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Abstract. Let Go be a classical rank one semisimple Lie group and let Ko

denote a maximal compact subgroup of Go . Let U(g) be the complex universal
enveloping algebra of Go and let U(g)K denote the centralizer of Ko in U(g).
Also let P : U(g) −→ U(k) ⊗ U(a) be the projection map corresponding to the
direct sum U(g) =

(
U(k)⊗U(a)

)
⊕U(g)n associated to an Iwasawa decomposition

of Go adapted to Ko . In this paper we give a characterization of the image of
U(g)K under the injective antihomorphism P : U(g)K −→ U(k)M ⊗ U(a) when
Go is locally isomorphic to SO(n, 1) and SU(n, 1).
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1. Introduction

Let Go be a connected, noncompact, real semisimple Lie group with finite center,
and let Ko denote a maximal compact subgroup of Go . We denote with go and ko

the Lie algebras of Go and Ko , and k ⊂ g will denote the respective complexified
Lie algebras. Let U(g) be the universal enveloping algebra of g and let U(g)K

denote the centralizer of Ko in U(g).

Let P : U(g) −→ U(k)⊗ U(a) be the projection map corresponding to the
direct sum U(g) =

(
U(k)⊗U(a)

)
⊕U(g)n , associated to an Iwasawa decomposition

g = k ⊕ a ⊕ n adapted to k . Let Go = KoAoNo be the corresponding Iwasawa
decomposition for Go .

If U(k)M denotes the centralizer of Mo in U(k), Mo being the centralizer
of Ao in Ko , then it is known (see [11]) that one has the exact sequence

0 −→ U(g)K P−→ U(k)M ⊗ U(a),

and that P becomes an antihomomorphism of algebras if U(k)M ⊗ U(a) is given
the tensor product algebra structure. However, the image of P is not yet well
understood, we refer the reader to [10], [12] and [4] for further information.
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In order to determine the actual image P (U(g)K), Tirao introduced in [12]
a subalgebra B of U(k)M ⊗U(a) defined by a set of linear equations derived from
certain embeddings between Verma modules, and proved that P (U(g)K) = BWρ

when G0 is locally isomorphic to SO(n, 1) or SU(n, 1). Here, W is the Weyl
group of the pair (g, a), ρ is half the sum of the positive roots of g , and BWρ is
the subalgebra of all elements in B that are invariant under the tensor product
action of W on U(k)M and the translated action of W on U(a). Recently, in [4],
we extended this result to the symplectic group Sp(n, 1). In fact we obtained the
following stronger result.

Theorem 1.1. If Go is locally isomorphic to Sp(n, 1) then P (U(g)K) = B .

We announced in [4] that the above result also holds for SO(2n, 1), SU(n, 1)
and F4 . We did not know at that time whether B = BWρ for SO(2n+1, 1) and we
had not yet completed the proof for F4 . Now we know that the following theorem
holds,

Theorem 1.2. If Go be locally isomorphic to SO(n, 1) or SU(n, 1) it follows that
P (U(g)K) = B , and moreover B = BWρ .

This paper is devoted to proving this theorem. As we mentioned above,
it was proved in [12] that P (U(g)K) = BWρ when G0 is locally isomorphic to
SO(n, 1) or SU(n, 1). Thus the main contribution of this paper is that B = BWρ

for SO(n, 1) and SU(n, 1). Additionally, we give a new and simpler proof of the
fact that P (U(g)K) = B . We are still working to complete the details for F4 .

The projection P was originally introduced by Kostant long time ago in or-
der to contribute to the understanding of the structure and representation theory
of U(g)K . The need for the study of the algebra U(g)K arises from the fundamen-
tal work of Harish-Chandra relating the infinite-dimensional representation theory
of Go to the finite-dimensional representation theory of U(g)K . Since then, there
were a number of results on the structure of U(g)K , see notably [7]. However, the
study of U(g)K is acknowledged to be very difficult and the infinite-dimensional
representation theory of Go has been approached by different means.

On the other hand, the algebra B turns out to be an isomorphic copy
of U(g)K strictly1 contained in U(k)M ⊗ U(a) that is defined by a set of linear
equations. The fact that we were able to prove that B = BWρ keeps alive the
hope that it could help to understand the structure of U(g)K .

2. The algebra B and the image of U(g)K

Assume that Go is a connected, noncompact real semisimple Lie group, with finite
center and split rank one. Let Go = KoAoNo be the an Iwasawa decomposition
of Go , let ko , ao and no be the corresponding Lie algebras and let k , a and n be
their complexifications.

Let to be a Cartan subalgebra of the Lie algebra mo of Mo . Set ho = to⊕ao

and let h = t⊕a be the corresponding complexification. Then ho and h are Cartan
subalgebras of go and g , respectively. Choose a Borel subalgebra t ⊕ m+ of the
complexification m of mo and take b = h ⊕ m+ ⊕ n as a Borel subalgebra of g .

1See for example Theorem 2.2
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Let ∆ and ∆+ be, respectively, the corresponding sets of roots and positive roots
of g with respect to h . As usual ρ is half the sum of the positive roots, θ the
Cartan involution and g = k⊕ p the Cartan decomposition of g corresponding to
(Go, Ko). Also, if α ∈ ∆, Xα will be a nonzero root vector associated to α and
Eα = X−α + θX−α .

If 〈 , 〉 denotes the Killing form of g , for each α ∈ ∆ let Hα ∈ h be the
unique element such that φ(Hα) = 2〈φ, α〉/〈α, α〉 for all φ ∈ h∗ , and let hR be the
real span of {Hα : α ∈ ∆} . Also set Hα = Yα +Zα where Yα ∈ t and Zα ∈ a , and
let P+ = {α ∈ ∆+ : Zα 6= 0} . For each α ∈ P+ we can consider the elements in
U(k) ⊗ U(a) as polynomials in Zα with coefficients in U(k). Then, let B be the
algebra of all b ∈ U(k)M ⊗ U(a) that satisfy

En
αb(n− Yα − 1) ≡ b(−n− Yα − 1)En

α mod
(
U(k)m+

)
(1)

for all simple roots α ∈ P+ and all n ∈ N . We know, from Theorem 5 and
Corollary 6 of [12], that P (U(g)K) ⊂ B for all rank one gropus, and moreover,
that P (U(g)K) = BWρ for SO(n, 1) and SU(n, 1).

Since in this paper we shall be concerned with Go locally isomorphic to
SO(n, 1) or SU(n, 1), we recall that in this case there is only one simple root in
P+ if Go is locally isomorphic to SO(n, 1) for n > 3, and there are two simple
roots in P+ if Go is locally isomorphic to SO(3, 1) or SU(n, 1) for n ≥ 2.

Let G be the adjoint group of g and let K be the connected Lie subgroup of
G with Lie algebra adg(k). Also let M = CentrK(a), M ′ = NormK(a) and W =
M ′/M . Let Γ denote the set of all equivalence classes of irreducible holomorphic
finite dimensional K -modules Vγ such that V M

γ 6= 0. Any γ ∈ Γ can be realized
as a submodule of all harmonic polynomial functions on p , homogeneous of degree
d , for a uniquely determined d = d(γ) ( see [9]). If V is any K -module and
γ ∈ K̂ then Vγ will denote the isotypic component of V corresponding to γ . Let
U(k)M

d =
⊕

U(k)M
γ , where the sum extends over all γ ∈ Γ such that d(γ) ≤ d .

Then U(k)M =
⋃

d≥0 U(k)M
d is an ascending filtration of U(k)M . If b ∈ U(k)M

define d(b) = min{d ∈ No : b ∈ U(k)M
d } and call it the Kostant degree of b .

Since we shall be mainly concerned with representations γ ∈ Γ that occur as
subrepresentations of U(k) we set,

Γ1 = {γ ∈ Γ : γ is a subrepresentation of U(k)}. (2)

If 0 6= b ∈ U(k) ⊗ U(a) we write b = bm ⊗ Zm
α + · · · + b0 in a unique

way with bj ∈ U(k) for 0 ≤ j ≤ m , and bm 6= 0, for any simple root α ∈ P+ .

We shall refer to m as the degree of b and to b̃ = bm ⊗ Zm
α as the leading term

of b . Let
(
U(k)M ⊗ U(a)

)W
denote the ring of W -invariants in U(k)M ⊗ U(a)

under the tensor product of the action of W on U(k)M and the action of W on
U(a). The following result was proved in Proposition 2.6 of [4] for any connected,
noncompact, real semisimple Lie group Go , with finite center and split rank one.

Proposition 2.1. If b̃ = bm⊗Zm
α ∈

(
U(k)M⊗U(a)

)W
and d(bm) ≤ m, then there

exits u ∈ U(g)K such that b̃ is the leading term of b = P (u).

