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Abstract. Let (L,N) be a pair of finite dimensional nilpotent Lie algebras,
in which N is an ideal in L . In the present article, we prove that if the factor Lie
algebras L/N and N/Z(L,N) are of dimensions m and n , respectively, then
the commutator subalgebra [L,N ] is of dimension at most 1

2n(n + 2m − 1),
and also determine when dim([L,N ]) = 1

2n(n + 2m − 1). In addition, we
introduce the notion of the Schur multiplier M(L,N) of an arbitrary pair
(L,N) of Lie algebras, and show that if N admits a complement K in L with
dim(N) = n and dim(K) = m , then the dimension of M(L,N) is bounded
above by 1

2n(n + 2m − 1). In this case, we characterize the pairs (L,N) for
which dim(M(L,N)) is either 1

2n(n + 2m− 1) or 1
2n(n + 2m− 1)− 1.
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1. Introduction and preliminary

All Lie algebras are considered over a fixed field Λ and [ , ] denotes the Lie bracket.

Let L , N be two Lie algebras. By an action of L on N we mean a Λ-
bilinear map L×N → N, (l, n) 7→ ln satisfying

[l,l′]n = l(l
′
n)− l′(ln) and l[n, n′] = [ ln, n′] + [n, ln′],

for all l, l′ ∈ L and n, n′ ∈ N . Evidently, if L is a subalgebra of some Lie algebra
P and N is an ideal in P , then the Lie multiplication in P induces an action of
L on N . In fact, l ∈ L acts on n ∈ N by ln = [l, n] .

Given the action of L on N , we define the L-commutator subalgebra of
N to be the subalgebra [L,N ] generated by elements of the form ln with l ∈
L, n ∈ N , and the L-central of N to be the central subalgebra Z(L,N) = {n ∈
N | ln = 0, for all l ∈ L} . In particular, if N is an ideal in L then [L,N ]
and Z(L,N) denote the usual commutator subalgebra and the centralizer of L
in N , respectively. In this case, we define Z2(L,N) to be the pre-image in N of
Z(L/Z(L,N), N/Z(L,N)).
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Let (L,N) be a pair of Lie algebras, where N is an ideal in L . Then
we define the Schur multiplier of the pair (L,N) to be the abelian Lie algebra
M(L,N) appearing in the following natural exact sequence of Lie algebras

H3(L) −→ H3(L/N) −→M(L,N) −→M(L) −→M(L/N)

−→ L/[L,N ] −→ L/L2 −→ L/(L2 +N) −→ 0,

where M(−) and H3(−) denote the Schur multiplier and the third homology of a
Lie algebra, respectively. This is analogous to the definition of the Schur multiplier
of a pair of groups given by Ellis [4] (see also [7,8]). In [5], it is proved that
M(L,N) ∼= ker(N ∧ L −→ L), in which N ∧ L denotes the non-abelian exterior
product of Lie algebras. Also using the above sequence, one may easily observe that
if the ideal N possesses a complement in L , then M(L) ∼=M(L,N)⊕M(L/N).
In this case, for any free presentation 0 −→ R −→ F −→ L −→ 0 of L , M(L,N)
is isomorphic to the factor Lie algebra (R ∩ [S, F ])/[R,F ] , where S is an ideal
in F such that S/R ∼= N . In particular, if N = L , then the Schur multiplier of
(L,N) will be M(L) = (R ∩ F 2)/[R,F ] (see [3,6,10,11]).

A pair (L,N) of finite dimensional nilpotent Lie algebras is said to be
Heisenberg provided [L,N ] and Z(L,N) are the same subalgebras of dimension
one. In the special case N = L , the Lie algebra L must be of odd dimension.

Let L be a Lie algebra with central factor Lie algebra of dimension n .
Then Moneyhum [9] proved that 1

2
n(n − 1) is an upper bound for the dimension

of the derived subalgebra L2 . She also showed that the dimension of the Schur
multiplier of a Lie algebra of dimension n is bounded above by 1

2
n(n− 1). Using

these results, Batten et al. [2] obtained the following two theorems.

Theorem. Assume that L is a finite dimensional nilpotent Lie algebra such
that dim(L/Z(L)) = n. If dim(L2) = 1

2
n(n − 1), then L/Z(L) is either abelian

or H(1), where H(1) denotes the Heisenberg algebra of dimension 3.

