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Abstract. Let (L, N) be a pair of finite dimensional nilpotent Lie algebras,
in which N is an ideal in L. In the present article, we prove that if the factor Lie

algebras L/N and N/Z(L,N) are of dimensions m and n, respectively, then

the commutator subalgebra [L,N] is of dimension at most in(n + 2m — 1),

and also determine when dim([L,N]) = in(n + 2m — 1). In addition, we
introduce the notion of the Schur multiplier M(L,N) of an arbitrary pair
(L,N) of Lie algebras, and show that if N admits a complement K in L with

dim(N) = n and dim(K) = m, then the dimension of M(L,N) is bounded

above by in(n+ 2m —1). In this case, we characterize the pairs (L, N) for

which dim(M(L, N)) is either in(n+2m —1) or in(n+2m—1) —1.
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1. Introduction and preliminary

All Lie algebras are considered over a fized field A and |, | denotes the Lie bracket.
Let L, N be two Lie algebras. By an action of L on N we mean a A-
bilinear map L x N — N, (I,n) + n satisfying

Wl = ') — V() and 0] = [ '] + [, )

for all [,I'’ € L and n,n’ € N. Evidently, if L is a subalgebra of some Lie algebra
P and N is an ideal in P, then the Lie multiplication in P induces an action of
Lon N. In fact, [ € L acts on n € N by 'n = [l,n].

Given the action of L on N, we define the L-commutator subalgebra of
N to be the subalgebra [L, N| generated by elements of the form ‘n with [ €
L,n € N, and the L-central of N to be the central subalgebra Z(L,N) = {n €
N | n =0, for all Il € L}. In particular, if N is an ideal in L then [L, N]
and Z(L,N) denote the usual commutator subalgebra and the centralizer of L
in N, respectively. In this case, we define Z5(L, N) to be the pre-image in N of
Z(L/Z(L,N),N/Z(L,N)).
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Let (L,N) be a pair of Lie algebras, where N is an ideal in L. Then
we define the Schur multiplier of the pair (L, N) to be the abelian Lie algebra
M(L, N) appearing in the following natural exact sequence of Lie algebras

Hy(L) — H3(L/N) — M(L,N) — M(L) — M(L/N)
— L/[L,N] — L/L?* — L/(L* + N) — 0,

where M(—) and H3(—) denote the Schur multiplier and the third homology of a
Lie algebra, respectively. This is analogous to the definition of the Schur multiplier
of a pair of groups given by Ellis [4] (see also [7,8]). In [5], it is proved that
M(L,N) = ker(N AL — L), in which N A L denotes the non-abelian exterior
product of Lie algebras. Also using the above sequence, one may easily observe that
if the ideal N possesses a complement in L, then M(L) = M(L,N)® M(L/N).
In this case, for any free presentation 0 — R — F — L — 0 of L, M(L, N)
is isomorphic to the factor Lie algebra (R N [S, F])/[R, F], where S is an ideal
in F' such that S/R = N. In particular, if N = L, then the Schur multiplier of
(L,N) will be M(L) = (RN F?)/[R, F] (see [3,6,10,11]).

A pair (L, N) of finite dimensional nilpotent Lie algebras is said to be
Heisenberg provided [L, N] and Z(L,N) are the same subalgebras of dimension
one. In the special case N = L, the Lie algebra L must be of odd dimension.

Let L be a Lie algebra with central factor Lie algebra of dimension n.
Then Moneyhum [9] proved that in(n — 1) is an upper bound for the dimension
of the derived subalgebra L?. She also showed that the dimension of the Schur
multiplier of a Lie algebra of dimension n is bounded above by 3n(n — 1). Using
these results, Batten et al. [2] obtained the following two theorems.

Theorem.  Assume that L is a finite dimensional nilpotent Lie algebra such
that dim(L/Z(L)) = n. If dim(L?) = sn(n — 1), then L/Z(L) is either abelian
or H(1), where H(1) denotes the Heisenberg algebra of dimension 3.

Theorem. Let L be an n-dimensional nilpotent Lie algebra. Then
(i) dim(M(L)) = 3n(n —1) if and only if L is abelian.
(ii) dim(M(L)) = 4n(n—1) — 1 if and only if L = H(1).

Now in this article, we extend the above results to a pair of finite dimensional
nilpotent Lie algebras, as follows.

Theorem A. Let (L,N) be a pair of finite dimensional nilpotent Lie algebras
with L/N and N/Z(L,N) of dimensions m and n, respectively. Then

(i) dim([L, N]) < sn(n+2m —1).

(ii) If dim([L, N]) = in(n +2m — 1), then either N/Z(L,N) is an abelian

Lie algebra or the pair (L/Z(L,N),N/Z(L,N)) is Heisenbery.