From this result it follows that Theorem 1.2 is a consequence of the following
theorem. We shall prove this statment in Proposition 2.3 below.
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Theorem 2.2. If b = bm ⊗ Zm + · · ·+ b0 ∈ B and bm 6= 0, then d(bm) ≤ m and

its leading term b̃ = bm ⊗ Zm
α ∈

(
U(k)M ⊗ U(a)

)W
.

Proposition 2.3. Theorem 2.2 implies Theorem 1.2.

Proof. We mentioned above that P (U(g)K) = BWρ ⊂ B for SO(n, 1) and
SU(n, 1). Let us prove by induction on the degree m of b ∈ B , that B ⊂
P (U(g)K). If m = 0 we have b = b0 ∈ U(k)M and Theorem 2.2 implies that
d(b0) = 0. If γ ∈ Γ1 and d(γ) = 0 then γ can be realized by constant polynomial
functions on p and these fuctions are K -invariant. Thus b0 ∈ U(k)K and therefore
b = b0 = P (b0) ∈ P (U(g)K).

If b ∈ B and m > 0, from Theorem 2.2 and Proposition 2.1 we know that

there exists v ∈ U(g)K such that P̃ (v) = b̃ . Then b − P (v) lies in B and the
degree of b−P (v) is strictly less than m . Hence, by the induction hypothesis, there
exists u ∈ U(g)K such that P (u) = b−P (v) and b = P (u+ v) ∈ P (U(g)K). This
completes the induction argument. Therefore we obtain that B ⊂ P (U(g)K) =
BWρ ⊂ B .

The rest of the paper will be devoted to proving Theorem 2.2 when G0 is
locally isomorphic to SO(n, 1) or SU(n, 1).

3. The equations defining B

To simplify the notation, for a given simple root α ∈ P+ set E = Eα , Y = Yα and
Z = Zα . It follows from Lemma 29 of [12] that [E, Y ] = cE , where c = 1 if Go is
locally isomorphic to SO(n, 1), and c = 3

2
if Go is locally isomorphic to SU(n, 1).

We identify U(k)⊗ U(a) with the polynomial ring in one variable U(k)[x] ,
replacing Z by the indeterminate x . To study the equation (1) we shall change
the unknown b(x) ∈ U(k)[x] by c(x) ∈ U(k)[x] defined by

c(x) = b(x + H − 1), (3)

where H = 0 if c = 1, and when c = 3
2
, H is an appropriate vector in t to be

chosen later, depending on the simple root α ∈ P+ and such that [H, E] = 1
2
E (see

(10)). If Ỹ = Y +H , we have [E, Ỹ ] = E . This is the main reason for introducing
H , because it allow us to treat (1) in a unified way in both cases, c = 1, 3

2
.

Then b(x) ∈ U(k)[x] satisfies (1) if and only if c(x) ∈ U(k)[x] satisfies

Enc(n− Ỹ ) ≡ c(−n− Ỹ )En (4)

for all n ∈ N . Observe that (4) is an equation in the noncommutative ring U(k).

Now, if p is a polynomial in one indeterminate x with coefficients in a ring
let p(n) denote the n-th discrete derivative of p . That is, p(1)(x) = p(x+ 1

2
)−p(x− 1

2
)

and in general p(n)(x) =
∑n

j=0(−1)j
(

n
j

)
p(x + n

2
− j). If p = pmxm + · · ·+ p0 , then

p(n)(x) =

{
0, if n > m

m!pm, if n = m.
(5)
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Also, if X ∈ k we shall denote with Ẋ the derivation of U(k) induced by
ad(X ). Moreover if D is a derivation of U(k) we shall denote with the same
symbol the unique derivation of U(k)[x] which extends D and such that Dx = 0.
Thus for b ∈ U(k)[x] and b = bmxm+· · ·+b0 , we have Db = (Dbm)xm+· · ·+(Db0).
Observe that these derivations commute with the operation of taking the discrete
derivative in U(k)[x] .

Next theorem gives a triangularized version of the system (1) that defines
the algebra B . The meaning of this will be clarified after the statement of the
theorem. Its proof is contained in [2] where the system (4) is studied in a more
abstract setting, in particular, an LU-decomposition of its coefficient matrix is
obtained.

Theorem 3.1. Let c ∈ U(k)[x]. Then the following systems of equations are
equivalent:

(i) Enc(n− Ỹ ) ≡ c(−n− Ỹ )En , (n ∈ N0);

(ii) Ėn+1
(
c(n)
)
(n

2
+ 1− Ỹ ) + Ėn

(
c(n+1)

)
(n

2
− 1

2
− Ỹ )E ≡ 0, (n ∈ N0).

Moreover, if c ∈ U(k)[x] is a solution of one of the above systems, then for
all `, n ∈ N0 we have

(iii) (−1)nĖ`
(
c(n)
)
(−n

2
+ `− Ỹ )En − (−1)`Ėn

(
c(`)
)
(− `

2
+ n− Ỹ )E` ≡ 0.

Observe that if c ∈ U(k)[x] is of degree m and c = cmxm + · · · + c0 ,
then all the equations of the system (ii) corresponding to n > m are trivial
because c(n) = 0. Moreover, the equation corresponding to n = m reduces to
Ėm+1(cm) ≡ 0 and the equation associated to n = j , for j < m , only involves
the coefficients cm, . . . , cj . In other words the system (ii) is a triangular system of
m + 1 linear equations in the m + 1 unknowns cm, . . . , c0 .

Since we are going to use equations (iii) of Theorem 3.1, it is convenient to
consider a basis of C[x] that behaves well under the discrete derivative. Then let
{ϕn}n≥0 be the basis of C[x] defined by,

ϕ0 = 1, (i)

ϕ(1)
n = ϕn−1 if n ≥ 1, (ii)

ϕn(0) = 0 if n ≥ 1. (iii)

The existence and uniqueness of the family {ϕn}n≥0 follows inductively from
conditions (i), (ii) and (iii) above. Moreover it is easy to see that,

ϕn(x) = 1
n!

x(x + n
2
− 1)(x + n

2
− 2) · · · (x− n

2
+ 1), n ≥ 1.

To simplify the notation from now on we shall write u ≡ v instead of u ≡ v
mod

(
U(k)m+

)
, for any u, v ∈ U(k).

Lemma 3.2. Let u ∈ U(k) and X ∈ k−m+ be such that Ẋ(m+) ⊂ m+ . Then, if
n ∈ N and uXn ≡ 0 we have u ≡ 0.

Proof. Choose a basis {Z1, . . . , Zq} of m+ and complete it to a basis of
k by adding vectors X1, . . . , Xp with Xp = X . Then by Poincaré-Birkhoff-

Witt theorem the ordered monomials XI = X i1
1 · · ·X

ip
p , I = {i1, . . . , ip} , and

ZJ = Zj1
1 · · ·Z

jq
q , J = {j1, . . . , jq} , form a basis {XIZJ} of U(k).
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It is enough to prove the lemma for n = 1. If u =
∑

aI,JXIZJ we have

uX =
∑

aI,JXIXZJ −
∑

aI,JXIẊ(ZJ).

Then, since Ẋ(ZJ) ≡ 0 it follows that uX ≡
∑

aI,JXIXZJ . Therefore uX ≡ 0
implies that aI,J = 0 if J = 0. Hence the lemma follows.

The following result was proved in Theorem 3.11 of [3].

Theorem 3.3. Let Go be locally isomorphic to SO(n, 1) for n ≥ 3, or to SU(n, 1),
n ≥ 2. Then,

∑
j≥0 Ėj

(
U(k)M

)
is a direct sum and we have(∑

j≥0

Ėj
(
U(k)M

))
∩ U(k)m+ = 0.

4. Representations in Γ

It is well known that (K,M) is a Gelfand pair when Go is locally isomorphic to
SO(n, 1) or SU(n, 1). In particular dim(V M

γ ) = 1 for all γ ∈ Γ. In these cases we
have an alternative and convenient description of the Kostant degree of γ ∈ Γ. In
fact, given a simple root α ∈ P+ set E = X−α + θX−α for any X−α 6= 0. Then if
γ ∈ Γ define

q(γ) = max{q ∈ N : Eq(V M
γ ) 6= 0}. (6)

The following propositions establish the relation between q(γ) and d(γ)
for any γ ∈ Γ as well as other facts about the representations in Γ. Some of
these results where first established in [6], others were proved in [3] for Go locally
isomorphic to SO(n, 1) or SU(n, 1), and in [5] they were generalized to any real
rank one semisimple Lie group.

Proposition 4.1. Let Go be locally isomorphic to SO(n, 1) for n ≥ 3. Then there
exists a Borel subalgebra bk = hk ⊕ k+ of k such that m+ ⊂ k+ and E ∈ k+ . For
any such a Borel subalgebra there exists a fundamental weight ξo with the following
properties:

(i) If γ ∈ K̂ and ξγ denotes its highest weight then γ ∈ Γ if and only if ξγ = kξo

when n ≥ 4 and ξγ = 2kξo if n = 3, for some k ∈ No .

