t? , we obtain the following homomorphism

χPg,α : Uh −→ C, y 7→ βPg(y)(α). (5.15)

Finally, let A be the collection of all U(g)-submodules of WPg,λ that do not
contain the image vs+1 of the canonical vector vs+1 (see proof of Lemma 5.11).
Define

MPg,λ =
∑
M∈A

M

and
Bp(λ) = WPg,λ/MPg,λ. (5.16)

Combining (2.12) with Lemmas 5.11 and 5.13, we deduce the following theorem.

Theorem 5.17. Let g be a complex semisimple Lie algebra and h a quadratic
reductive subalgebra of g , with g = h ⊕ q where h and q are orthogonal with
respect to the Killing form of g . Let p be a (h, q)-split parabolic subalgebra of g
subject to Assumption 5.4. Fix a (h, q)-split Borel subalgebra b of g contained
in p and a (h, q)-split Cartan subalgebra t of g contained in b such that b ∩ h
is a Borel subalgebra of h and t ∩ h is a Cartan subalgebra of h (see Proposition
3.1). Denote by Pg (resp. Ph ) the positive system for t-roots (resp. t ∩ h-roots)
in g (resp. h) associated with b (resp. b ∩ h) and write ρg (resp. ρh ) for the
half sum of roots in Pg (resp. Ph ). Let w (resp. σ ) be the specific element of the
Weyl group associated with t-roots (resp. t ∩ h-roots) in g (resp. h) defined by
(4.1). Let λ ∈ t? be Pg -dominant integral and let µ ∈ (t∩h)? be the Ph -dominant
integral weight defined by σ−1

(
w(λ + ρg)|t∩h − ρg|t∩h + ρh

)
− ρh (see Proposition

4.2). Let Bp(λ) be the U(g)-module defined by (5.16). Then we have the following
assertions.
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(a) Bp(λ) is a non zero irreducible h-finite U(g)-module.

(b) The irreducible finite dimensional U(h)-module of Ph -highest weight µ oc-
curs with multiplicity one in Bp(λ).

(c) On the isotypical U(h)-submodule of Bp(λ) corresponding to µ , the central-
izer Uh of h in U(g) acts by scalars given by the homomorphism χPg,σ(µ+ρh)−ρh
given by (5.15).

(d) Bp(λ) is unique up to equivalence if h is semisimple.

(e) If ν is a Ph -dominant integral weight, the multiplicity of the irreducible finite
dimensional U(h)-module with highest weight ν cannot exceed the (finite)
maximum number of linearly independant Ph -highest weight vectors in the
Verma module Vg,Pg,w(λ+ρg)−ρg .

(f) If α ∈ Pu and µ−α|t∩h is Ph -dominant integral regular, then the irreducible
finite dimensional U(h)-module with highest weight µ−α|t∩h does not occur
in Bp(λ).

We shall refer to the modules Bp(λ) as the generalized Enright-Varadarajan
(g, h)-modules associated with the (h, q)-split parabolic subalgebra p and the
weight λ .

6. Dirac cohomology

We now turn to our main result.

Theorem 6.1. Let g be a complex semisimple Lie algebra and h a quadratic
reductive subalgebra of g , with g = h ⊕ q where h and q are orthogonal with
respect to the Killing form of g . Let p be a (h, q)-split parabolic subalgebra of g
subject to Assumption 5.4. Fix a (h, q)-split Borel subalgebra b of g contained
in p and a (h, q)-split Cartan subalgebra t of g contained in b (see Proposition
3.1). Denote by Pg the positive system for t-roots in g associated with b and
write ρg for the half sum of roots in Pg . Let w be the specific element of the
Weyl group associated with t-roots in g defined by (4.1). Let λ ∈ t? be a Pg -
dominant integral weight and let Bp(λ) be the corresponding generalized Enright-
Varadarajan (g, h)-module defined by (5.16). If the weight λ satisfies the condition
that w(λ+ρg)|t∩q = 0, then the cubic Dirac cohomology of Bp(λ) defined by (2.15)
is non zero:

H(Bp(λ)) 6= {0}.

Proof. Let Ph be the positive system defined by the Borel subalgebra b∩ h of
h and write ρh for the half sum of roots in Ph . Observe that, given our choice of
the positive systems Pg and Ph , the spin representation (sq, Sq) of h , defined by
(2.13), has a Ph -highest weight vector vq which is of weight ρq , where

ρg|t∩h = ρh + ρq. (6.2)
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Next recall that vi denotes the canonical generator of the Verma module Vi =
Vh,Ph,σs+1−i(µ+ρh)−ρh , with i = 1, · · · , s + 1 and σj is defined by (4.4). Let V ′1 be
the U(h)-module generated by the (non zero) vector v1 ⊗ vq :

V ′1 = U(h)(v1 ⊗ vq) ⊆ V1 ⊗ Sq.