Theorem B.  Let (L, N) be a pair of finite dimensional nilpotent Lie algebras
and K be the complement of N in L. Assume N and K are of dimensions n
and m, respectively. Then the following statements hold:
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(i) dim(M(L, N)) + dim([L, N]) < in(n+2m —1).
(ii) If L is abelian, then dim(M(L, N)) = in(n+2m —1).
(iii) If dim(M(L, N)) = in(n+2m — 1), then N is abelian.
(iv) If dim(L/(L* + N)) = k and dim(N/(L* N N)) = d, then
sd(d+ 2k — 1) < dim(M(L, N)) + dim([L, N]).
(v) If dim(M(L,N)) = sn(n+2m—1) —1, then either N is central or the
pair (L, N) is Heisenbery.

2. Proof of theorems

Let (L, N) be a pair of finite dimensional nilpotent Lie algebras with dim(L/N) =
m and dim(N/Z(L,N)) = n. It is readily verified that for any vector z €
Zy(L,N) — Z(L,N), [L,z] C[L,N]NZ(L,N) and the adjoint map adz : L —
[L,z] is an epimorphism such that ker(adz) = C(z) contains the ideal [L, N]+
Z(L,N). We consider two non-negative integers a(z) and b(z) such that

L/[L,Z] )
Z(L/[L,z], N/[L,z])"

Since Z(L,N) C (2, Z(L,N)) C Cr(2), a(z) = dim(L/CL(z)) < dim(L/Z(L, N))
=m+mn. Also, 2+ [L,z] € Z(L/|L,z], N/[L,z]) — (Z(L,N)/[L, z]) yields that

a(z) = dim([L, z]) and b(z) = dim(

L/[L,Z]
Z(L,N)/[L,?]

b(z) < dim( ) =m+n.

The following lemmas shorten the proof of Theorem A.

Lemma 2.1. Using the above assumptions and notations, we have
(i) dim([L, N]) < %n(n +2m—1).
(ii) Suppose for some non-negative integer s we have
dim([L, N]) = sn(n+2m — 1) —
then dim([L/Z(L,N),N/Z(L,N)]) < s+ 1.

Proof. (i) Let {Zi,...,T,} be a basis of N/Z(L,N). Extend this set to a
basis of L/Z(L,N), say {Z1,...,Tn,Tni1s---Tntm}. Lhen [L, N] is spanned by
{lzi,z;] |1 <i<nandi<j<m-+n}.

(ii) Choose a vector z € Zy(L,N) — Z(L, N). Then
N/IL, 7]

Z(L/IL, 2], N/[L, 2])
and hence part (i) indicates that dim([L/[L, z], N/[L, z]]) < :(n—1)(n+2m —2).
Therefore sn(n+2m —1) — s = dim([L, N]) < 3(n —1)(n —|— 2m —2) 4+ a(z), and
then a(z) >n+m —s— 1. Since [L, N]+ Z(L,N) is an ideal in L contained in

CL(z), it follows that

L L
TN+ Z(L, ) = 4l

dim(

——

dim(
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Alternatively, (L/Z(L,N))/(([L, N|[+Z(L,N))/Z(L,N)) = L/([L, N]+Z(L,N)).
Hence, the last inequality yields

L N L L
di = dim(——+——) — di < 1.
mllzr v zom? " ze e "M o) S0
This completes the proof. [ |
Lemma 2.2.  Using the above assumptions and notations, if
L N
dim(] N=s+1—-k

Z(L,N)" Z(L,N)
for some 0 < k < s+1, then for all z € Zy(L,N)—Z(L,N), a(z) < m+n—1—s+
k.In particular, if k =0 then a(z) = m+n—s—1 and Cr(z) = [L, N]+Z(L,N).
Proof. .From the proof of Lemma 2.1 and the hypothesis, we have

L

n+m—s—1<a(z) = dim( [L,NHZ(L,N))

) < dim(

L
CL(Z)

L/Z(L,N)
[L/Z(L,N), N/Z(L, N)

for all z € Zy(L,N) — Z(L,N). Now, assuming k = 0, the above inequalities
imply that a(z) = m+n—s—1, and so Cr(z) = [L, N|+Z(L,N), as required. =

= dim(

J=n+m—1—s+k,

Now, we are ready to prove Theorem A.

Proof. [Theorem A] (i) It has proved in Lemma 2.1(i).
(ii) By applying Lemma 2.1(ii) in the case s = 0, we have

dim([L/Z(L,N),N/Z(L,N)]) < 1.