(ii) If rank (Go) = rank (Ko) (that is, n is even) we have, γ ∈ Γ1 if and only if
ξγ = kξo with k even.

(iii) If γ ∈ Γ we have Eq(γ)(V M
γ ) = V k+

γ , ξγ = q(γ)ξo if n ≥ 4, and ξγ = 2q(γ)ξo

if n = 3. Moreover d(γ) = q(γ).

As we indicated before if G0 is locally isomorphic to SU(n, 1) there are two
simple roots α = α1, αn in P+ (see Section 6 for more details). Hence, in this case
we set E1 = X−α1 + θX−α1 and E2 = X−αn + θX−αn . The following proposition
summarizes some results about the representations γ ∈ Γ for the group SU(n, 1).

Proposition 4.2. Let Go be locally isomorphic to SU(n, 1) for n ≥ 2. Then for
E = E1 (respectively E = E2 ) there exists a Borel subalgebra bk = hk ⊕ k+ of k

such that m+ ⊂ k+ and E1 ∈ k+ (respectively E2 ∈ k+ ). Moreover:
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(i) The Cartan complement p = p1⊕p2 , where p1 and p2 are irreducible k-modules
and p1 = p∗2 .

(ii) If ξ1 and ξ2 are the highest weights of p1 and p2 respectively, and ξγ denotes

the highest weight of any γ ∈ K̂ , then γ ∈ Γ if and only if ξγ = k1ξ1 + k2ξ2 with
k1, k2 ∈ No , and d(γ) = k1 + k2 .

(iii) We have γ ∈ Γ1 if and only if ξγ = k(ξ1 + ξ2) for k ∈ No .

(iv) Let γ ∈ Γ1 , E = E1 (respectively E = E2 ) and let q(γ) be as in (6). Then
Eq(γ)(V M

γ ) = V k+

γ , ξγ = q(γ)(ξ1 + ξ2) and d(γ) = 2q(γ).

(v) If we set X = [E1, E2] then X 6= 0, X ∈ m+ if n ≥ 3 and X ∈ t + z(k) if
n = 2. Moreover [X,E1] = [X, E2] = 0 if n ≥ 3. For γ ∈ Γ1 let 0 6= b ∈ V M

γ ,

then Ek
2E`

1(b) = E`
1E

k
2 (b) for all `, k ≥ 0 and E

q(γ)
2 E

q(γ)
1 (b) 6= 0.

For the construction of the Borel subalgebra bk of Propositions 4.1 and 4.2
we refer the reader to Section 3 of [5] and for the other statements of the above
propositions we refer the reader to Proposition 4.4, Theorem 4.5 and Theorem 5.3
of [5].

The Weyl group W = M ′/M preserves the one dimensional space V M
γ for

any γ ∈ Γ and since W = {1, w0} , it follows that w0 is either the identity or minus
the identity on V M

γ . It is well known that if rank (Go) = rank (Ko) (that is, Go is
locally isomorphic to SO(2p, 1) or SU(n, 1)) the element w0 acts as the identity
on k and therefore it acts as the identity on V M

γ for all γ ∈ Γ1 . On the other
hand, if rank (Go) = rank (Ko) + 1 we have Γ = Γ1 and the following proposition
describes the action of w0 on V M

γ .

Proposition 4.3. Let Go be locally isomorphic to SO(2p + 1, 1) with p ≥ 1 and
let γ ∈ Γ with ξγ = kξo . Then w0 is the identity on V M

γ if and only if k even.

Proof. Since Γ = Γ1 we may assume that V M
γ ⊂ U(k)M and let v0 ∈ V M

γ be
a non zero element. Since U(k)M ' U(k)K ⊗ U(m)M (see [7] and [13]) there exist
unique xi ∈ U(k)K and yi ∈ U(m)M for i = 1, . . . , r , such that

v0 =
r∑

i=1

xiyi,

where {xi} is a linearly independent set in U(k)K . Then, w0v0 = ±v0 if and only
if w0yi = ±yi for all i = 1, . . . , r . On the other hand,

yi ≡ ti mod
(
U(m)m+

)
where ti ∈ U(t) is the image of yi by the Harish-Chandra isomorphism U(m)M →
U(t)W (m,t)ρm . Here W (m, t)ρm denotes de action of the Weyl group W (m, t) on t

translated by ρm .

If {T1, T2, . . . , Tp} is an orthonormal basis of t with respect to the Killing
form, the elements qk =

∑p
i=1 T 2k

i for k = 1, . . . , p − 1, and qp = T1T2 . . . Tp

are the generators of S(t)W (m,t) (see [1]). Note that qk has even degree in Ti

for all i = 1, . . . , p and all k = 1, . . . , p − 1, but qp has degree one in Ti

for all i = 1, . . . , p . Let q̃k ∈ U(t)W (m,t)ρm be the translated element by ρm

corresponding to qk , for example q̃p = (T1 + ρm(T1)) . . . (Tp + ρm(Tp)). We know
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that ti = Qi(q̃1, . . . , q̃p) = Q′
i(T1, . . . , Tp), where Qi and Q′

i are polynomials in
C[x1, . . . , xp] for all i = 1, . . . , p .

It is not difficult to see that the basis {T1, T2, . . . , Tp} and a representative
of w0 can be chosen so that,

(i) w0Ti = Ti for all i = 1, . . . , p− 1 and w0Tp = −Tp ;

(ii) w0m
+ = m+ ;

(iii) Ė(T1) = −E and Ė(Ti) = 0 for i = 2, . . . , p .

Property (ii) implies that w0yi = ±yi if and only if w0ti = ±ti , and property (i)
implies that w0ti = ti (respectively w0ti = −ti ) if and only if Qi is an even
(respectively odd) polynomial in q̃p .

Now assume that w0ti = ti for all i = 1, . . . , r . Then Q′
i has even degree

in all the variables T1, . . . , Tp . On the other hand, property (iii) implies that

Ės(T j
1 ) =

( s∑
`=1

(−1)`
(

s
`

)
(T1 + `− s)j

)
Es =

{
0, if s > j

j!Es, if s = j,
(7)

hence for s ∈ N0 and 1 ≤ i ≤ r , there exists a polynomial Q̃′
i ∈ C[x1, . . . , xp]

(that depends on s) such that Ės(Q′
i(T1, . . . , Tp)) = Q̃′

i(T1, . . . , Tp)E
s . Now, since

v0 ∈ V M
γ and ξγ = kξo , from Proposition 4.1 we know that Ėk(v0) 6= 0 and

Ėk+1(v0) = 0. Then,

0 = Ėk+1(v0)

=
r∑

i=1

xiĖ
k+1(yi)

≡
r∑

i=1

xiĖ
k+1(Q′

i(T1, . . . , Tp))

=
r∑

i=1

xiQ̃
′
i(T1, . . . , Tp)E

k+1.

Hence, in view of Lemma 3.2 this implies that

r∑
i=1

xiQ̃
′
i(T1, . . . , Tp) ≡ 0.

Now, since {xi} is a linearly independent set in U(k)K and Q̃′
i(T1, . . . , Tp) ∈ U(t),

we obtain that Q̃′
i(T1, . . . , Tp) = 0 for i = 1, . . . , r (see Proposition 13 of [13]).

This implies that Ėk+1(Q′
i(T1, . . . , Tp)) = 0 for i = 1, . . . , r . On the other hand,

since Ėk(v0) 6= 0 there exists some 1 ≤ j ≤ r such that Ėk(Q′
j(T1, . . . , Tp)) 6= 0.

These two results about Q′
j(T1, . . . , Tp), together with (7), imply that k is equal

to the degree of Q′
i in the variable T1 which we know is even.

Finally, if we assume that w0ti = −ti for all i = 1, . . . , r , we obtain that Q′
i

has odd degree in all the variables T1, . . . , Tp . Then the same argument as above
shows that k is odd. This completes the proof of the proposition.
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5. The case SO(n,1)

In this section we shall prove Theorem 1.2 when Go is locally isomorphic to
SO(n, 1) with n ≥ 3.

5.1. Preliminary results. As we pointed out before, there is only one simple
root α1 ∈ P+ if n ≥ 4 and there are two α1 , α2 if n = 3. In all cases we set
α = α1 , E = Eα , Y = Yα and Z = Zα . Also as in (3), to any b(x) ∈ U(k)[x] we
associate c(x) ∈ U(k)[x] defined by c(x) = b(x − 1). If b(x) ∈ U(k)[x] , b(x) 6= 0,
we shall find it convenient to write, in a unique way, b =

∑m
j=0 bjx

j , bj ∈ U(k),
bm 6= 0, and the corresponding c =

∑m
j=0 cjϕj with cj ∈ U(k). Then the following

result establishes the relation between the coefficients bj and cj . Since its proof is
straightforward we ommit it.