Theorem. Let L be an n-dimensional nilpotent Lie algebra. Then

(i) dim(M(L)) = 1
2
n(n− 1) if and only if L is abelian.

(ii) dim(M(L)) = 1
2
n(n− 1)− 1 if and only if L = H(1).

Now in this article, we extend the above results to a pair of finite dimensional
nilpotent Lie algebras, as follows.

Theorem A. Let (L,N) be a pair of finite dimensional nilpotent Lie algebras
with L/N and N/Z(L,N) of dimensions m and n, respectively. Then

(i) dim([L,N ]) ≤ 1
2
n(n+ 2m− 1).

(ii) If dim([L,N ]) = 1
2
n(n+ 2m− 1), then either N/Z(L,N) is an abelian

Lie algebra or the pair (L/Z(L,N), N/Z(L,N)) is Heisenberg.

Theorem B. Let (L,N) be a pair of finite dimensional nilpotent Lie algebras
and K be the complement of N in L. Assume N and K are of dimensions n
and m, respectively. Then the following statements hold:
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(i) dim(M(L,N)) + dim([L,N ]) ≤ 1
2
n(n+ 2m− 1).

(ii) If L is abelian, then dim(M(L,N)) = 1
2
n(n+ 2m− 1).

(iii) If dim(M(L,N)) = 1
2
n(n+ 2m− 1), then N is abelian.

(iv) If dim(L/(L2 +N)) = k and dim(N/(L2 ∩N)) = d, then
1
2
d(d+ 2k − 1) ≤ dim(M(L,N)) + dim([L,N ]).

(v) If dim(M(L,N)) = 1
2
n(n+ 2m−1)−1, then either N is central or the

pair (L,N) is Heisenberg.

2. Proof of theorems

Let (L,N) be a pair of finite dimensional nilpotent Lie algebras with dim(L/N) =
m and dim(N/Z(L,N)) = n . It is readily verified that for any vector z ∈
Z2(L,N) − Z(L,N), [L, z] ⊆ [L,N ] ∩ Z(L,N) and the adjoint map adz : L −→
[L, z] is an epimorphism such that ker(adz) = CL(z) contains the ideal [L,N ] +
Z(L,N). We consider two non-negative integers a(z) and b(z) such that

a(z) = dim([L, z]) and b(z) = dim(
L/[L, z]

Z(L/[L, z], N/[L, z])
).

Since Z(L,N) ⊂ 〈z, Z(L,N)〉 ⊆ CL(z), a(z) = dim(L/CL(z)) < dim(L/Z(L,N))
= m+ n . Also, z + [L, z] ∈ Z(L/[L, z], N/[L, z])− (Z(L,N)/[L, z]) yields that

b(z) < dim(
L/[L, z]

Z(L,N)/[L, z]
) = m+ n.

The following lemmas shorten the proof of Theorem A.

Lemma 2.1. Using the above assumptions and notations, we have

(i) dim([L,N ]) ≤ 1
2
n(n+ 2m− 1).

(ii) Suppose for some non-negative integer s we have
dim([L,N ]) = 1

2
n(n+ 2m− 1)− s;

then dim([L/Z(L,N), N/Z(L,N)]) ≤ s+ 1.

Proof. (i) Let {x1, . . . , xn} be a basis of N/Z(L,N). Extend this set to a
basis of L/Z(L,N), say {x1, . . . , xn, xn+1, . . . , xn+m} . Then [L,N ] is spanned by
{[xi, xj] | 1 ≤ i ≤ n and i < j ≤ m+ n} .

(ii) Choose a vector z ∈ Z2(L,N)− Z(L,N). Then

dim(
N/[L, z]

Z(L/[L, z], N/[L, z])
) = b(z)−m ≤ n− 1,

and hence part (i) indicates that dim([L/[L, z], N/[L, z]]) ≤ 1
2
(n− 1)(n+ 2m− 2).

