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Abstract. This paper answers to some questions that remained open for
some time in the community of mathematicians working on quasiconformal
mapping theory in subriemannian geometry. The first result presented here is
the characterisation of the rigidity of Carnot groups in the class of C2 contact
maps, obtained by extending Tanaka theory from its classical domain of C∞

contact vector fields to the pseudogroup of local C2 contact mappings.

The second result is a Liouville type theorem proved for all Carnot groups
other than R or R2 . The proof rests upon recent results of Capogna and Cowling
and classical results on prolonging the conformal Lie algebra. As an additional
goal, this article aims to provide a partial exposition on Tanaka theory and to
give an elementary proof of a key result due to Guillemin, Quillen and Sternberg
concerning complex characteristics.
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1. Introduction

A nilpotent Lie algebra n is said to admit an s-step stratification if it decomposes
as the direct sum of subspaces n = g−s ⊕ · · · ⊕ g−1 which satisfy the bracket
generating property gj−1 = [g−1, gj] , where j = −1, . . . ,−s + 1, and g−s is
contained in the centre z(n).

Let N denote the connected, simply connected nilpotent Lie group with
stratified Lie algebra n . The sub-bundle H ⊆ TN obtained by left translating
g−1 is called the horizontal bundle. Furthermore, if n is equipped with an inner
product 〈 , 〉 such that gi ⊥ gj for every i 6= j , then N is called Carnot group.

The inner product on n defines an inner product on the tangent space TpN
at every point p ∈ N by left translation. In particular, for X, Y ∈ TpN we have

〈X, Y 〉p = 〈(τp−1)∗(X), (τp−1)∗(Y )〉,

where τp−1 denotes left translation by p−1 ∈ N . A smooth curve γ is horizontal
if its tangent vectors lie in the horizontal bundle, and the length of a horizontal
curve is the integral of the lengths of its tangent vectors relative to the inner
product described above. The Carnot-Carathéodory distance or subriemannian
distance d(p, q) between points p and q , is defined as the infimum of the lengths
of all horizontal curves joining p and q . By a theorem of Chow [2], the bracket
generating property implies that Carnot groups are horizontally path connected
and so d is indeed a metric.

Local diffeomorphisms f of N whose differential f∗ preserves the horizontal
bundle are called contact maps. In our framework we shall always assume, unless
otherwise stated, that contact diffeomorphisms are C2 . The group N , or its
Lie algebra n , is said to be rigid if the space of contact maps between open
domains of N form a finite dimensional space. We shall call N nonrigid otherwise.
The simplest examples of contact maps are left translations and dilations. A
dilation by t of an element X ∈ n is defined by δt(X) =

∑s
k=1 t

kX−k , and the
corresponding map of N induced through the exponential defines dilation on N
which we also denote by δt . We also note that left translations are isometries
of the subriemannian metric and the dilations are homogeneous in the sense that
d(δt(p), δt(q)) = td(p, q).

The notion of rigidity makes sense with low regularity assumptions. For
example in the theory of quasiconformal mappings on Carnot groups, the notion
of contact map arises in the class of homeomorphisms with coordinate functions
in the horizontal Sobolev space HW 1,1

loc (N,R). However, the authors know no
example in which the group is rigid in the class of C∞ maps but nonrigid in
HW 1,1

loc (N,R). This situation provides significant motivation for studying rigidity
and has been remarked upon by Korányi in his MathSciNet review of [14], by
Heinonen in [9] and by Tyson in [26].

Our first main result is the following rigidity criterion for the pseudogroup
of C2 contact diffeomorphisms of N .
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Theorem 1.1. Let N be a real Carnot group with Lie algebra n, and denote
by h0(n) the subalgebra of the space of strata preserving derivations of n which
annihilate all strata except g−1 , then the following conditions are equivalent.

(i) N is nonrigid;

(ii) there exists ϕC in the complexification of h0(n) of rank 1;

(iii) there exists a vector XC in the complexification of g−1 such that adXC has
rank 0 or 1.

Some comments are in order. A suitably regular vector field U is said to
be a contact vector field if its local flow is a 1-parameter group of contact maps.
A contact vector field is characterised by the integrability condition [U,H] ⊆ H .

In [25] and [24], Tanaka developed an algebraic prolongation, which shows
that the space CAp consisting of germs of C∞ contact vector fields at a point p is
finite dimensional if and only if the prolongation is finite dimensional [25, Theorem
6.1, page 38]. Furthermore, Tanaka showed that finiteness of his prolongation is
equivalent to the finiteness of the usual prolongation of h0(n) [25, Corollary 2,
page 76]. Note here that the usual prolongation refers to the prolongation in the
sense of Singer and Sternberg [22].

In [8] and [23] it is shown that infiniteness of the usual prolongation is
equivalent to the complexified algebra containing rank 1 elements. Thus the
equivalence of (i) and (ii), at the level of C∞ contact vector fields, is a simple
consequence of [25], [22] and [8]. However a standard integration argument extends
the scope of this criterion to the pseudogroup of C2 contact diffeomorphisms.
In fact, we shall see that every C2 contact map is induced, up to composition
with some left translation, by an automorphism of the space CAe , where e is the
identity of N . Consequently, if CAe forms a finite dimensional vector space then
the automorphisms of CAe form a finite dimensional vector space thus implying
finite dimensionality of local contact mappings.

As a further contribution we establish the equivalence of (ii) and (iii), which
provides a rigidity test purely at the level of the Lie algebra n .

We remark that [22], [8], [7] and [23] all precede [25]. Furthermore Remark
2 on page 77 of [25] refers to [7], so we would argue that Tanaka was aware of (i) ⇔
(ii) in Theorem 1.1, at least at the infinitesimal level, although it is not explicitly
stated in [25].

It is worthwhile to observe that if we substitute conditions (ii) and (iii) with

(ii)R there exists ϕ in h0(n) of rank 0 or 1

(iii)R there exists a vector X ∈ g−1 such that adX has rank 1

then one still has that (ii)R ⇔ (iii)R and they both imply (i). This was observed
in [16] and [17].

A trivial case of nonrigidity occurs when n is degenerate in the following
sense. We say that n is degenerate if g−1 contains nontrivial degenerate elements,
that is elements X ∈ g−1 such that [X, g−1] = {0} . When n is degenerate, the
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corresponding Carnot group is always the direct product with Rn , where n is the
dimension of the degenerate space. It follows that the set of local contact mappings
contains the local diffeomorphisms of Rn implying that the corresponding Carnot
group is nonrigid.

The Tanaka prolongation theory can be used in order to characterise at
the infinitesimal level any space of diffeomorphisms whose differential satisfies
some kind of linear condition. A distinguished application is the generalisation of
the Liouville theorem for 1-quasiconformal maps in Carnot groups. The classical
result states that C4–conformal maps between domains of R3 are the restriction
of the action of some element of the group O(1, 4). The same result holds in Rn

when n > 3 (see, e.g., Nevanlinna [15]). A major advance in the theory was the
passage from smoothness assumptions to metric assumptions (see Gehring [6] and
Reshetnyak [21]): the conclusion of Liouville’s theorem holds for 1-quasiconformal
maps. When the ambient space is not Riemannian there are similar theorems.
Capogna and Cowling proved in [1] that 1-quasiconformal maps defined on open
subsets of a Carnot group are smooth and applied this to give some Liouville type
results. In particular, they observe that 1-quasiconformal maps between open
subsets of H-type groups whose Lie algebra has dimension larger than 2 form a
finite dimensional space. This follows by combining the smoothness result in [1]
and the work of Reimann [19], who established the corresponding infinitesimal
result (see also [4, 3, 20]). Our contribution is the following statement.