Lemma 5.1. Let b =
∑m

j=0 bjx
j ∈ U(k)[x] and set c(x) = b(x − 1). Then, if

c =
∑m

j=0 cjϕj with cj ∈ U(k) we have

ci =
m∑

j=i

tijbj 0 ≤ i ≤ m, (8)

where tij are rational numbers and tii = i!. In other words, the vectors (b0, . . . , bm)t

and (c0, . . . , cm)t are related by a rational nonsingular upper triangular matrix.

Lemma 5.2. If b = bm⊗Zm + · · ·+b0 ∈ B then Ėm+1(bj) ≡ 0 for all 0 ≤ j ≤ m,
and thus Ėm+1(bj) = 0 for all 0 ≤ j ≤ m.

Proof. We regard b as a polynomial b =
∑m

j=0 bjx
j with bj ∈ U(k)M and let

c(x) = b(x − 1) =
∑m

j=0 cjϕj(x) with cj ∈ U(k)M . Then, since b ∈ B , c satisfies

the system of equations (i) of Theorem 3.1 with Ỹ = Y . Therefore c satisfies
equations (iii) of Theorem 3.1 for all `, n ∈ No .

Hence, since c(m+1) = 0, if we consider ` = m + 1 in equation (iii) of
Theorem 3.1 and we use Lemma 3.2 with X = E we obtain

m∑
j=n

Ėm+1(cj)ϕj−n(2m+2−n
2

− Y ) ≡ 0, (9)

for 0 ≤ n ≤ m . Now, taking into account that right multiplication by Y leaves
invariant the left ideal U(k)m+ because Y ∈ t , (9) together with decreasing
induction on n starting from n = m implies that Ėm+1(cj) ≡ 0 for all 0 ≤ j ≤ m .
From this, applying Ėm+1 to (8) and making use of Theorem 3.3, the theorem
follows because the matrix (tij) is a nonsingular scalar matrix.

5.2. Bound for the Kostant degree. We are now ready to prove the bound-
eness condition on the Kostant degree required in Theorem 2.2 for Go locally
isomorphic to SO(n, 1).

Theorem 5.3. Assume that Go is locally isomorphic to SO(n, 1) for n ≥ 3 and
let b = bm ⊗ Zm + · · ·+ b0 ∈ B , then d(bj) ≤ m for all 0 ≤ j ≤ m.
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Proof. Let b = bm ⊗ Zm + · · · + b0 ∈ B , then it follows from Lemma 5.2
that Ėm+1(bj) = 0 for all 0 ≤ j ≤ m . In view of (6) and (iii) of Proposition 4.1
this implies that bj ∈

⊕
U(k)M

γ , where the sum extends over all γ ∈ Γ such that
d(γ) ≤ m . Therefore d(bj) ≤ m for all 0 ≤ j ≤ m , as we wanted to prove.

5.3. Weyl group invariance of the leading term. Our next goal is to prove
the W -invariance condition of Theorem 2.2. That is, if b = bm⊗Zm + · · ·+b0 ∈ B

and bm 6= 0, then its leading term bm ⊗ Zm ∈
(
U(k)M ⊗ U(a)

)W
. Recall that(

U(k)M ⊗ U(a)
)W

denotes the ring of W -invariants in U(k)M ⊗ U(a) under the
tensor product of the action of W on U(k)M and the action of W on U(a)

If Go is locally isomorphic to SO(2p, 1) the Weyl group W acts trivially on
k . On the other hand, if Go is locally isomorphic to SO(2p+1, 1) with p ≥ 1, recall
that we can choose an orthonormal basis {T1, T2, . . . , Tp} of t and a representative
of w0 such that,

(i) w0Ti = Ti for all i = 1, . . . , p− 1 and w0Tp = −Tp ;

(ii) w0m
+ = m+ ;

(iii) Ė(T1) = −E and Ė(Ti) = 0 for i = 2, . . . , p .

Moreover, this choice can be made in such a way that w0E = −E and Y = −T1 .
Hence, if we extend the action of W in U(k)M to U(k)M ⊗ U(a) by letting
it act trivially on U(a), it is clear that W preserves the algebra B and thus
B = B1 ⊕B−1 , where B±1 = {b ∈ B : w0b = ±b} .

Lemma 5.4. If u ∈ U(k)M the following statements hold,

(1) If w0u = u and Ė2t(u) = 0 for t ∈ N, then Ė2t−1(u) = 0.

(2) If w0u = −u and Ė2t+1(u) = 0 for t ∈ N, then Ė2t(u) = 0.

Proof. We may assume that u ∈ V M
γ ⊂ U(k)M for γ ∈ Γ1 . We begin by

proving (1). If Ė2t−1(u) 6= 0 then Ė2t−1(u) would be a highest weight vector of
weight ξ = (2t − 1)ξo . This contradicts (ii) of Proposition 4.1 if Go is locally
isomorphic to SO(2p,1), or contradicts Proposition 4.3 if Go is locally isomorphic
to SO(2p+1,1), because we are assuming that w0 acts as the identity on V M

γ .

The proof of (2) is similar: if Ė2t(u) 6= 0 then Ė2t(u) would be a highest weight
vector of weight ξ = 2tξo but this contradicts Proposition 4.3 as in the previous
case.

Theorem 5.5. If Go is locally isomorphic to SO(n, 1) with n ≥ 3 and b =

bm ⊗ Zm + · · · + b0 ∈ B with bm 6= 0, then its leading term b̃ = bm ⊗ Zm ∈(
U(k)M ⊗ U(a)

)W
.

Proof. We shall prove first that if b = bm ⊗ Zm + · · · + b0 ∈ B1 (respectively
b ∈ B−1 ) then m is even (respectively odd). Let b = bm⊗Zm + · · ·+ b0 ∈ B1 with
bm 6= 0, and assume that m is odd. From Lemma 5.2 it follows that Ėm+1(bj) = 0
for all 0 ≤ j ≤ m . Then, since m + 1 is even and w0bj = bj for all 0 ≤ j ≤ m ,
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from (1) of Lemma 5.4 it follows that Ėm(bj) = 0 for all 0 ≤ j ≤ m . Hence, from
(8) we get Ėm(cj) = 0 for all 0 ≤ j ≤ m . Now, if we consider ` = m and n = 0
in equation (iii) of Theorem 3.1 we get

m∑
j=0

Ėm(cj)ϕj(m− Y )−m!bmEm ≡ 0,

which implies that bm ≡ 0, and therefore bm = 0 (Theorem 3.3). This is a
contradiction therefore m is even, as we wanted to prove. A similar argument
proves that if b = bm⊗Zm+· · ·+b0 ∈ B−1 and bm 6= 0, then m is odd. Observe that

in both cases (ie. b ∈ B1 or b ∈ B−1 ) we have b̃ = bm ⊗ Zm ∈
(
U(k)M ⊗ U(a)

)W
.

Now consider b = bm⊗Zm + · · ·+b0 ∈ B with bm 6= 0. Since B = B1⊕B−1

we can write b = b(1) + b(−1) with b(1) ∈ B1 and b(−1) ∈ B−1 . Then the

leading term of b is either b̃(1) or b̃(−1) , the leading terms of b(1) and b(−1)

respectively. Hence, by above the observation, in either case we conclude that

b̃ = bm ⊗ Zm ∈
(
U(k)M ⊗ U(a)

)W
, as we wanted to prove.

Remark 5.1. When Go is locally isomorphic to SO(3, 1) we have used only
one of the equations that define the algebra B . In other words, if for each simple
root α ∈ P+ we define Bα as the subalgebra of all elements b ∈ U(k)⊗ U(a) that

satisfy (1) for all n ∈ N , then we have proved that P
(
U(g)K

)
= BWρ = B

Wρ
α .

Moreover, taking advantage that in this case the elements of the algebra B satisfy
two different equations, it is not difficult to see that BWρ = B .

This completes the proof of theorem 2.2 when G0 is locally isomorphic to
SO(n, 1).

6. The case SU(n,1)

In this section we prove Theorem 1.2 when Go is locally isomorphic to SU(n, 1)
for n ≥ 2. Although some results of this section are contained in [12], we include
them here for completeness and to prove that BWρ = B which is a new result.

6.1. Preliminary results. We can choose an orthonormal basis {εi}n+1
i=1 of

(hR ⊕ R)∗ in such a way that hR = {H ∈ hR ⊕ R : (ε1 + · · · + εn+1)(H) = 0} ,
αi = εi− εi+1 if 1 ≤ i ≤ n , εσ

i = −εi if 2 ≤ i ≤ n and εσ
1 = −εn+1 . Then from the

Dynkin-Satake diagram of g we obtain that

∆+(g, h) = {εi − εj : 1 ≤ i < j ≤ n + 1},
P+ = {ε1 − εj, εj − εn+1 : 2 ≤ j ≤ n} ∪ {ε1 − εn+1},
P− = {εi − εj : 2 ≤ i < j ≤ n},

where P− denotes the set of roots in ∆+(g, h) that vanish on a .