If dim([L/Z(L,N),N/Z(L,N)]) = 0, then N/Z(L,N) is central in L/Z(L,N).
So, suppose that dim([L/Z(L,N),N/Z(L,N)]) = 1. Since L/Z(L,N) is nilpo-
tent, by [12, Proposition 7], [L/Z(L,N), N/Z(L,N)] N Z(L/Z(L,N)) # 0 and
hence

[L/Z(L,N),N/Z(L,N)| C Zo(L,N)/Z(L, N).
1.

We claim that dim(Zs(L,N)/Z(L,N)) = Assume, to the contrary, that
there exist vectors x,y € Zyo(L,N) — Z(L,N) such that = + Z(L,N) and y +
Z(L,N) are linearly independent in Z5(L, N)/Z(L,N). By Lemma 2.2, C(z) =
[L,N] + Z(L,N) = Cr(y) and thus y € Cp(x). But dim(Cp(z)/Z(L,N)) =
dim(L/Z(L,N)) — dim(L/CL(z)) = n+m — (n+m — 1) = 1. This is a con-
tradiction to the linear independence of = + Z(L,N) and y + Z(L,N). There-
fore, dim(Zy(L, N)/Z(L,N)) =1 and the pair (L/Z (L, N), N/Z(L,N)) is Heisen-
berg. [ |

Now we obtain the following corollary which is of interest in its own account.
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Corollary 2.3.  Let (L, N) be a pair of finite dimensional nilpotent Lie algebras
with diim(L/N) = m, dim(N/Z(L,N)) = n, and dim([L, N]) = in(n+2m—1)—s
for some s > 0. Ifthereis a z € Zy(L, N)—Z(L, N) such that a(z) = m+n—1—s,
N/IL, z]
Z(L/IL, 2], N/|L, ])

then b(z) = m +n — 1 and the factor Lie algebra is abelian

L/[L,Z] N/[L, 2]
Z(L/[L,2],N/[L,2])" Z(L/[L, 2], N/[L,z])

or the pair < ) 15 Heisenberg.

Proof. By Lemma 2.1(i),
dim([L/[L, 2], N/[L, 2]]) < 3(b(2)(b(2) — 1) = m(m — 1)).
Consequently,

1 . . L N :
§n(n +2m —1) — s =dim([L, N]) = dlm([[L,z]7 [L,Z]]) + dim([L, 2])
< %(b( J(b(z) = 1) —m(m —1) +m+n—1—s,
whence b(z) = m + n — 1. Hence dim( N/IL, 2] ) = n—1 and

Z(L/[L,=],N/[L,z])
) L N
the result. [ ]

= 1(n — 1)(n 4+ 2m — 2). Therefore, Theorem A(ii) gives

To prove Theorem B, we need the following definition and propositions.

Definition 2.4. A Lie homomorphism ¢ : N* — L together with an action
of L on N* is called a cover (or covering pair) of the pair (L, N) of Lie algebras
if the following conditions hold:

(i) (N ") = N ;

(i) o( ! ) lo(n), forall I € L, n € N*;

(iii) “™)p = ™p, for all n,n, € N*;

(iv) kero C Z(L, N*) N [L, N*];

(v) kero = M(L, N).

One may readily observe that a cover o : N* — L of the pair (L, L)
together with action 'n = “™Jn, where | = o(n;) for some n; € N*, gives the
usual notion of a covering Lie algebra N* of L. The following result gives the
existence of cover of a given pair (L, N), in which N has a complement in L. In
special case, when L is finite dimensional and N = L then the result of Batten

and Stitzinger [1] is obtained.

Proposition 2.5. Let (L,N) be a pair of Lie algebras such that N has a
complement in L. Then (L, N) admits at least one cover.

Proof. Let 0 — R — FF — L — 0 be a free presentation of L and S an
ideal in F' such that N = S/R. Let T/[R, F| be a complement of M(L,N) in
R/[R, F], for some suitable ideal 7" in F'. Consider the mapping o : S/T — F/R
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given by o(s +T) = s + R together with the action /*#(s+T) = [f,s] + T, for
all f € F and s € S. Then for each s1,s0 € S, f € F', r € R, we have

o( T (s1+ 1)) = o([f,s1] + T) = [f,s1] + R= "o (s + T),

Ot (5 £ T) = -5y 4 T) = [51,80] + T = T (55 +T),
PR T = [f,r]+T =1T.
Also o(S/T) = S/R and kero = M(L, N). Moreover,

R _[F,S]+T F S
T < T ('s+T|feF,seS)=(""(s+T)| feF,seb) [R’T]
Therefore o : S/T — F/R is a cover of (L, N). ]

Proposition 2.6.  Let (L, N) be a pair of finite dimensional Lie algebras such
that N has a complement in L. Then

L N+1IL?

)) < dim(M(L, N)) 4 dim([L, N]).