Therefore 1
2
n(n+ 2m− 1)− s = dim([L,N ]) ≤ 1

2
(n− 1)(n+ 2m− 2) + a(z), and

then a(z) ≥ n+m− s− 1. Since [L,N ] + Z(L,N) is an ideal in L contained in
CL(z), it follows that

dim(
L

[L,N ] + Z(L,N)
) ≥ dim(

L

CL(z)
) = a(z) ≥ n+m− s− 1.
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Alternatively, (L/Z(L,N))/(([L,N ]+Z(L,N))/Z(L,N)) ∼= L/([L,N ]+Z(L,N)).
Hence, the last inequality yields

dim([
L

Z(L,N)
,

N

Z(L,N)
]) = dim(

L

Z(L,N)
)− dim(

L

[L,N ] + Z(L,N)
) ≤ s+ 1.

This completes the proof.

Lemma 2.2. Using the above assumptions and notations, if

dim([
L

Z(L,N)
,

N

Z(L,N)
]) = s+ 1− k

for some 0 ≤ k ≤ s+1, then for all z ∈ Z2(L,N)−Z(L,N), a(z) ≤ m+n−1−s+
k .In particular, if k = 0 then a(z) = m+n−s−1 and CL(z) = [L,N ]+Z(L,N).

Proof. ¿From the proof of Lemma 2.1 and the hypothesis, we have

n+m− s− 1 ≤ a(z) = dim(
L

CL(z)
) ≤ dim(

L

[L,N ] + Z(L,N)
)

= dim(
L/Z(L,N)

[L/Z(L,N), N/Z(L,N)]
) = n+m− 1− s+ k,

for all z ∈ Z2(L,N) − Z(L,N). Now, assuming k = 0, the above inequalities
imply that a(z) = m+n−s−1, and so CL(z) = [L,N ]+Z(L,N), as required.

Now, we are ready to prove Theorem A.

Proof. [Theorem A] (i) It has proved in Lemma 2.1(i).

(ii) By applying Lemma 2.1(ii) in the case s = 0, we have

dim([L/Z(L,N), N/Z(L,N)]) ≤ 1.

If dim([L/Z(L,N), N/Z(L,N)]) = 0, then N/Z(L,N) is central in L/Z(L,N).
So, suppose that dim([L/Z(L,N), N/Z(L,N)]) = 1. Since L/Z(L,N) is nilpo-
tent, by [12, Proposition 7], [L/Z(L,N), N/Z(L,N)] ∩ Z(L/Z(L,N)) 6= 0 and
hence

[L/Z(L,N), N/Z(L,N)] ⊆ Z2(L,N)/Z(L,N).

We claim that dim(Z2(L,N)/Z(L,N)) = 1. Assume, to the contrary, that
there exist vectors x, y ∈ Z2(L,N) − Z(L,N) such that x + Z(L,N) and y +
Z(L,N) are linearly independent in Z2(L,N)/Z(L,N). By Lemma 2.2, CL(x) =
[L,N ] + Z(L,N) = CL(y) and thus y ∈ CL(x). But dim(CL(x)/Z(L,N)) =
dim(L/Z(L,N)) − dim(L/CL(x)) = n + m − (n + m − 1) = 1. This is a con-
tradiction to the linear independence of x + Z(L,N) and y + Z(L,N). There-
fore, dim(Z2(L,N)/Z(L,N)) = 1 and the pair (L/Z(L,N), N/Z(L,N)) is Heisen-
berg.

Now we obtain the following corollary which is of interest in its own account.
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Corollary 2.3. Let (L,N) be a pair of finite dimensional nilpotent Lie algebras
with dim(L/N) = m, dim(N/Z(L,N)) = n, and dim([L,N ]) = 1

2
n(n+2m−1)−s

for some s ≥ 0. If there is a z ∈ Z2(L,N)−Z(L,N) such that a(z) = m+n−1−s,

then b(z) = m+ n− 1 and the factor Lie algebra
N/[L, z]

Z(L/[L, z], N/[L, z])
is abelian

or the pair

(
L/[L, z]

Z(L/[L, z], N/[L, z])
,

N/[L, z]

Z(L/[L, z], N/[L, z])

)
is Heisenberg.

Proof. By Lemma 2.1(i),
dim([L/[L, z], N/[L, z]]) ≤ 1

2
(b(z)(b(z)− 1)−m(m− 1)).