Let µ ∈ (t ∩ h)? be the Ph -dominant integral weight defined by Proposition 4.2
and σ the specific element of the Weyl group associated with t ∩ h-roots in h
defined by (4.1). Then, with respect to the positive system Ph , the vector v1 ⊗ vq
has weight

σ(µ+ ρh)− ρh + ρq =
(
w(λ+ ρg)− ρg

)
|t∩h + ρq by Proposition 4.2

= w(λ+ ρg)|t∩h − ρh by (6.2).

Since w(λ + ρg) is w(Pg)-dominant regular integral then w(λ + ρg)|t∩h is σ(Ph)-
dominant regular integral. In particular, there exists a unique µ′ ∈ (t ∩ h)? which
is Ph -dominant integral such that

w(λ+ ρg)|t∩h − ρh = σ(µ′ + ρh)− ρh

and
V ′1 ' Vh,Ph,σ(µ′+ρh)−ρh .

Using the reduced expression (4.4) of σ , we set

V ′2
def.
= Vh,Ph,σs−1(µ′+ρh)−ρh

= {v ∈ V2 ⊗ Sq | v is mβs-finite mod. V ′1}

where mβs is the subalgebra of h isomorphic to sl2 generated by the triple
{Hβs , Eβs , E−βs} defined by (2.2). In a similar way one defines U(h)-modules
V ′i , for i = 3, · · · , s+ 1, so that one deduces, from (5.2), the following chains

V ′1 ⊆ V ′2 ⊆ · · · · · · · · · · · · · · ⊆ V ′s+1

p ∩ p ∩ p ∩
V1 ⊗ Sq ⊆ V2 ⊗ Sq ⊆ · · · · · · · · · ⊆ Vs+1 ⊗ Sq

p ∩ p ∩ p ∩
W1 ⊗ Sq ⊆ W2 ⊗ Sq ⊆ · · · · · · · · · ⊆ Ws+1 ⊗ Sq

For i ∈ {1, · · · , s + 1} , write v′i for a (non zero) highest weight vector in V ′i and
write Di for the cubic Dirac operator associated with Wi by (2.14):

Di : Wi ⊗ Sq → Wi ⊗ Sq.

Actually Di is the restriction of Ds+1 to Wi :

Di = Ds+1|Wi⊗Sq .

By a result of Kostant (Theorem 3.15 in [8]), combined with Proposition 4.2, we
know that

V ′1 ⊆ Ker(D1) (6.3)
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and

the image of v′1 in Ker(DW1/W0)/
(

Ker(DW1/W0)∩ Im(DW1/W0)
)

is non zero (6.4)

where W0 is the maximal proper submodule of W1 defined by (5.6). We claim
that

V ′i ⊆ Ker(Di) for i = 1, · · · , s+ 1. (6.5)

Indeed, for i = 1 this is just (6.3). Next, D2(V ′2) ⊆ W2 ⊗ Sq and, V ′2/V
′

1 being
mβs -finite, D2(V ′2)/D2(V ′1) is mβs -finite. But we have

D2(V ′1) = D1(V ′1) = {0} by (6.3)

which implies that D2(V ′2) is mβs -finite. On the other hand, we know, from Lemma
5.1, that W2 is E−β -free for all β ∈ Ph . So D2(V ′2) is E−β -free for all β ∈ Ph as
well. This implies that D2(V ′2) = {0} . Now (6.5) follows by induction on i .

Next recall the quotient WPg,λ = Ws+1/W defined by (5.10) and write

π : Ws+1 → WPg,λ

π′ = π × Id : Ws+1 ⊗ Sq −→ WPg,λ ⊗ Sq

for the corresponding quotient maps. In particular, we have

π′(V ′s+1) ⊆ π′(Ker(Ds+1)) ⊆ Ker(DWPg,λ
).

We claim that

π′(V ′s+1) has a nonzero image in the quotient Ker(DWPg,λ
)/
(

Ker(DWPg,λ
)∩Im(DWPg,λ

)
)
.

(6.6)
Indeed, suppose this is not true, i.e.,

π′(V ′s+1) maps to zero in the quotient Ker(DWPg,λ
)/
(

Ker(DWPg,λ
) ∩ Im(DWPg,λ

)
)
.

(6.7)
If p denotes the map

p : Ws+1 ⊗ Sq −→ WPg,λ ⊗ Sq, w 7→ π′(Ds+1(w))

then (6.7) implies that
π′(v′s+1) ∈ Im(p).

Now we apply Lemma 2.9 to find a Ph -highest weight vector ys+1 of Ws+1⊗Sq of
same weight as v′s+1 such that

p(ys+1) = π′(v′s+1)

which means that
π′(Ds+1(ys+1)− v′s+1) = 0. (6.8)

To proceed further we need a good understanding of the kernel of π′ . This is
where the property (5.9) has a decisive role to play. We note that the property
(5.9) remains valid if the modules appearing in all the statements there are tensored
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with a finite dimensional h-module. The kernel of π′ is W ⊗ Sq , which, by (5.7)
and (5.8), equals ∑

reduced expressions of σ

W ⊗ Sq

=
∑

reduced expressions of σ

Ws ⊗ Sq +W 1 ⊗ Sq +W 2 ⊗ Sq + · · ·+W s ⊗ Sq.