Proof. Let 0 = R — F — L — 0 be a free presentation of L and S an ideal
in F' such that N = S/R. Then

L N+L* _(F*+RN[F*+S,F] [F2+S,F] [S F|+[FF

M= )= [F2 + R, F] C [P+ R F] (R F]+[FF]
So,
dim(M(L, N)) + dim([L, N]) = dim(%) + dim(%)
18R , L N+1I?
as required. "

Now we are able to prove Theorem B.

Proof. [Theorem B] Let homomorphism o : N* — L together with an action
of L on N* be a cover of (L, N). We define a homomorphism v : K’ — Der(N*)
given by (k) = 1, where 1, : N* — N* is a derivation given by ¢y (1) = *x,
in which *z is induced by the action of L on N*. Set H to be the semidirect sum
of N* by K. Then it is easily seen that the subalgebras [L, N*| and Z(L, N*)
are identical with the commutator subalgebra [H, N*] and the centralizer of N*
in H, Z(H, N*), respectively. If § : H — L is the mapping defined by d(z+k) =
o(x)+k, forall z € N* and k € K, then it can be shown that § is an epimorphism
with kerd = kero. Also, the factor Lie algebras H/Z(L,N*) and N*/Z (L, N*)

are isomorphic to L and NN, respectively.

(i) Since dim(H/N*) = m and dim(N*/Z(L, N*)) < dim(N*/kero) = n,
Lemma 2.1(i) shows that dim([H, N*]) < sn(n+2m—1). Now, the isomorphisms
[L,N] = [H,N*]/kero and kero = M(L, N) follows the result.
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(ii) Since the exact sequence 0 — N — L — K — 0 splits, M(L) =
M(L,N) ® M(K). By [9; Lemma 2.3], dim(M(L)) = 3(m +n)(m +n — 1) and
dim(M(K)) = 3m(m —1). So, dim(M(L, N)) = sn(n + 2m — 1), as required.

(iii) If ker o is a proper subalgebra of Z(L, N*), then the above discussion
indicates that dim(H/N*) = m and dim(N*/Z(H,N*)) = dim((N*/Z(L,N*))) <
n —1. So, using Lemma 2.1(i) and part (i), dim(M(L, N)) = sn(n+2m —1) <
dim([H, N*]) < 3(n —1)(n + 2m — 2). Hence we must have m+n <1 and L is
abelian.

Now, suppose that ker o is equal to Z(L, N*), then dim([H, N*]) = n(n+
2m — 1). So, by Theorem A(ii), either N*/Z(H,N*) is abelian or the pair
(N*/Z(H,N*),H/Z(H,N*)) is Heisenberg. If (L, N) is Heisenberg then

dim([L, N]) + dim(M(L, N)) = %n(n Fom—1)+1,

which contradicts to part (i). Therefore in both cases N is abelian.
(iv) Proposition 2.6 and part (iii) yield the result.

(v) Suppose that kero is a proper subalgebra of Z(L, N*). As part (iii),
we conclude that $n(n +2m — 1) < dim([H,N*]) < 3(n — 1)(n + 2m — 2), and
so m +n < 2. Hence the possible values for the pair (m,n) must be one of the
following cases:

(m,n) =(1,0),(0,1),(1,1),(2,0), (0,2).

It is readily seen that the values (1,0),(0,1),(0,2) are impossible. Moreover,
if (m,n) = (2,0) or (1,1) then dim(L) = 2 and dim(M(L)) = 0, which is a
contradiction to [2; Theorem 3]. Therefore, we must have kero = Z(L, N*).
By the assumption and Lemma 2.1(i), in(n +2m —1) —1 < dim([L, N*]) =
dim([H, N*]) < in(n 4+ 2m —1). Now, if dim([H,N*]) = in(n +2m —1) — 1
then either N is abelian or the pair (L,N) is Heisenberg. If dim([H, N*]) =
sn(n—+2m—1) then [H,N*] = M(L,N) = Z(H,N*) and so, again N is abelian.
This proves the theorem. [ |

The following examples show that both outcomes obtained in the assertion
(v) of Theorem B occur.

Examples: (i) Let L = H(m) @ A, where H(m) denotes the Heisenberg algebra
of dimension 2m + 1 and A is a 1-dimensional Lie algebra. Then it is easy to
verify that A is a central ideal in L, dim(M(L)) = 2m*+m —1 (by [1; Example
3]) and dim(M(L, A)) = 2m.

(ii) Let {f,g,2} be a basis for H(1) with [f,g] = z. Then H(1) is
a semidirect sum of (f,z) by (g), the pair (H(1),(f,z)) is Heisenberg and
dim(M(L, A)) = 2.
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