Consequently,

1

2
n(n+ 2m− 1)− s = dim([L,N ]) = dim([

L

[L, z]
,
N

[L, z]
]) + dim([L, z])

≤ 1

2
(b(z)(b(z)− 1)−m(m− 1)) +m+ n− 1− s,

whence b(z) = m + n − 1. Hence dim(
N/[L, z]

Z(L/[L, z], N/[L, z])
) = n − 1 and

dim([
L

[L, z]
,
N

[L, z]
]) = 1

2
(n − 1)(n + 2m − 2). Therefore, Theorem A(ii) gives

the result.

To prove Theorem B, we need the following definition and propositions.

Definition 2.4. A Lie homomorphism σ : N∗ −→ L together with an action
of L on N∗ is called a cover (or covering pair) of the pair (L,N) of Lie algebras
if the following conditions hold:

(i) σ(N∗) = N ;

(ii) σ( ln) = lσ(n), for all l ∈ L , n ∈ N∗ ;
(iii) σ(n1)n = n1n , for all n, n1 ∈ N∗ ;
(iv) ker σ ⊆ Z(L,N∗) ∩ [L,N∗] ;

(v) ker σ ∼=M(L,N).

One may readily observe that a cover σ : N∗ −→ L of the pair (L,L)
together with action ln = σ(n1)n , where l = σ(n1) for some n1 ∈ N∗ , gives the
usual notion of a covering Lie algebra N∗ of L . The following result gives the
existence of cover of a given pair (L,N), in which N has a complement in L . In
special case, when L is finite dimensional and N = L then the result of Batten
and Stitzinger [1] is obtained.

Proposition 2.5. Let (L,N) be a pair of Lie algebras such that N has a
complement in L. Then (L,N) admits at least one cover.

Proof. Let 0 −→ R −→ F −→ L −→ 0 be a free presentation of L and S an
ideal in F such that N ∼= S/R . Let T/[R,F ] be a complement of M(L,N) in
R/[R,F ] , for some suitable ideal T in F . Consider the mapping σ : S/T −→ F/R
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given by σ(s+ T ) = s+ R together with the action f+R(s+ T ) = [f, s] + T , for
all f ∈ F and s ∈ S . Then for each s1, s2 ∈ S , f ∈ F , r ∈ R , we have

σ( f+R(s1 + T )) = σ([f, s1] + T ) = [f, s1] +R = f+Rσ(s1 + T ),

σ(s1+T )(s2 + T ) = s1+R(s2 + T ) = [s1, s2] + T = s1+T (s2 + T ),
f+R(r + T ) = [f, r] + T = T.

Also σ(S/T ) = S/R and ker σ ∼=M(L,N). Moreover,

R

T
⊆ [F, S] + T

T
= 〈 fs+T | f ∈ F, s ∈ S〉 = 〈 f+R(s+T ) | f ∈ F, s ∈ S〉 = [

F

R
,
S

T
].

Therefore σ : S/T −→ F/R is a cover of (L,N).

Proposition 2.6. Let (L,N) be a pair of finite dimensional Lie algebras such
that N has a complement in L. Then

dim(M(
L

L2
,
N + L2

L2
)) ≤ dim(M(L,N)) + dim([L,N ]).

Proof. Let 0→ R→ F → L→ 0 be a free presentation of L and S an ideal
in F such that N ∼= S/R . Then

M(
L

L2
,
N + L2

L2
) ∼=

(F 2 +R) ∩ [F 2 + S, F ]

[F 2 +R,F ]
=

[F 2 + S, F ]

[F 2 +R,F ]
=

[S, F ] + [F 2, F ]

[R,F ] + [F 2, F ]
.

So,

dim(M(L,N)) + dim([L,N ]) = dim(
R ∩ [S, F ]

[R,F ]
) + dim(

[S, F ]

R ∩ [S, F ]
)

= dim(
[S, F ]

[R,F ]
) ≥ dim(M(

L

L2
,
N + L2

L2
)),

as required.

Now we are able to prove Theorem B.

Proof. [Theorem B] Let homomorphism σ : N∗ −→ L together with an action
of L on N∗ be a cover of (L,N). We define a homomorphism ψ : K −→ Der(N∗)
given by ψ(k) = ψk , where ψk : N∗ −→ N∗ is a derivation given by ψk(x) = kx ,
in which kx is induced by the action of L on N∗ . Set H to be the semidirect sum
of N∗ by K . Then it is easily seen that the subalgebras [L,N∗] and Z(L,N∗)
are identical with the commutator subalgebra [H,N∗] and the centralizer of N∗

in H, Z(H,N∗), respectively. If δ : H −→ L is the mapping defined by δ(x+k) =
σ(x)+k , for all x ∈ N∗ and k ∈ K , then it can be shown that δ is an epimorphism
with ker δ = kerσ . Also, the factor Lie algebras H/Z(L,N∗) and N∗/Z(L,N∗)
are isomorphic to L and N , respectively.