The last displayed sum is a quotient of the ‘abstract’ direct sum of the same
summands (via inclusion maps). We can therefore apply Lemma 2.9 to pull back
(Ds+1(ys+1)− v′s+1) to a Ph -highest weight vector

ϑ =
∑

ϑ(k)

in this abstract direct sum on the left side of this quotient map, where ϑ(k) denotes
a component of ϑ in a typical summand. Note that property (5.9) is applicable to
ϑ(k) . We will now show that each ϑ(k) has to be zero.

All the vectors ϑ, ϑ(k), ys+1, Ds+1(ys+1), v′s+1 have the same weight, namely,
µ′ ∈ (t∩h)? which is Ph -dominant integral. Recall that v′1 has weight σ(µ′+ρh)−
ρh ∈ (t ∩ h)? . In particular, by (2.5) and (4.4), one has

v′1 = E
m′1+1
−βs E

m′2+1
−βs−1

· · · · · ·Em′s+1
−β1 v′s+1

with

m′s−i+1 = 2
〈sβi−1

· · · sβ1(µ′ + ρh)− ρh , βi〉
〈βi , βi〉

for i = 1, · · · , s.

Define ϑs+1 = ϑ, ϑ
(k)
s+1 = ϑ(k) and put

ys−i+1 = E
m′s−i+1+1

−βi E
m′s−i+2+1

−βi−1
· · · · · ·Em′s+1

−β1 ys+1 for i = 1, · · · , s

ϑs−i+1 = E
m′s−i+1+1

−βi E
m′s−i+2+1

−βi−1
· · · · · ·Em′s+1

−β1 ϑs+1 for i = 1, · · · , s

ϑ
(k)
s−i+1 = E

m′s−i+1+1

−βi E
m′s−i+2+1

−βi−1
· · · · · ·Em′s+1

−β1 ϑ
(k)
s+1 for i = 1, · · · , s.

Thus,

D1(y1)− v′1 =
∑

ϑ
(k)
1 .

We get a chain of Verma modules for U(h):

U(h)ϑ
(k)
1 ⊆ U(h)ϑ

(k)
2 ⊆ · · · ⊆ U(h)ϑ

(k)
s+1.

Then, by induction on i and using (5.3) and (5.9), we deduce from (6.8) that

U(h)ϑ
(k)
1 ⊆ U (k) ⊆ (W1 ⊗ Sq) ∩ U(h)ϑ

(k)
s+1, (6.9)

where U (k) is a Verma module for U(h) with highest weight τ (k)(µ′ + ρh) − ρh
and τ (k) ∈ Wh with `(τ (k)) < s . The weight of ϑ

(k)
1 is σ(µ′ + ρh)− ρh . But µ′ is

Ph -dominant integral and `(σ) = s, `(τ (k)) < s . Hence,

σ(µ′ + ρh)− ρh = τ (k)(µ′ + ρh)− ρh −
∑
α∈Ph

a(k)
α α
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for some non negative integers a
(k)
α satisfying the condition( ∑
α∈Ph

a(k)
α α

)
6= 0.

But, looking at the weights of W1⊗Sq , the inclusion U (k)
(
' Vh,Ph,τ (k)(µ′+ρh)−ρh

)
⊆

W1 ⊗ Sq implies that

τ (k)(µ′ + ρh)− ρh = σ(µ′ + ρh)− ρh −
∑
α∈Ph

b(k)
α α,

for some non negative integers b
(k)
α . This shows that (6.9) is impossible. Therefore,

ϑ
(k)
1 = 0 = ϑ

(k)
s+1 and hence also ϑ = 0. In turn this implies that Ds+1(ys+1)−v′s+1 =

0, and D1(y1)− v′1 = 0. But this contradicts (6.4). Finally, this proves our claim
(6.6).

Observe that, since the chain of U(g)-modules (5.2) is equivariant with
respect to the center of U(g), the infinitesimal character of Bp(λ) is the same as
the infinitesimal character of the Verma module Vg,Pg,w(λ+ρg)−ρg . Kostant’s theorem
asserts that (Theorem 4.1 in [8]):
if Fν is an irreducible h-module with highest weight ν ∈ (t ∩ h)? then

Fν ⊂ H(Bp(λ))⇒ w′w(λ+ ρg) = ν̃ + ρh for some w′ ∈ Wg

where ν̃ + ρh denotes the extension of ν+ρh to t? whose restriction to t∩q equals
zero.
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Chandra modules, Transform. Groups 14 (2009), 163–173.
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