Theorem 1.2. The 1-quasiconformal maps between open domains of a Carnot
group N, other than R and R2 , form a finite dimensional space.

The proof relies on Theorem 1.1 in [1] that states that 1-quasiconformal
maps are C∞ and in fact conformal in a familiar sense. This allows us to consider
the problem at the infinitesimal level and to use the Tanaka criteria together with
well known results on the usual prolongation of the conformal algebra co(n).

The paper is organised as follows. The first section is dedicated to an
overview of the Singer–Sternberg prolongation versus the Tanaka prolongation,
and a detailed discussion on the result in [8] concerning the rank 1 condition.
In the second section we prove Theorem 1.1, and in the third section we prove
Theorem 1.2.

This work stems from discussions during the workshop on Geometry of
ODE’s and Vector Distributions held at the Stefan Banach International Mathe-
matical Centre in January 2009. In particular we thank B. Kruglikov, A. Čap, B.
Doubrov as well as M. Eastwood for pointing out the key results in [8] and [23]. We
are particularly grateful to B. Kruglikov for detailed discussions on [8]. We also
point out that in parallel to us, B. Doubrov and O. Radko (formerly O. Kuzmich)
also have a manuscript in preparation [5], which uses (i) ⇔ (ii) in Theorem 1.1 to
extend the results from [12] and discuss a number of illustrative examples including
a proof that all metabelian Lie algebras with centre of dimension 2 are nonrigid.
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2. Preliminaries

2.1. The Symmetric Algebra. Let V = Span{e1, . . . , en} be a vector space
over the field F = R or C , and let {ε1, . . . , εn} denote the corresponding dual basis
for V ∗ . For each integer k ≥ 0 let ⊗kV and ⊗kV ∗ denote k -th tensor power of
V and V ∗ respectively. Recall that the natural pairing 〈 , 〉 : ⊗kV ×⊗kV ∗ → F is
given by

〈v1 ⊗ · · · ⊗ vk, η1 ⊗ · · · ⊗ ηk〉 =
k∏
i=1

ηi(vi).

For each integer k ≥ 0 let Sk(V ∗) ⊂ ⊗kV ∗ denote the symmetric k -tensors.
An element K ∈ Sk(V ∗) has the form

K =
n∑

j1,...,jk=1

Kj1,...,jkεj1 ⊗ · · · ⊗ εjk

where the coefficients Kj1,...,jk ∈ F are symmetric with respect to permutation of
the indices j1, . . . , jk . The symmetric product of elements of V ∗ is defined linearly
by the symmetrisation operator, i.e.,

εj1 � · · · � εjk = Sym(εj1 ⊗ · · · ⊗ εjk) =
1

k!

∑
σ∈Sk

εjσ(1) ⊗ · · · ⊗ εjσ(k) ,

and the same definitions apply to elements of V . Note that K ∈ Sk(V ∗) if and
only if Sym(K) = K , moreover

K =
∑

1≤j1≤···≤jk

k!Kj1,...,jk εj1 � · · · � εjk .

The natural pairing restricted to Sk(V )⊗ Sk(V ∗)→ F gives

〈v1 � · · · � vk, η1 � · · · � ηk〉 =
1

k!

∑
σ

k∏
i=1

ησ(i)(vi) (1)

which is nondegenerate and thus identifies Sk(V )∗ with Sk(V ∗).

We obtain a symmetric multilinear map V k → F , also denoted by K , by
setting

K(v1, . . . , vk) = 〈v1 ⊗ · · · ⊗ vk, K〉

=
n∑

j1,...,jk=1

Kj1,...,jk〈v1 ⊗ · · · ⊗ vk, εj1 ⊗ · · · ⊗ εjk〉

=
n∑

j1,...,jk=1

Kj1,...,jkεj1(v1)εj2(v2) . . . εjk(vk). (2)

Since a symmetric multilinear map K : V k → F always has the form given by
(2), we conclude that the space of symmetric multilinear maps identifies with
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Sk(V ∗). Furthermore, restricting K to the diagonal of V k gives rise to a degree
k homogeneous polynomial on V which we also denote by K and we write

K(v) = K(v, . . . , v) = 〈K, vk〉.

Moreover, we can recover K(v1, . . . , vk) as the coefficient of λ1λ2 . . . λk in the ex-
pression K(λ1v1+· · ·+λkvk), and thus we have an identification of k -homogeneous
polynomials on V with Sk(V ∗). Similarly k -homogeneous polynomials on V ∗

identify with Sk(V ) where P ∈ Sk(V ) is identified with the polynomial P (η) =
〈P, ηk〉 . The passage from a polynomial to a symmetric multilinear map is called
polarisation.

The set of symmetric multilinear maps V k → V is isomorphic with V ⊗ Sk(V ∗).
An element L ∈ V ⊗ Sk(V ∗) has the form

L =
n∑
i=1

n∑
j1,...,jk=1

Lij1,...,jkei ⊗ εj1 ⊗ · · · ⊗ εjk (3)

where Lij1,...,jk is symmetric in the lower indices and the corresponding multilinear
map, also denoted by L , has the form

L(v1, . . . , vk) =
n∑
i=1

( n∑
j1,...,jk=1

Lij1,...,jkεj1(v1) . . . εjk(vk)
)
ei. (4)

Since every symmetric multilinear map V k → V has the form given by (4),
we conclude that this space of maps identifies with V ⊗ Sk(V ∗). Furthermore,
interpreting Sk(V ∗) as the set of k -homogeneous polynomials on V we can view
V ⊗ Sk(V ∗) as the space of k -homogeneous polynomial maps V → V . Obviously
the same holds for V ∗ ⊗ Sk(V ). Furthermore, we note that (3) can be written in
the form

L =
n∑

j2,...,jk=1

( n∑
i,j1=1

Lij1,...,jkei ⊗ εj1
)
⊗ εj2 ⊗ · · · ⊗ εjk ,

and the expression Aj2,...,jk =
∑n

i,j1=1 L
i
j1,...,jk

ei ⊗ εj1 is an element of gl(V ) iden-

tifying with the matrix
(
Lij1,...,jk

)
i,j1
∈ gl(Fn). Since Aj2,...,jk is symmetric under

permutation of the indices j2, . . . , jk , it follows that V ⊗ Sk(V ∗) embeds into
gl(Fn)⊗ Sk−1(V ∗).

The symmetric algebra is given by

S(V ∗) =
⊕
k≥0

Sk(V ∗) = F⊕ V ∗ ⊕ S2(V ∗)⊕ S3(V ∗)⊕ · · · , (5)

and elements T ∈ S(V ∗) have the form T =
∑

k T
k , where T k ∈ Sk(V ∗) and

T k = 0 for all but finitely many k ∈ N .
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2.2. Singer–Sternberg Prolongation. Let gl(V ) denote the Lie algebra of
linear endomorphisms of V , and let g(0) be a Lie subalgebra of gl(V ). Then for
each nonnegative integer k , the k -th Singer–Sternberg prolongation g(k) of g(0) is
the space

g(k) = g(0) ⊗ Sk(V ∗) ∩ V ⊗ Sk+1(V ∗).