In this case there are two simple roots α = α1, αn in P+ ; in both cases
Yα 6= 0. Set E1 = X−α1 + θX−α1 , E2 = X−αn + θX−αn , Y1 = Yα1 , Y2 = Yαn and
Z = Zα1 = Zαn . Let T ∈ tR be defined by ε2(T ) = · · · = εn(T ) = 2

n+1
. Then

T ∈ z(m) and dim(z(m)) = 1. Since ε1(T ) = εn+1(T ) and (ε1 + · · ·+ εn+1)(T ) = 0
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we get ε2(T )−ε1(T ) = εn(T )−εn+1(T ) = 1; thus [T,E1] = E1 and [T, E2] = −E2 .
Now define the vector H considered in (3) as follows,

H =

{
1
2
T, if α = α1

−1
2
T, if α = αn,

(10)

and we write generically E , Y , and Ỹ = Y + H for the corresponding vectors
associated to a simple root α ∈ P+ . Then Ė(H) = −1

2
E , and thus Ė(Ỹ ) = E .

Also as in (3), to any b(x) ∈ U(k)[x] associate c(x) ∈ U(k)[x] defined by
c(x) = b(x + H − 1). If b(x) ∈ U(k)[x] , b(x) 6= 0, we shall find it convenient to
write, in a unique way, b =

∑m
j=0 bjx

j , bj ∈ U(k), bm 6= 0, and the corresponding
c =

∑m
j=0 cjϕj with cj ∈ U(k). Then the following lemma establishes the relation

between the coefficients bj and cj .

Lemma 6.1. Let b =
∑m

j=0 bjx
j ∈ U(k)[x] and set c(x) = b(x + H − 1). Then, if

c =
∑m

j=0 cjϕj with cj ∈ U(k) we have

ci =
m∑

j=i

bjtij 0 ≤ i ≤ m, (11)

where tij =
∑i

k=0(−1)k
(

i
k

)
(H + i

2
− 1 − k)j ∈ z (U(m)) . Thus tii = i!, tij is a

polynomial in H of degree j − i, and

Ėj−i(tij) =
(
−1

2

)j−i
j!Ej−i.

Moreover if bj ∈ U(k)M for 0 ≤ j ≤ m, then cj ∈ U(k)M for 0 ≤ j ≤ m.

Proof. Since almost all the results follow from straightforward computations,

we only prove that Ėj−i(tij) =
(
−1

2

)j−i
j!Ej−i.

It follows by induction that if Ḣ(E) = cE and a ∈ C , then

Ėm(H + a)j = Em

m∑
`=0

(−1)`

(
m

`

)
(H + a + c`)j. (12)

This implies that

Ėj−i(Hj−i) = Ej−i

j−i∑
`=0

(−1)`

(
j − i

`

)(
H +

`

2

)j−i

=
(
−1

2

)j−i
(j − i)!Ej−i.

Now, since

tij =
i∑

k=0

(−1)k

(
i

k

) j∑
`=0

(
j

`

)(
i

2
− 1− k

)`

Hj−`

=

j∑
`=i

(
i∑

k=0

(−1)k

(
i

k

)(
i

2
− 1− k

)`
)(

j

`

)
Hj−`

=
j!

(j − i)!
Hj−i + · · · ,
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it follows that

Ėj−i(tij) =
j!

(j − i)!
Ėj−i(Hj−i) =

(
−1

2

)j−i
j!Ej−i.

Theorem 6.2. If b = bm ⊗ Zm + · · · + b0 ∈ B , then Ėm+1(cj) = 0 for all
0 ≤ j ≤ m.

Proof. Since b ∈ B , c satisfies the system of equations (i) of Theorem 3.1 with

Ỹ = Y + H . Therefore c satisfies equations (iii) of Theorem 3.1 for all `, n ∈ No .
Hence, since c(m+1) = 0, if we consider ` = m + 1 in equation (iii) of Theorem 3.1
and we use Lemma 3.2 with X = E we obtain

m∑
j=n

Ėm+1(cj)ϕj−n

(
2m + 2− n

2
− Ỹ

)
≡ 0, (13)

for 0 ≤ n ≤ m . Now, taking into account that right multiplication by Ỹ leaves
invariant the left ideal U(k)m+ because Ỹ ∈ t , (13) together with decreasing
induction on n starting from n = m implies that Ėm+1(cj) ≡ 0. Hence using
Lemma 6.1 and Theorem 3.3 it follows that Ėm+1(cj) = 0 for all 0 ≤ j ≤ m .

Corollary 6.3. If b = bm ⊗ Zm + · · · + b0 ∈ B , then Ė2m+1−j(bj) = 0 for all
0 ≤ j ≤ m.

Proof. For j = m the assertion follows directly from Theorem 6.2 since
cm = m!bm (Lemma 6.1). Now we proceed by decreasing induction on j . Thus
let 0 ≤ j < m and assume that Ė2m+1−k(bk) = 0 for all j < k ≤ m . Then, since
m + 1 < 2m + 1− j , using Leibnitz rule, Lemma 6.1 and the inductive hypothesis
we obtain

Ė2m+1−j(cj) = Ė2m+1−j
( m∑

k=j

bktjk

)
= j!Ė2m+1−j(bj).

Since Ė2m+1−j(cj) = 0 the proof of the corollary is completed.

The following result was proved in Theorem 30 of [12], but in a different
way. Here we derive this theorem directly from Theorem 3.1.

Theorem 6.4. Let m, w, α ∈ Z, 0 ≤ w,α ≤ m, α + w ≥ m + 1. If b =
bm ⊗ Zm + · · ·+ b0 ∈ B and Ėm+α+1−j(bj) ≡ 0 for all 0 ≤ j ≤ m, then

m∑
j=m−w

(−2)−jj!

(
α + w

j + w −m

)
Ėm+α−j(bj)E

j ≡ 0.

Proof. From the previous theorem we know that Ėm+1(cj) ≡ 0 for every
0 ≤ j ≤ m . Since w ≥ 1 we have Ėα+w(cm−w) = 0. Now using the Leibnitz rule
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and Lemma 6.1 we compute

Ėα+w(cm−w) = Ėα+w
( m∑

j=m−w

bjtm−w,j

)
≡

m∑
j=m−w

(
α + w

j + w −m

)
Ėm+α−j(bj)Ė

j+w−m(tm−w,j)

=
m∑

j=m−w

(
α + w

j + w −m

)
(−2)−(j+w−m)j!Ėm+α−j(bj)E

j+w−m.

Therefore
m∑

j=m−w

(
α + w

j + w −m

)
(−2)−(j+w−m)j!Ėm+α−j(bj)E

j+w−m ≡ 0.

If we multiply this last equation on the right by (−2)w−mEm−w we obtain the
stated result.

Lemma 6.5. Let k ∈ No and u ∈ U(k)M . Then, Ėk
i (u) ≡ 0 for i = 1 or i = 2 if

and only if Ėk
i (u) = 0 for every i ∈ {1, 2}.

Proof. Let us assume that Ėk
1 (u) ≡ 0 for k ≥ 1. Then Theorem 3.3 implies

that Ėk
1 (u) = 0. Hence, in view of Proposition 4.2, it follows that u ∈

⊕
U(k)M

γ

where the sum extends over all γ ∈ Γ1 such that q(γ) ≤ k − 1. Then since q(γ)
is independent of the choice of the simple root α = α1 or α = αn , we obtain
Ėk

2 (u) = 0 which completes the proof.

For further reference we now recall Lemma 1 of [13].

Lemma 6.6. Let Go be locally isomorphic to SU(2, 1) and set Y = Yα1 = −Yα2 .
Also let 0 6= D ∈ z(k) and let ζ denote the Casimir element of [k, k]. Then
{ζ iDj}i,j≥0 is a basis of z(U(k)) and {ζ iDjY k}i,j,k≥0 is a basis of U(k)M .

The following theorem plays a crucial role in the proof of Theorem 2.2
because it allows us to obtain from Theorem 6.4 two systems of linear equations
and therefore doubling the number of equations.

Theorem 6.7. Let Go be locally isomorphic to SU(n, 1) for n ≥ 2. Also let
m, k ∈ No , m ≤ k , and let bj ∈ U(k)M be such that Ėk+1−j(bj) ≡ 0 for all
0 ≤ j ≤ m and for E = E1 or E = E2 . Then,

(i) If
∑m

j=0 Ėk−j(bj)E
j ≡ 0 for E = E1 and E = E2 we obtain∑

0≤j≤m
j even

Ėk−j(bj)E
j = 0 =

∑
0≤j≤m
j odd

Ėk−j(bj)E
j.