(i) Since dim(H/N∗) = m and dim(N∗/Z(L,N∗)) ≤ dim(N∗/ kerσ) = n ,
Lemma 2.1(i) shows that dim([H,N∗]) ≤ 1

2
n(n+ 2m−1). Now, the isomorphisms

[L,N ] ∼= [H,N∗]/ kerσ and ker σ ∼=M(L,N) follows the result.
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(ii) Since the exact sequence 0 −→ N −→ L −→ K −→ 0 splits, M(L) ∼=
M(L,N)⊕M(K). By [9; Lemma 2.3], dim(M(L)) = 1

2
(m+ n)(m+ n− 1) and

dim(M(K)) = 1
2
m(m− 1). So, dim(M(L,N)) = 1

2
n(n+ 2m− 1), as required.

(iii) If kerσ is a proper subalgebra of Z(L,N∗), then the above discussion
indicates that dim(H/N∗) = m and dim(N∗/Z(H,N∗)) = dim((N∗/Z(L,N∗))) ≤
n− 1. So, using Lemma 2.1(i) and part (i), dim(M(L,N)) = 1

2
n(n + 2m− 1) ≤

dim([H,N∗]) ≤ 1
2
(n− 1)(n + 2m− 2). Hence we must have m + n ≤ 1 and L is

abelian.

Now, suppose that ker σ is equal to Z(L,N∗), then dim([H,N∗]) = 1
2
n(n+

2m − 1). So, by Theorem A(ii), either N∗/Z(H,N∗) is abelian or the pair
(N∗/Z(H,N∗), H/Z(H,N∗)) is Heisenberg. If (L,N) is Heisenberg then

dim([L,N ]) + dim(M(L,N)) =
1

2
n(n+ 2m− 1) + 1,

which contradicts to part (i). Therefore in both cases N is abelian.

(iv) Proposition 2.6 and part (iii) yield the result.

(v) Suppose that ker σ is a proper subalgebra of Z(L,N∗). As part (iii),
we conclude that 1

2
n(n + 2m − 1) ≤ dim([H,N∗]) ≤ 1

2
(n − 1)(n + 2m − 2), and

so m + n ≤ 2. Hence the possible values for the pair (m,n) must be one of the
following cases:

(m,n) = (1, 0), (0, 1), (1, 1), (2, 0), (0, 2).

It is readily seen that the values (1, 0), (0, 1), (0, 2) are impossible. Moreover,
if (m,n) = (2, 0) or (1, 1) then dim(L) = 2 and dim(M(L)) = 0, which is a
contradiction to [2; Theorem 3]. Therefore, we must have kerσ = Z(L,N∗).
By the assumption and Lemma 2.1(i), 1

2
n(n + 2m − 1) − 1 ≤ dim([L,N∗]) =

dim([H,N∗]) ≤ 1
2
n(n + 2m − 1). Now, if dim([H,N∗]) = 1

2
n(n + 2m − 1) − 1

then either N is abelian or the pair (L,N) is Heisenberg. If dim([H,N∗]) =
1
2
n(n+ 2m− 1) then [H,N∗] =M(L,N) = Z(H,N∗) and so, again N is abelian.

This proves the theorem.

The following examples show that both outcomes obtained in the assertion
(v) of Theorem B occur.

Examples: (i) Let L = H(m)⊕A , where H(m) denotes the Heisenberg algebra
of dimension 2m + 1 and A is a 1-dimensional Lie algebra. Then it is easy to
verify that A is a central ideal in L , dim(M(L)) = 2m2 +m− 1 (by [1; Example
3]) and dim(M(L,A)) = 2m .

(ii) Let {f, g, z} be a basis for H(1) with [f, g] = z . Then H(1) is
a semidirect sum of 〈f, z〉 by 〈g〉 , the pair (H(1), 〈f, z〉) is Heisenberg and
dim(M(L,A)) = 2.
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