Each T ∈ g(k) corresponds with a symmetric multilinear map T : V k+1 → V ,
such that for each k–tuple (v1, . . . , vk) ∈ V k , the endomorphism of V given by
vk+1 → T (v1, . . . , vk, vk+1) is an element of g(0) .

The Lie algebra g(0) is said to be of finite type if g(k) = {0} for some k ≥ 0.
Note that it follows that g(k+`) = {0} for all ` ≥ 0. In particular, we say that g(0)

is of type k if this is the smallest positive integer for which g(k) = 0. Naturally
g(0) is said to be of infinite type otherwise.

The following examples are significant for our purposes, and they can be
found in [10].

Example 2.1. Take g(0) = co(n), where

co(n) = {A ∈ gl(n,R) |A+ Atr = kI}.

We show that g(0) is of type 2 if n ≥ 3. The first prolongation g(1) is naturally
isomorphic to the dual space Rn∗ of Rn . Indeed, let T = (T ijk) be an element

of g(1) . Since the kernel of the homomorphism A ∈ co(n) → trace(A) ∈ R is
precisely o(n) = {A ∈ gl(n,R) |A+Atr = 0} , and since o(n) is of type 1 [10], the
linear mapping

T = (T ijk) ∈ g(1) → ξ =

(
1

n

∑
i

T iik

)
∈ Rn∗

is injective (the kernel is the first prolongation of o(n)). To see that this mapping
is also surjective, it is enough to observe that ξ = (ξk) is the image of T with
T ijk = δijξk + δikξj − δ

j
kξi . To prove that g(2) = 0, set now T = (T hijk) ∈ g(2) . For

each fixed k , T hijk may be considered as the components of an element in g(1) and
hence can be uniquely written

T hijk = δhi ξjk + δhj ξik − δijξhk.

Since T hijk must be symmetric in all lower indices, we have
∑

h T
h
hjk =

∑
h T

h
hkj ,

from which follows ξjk = ξkj . From
∑

h T
h
hjk =

∑
h T

h
jkh , we obtain (n − 2)ξjk =

−δjk
∑

h ξhh , whence (n−2)
∑

h ξhh = −n
∑

h ξhh and thus
∑

h ξhh = 0. Therefore
(n− 2)ξjk = −δjk

∑
h ξhh = 0, which implies ξjk = 0 if n ≥ 3.

Example 2.2. Suppose g(0) contains a linear endomorphism T of rank 1, then
T = v0 ⊗ ω where v0 ∈ V and ω ∈ V ∗ . For any positive integer k we can define
a symmetric (k + 1)-linear map Tk : V k+1 → V by setting

Tk(v1, . . . , vk, vk+1) = ω(v1) . . . ω(vk)ω(vk+1)v0

and the map
vk+1 → Tk(v1, . . . , vk, vk+1)
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is precisely ω(v1) . . . ω(vk)T and thus a nontrivial element of g(0) . Hence g(k) 6= {0}
and g(0) is of infinite type.

A subalgebra g(0) ⊂ gl(V ) is said to be elliptic if it does not contain any
linear endomorphism of rank 1, hence finite type subalgebras are elliptic.

2.3. Complex characteristics. The goal here is to give an exposition on a key
result of [8] which we state in an adapted form as Theorem 2.3 below. In fact in
[8] they prove a more general result pertaining to finiteness of the prolongation of a
principal symbol of a differential operators between complex vector bundles. They
then apply this to the particular case where the differential operator represents the
equation for the infinitesimal automorphisms of a flat G-structure. If g(0) is the
Lie algebra of G then the (k + 1)-th order term in the formal Taylor expansion
of such an infinitesimal automorphism is an element of g(k) and their finiteness
criteria thus apply to the Singer–Sternberg prolongations. For the nonexpert it
thus seems worth while to restate an prove their result in our specific setting using
only Lie and symmetric algebra.

We remark that result of [8] is often called Spencer’s criteria even though
[8] is the first published proof, furthermore the result was apparently known even
earlier by Serre and Matsushima.

Throughout this section we consider V to be a vector space over C . The
reason lies in the fact that the proof of Theorem 2.3 relies on Hilbert’s Nullstel-
lensatz.

Theorem 2.3 ( Guillemin-Quillen-Sternberg [8]). The subalgebra g(0) ⊂ gl(V )
is of infinite type if and only if g(0) contains elements of rank 1.

We begin by observing that

V ⊗ Sk+1(V ∗) ⊂ V ⊗ V ∗ ⊗ Sk(V ∗) = gl(V )⊗ Sk(V ∗)

which implies that

V ⊗ Sk+1(V ∗) = gl(V )⊗ Sk(V ∗) ∩ V ⊗ Sk+1(V ∗).

Let F (0) ⊆ gl(V ) be a fixed complementary subspace, then it follows that

V ⊗ Sk+1(V ∗) = g(k) ⊕ F (k)

where

F (k) = F (0) ⊗ Sk(V ∗) ∩ V ⊗ Sk+1(V ∗). (6)

Observe that if g(0) is of finite type, then for some k ≥ 1 we have

V ⊗ Sk+1(V ∗) = F (k),

and so every P ∗ ∈ Sj(V ∗), where j ≥ k , it follows that g(`) � P ∗ ⊆ F (l+j)

for all ` . Conversely, if there exists a k such that every P ∗ ∈ Sj(V ∗) satisfies
g(`) � P ∗ ⊆ F (l+j) for all ` and j ≥ k , then g(0) is of finite type.
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We reformulate these observations in the convenient language of exact
sequences and consider the problem in the dual. For every integer k ≥ −1 the
following sequence is exact

g(k)
ιk
↪→ V ⊗ Sk+1(V ∗)

πk−→ F (k).

Here we denoted by ιk and πk the canonical immersions and projections, and in
the case k = −1 we put g(−1) = V and F (−1) = {0} . The corresponding dual
sequences take the form

g(k)∗
ι∗k←− V ∗ ⊗ Sk+1(V )

π∗
k←↩ F (k)∗

where π∗k(F
(k)∗) is the set of all elements in V ∗ ⊗ Sk+1(V ) which vanish on g(k) ,

as one can see from standard algebra. The direct sum of the dual sequences gives
the sequence

M∗ ι∗←− V ∗ ⊗ S(V )
π∗

←↩ F ∗,

where M∗ =
⊕

k≥−1 g
(k)∗ , ι∗|V ∗⊗Sk+1(V ) = ι∗k , S(V ) =

⊕
k≥0 S

k(V ), π∗|F (k)∗ = π∗k
and F ∗ =

⊕
k≥−1 F

(k)∗ .

A nonzero element ξ ∈ V ∗ is called a characteristic if there exists a nonzero
w ∈ V such that w⊗ ξ ∈ g(0) . Equivalently, ξ is a characteristic if and only if the
map σξ : V → F (0) defined by σξ(·) = π0( · ⊗ ξ) fails to be injective. In fact, note
that w⊗ ξ is a rank 1 element of g(0) and conversely every such element defines a
characteristic. We also note that if ξ ∈ V ∗ is not characteristic then σξ is injective
and so necessarily dim(V ) ≤ dimF (0) or equivalently dim g(0) ≤ n2 − n . Hence if
dim g(0) > n2 − n then every element in V ∗ is characteristic and by Example 2.2
it follows that g(0) is of infinite type.