(ii) If
∑m

j=0 Ėk−j(bj)E
j ≡ 0 for E = E1 or E = E2 we have

m∑
j=0

Ėk−j
i (bj)E

j
i = 0 =

m∑
j=0

(−1)jĖk−j
i′ (bj)E

j
i′ ,

for i′ 6= i and i, i′ ∈ {1, 2}.
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Proof. The statement in (i) is the same as that of Theorem 32 of [12], and its
proof for n ≥ 3 can be found there. Here we will prove (i) for n = 2 and will also
prove (ii). To do this we recall the following equality obtained in Theorem 32 of
[12] for n ≥ 2,

m∑
j=0

Ėk−j(bj)E
j = Ėk

( m∑
j=0

(
k

j

)−1

(−ε)j(j!)−1bjT
j
)
, (14)

where ε = 1 if E = E1 , ε = −1 if E = E2 and T ∈ z(m) was defined at the

beginning of this section. Since
∑m

j=0

(
k
j

)−1
(−ε)j(j!)−1bjT

j ∈ U(k)M , if we assume

that the hypothesis in (ii) holds, applying Lemma 6.5 we obtain (ii) for every
n ≥ 2.

On the other hand, if we assume that the hypothesis in (i) holds, applying
Theorem 3.3 (or Lemma 6.5) to (14) we obtain that,

m∑
j=0

Ėk−j(bj)E
j = 0, for E = E1 and E = E2. (15)

Also, since Ėk+1−j(bj) ≡ 0 for 0 ≤ j ≤ m and for E = E1 or E = E2 , it follows
from Lemma 6.5 that Ėk+1−j(bj) = 0 for E = E1 and E = E2 .

Assume now that n = 2. It follows from Lemma 6.6 that we can write, in
a unique way, bj =

∑
i ai,jY

i with ai,j ∈ z(U(k)) and 0 ≤ j ≤ m . On the other
hand, from the definition of Y in Lemma 6.6 and the comment at the beginning
of Section 3, we have Ė(Y ) = 3ε

2
E . Hence,

Ėt(Y i) =

{
0, if t > i

t!
(

3ε
2

)t
Et, if t = i.

(16)

Then, since Ėk+1−j(bj) = 0 for E = E1 and E = E2 , using (16) we obtain that

bj =
∑k−j

i=0 ai,jY
i . Therefore

m∑
j=0

Ėk−j(bj)E
j = Ek

m∑
j=0

(
3ε
2

)k−j
ak−j,j (17)

for both E = E1 and E = E2 . Then using (15) and (17) for E = E1 and E = E2

we obtain (i) for n = 2.

Taking into account Theorems 6.4 and 6.7 we are led to consider, for each
1 ≤ α ≤ m , the following systems of linear equations

∑
m−w≤j≤m
j even (odd)

(−2)−jj!

(
α + w

j + w −m

)
Ėm+α−j(bj)E

j = 0, (18)

for m + 1− α ≤ w ≤ m .
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If we set xj = (−2)−jj!
(α+m−j)!

Ėm+α−j(bj)E
j+w−m and multiply (18) by 1

(α+w)!
we

obtain ∑
m−w≤j≤m
j even (odd)

1

(j + w −m)!
xj = 0. (19)

Now if we make the change of indices j = 2r − δ , m − w + δ = s and set
yr = x2r−δ

(2r)!
the systems (19) become

∑
δ≤r≤[m+δ

2
]

(
2r

s

)
yr = 0, (20)

for δ ≤ s ≤ α + δ − 1 and δ ∈ {0, 1} .

Proposition 6.8. For δ ∈ {0, 1} let Mδ be the matrix with entries defined by
Mrs =

(
2r
s

)
for δ ≤ r, s ≤ k . Then

det(Mδ) = 2k(k+1)/2.

Proof. For each δ ≤ s ≤ k we let
(
2r
s

)
denote the s-column of Mδ and we

consider the determinant of Mδ as a multilinear function of its columns. Thus

det(Mδ) = det
((2r

δ

)
,

(
2r

δ + 1

)
, . . . ,

(
2r

k

))
.

If we view the binomial coefficient
(
2r
s

)
as a polynomial in the variable r of degree

s we can write, in a unique way,(
2r

s

)
= 2s

(
r

s

)
+ as−1

(
r

s− 1

)
+ · · ·+ a0,

where aj = 0 for j < s
2
. Then

det(M) = det
(
2δ

(
r

δ

)
, 2δ+1

(
r

δ + 1

)
, . . . , 2k

(
r

k

))
= 2k(k+1)/2.

This completes the proof of the proposition.

6.2. Bound for the Kostant degree. We are now almost ready to prove the
first part of Theorem 2.2 when Go is locally isomorphic to SU(n, 1). We need the
following proposition.

Proposition 6.9. Let Go be locally isomorphic to SU(n, 1) with n ≥ 2. If
b = bm ⊗ Zm + · · ·+ b0 ∈ B , then Ė[m

2
]+m+1−j(bj) = 0 for all 0 ≤ j ≤ m.

Proof. We will prove by decreasing induction on α in the interval [m
2
] ≤ α ≤ m

that Ėα+m+1−j(bj) = 0 for all 0 ≤ j ≤ m . For α = m this result follows
from Corollary 6.3 and Theorem 3.3. Thus assume that [m

2
] < α ≤ m and that

Ėα+m+1−j(bj) = 0 for all 0 ≤ j ≤ m . Then in view of Theorems 6.4 and 6.7 we
know that the systems of linear equations (18) and their equivalent versions (19)
and (20) hold.
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Since [m
2
] + 1 ≤ α the number of unknowns in the system (20) is less or

equal than the number of equations. Moreover, it follows from Proposition 6.8
that when δ = 0 the rank of the coefficient matrix of the system (20) is [m

2
] + 1

which it is equal to the number of unknowns. Thus Ėα+m−j(bj) = 0 for 0 ≤ j ≤ m
and j even. Similarly , when δ = 1 the rank of the coefficient matrix is [m+1

2
]

which it is also equal to the number of unknowns. Therefore Ėα+m−j(bj) = 0 for
0 ≤ j ≤ m and j odd. Then the inductive step is completed and the proposition
is proved.

Theorem 6.10. Let Go be locally isomorphic to SU(n, 1) with n ≥ 2.If b =
bm ⊗ Zm + · · · + b0 ∈ B , then d(bj) ≤ 3m − 2j for all 0 ≤ j ≤ m. In particular
d(bm) ≤ m.

Proof. Let b = bm ⊗ Zm + · · · + b0 ∈ B , then it follows from Proposition 6.9
that Ė[m/2]+m+1−j(bj) = 0 for all 0 ≤ j ≤ m . Hence in view of (6) and Proposition
4.2 it follows that bj ∈

⊕
U(k)M

γ , where the sum extends over all γ ∈ Γ1 such
that d(γ) ≤ 3m− 2j . Therefore d(bj) ≤ 3m− 2j as we wanted to prove.

6.3. Weyl group invariance of the leading term. We shall now prove the
second condition required by Theorem 2.2. That is, we need to show that if b ∈ B

then its leading term b̃ = bm⊗Zm ∈
(
U(k)M ⊗ U(a)

)W
. As in the case SO(2p, 1),

since the non trivial element of W can be represented by an element in M ′
o which

acts on g as the Cartan involution, it is enough to prove that m is even.

As before, to any b(x) ∈ U(k)[x] we associate c(x) ∈ U(k)[x] defined by
c(x) = b(x + H − 1) where H is defined in (10). Recall that if b(x) ∈ U(k)M [x]
then c(x) ∈ U(k)M [x] (see Lemma 6.1). Whenever necessary we shall refer to c(x)
as c1(x) or c2(x) according as α = α1 or α = αn . On the other hand, c(x) will
generically stand for c1(x) or c2(x). Also, as before we shall find it convenient to
write ci(x) =

∑m
j=0 ci,jϕj(x) with ci,j ∈ U(k) for i = 1, 2.

Proposition 6.11. Let r ∈ No , 0 ≤ r ≤ m. If b = bm ⊗ Zm + · · · + b0 ∈ B and
Ėm+r+1−j

1 (c1,j) = Ėm+r+1−j
1 (c2,j) = 0 for r + 1 ≤ j ≤ m then

Ėm−j
1 (c1,r+j)E

j
1 = (−1)m−rĖr+j

1 (c1,m−j)E
m−r−j
1

and
Ėm−j

1 (c2,r+j)E
j
1 = Ėr+j

1 (c2,m−j)E
m−r−j
1

for j = 0, . . . ,
[

m−r
2

]
.

Proof. If we set ` = m− j and n = r + j in equation (iii) of Theorem 3.1 we
get,

Ėm−j
1

(
c
(r+j)
1

)
(− r+j

2
+ m− j − Ỹ1)E

r+j
1

− (−1)m−rĖr+j
1

(
c
(m−j)
1

)
(−m−j

2
+ r + j − Ỹ1)E

m−j
1 ≡ 0.