We say that an element P ∈ S(V ) annihilates M∗ if

V ∗ ⊗ S(V )� P ⊂ π∗(F ∗).

We observe that such a P cannot have constant term and in fact must lie in
S+(V ) = ⊕`>0S

`(V ) . The set I consisting of all annihilating P is an ideal in
the ring S(V ). Moreover, the following two lemmas show that if V denotes the
set consisting of all characteristics, then the set of common zeros of I is exactly
V ∪ {0} .

Lemma 2.4. If P ∈ I , then P (ξ) = 0 for all ξ ∈V .

Proof. Let P` be a homogeneous component of degree ` . Define a linear map
α∗P` : V ∗ → F (`−1)∗ as follows: the annihilating assumption implies εi ⊗ P` =

π∗`−1(Bi) for some Bi ∈ F (`−1)∗ , so that we set α∗P`(εi) = Bi . If v∗ =
∑

i aiεi then

π∗`−1 ◦ α∗P`(v
∗) = π∗`−1 ◦

∑
i

aiα
∗
P`

(εi) =
∑
i

aiπ
∗
`−1(Bi) =

∑
i

aiεi ⊗ P` = v∗ ⊗ P`,

thus it follows that π∗`−1 ◦ α∗P` is a right tensor multiplication by P` .
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If ξ is a characteristic then π`−1(w ⊗ ξ`) = 0 for some nonzero w ∈ V and
for all ` ≥ 1, whence

0 = 〈αP` ◦ π`−1(w ⊗ ξ`), w∗〉
= 〈w ⊗ ξ`, π∗`−1 ◦ α∗P`(w

∗)〉
= 〈w ⊗ ξ`, w∗ ⊗ P`〉
= 〈w,w∗〉〈ξ`, P`〉,

and so 〈ξ`, P`〉 = 0. Hence if P =
∑

`≥1 P` annihilates M∗ , then P (ξ) = 0 for all
characteristics ξ .

Now we assume ξ is not a characteristic so that σξ(·) = π0( · ⊗ ξ) defines
a linear injection of V into F (0) . Denote by Bξ : F (0) → V the obvious linear
extension to F (0) of the left inverse of σξ . For every η ∈ V ∗ set Pξ(η) = det(Bξ◦ση)
where ση(·) = π0( · ⊗ η). Then we have Pξ(ξ) = 1 and Pξ ∈ Sn(V ) where
n = dimV . Moreover, we prove the following.

Lemma 2.5. Pξ ∈ I

Proof. We begin by observing that the map η → Bξ ◦ ση is linear and so

Bξ ◦ ση =
∑
`

η(e`)Bξ ◦ σε` =
∑
`

η(e`)Q
`
ξ.

For every η ∈ V ∗ let Lη,ξ denote the classical adjoint or adjugate of Bξ ◦ση ,
that is Lη,ξ ◦Bξ ◦ση(v) = Pξ(η)v. If A(j|i) denotes the matrix obtained by deleting
the j -th row and i-th column of a matrix A , then we have the explicit formulae

[Lη,ξ]ij = (−1)i+j det(Bξ ◦ ση(j|i)) = (−1)i+j det
∑
`

η(e`)Q
`
ξ(j|i).

Since η(e1)
i1 . . . η(en)in = 〈eI , η|I|〉 where I = (i1, . . . , in) and |I| =

∑
` i` , it

follows that Lη,ξ has the form

Lη,ξ =
∑
|I|=n−1

〈eI , η|I|〉YI(ξ)

where the matrices YI(ξ) do not depend on η .
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If v ∈ V and ω ∈ V ∗ are arbitrary, then it follows that

〈v ⊗ ηn, ω ⊗ Pξ〉 = 〈Pξ(η)v, ω〉 = 〈Lη,ξ ◦Bξ ◦ ση(v) , ω〉

=
∑
|I|=n−1

〈eI , ηn−1〉
〈
YI(ξ) ◦Bξ ◦ ση(v) , ω

〉
=

∑
|I|=n−1

〈eI , ηn−1〉
〈
ση(v) , B∗ξ ◦ YI(ξ)∗(ω)

〉
=

∑
|I|=n−1

〈eI , ηn−1〉
〈
π0(v ⊗ η) , B∗ξ ◦ YI(ξ)∗(ω)

〉
=

∑
|I|=n−1

〈eI , ηn−1〉
〈
v ⊗ η , π∗0(B∗ξ ◦ YI(ξ)∗(ω))

〉
=

∑
|I|=n−1

〈
v ⊗ ηn , π∗0(B∗ξ ◦ YI(ξ)∗(ω))⊗ eI

〉
=
〈
v ⊗ ηn ,

∑
|I|=n−1

π∗0(B∗ξ ◦ YI(ξ)∗(ω))⊗ eI
〉
.

It now follows by polarisation that

ω ⊗ Pξ =
∑
|I|=n−1

π∗0(B∗ξ ◦ YI(ξ)∗(ω))⊗ eI

and, since B∗ξ ◦ YI(ξ)∗(ω) ∈ F (0)∗ , we conclude from (6) that

ω ⊗ Pξ ∈ π∗0(F (0)∗)⊗ Sn−1(V ) ∩ V ∗ ⊗ Sn(V ) = π∗n−1(F
(n−1)∗).

Finally, observing that

V ∗ ⊗ S(V )� P = V ∗ ⊗ P � S(V ),

it now follows that Pξ ∈ I , as desired.

We recall the Nullstellensatz. Let K be an algebraically closed field and let
K[x1, . . . , xn] be the ring of polynomials over K in n indeterminates x1, . . . , xn .
Given an ideal J ⊆ K[x1, . . . , xn] we define

V (J) = {y ∈ Kn | p(y) = 0 for all P ∈ J}.

Then we denote by I(V (J)) the ideal of all polynomials vanishing on V (J) and
we write

√
J = {r ∈ K[x1, . . . , xn] | rt ∈ J for some positive integer t}

for the radical of J . Hilbert’s Nullstellensatz states that I(V (J)) =
√
J for every

ideal J .
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We can now prove Theorem 2.3.

Proof. Let us suppose g(0) contains no elements of rank 1 which impliesV = ∅ .
Then we have V (I ) = {0} because V (I ) = V ∪ {0} , and the Nullstellensatz
implies that the radical of I is S+(V ). In particular, for t sufficiently large,
(ej)

t ∈ I for all j = 1, . . . ,m . For k large enough, every element of Sk+1(V )
is the sum of terms of the form Qj � (ej)

t where Qj ∈ Sk+1−t(V ), whence
V ∗ ⊗ Sk+1(V ) ⊆ π∗(F (k)∗). We then conclude that g(k)∗ = {0} and g(k) = {0}
thus proving that if g(0) does not contain elements of rank one, then it is of finite
type.

Conversely, Example 2.2 shows that if ξ is a characteristic and therefore
w ⊗ ξ is a rank one element of g(0) , we obtain w ⊗ ξ`+1 ∈ g(`) for every ` > 0,
whence g(0) is of infinite type.