By hypothesis Ėm−j
1

(
c
(r+j)
1

)
=
∑

k Ėm−j
1 (c1,k)ϕk−r−j = Ėm−j

1 (c1,r+j), and the first
assertion follows from Theorem 6.7 (i).
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In a similar way we obtain

Ėm−j
2 (c2,r+j)E

j
2 = (−1)m−rĖr+j

2 (c2,m−j)E
m−r−j
2 .

Then the second assertion is a direct consequence of Theorem 6.7 (ii).

In order to get a better insight of Proposition 6.11, for r = 0, . . . ,m + 1
we introduce the column vectors σr = σr(b) and τr = τr(b) of m + r + 1 entries
defined by

σr = (0, . . . , 0, Ėr
1(c1,m)Em−r

1 , . . . , Ėm−1
1 (c1,r+1)E1, Ė

m
1 (c1,r), 0, . . . , 0)t,

τr = (0, . . . , 0︸ ︷︷ ︸
r

, Ėr
1(c2,m)Em−r

1 , . . . , Ėm−1
1 (c2,r+1)E1, Ė

m
1 (c2,r)︸ ︷︷ ︸

m+1−r

, 0, . . . , 0︸ ︷︷ ︸
r

)t.

Let us observe that by definition σm+1 = τm+1 = 0, and that the last m +
1 entries of σr and τr are respectively of the form Ėr+j

1 (c1,m−j)E
m−r−j
1 and

Ėr+j
1 (c2,m−j)E

m−r−j
1 for 0 ≤ j ≤ m , see Theorem 6.3 and Lemma 6.7.

Let Js be the (s + 1)× (s + 1) matrix with ones in the skew diagonal and
zeros everywhere else, thus

Js =

(
0 1

·
·

·
1 0

)
. (21)

In the following corollary we rephrase Proposition 6.11 in terms of the
vectors σr and τr .

Corollary 6.12. Let r ∈ No , 0 ≤ r ≤ m. If b = bm ⊗ Zm + · · · + b0 ∈ B and
σr+1 = τr+1 = 0 then

Jm+rσr = (−1)m+rσr and Jm+rτr = τr.

The vectors σr and τr are nicely related by a Pascal matrix. Let Pk denote
the following (k + 1)× (k + 1) lower triangular matrix

Pk =


1
1 1
1 2 1
· ·
· ·
· ·

(k
0) · · · · · (k

k)

 . (22)

Proposition 6.13. If r ∈ No , 0 ≤ r ≤ m and σr+1 = 0, then Pm+rσr = τr .

Proof. Since c2(x) = c1(x− T ), for any 0 ≤ j ≤ m− r we have

c2,r+j = c
(r+j)
2 (0) = c

(r+j)
1 (−T ) =

m−r−j∑
s=0

c1,r+j+sϕs(−T ).

On the other hand, since Ė1(T ) = −E1 , it follows that Ėk
1 ((−T )k) = k!Ek

1

and Ėt
1((−T )k) = 0 if t > k . Therefore, since ϕk(−T ) = 1

k!
(−T )k + · · · , where
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the dots stand for lower degree terms in T , we have Ėk
1 (ϕk(−T )) = Ek

1 and
Ėt

1(ϕk(−T )) = 0 if t > k . Now the hypothesis σr+1 = 0 together with Theorem 6.2
imply that Ėm+r+1−i

1 (c1,i) = 0 for every 0 ≤ i ≤ m . Hence, for any −r ≤ j ≤ m−r
using the Leibnitz rule we obtain

Ėm−j
1 (c2,r+j)E

j
1 =

m−r−j∑
s=0

Ėm−j
1 (c1,r+j+sϕs(−T ))Ej

1

=

m−r−j∑
s=0

m−j∑
`=0

(
m− j

`

)
Ėm−j−`

1 (c1,r+j+s)Ė
`
1(ϕs(−T ))Ej

1

=

m−r−j∑
s=0

(
m− j

s

)
Ėm−j−s

1 (c1,r+j+s)E
s+j
1 ,

which implies that the last m+1 components of Pm+rσr and τr are equal. Since by
definition the first r components of Pm+rσr and τr are equal to 0 the proposition
follows.

For t ∈ No we shall be interested in considering certain (t + 1) × (t + 1)
submatrices of a Pascal matrix Pn formed by any choice of t + 1 consecutive rows
and t + 1 consecutive columns of Pn , with the only condition that the submatrix
does not have zeros in its main diagonal. To be precise, for any 0 ≤ a, b ≤ n ,
a, b ∈ No such that b ≤ a we shall be interested in submatrices A of Pn of the
following form

A =



(
a
b

) (
a

b+1

)
· · ·

(
a

b+t

)(
a+1

b

) (
a+1
b+1

)
· · ·

(
a+1
b+t

)
· · ·
· · ·
· · ·(

a+t
b

) (
a+t
b+1

)
· · ·

(
a+t
b+t

)

 . (23)

In the following proposition we collect some results that will be very impor-
tant in the proof of our goal, that is, that the algebra B does not contain elements
of odd degree. The proof of this proposition will be given in an appendix at the
end of this section.

Proposition 6.14. If Jn and Pn are as in (21) and (22) we have,

(i) If v ∈ Cn+1 satisfies Jnv = (−1)nv and JnPnv = Pnv then v begins and ends
with the same number of coordinates, say k , equal to zero. Moreover, k is even
or odd according as n is even or odd, respectively.

(ii) If A is a (t + 1) × (t + 1) submatrix of Pn of the form (23) then A is non-
singular.

Lemma 6.15. Let n ∈ N0 be an even number and let v ∈ U(k)M be such that
Ėt+1(v) = 0. If n ≥ 2t then there exists b ∈ B of degree n with bn = v and
σt+1(b) = 0.

Proof. The proof will be by induction on n . If n = 0 the assertion follows
from Proposition 4.2 and Proposition 2.1. Let us now take n > 0 even and
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consider S = {b ∈ B : deg(b) = n and bn = v} . From Proposition 2.1 we know
that S is nonempty, because from Proposition 4.2 we obtain d(v) ≤ 2t ≤ n . For
each b ∈ S let r(b) ∈ No be such that σr(b)+1(b) = 0 and σr(b)(b) 6= 0, and let
r = min{r(b) : b ∈ S} . We want to prove that r ≤ t .

Let us assume that r > t and let us take b ∈ S such that r(b) = r . We
have

σr(b) = (0, . . . , 0︸ ︷︷ ︸
r

, Ėr
1(c1,n)En−r

1 , . . . , Ėn−1
1 (c1,r+1)E1, Ė

n
1 (c1,r)︸ ︷︷ ︸

n+1−r

, 0, . . . , 0︸ ︷︷ ︸
r

)t,

Jn+rσr(b) = (−1)n+rσr(b) and Jn+rPn+rσr(b) = Pn+rσr(b).

Since r > t the hypothesis Ėt+1(v) = 0 implies that the number of zeros
with which σr(b) starts is of the form r + j0 with j0 ≥ 1. Thus we have

σr(b) = (0, . . . , 0︸ ︷︷ ︸
r+j0

, Ėr+j0
1 (c1,n−j0)E

n−j0−r
1 , . . . , Ėn−j0

1 (c1,r+j0)E
j0
1︸ ︷︷ ︸

n+1−r−2j0

, 0, . . . , 0︸ ︷︷ ︸
r+j0

)t,

with j0 even. From σr(b) 6= 0 we get n + 1− r − 2j0 > 0 and from the definition
of j0 we obtain Ėr+j0

1 (c1,n−j0) 6= 0. Among all b ∈ S with σr(b) 6= 0 we choose
one with the largest j0 .

Let n′ = n − j0 , t′ = r + j0 , v′ = c1,n−j0 . Since σr+1(b) = 0 we have
Ėt′+1

1 (v′) = 0. Now we shall consider the following two possibilities: n′ ≥ 2t′ and
n′ < 2t′ , in both cases we will get a contradiction that will finish the prove of the
lemma.

If n′ ≥ 2t′ then the inductive hypothesis implies that there exists b′ ∈ B of
degree n′ such that b′n′ = v′ and σt′+1(b

′) = 0, thus

(0, . . . , 0︸ ︷︷ ︸
r+j0+1

, Ėr+j0+1
1 (c′1,n−j0

)En−2j0−r−1
1 , . . . , Ėn−j0

1 (c′1,r+j0+1)︸ ︷︷ ︸
n−r−2j0

, 0, . . . , 0︸ ︷︷ ︸
r+j0+1

)t = 0.

Therefore σr+1(b− b′) = 0. This is a contradiction because either σr(b− b′) starts
with more zeros than σr(b) or r(b− b′) < r .

On the other hand if n′ < 2t′ then n − r − 2j0 < r + j0 . Let A be the
submatrix of Pn+r formed by the elements in the last n + 1− r− 2j0 rows and in
the n + 1− r− 2j0 central columns of Pn+r . From Proposition 6.14 we know that
A is nonsingular.