2.4. Complex vs Real. In this section we will use the symbol y to denote
contraction, that is for a multilinear map L defined on V k , where V is a vector
space, and v1, . . . , vj ∈ V are given, we define v1y . . . vjyL to be the multilinear
map defined on V k−j given by

v1y . . . vjyL(vj+1, . . . , vk) = L(v1, . . . , vk).

Let V be a real n-dimensional vector space and let VC denote the com-
plexification of V . In this section we prove that g(0) ⊆ gl(V ) is of infinite type if

and only if the complexified algebra g
(0)
C = g(0) + ig(0) ⊆ gl(VC) is of infinite type.

Obviously this result implies that g(0) is of finite type if and only if g
(0)
C is of finite

type.

Assume T is a nonzero element of g(k) . Given a point
w = (u1 + iv1, . . . , uk+1 + ivk+1) ∈ V k+1

C , set

TC(w) =
∑
r∈I(w)

iµ(r)T (r)

where
I(w) = {r = (r1, . . . , rk+1) | rj ∈ {uj, vj} }

and µ(r) = the number of vj ’s in r . It follows that TC(w) ∈ VC ⊗ Sk+1(V ∗C ),
moreover

w1y . . . wkyTC(wk+1) =
∑
r∈I(w)

iµ(r)r1y . . . rkyT (rk+1) ∈ g(0) + ig(0)

and we conclude that TC ∈ g
(k)
C .

Assume T is a nonzero element of g
(k)
C . Furthermore, let ι : V ↪→ VC be

the inclusion given by ι(u) = u+ i0. We note that ReT and ImT are not complex
multilinear maps of V k+1

C , however ReT ◦ ι and ImT ◦ ι are real multilinear maps
of V . For any k -tuple w = (w1, . . . , wk) ∈ V k

C we also have

w1y . . . wkyReT = Re(w1y . . . wkyT ) ∈ g(0),
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and it follows that

u1y . . . ukyReT ◦ ι = Re(ι(u1)y . . . ι(uk)yT ) ∈ g(0),

with the same conclusions applying to ImT .

Furthermore, T is a complex linear combination of elements in the set

{T (ej1 , . . . , ejk+1
) | ei = ι(ei)},

and so T ◦ ι cannot be identically zero since T is not identically zero . Hence
it follows that at least one of the real multilinear maps ReT ◦ ι : V → V or
ImT ◦ ι : V → V defines a nonzero element of g(k) .

2.5. Tanaka prolongation of stratified nilpotent Lie algebras. Consider
a stratified nilpotent Lie algebra n = g−s ⊕ · · · ⊕ g−1 . The Tanaka prolongation
of n is the graded Lie algebra g(n) given by the direct sum g(n) =

⊕
k∈Z gk(n),

where gk(n) = {0} for k < −s , gk(n) = gk for −s ≤ k ≤ −1, and for each k ≥ 0,
gk(n) is inductively defined by

gk(n) =
{
ϕ ∈

⊕
p<0

gp+k(n)⊗ g∗p | ϕ([X, Y ]) = [ϕ(X), Y ] + [X,ϕ(Y )]
}
,

with g0(n) consisting of the strata preserving derivations of n . If ϕ ∈ gk(n), where
k ≥ 0, then the condition in the definition becomes the Jacobi identity upon setting
[ϕ,X] = ϕ(X) when X ∈ n . Furthermore, if ϕ ∈ gk(n) and ϕ′ ∈ g`(n), where
k, ` ≥ 0, then [ϕ, ϕ′] ∈ gk+`(n) is defined inductively according to the Jacobi
identity, that is

[ϕ, ϕ′](X) = [ϕ, [ϕ′, X]]− [ϕ′, [ϕ,X]].

In [25], Tanaka shows that g(n) determines the structure of the contact
vector fields on the group N with Lie algebra n . In particular, there is an
isomorphism between the set of contact vector fields and g(n) when the latter
is finite dimensional. Also, g(n) is finite dimensional if and only if gk(n) = {0}
for some k ≥ 0 since gk(n) = {0} implies gk+`(n) = {0} for all ` > 0. Hence
the rigidity of a stratified nilpotent Lie group can be determined by studying the
Tanaka prolongation of the Lie algebra.

For a given subalgebra g0 ⊂ g0(n), the prolongation of the pair (n, g0) is
defined as the graded subalgebra

Prol(n, g0) = n⊕
⊕
k≥0

gk ⊂ g(n),

where for each k ≥ 1, gk is inductively defined as the subspace of gk(n) satisfying
[gk, g−1] ⊆ gk−1 . The pair (n, g0) is said to be of finite type if gk = {0} for some
k , otherwise it is of infinite type and g(n) is infinite dimensional.

The type of (n, g0) is determined by the subalgebra

h =
⊕
k≥−1

hk ⊂ Prol(n, g0)
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where the subspaces hk ⊂ gk are defined as follows: let

n̂ = g−s ⊕ · · · ⊕ g−2

and for k ≥ −1 define

hk = {u ∈ gk | [u, n̂] = {0}} .

It follows that [hk, g−1] ⊂ hk−1 for k ≥ 0. The bracket generating property shows
that h0 identifies with a subalgebra h(0) ⊆ gl(g−1), moreover hk identifies with
h(k) and by [25, Corollary 2, page 76] (n, g0) is of infinite type if and only if h(0) is
of infinite type in the usual sense. We extend the notation by writing hk(n) and
h(k)(n) when g0 = g0(n), and summarise Tanaka’s result as follows.

Theorem 2.6. [25, Corollary 2, page 76] The space of C∞ contact vector fields
on N is finite dimensional if and only if h(0)(n) is of finite type in the usual sense.

2.6. Tanaka prolongation of contact vector fields. In this section we focus
on how the space of contact vector fields on N is related to g(n), the Tanaka
prolongation algebra through g0(n). We shall need this construction in Section 4,
where we investigate the conformal vector fields which form a subalgebra of the Lie
algebra of contact vector fields. In particular, we shall see that the Lie algebra of
conformal vector fields is isomorphic to the Tanaka prolongation through a suitable
subalgebra of g0(n).

The argument we propose here follows [28, Section 2]. Given a contact
vector field U on N , we shall define correspondingly a section of the bundle
N × g(n)→ N .

For each i = 1, . . . , s , let g−i = span {X−i,k | k = 1, . . . , di} where s is the
step of n and di is the dimension of g−i . The Lie algebra of left invariant fields is
then spanned by the vector fields X̃−i,k = (τp)∗(X−i,k). Using this basis we write
any two vector fields U and W as

U =
∑
i,k

u−i,kX̃−i,k W =
∑
j,l

w−j,lX̃−j,l.

We define the n–valued function AU as

AU(p) =
∑
i,k

u−i,k(p)X−i,k

and AW accordingly. We further refine the notation by setting

A−iU (p) =
∑
k

u−i,k(p)X−i,k

for each i = 1, . . . , s .

We then have the equation

A[U,W ](p) = [AU(p), AW (p)] + U(AW )(p)−W (AU)(p), (7)
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where for example U(AW )(p) =
∑

i,k(Uw−i,k)(p)X−i,k .

If U is a contact vector field, and W (p) = X̃−1(p) = (τp)∗(X−1) where
X−1 ∈ g−1 , then AX̃−1

(p) = X−1 and (7) becomes

A[U,X̃−1]
(p) = [AU(p), X−1]− X̃−1(AU)(p).

Since A[U,X̃−1]
(p) ∈ g−1 , the previous equality implies that

X̃−1(A
−m
U )(p) = [A−m+1

U (p), X−1] (8)

for all m > 1.

If Ỹ−1 is another horizontal left invariant vector field, then (8) implies

Ỹ−1X̃−1(A
−m
U ) = Ỹ−1[A

−m+1
U , X−1]

= Ỹ−1[
∑
k

u−m+1,kX−m+1,k, X−1]

=
∑
k

(Ỹ−1u−m+1,k)[X−m+1,k, X−1] (9)

= [
∑
k

(Ỹ−1u−m+1,k)X−m+1,k, X−1]

= [Ỹ−1(A
−m+1
U ), X−1]

= [[A−m+2
U , Y−1], X−1]

for all m > 2, moreover

[Ỹ−1, X̃−1](A
−m
U )(p) = [[A−m+2

U (p), Y−1], X−1]− [[A−m+2
U (p), X−1], Y−1]

= [A−m+2
U (p), [Y−1, X−1]]

for all m > 2. By the bracket generating property we conclude that

X̃−r(A
−m
U )(p) = [A−m+r

U (p), X−r], ∀X−r ∈ g−r s.t. r < m. (10)

Define now A0
U : N →

⊕
`<0 g`(n)⊗ g∗` by setting

A0
U(p)(X−r) = X̃−r(A

−r
U )(p), X−r ∈ g−r. (11)

For X−r ∈ g−r and Y−t ∈ g−t , we have

A0
U(p)([Y−t, X−r]) = [Ỹ−t, X̃−r](A

−(r+t)
U )(p)

= Ỹ−tX̃−r(A
−(r+t)
U )(p)− X̃−rỸ−t(A−(r+t)U )(p). (12)

Using (10) we have

Ỹ−tX̃−r(A
−(r+t)
U ) = Ỹ−t[A

−t
U , X−r]

= Ỹ−t[
∑
k

u−t,kX−t,k, X−r]

=
∑
k

(Ỹ−tu−t,k)[X−t,k, X−r]

= [
∑
k

(Ỹ−tu−t,k)X−t,k, X−r]

= [Ỹ−t(A
−t
U ), X−r],
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and so by (11) we have

Ỹ−tX̃−r(A
−(r+t)
U )(p) = [Ỹ−t(A

−t
U )(p), X−r] = [A0

U(p)(Y−t), X−r]. (13)

Similarly we also have X̃−rỸ−t(A
−(r+t)
U )(p) = [A0

U(p)(X−r), Y−t] which together
with (13) and (12) gives

A0
U(p)([Y−t, X−r]) = [A0

U(p)(Y−t), X−r] + [Y−t, A
0
U(p)(X−r)],

and we conclude that A0
U(p) is a strata preserving derivation of n . Furthermore,

the previous equality is simply the Jacobi identity when we define

[A0
U(p), X] := A0

U(p)(X)

for any X ∈ n . In summary A0
U(p) ∈ g0(n) where

g0(n) =
{
ϕ ∈

⊕
`<0

g`(n)⊗ g∗` | ϕ([Y,X]) = [ϕ(Y ), X]) + [Y, ϕ(X)])
}
.

Inductively on n = 0, 1, 2, . . . , we define AnU : N →
⊕

`<0 g`+n(n)⊗ g∗` by setting

AnU(p)(X−r) = X̃−r(A
−r+n
U )(p) when X−r ∈ g−r. (14)

We remark that the right hand side of (14) is defined relative to the basis
of g−r+n(n) induced by the chosen basis of n and the corresponding dual basis.
For example if X−1 ∈ g−1 and n = 1 then A1

U(p)(X−1) = X̃−1(A
0
U)(p). Now if

{dx−i,k} denotes the dual basis corresponding to {X−i,k} then

A0
U(p) =

∑
i,j,k,`

λi,j,k,`(p)X−i,k ⊗ dx−j,`

and
X̃−1(A

0
U)(p) =

∑
i,j,k,`

(X̃−1λi,j,k,`)(p)X−i,k ⊗ dx−j,`.

See Example 4.1 below for examples where n > 1.

A similar calculation to that which produced (13) shows that

Ỹ−tX̃−r(A
−(r+t)+n
U )(p) = [Ỹ−t(A

−t+n
U )(p), X−r] = [AnU(p)(Y−t), X−r]

and

X̃−rỸ−t(A
−(r+t)+n
U )(p) = [X̃−r(A

−r+n
U )(p), Y−t] = [AnU(p)(X−r), Y−t],

and it follows that

AnU(p)([Y−t, X−r]) = [Ỹ−t, X̃−r](A
−(r+t)+n
U )(p)

= Ỹ−tX̃−r(A
−(r+t)+n
U )(p)− X̃−rỸ−t(A−(r+t)+nU )(p)

= [AnU(p)(Y−t), X−r] + [Y−t, A
n
U(p)(X−r)],
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which becomes the Jacobi identity when we set

[AnU(p), X−r] := AnU(p)(X−r). (15)

In summary AnU(p) ∈ gn(n) where

gn(n) =
{
ϕ ∈

⊕
`<0

g`+n(n)⊗ g∗` | ϕ([Y,X]) = [ϕ(Y ), X]) + [Y, ϕ(X)])
}
.

For AmW (p) ∈ gm(n) and AnU(p) ∈ gn(n) we inductively define [AmW (p), AnU(p)] ∈
gm+n(n) according to the Jacobi identity, that is for every X ∈ n we set

[AmW (p), AnU(p)]( X) = [[AmW (p), AnU(p)], X]

= [AmW (p), [AnU(p), X]]− [AnU(p), [AmW (p), X]].

Thus for every contact vector field U we obtain a section of the bundle N×g(n)→
N , that is

∑
n≥−sA

n
U .

3. Proof of Theorem 1.1

(ii) ⇒ (iii). Let ϕC be an element of rank 1 in the complexification of h0(n).
Corresponding to ϕC there exists a basis B of nC , the complexification of n , and
vectors XC, YC ∈ B in the complexification of g−1 (not necessarily distinct), unique
up to a scale, such that ϕC(YC) = XC and ϕC(Z) = 0 for every ZC ∈ B \ {YC} .
For such a ZC we have

0 = ϕC[YC, ZC] = [ϕCYC, ZC] + [YC, ϕCZC] = [XC, ZC]

We conclude that rank adXC ≤ 1.

(iii) ⇒ (ii). If XC is in the complexification of g−1 and adXC has rank
zero, then n is degenerate. If we fix a basis of nC containing XC , it suffices to
take the derivation ϕC defined by ϕC(XC) = XC and zero for all other elements of
the basis. Suppose now that XC is such that rank adXC = 1. Following [16], it is
possible to complete XC to a basis B of nC , in such a way that there exists a unique
YC ∈ B for which [XC, YC] 6= 0, moreover YC is in the complexification of g−1 . It
follows directly that the endomorphism ϕC : nC → nC defined by ϕC(YC) = XC
and zero in B \ YC is an element of rank 1 in the complexification of h0(n).

(ii) ⇒ (i). Let ϕC be a rank 1 element in the complexification of h0(n).
Then it identifies with an element of rank 1 in the complexification of h(0)(n),

say h
(0)
C (n). By Theorem 2.3 it follows that h

(0)
C (n) is of infinite type, and by

the discussion in Theorem 2 h(0)(n) is also of infinite type. Then Theorem 2.6
implies that N admits infinite dimensional families of C∞ contact maps, thus N
is nonrigid.

(i) ⇒ (ii). We show that if condition (ii) fails, then N is rigid in the class of
C2 maps. First, observe that if there is no rank 1 element in the complexification
of h0(n), then arguing as above we conclude that h(0)(n) is of finite type, and so is
g(n), the Tanaka prolongation of n . It follows that the set CΓ(TU) consisting of
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C∞ contact vector fields on some open domain U ⊆ N , forms a finite dimensional
Lie algebra which is isomorphic to g(n).

If f is a C2 contact map of U and U ∈ CΓ(TU), then f∗U is a C1

contact vector field and thus satisfies the integrability condition [f∗U,H] ⊆ H .
We approximate f∗U by the convolution ψε ? f∗U , where ψε = ε−Qψ ◦ δ1/ε and ψ
is a smooth function with compact support contained in the unit ball B1(e). The
standard properties of convolution imply that ψε ? f∗U ∈ CΓ(TU) for all ε > 0
and so f∗U ∈ CΓ(TU).

By composing with suitable left translation if necessary, we can assume that
U contains the identity and that f(e) = e . If T : g(n) → CΓ(TU) denotes the
isomorphism given by Tanaka, then it follows that T −1 ◦ f∗ ◦ T ∈ Aut g(n) which
is a finite dimensional space. Thus a C2(U) contact map which fixes the identity
is the unique solution to an initial value problem of the form

f∗ = T ◦ α ◦ T −1, f(e) = e

for some α ∈ Aut g(n). Therefore we conclude that the C2 contact maps on U
are parametrised by a finite dimensional space.

4. The Liouville theorem

In this section we prove Theorem 1.2.

Let U ,V ⊂ N be open domains, and let f : U → V be a homeomorphism.
For p ∈ U and for small t ∈ R we define the distortion as

Hf (p, t) =
max{d(f(p), f(q))|d(p, q) = t}
min{d(f(p), f(q))|d(p, q) = t}

.

We say that f is K -quasiconformal if there exists a constant K ≥ 1 such that

lim sup
t→0

Hf (p, t) ≤ K

for all p ∈ U .

Quasiconformal maps are Pansu differentiable, see [18], which implies they
satisfy the contact conditions almost everywhere. We recall that the Pansu differ-
ential Df(p) is the automorphism of N defined as

Df(p) q = lim
t→0

δ−1t ◦ τ−1f(p) ◦ f ◦ τp ◦ δt(q),

where p, q ∈ N . The Lie derivative of Df(p), say df(p), is a grading-preserving
automorphism of n . Suitably regular contact maps are Pansu differentiable. In
particular C1 contact maps are Pansu differentiable everywhere, see [27], and more
generally almost everywhere Pansu differentiable when locally Lipschitz, see [13].

In [1], the authors prove that 1-quasiconformal maps are C∞ and char-
acterised by the conditions of being locally quasiconformal and Df(p) coinciding
with a similarity, i.e. a product of a dilation and an isometry of the subrieman-
nian metric. This implies in particular that df(p) is a similarity when restricted
to g−1 [1, Lemma 5.2].
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The exponential coordinate x−i,k(p) of p is defined so that

p = exp(
∑
−i,k

x−i,k(p)X−i,k)

and for a mapping f we write f−i,k(p) = x−i,k(f(p)). The dual one forms
which correspond with the left invariant vector fields X̃−i,k are then given by
θ−i,k(p) = (τ−1p )∗dx−i,k . The tangent mapping f∗ then has the block matrix

form Mf = (Mi,j) where Mi,j = (θ−i,k(f∗X̃−j,`)). Furthermore, if f is Pansu
differentiable at p , then Mi,j(p) = 0 when j < i , moreover M1,1 = (X̃−1,`f−1,k)
since θ−1,k(p) = dx−1,k .

Since f is Pansu differentiable at p , [1, Lemma 3.4] implies that the
restriction of df(p) to g−1 in exponential coordinates is M1,1(p). Thus for all
X, Y ∈ g−1 we have

〈M1,1(p)(X),M1,1(p)(Y )〉 = λ(p)〈X, Y 〉 (16)

and so for every p ∈ U , M1,1(p) is given by an element in the conformal group

CO(n) = {M ∈ GL(n,R) |M trM = λI},

where n = dim g−1 . In view of this fact we shall also refer to 1-quasiconformal
maps as conformal maps.

Let f t be a flow of conformal maps induced by a C∞ contact vector field
U =

∑
i,k u−i,kX̃−i,k , and let U be an open set such that f t is defined on U for all

t sufficiently small. By definition

u−i,k(p) = θ−i,k(p)(
d

dt
f t(p)|t=0)

and

u−1,k(p) = dx−1,k(
d

dt
f t(p)|t=0) =

d

dt
x−1,k(f

t(p))|t=0 =
d

dt
f t−1,k(p)|t=0.

Now if M t
1,1 = (X̃−1,`f

t
−1,k), then by Schwarz’s theorem, we have

d

dt
M t

1,1(p)|t=0 = (X̃−1,`
d

dt
f t−1,k(p)|t=0) = (X̃−1,` u

t
−1,k(p)),

and we conclude that if X ∈ g−1 then

d

dt
M t

1,1(p)|t=0X = X̃A−1U (p) = A0
U(p)(X).

From (16) we have

d

dt
M t

1,1(p)
trM t

1,1(p)
∣∣∣
t=0

=
d

dt
λt(p)|t=0I = λ′(p)I

and so if Ā0
U(p) denotes the restriction of A0

U(p) of g−1 then

Ā0
U(p)tr + Ā0

U(p) = λ′(p)I,



806 Ottazzi and Warhurst

and we conclude that Ā0
U(p) coincides with an element of

co(n) = {A ∈ gl(n,R) |Atr + A = λ′I for some λ′ ∈ R},

where n = dim g−1 .

It follows from [25, Lemma 6.3] and [28, §2] that the Lie algebra of conformal
vector fields is determined by the Tanaka prolongation on n through g0 = {ϕ ∈
g0(n) : ϕ ∈ co(n)} . We illustrate with the case of the three dimensional Heisenberg
group.

Example 4.1. It is well known [11] that the 2n + 1–dimensional Heisenberg
group is nonrigid with respect to its contact structure, whereas the conformal
maps coincide with the action of some element in the Lie group SU(1, n). We
retrieve the result for the conformal maps at the infinitesimal level by computing
the Tanaka prolongation of the conformal vector fields. The notation is that of
Section 2.

Assume now that n is the three dimensional Heisenberg algebra, and N is
the the corresponding Heisenberg group. We fix a basis {X1, X2, Y } of n such that
[X1, X2] = Y is the only nonzero bracket and define a scalar product for which
g−1 = span{X1, X2} and g−2 = span{Y } are orthogonal. Choose exponential
coordinates on the group (x1, x2, y) = expyY expx2X2expx1X1 . We identify the
Lie algebra with the tangent space TeN to N at the identity e , and for X in n
we write X̃ for the left–invariant vector field that agrees with X at e . The left
invariant vector fields corresponding to the basis vectors are

X̃1 =
∂

∂x1
X̃2 =

∂

∂x2
+ x1

∂

∂y

Ỹ =
∂

∂y
.

Let U = f1X̃1 + f2X̃2 + gỸ be a conformal vector field. The contact conditions
are

X̃1g = −f2 and X̃2g = f1

and the conformality conditions are

X̃1f1 = X̃2f2 and X̃2f1 = −X̃1f2.

Thus contact and conformality imply

X̃2
1g = X̃2

2g and X̃1X̃2g = −X̃2X̃1g. (17)

We gather some implications of (17) which will be required in the computations.
First we note that the second equation in (17) implies

Ỹ g = 2X̃1X̃2g, (18)

and the bracket conditions [X̃1, [X̃1, X̃2]] = [X̃2, [X̃1, X̃2]] = 0 imply

X̃2X̃
2
1g = −3X̃2

1X̃2g X̃1X̃
2
2g = −3X̃2

2X̃1g. (19)
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Let {dx1, dx2, dy} denote the basis of n∗ , dual to the basis we fixed for n .
For every p ∈ U we have

A−1U (p) = X̃2g(p)X1 − X̃1g(p)X2

A−2U (p) = g(p)Y,

and for each integer k ≥ 0 we have

AkU(p) = AkU(p)(X1)⊗ dx1 + AkU(p)(X2)⊗ dx2 + AkU(p)(Y )⊗ dy
= X̃1(A

k−1
U )(p)⊗ dx1 + X̃2(A

k−1
U )(p)⊗ dx2 + Ỹ (Ak−2U )(p)⊗ dy.

A direct calculation shows that

A0
U(p) =(Ỹ g)(p)A1 + (X̃1X̃1g)(p)A2

where

A1 =
1

2
X1 ⊗ dx1 +

1

2
X2 ⊗ dx2 + Y ⊗ dy

A2 = X1 ⊗ dx2 −X2 ⊗ dx1.

Setting g0 = span {A1, A2} , we can compute the Lie brackets of n⊕g0 . The higher
order prolongation spaces can then be computed in a purely symbolic way using
the Jacobi identity and the bracket generating property. The advantage in taking
this symbolic approach is that no more information is required from the contact
conditions or the conformality conditions. In order to compute A1

U(p) we use (17)
and (19). We obtain

A1
U(p) =(Ỹ X̃1g)(p)B1 + (Ỹ X̃2g)(p)B2 (20)

where

B1 = A1 ⊗ dx1 −
3

2
A2 ⊗ dx2 − X̃2 ⊗ dy

B2 = A1 ⊗ dx2 +
3

2
A2 ⊗ dx1 + X̃1 ⊗ dy.

In particular, we have used the identities X̃3
1g = 3

2
Ỹ X̃2g and X̃2X̃

2
1g = −3

2
Y X̃1g ,

which are easily derived from (17), (18) and (19).

At the next step of prolongation we see that

A2
U(p) =(Ỹ X̃2

1g)(p)C1 + (Ỹ 2g)(p)C2

where

C1 = B1 ⊗ dx1 +B2 ⊗ dx2 + A2 ⊗ dy

C2 =
1

2
B2 ⊗ dx1 −

1

2
B1 ⊗ dx2 + A1 ⊗ dy.
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We now see that Ỹ X̃2
1g(p) = 0 by observing that

Ỹ X̃2
1g = X̃1X̃2X̃

2
1g − X̃2X̃1X̃

2
1g

= X̃1X̃2X̃
2
1g − X̃2X̃1X̃

2
2g by (17)

= −3X̃1X̃
2
1X̃2g + 3X̃2X̃

2
2X̃1g by (19)

= −3X̃2
1X̃1X̃2g − 3X̃2

2X̃1X̃2g by (17)

= −3

2
Ỹ (X̃2

1g + X̃2
2g) by (18)

= −3Ỹ X̃2
1g by (17).

Finally, we observe using (19) that Ỹ X̃2
1g = 0 implies

X̃1Ỹ
2g = X̃2Ỹ

2g = Y 3g = 0,

since

X̃1Ỹ
2g = −2

3
X̃2Ỹ X̃

2
1g, X̃2Ỹ

2g =
2

3
X̃1Ỹ X̃

2
1g and Ỹ 3g =

4

3
X̃2

2 Ỹ X̃
2
1g.

It now follows that

Prol(n, g0) = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 (21)

where

g0 = span {A1, A2}, g1 = span {B1, B2} and g2 = span {C2}.

Setting H1 = 2A1 , H2 = A2 , X̄1 = 2B1 , X̄2 = 2B2 and Ȳ = −4C2 , one recognises
in (21) the root space decomposition of the simple Lie algebra su(1, 2), and direct
calculation according to the bracket definition in Section 2 gives the correct bracket
relations (see Table 1).

We now come to the proof of Theorem 1.2.

Proof. By the discussion above, the Lie algebra of conformal vector fields is
Prol(n, g0). Theorem 2.6 implies that the character of Prol(n, g0) is determined
by the usual prolongation of h0(n) ∩ g0 . This space identifies with a subalgebra
h(0) of co(n).

If n ≥ 3, it follows from Example 2.1 that the usual prolongation of co(n)
is zero at the second step and so in particular h(2) = {0} . Thus Prol(n, g0) has
finite dimension if dimg−1 ≥ 3 .

Now set n = 2. Since n is not abelian, there exist X1, X2 in g−1 such that
[X1, X2] = Y 6= 0. Then it follows that

co(n) ∩ h(0)(n) ⊆
{[

0 b
−b 0

]
| b ∈ R

}
,

with equality if n is the three dimensional Heisenberg algebra. It follows easily
that the space on the right hand side of the inclusion above is of type 1 in the sense
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described in Section 2, which proves Theorem 1.2 for the case n = 2 . Notice that
the same conclusion can of course be reached as a consequence of Example 4.1.

Finally, let f be a conformal map on some open domain U . Composing
with left translation if necessary, we may assume that f(e) = e . Arguing as we
did at the end of Section 3, we conclude that f is induced by an automorphism of
Prol(n, g0), so that the proof of Theorem 1.2 is complete.

Y X1 X2 H1 H2 X̄1 X̄2 Ȳ

Y 0 0 0 −2Y 0 2X2 −2X1 2H1

X1 0 0 Y −X1 X2 −H1 −3H2 X̄2

X2 0 −Y 0 −X2 −X1 3H2 −H1 −X̄1

H1 2Y X1 X2 0 0 −X̄1 X̄2 −2Ȳ

H2 0 −X2 X1 0 0 −X̄2 X̄1 0

X̄1 −2X2 H1 −3H2 X̄1 X̄2 0 −2Ȳ 0

X̄2 2X1 3H2 H1 X̄2 −X̄1 2Ȳ 0 0

Ȳ −2H1 −X̄2 X̄1 2Ȳ 0 0 0 0

Table 1: Bracket table of su(1, 2).
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