Since Pn+rσr(b) = τr(b), τr(b) starts with r+j0 zeros, and Jn+rτr(b) = τr(b)
implies that the last r + j0 coordinates of τr(b) are also zeros. Therefore the
equation Pn+rσr(b) = τr(b) implies that the vector u formed by the n+1−r−2j0

central coordinates of σr(b) satisfies Au = 0, since n + 1− r− 2j0 ≤ r + j0 . This
is a contradiction because σr(b) 6= 0. This completes the proof of the lemma.

We are now in a position to prove that the algebra B does not have elements
of odd degree, which will complete the proof of the Theorem 1.2 when Go is locally
isomorphic to SU(n, 1), n ≥ 2.

Theorem 6.16. If Go is locally isomorphic to SU(n, 1) with n ≥ 2, and b =
bm ⊗ Zm + · · · + b0 ∈ B with m odd, then bm = 0. That is, B does not contain
odd degree elements.
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Proof. Let Bo = {b ∈ B : deg(b) is odd} and let us assume that Bo is not
empty. Now define r = min{t ∈ No : σt+1(b) = 0 and b ∈ Bo} and take b ∈ Bo

such that σr+1(b) = 0; clearly σr(b) 6= 0. Let m = m(b) denote the degree of b .
Then in view of Corollary 6.12 and Proposition 6.13 we have

Jm+rσr(b) = (−1)m+rσr(b) and Jm+rPm+rσr(b) = Pm+rσr(b). (24)

Hence the vector σr(b) satisfies the conditions of part (i) of Proposition 6.14,
therefore if r is even σr(b) begins (and ends) with an odd number of coordinates
equal to zero and, on the other hand, if r is odd σr(b) begins (and ends) with an
even number of coordinates equal to zero.

We recall that the first and the last r coordinates of σr(b) are zero and
that the others are

Ėr+j
1 (c1,m−j)E

m−r−j
1 , j = 0, . . . ,m− r.

Therefore Ėr
1(c1,m) = 0. Let j0(b) = max{j ∈ No : Ėr+t

1 (c1,m−t) =
0 for all 0 ≤ t ≤ j ≤ m − r − 1} . Then we know that j0(b) is even and that
m − r − 2j0(b) − 1 > 0 because σr(b) 6= 0, σr(b) starts with r + j0(b) + 1 zeros
and Jm+rσr(b) = (−1)m+rσr(b).

Among all b ∈ Bo such that σr+1(b) = 0 we choose one such that j0 = j0(b)
is the largest possible. We also have m − j0 − 1 < 2(r + j0 + 1), because from
m − j0 − 1 ≥ 2(r + j0 + 1) and σr+1(b) = 0 we would obtain d(c1,m−j0−1) =
2(r + j0 + 1) ≤ m − j0 − 1. Hence from Lemma 6.15 we would know that there
exist b′ = c1,m−j0−1⊗Zm−j0−1 + · · · ∈ B such that σr+j0+2(b

′) = 0 and the element
b− b′ ∈ Bo would contradict the maximality of j0 .

Let A be the submatrix of Pm+r formed by the elements in the last m−r−
2j0−1 rows and in the m−r−2j0−1 central columns of Pm+r . From Proposition
6.14 we know that A is nonsingular. Since Pm+rσr(b) = τr(b), τr(b) starts with
r + j0 +1 zeros and since Jm+rτr(b) = τr(b) the last r + j0 +1 coordinates of τr(b)
are also zeros. Therefore the equation Pm+rσr(b) = τr(b) implies that the vector
u formed by the m − r − 2j0 − 1 central coordinates of σr(b) satisfies Au = 0,
since m− r−2j0−1 ≤ r + j0 +1. This is a contradiction because σr(b) 6= 0. This
completes the proof of the theorem.

7. Appendix

Our goal in this appendix is to prove Proposition 6.14. For any n ∈ No let Jn and
Pn be the (n + 1)× (n + 1) matrices defined in (21) and (22), and let Hn be the
following (n + 1)× (n + 1) diagonal matrix

Hn =


(−1)n

(−1)n−1

·
·
·
−1

1

 .

Let V denote the vector space over C of all polynomials in C[X] of degree
less or equal to n . Then Pn , Hn and Jn are respectively the matrices of the linear
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operators on V given by

f(X) 7→ f(X + 1), f(X) 7→ f(−X), f(X) 7→ Xnf(1/X), (25)

with respect to the ordered basis {
(

n
n

)
Xn,

(
n

n−1

)
Xn−1, . . . ,

(
n
0

)
} . In the next lemma

we summarize some basic properties of the matrices Pn , Hn and Jn . The proof
of this lemma follows from simple calculations with the operators given in (25).

Lemma 7.1. (i) J2
n = H2

n = I and JnHn = (−1)nHnJn .

(ii) P−1
n = HnPnHn .

(iii) Jn and PnHn are conjugate, in fact Jn = (JnPnHn)−1PnHn(JnPnHn). Hence
the eigenvectors of PnHn associated to the eigenvalue λ = ±1 are all of the form
JnPnHn(v) where v is an eigenvector of Jn associated to the eigenvalue λ.

Now, let k ∈ No and let v = (vo, . . . , vn) be a vector in Cn+1 . We shall
say that v begins with k coordinates equal to zero if vo = v1 = · · · = vk−1 = 0
and vk 6= 0. Similarly we shall say that v ends with k coordinates equal to zero
if vn−k+1 = vn−k+2 = · · · = vn = 0 and vn−k 6= 0. Also via the ordered basis
{
(

n
n

)
Xn,

(
n

n−1

)
Xn−1, . . . ,

(
n
0

)
} we shall identify any vector v = (vo, . . . , vn) ∈ Cn+1

with the polynomial fv(X) = v0

(
n
n

)
Xn + v1

(
n

n−1

)
Xn−1 + · · · + vn . In particular

observe that v begins with k coordinates equal to zero if and only if the degree of
fv is n− k . In the following lemma we prove part (i) of Proposition 6.14.

Lemma 7.2. If v ∈ Cn+1 satisfies Jnv = (−1)nv and JnPnv = Pnv then v begins
and ends with the same number of coordinates, say k , equal to zero. Moreover, k
is even or odd according as n is even or odd, respectively.

Proof. Let v ∈ Cn+1 be as in the statement of the lemma and assume that
v begins with k coordinates equal to zero. If we identify v with the polynomial
fv defined above we claim that the degree of fv is even. In fact from Lemma
7.1 it follows that Hn(v) is an eigenvector of Jn associated to the eigenvalue 1,
and that JnPnHn(Hnv) = JnPnv = Pnv is an eigenvector of PnHn associated to
the eigenvalue 1. Then PnHn(Pnv) = Pnv , which implies that HnPnv = v or,
equivalently, that fv(1 − X) = fv(X). Now if we define g(X) = fv(X + 1

2
) we

obtain g(X) = g(−X), which in particular implies that the degree of g is even.
Hence the degree of fv is even. The other assertion is a direct consequence of
Jnv = (−1)nv .

We shall now prove part (ii) of Proposition 6.14. Let t, a, b ∈ No be such
that b ≤ a ≤ n and let A be the (t + 1)× (t + 1) submatrix, of the Pascal matrix
Pn , defined in (23). We want to prove that A is nonsingular. Associated to the
parameters t, a, b we shall consider a (t + 1)× (t + 1) diagonal matrix Dx defined
for x ∈ No , x ≥ b , as follows

Dx =


(x

b)
(x+1

b )
·
·
·
(x+t

b )

 ,
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and a (t + 1)× (t + 1) matrix A0 of the following form

A0 =

 (a−b
0 ) · · · (a−b

t )
· ·
· ·
· ·

(a−b+t
0 ) · · · (a−b+t

t )

 . (26)

The following lemma establishes the desired result about A .

Lemma 7.3. Let t, a, b ∈ No be such that b ≤ a ≤ n and let A, Dx and A0 be as
above. Then

(i) A = DaA0D
−1
b ,

(ii) det A =
∏t

i=0

(
a+i
b

)(
b+i
b

)−1
and therefore A is nonsingular.

Proof. (i) For 0 ≤ i, j ≤ t let Ai,j denote the (i, j) entry of the matrix A ,
then we have

Ai,j =

(
a + i

b + j

)
=

(a + i)!

(b + j)!(a− b + i− j)!

=
(a + i)!

b!(a− b + i)!

(a− b + i)!

j!(a− b + i− j)!

b!j!

(b + j)!

=

(
a + i

b

)(
a− b + i

j

)(
b + j

b

)−1

.

Since the right hand side of this equality is the (i, j) entry of the product DaA0D
−1
b

(i) follows.

In order to prove (ii) it is enough to show that det A0 = 1 for any matrix
A0 as in (26). We proceed by induction on t . It is clear that the result holds for
t = 0, so let us assume that it holds for any matrix as in (26) of size t× t and let
A0 be the (t + 1)× (t + 1) matrix defined in (26). Let C0, C1, . . . , Ct denote the
rows of A0 . Since for any 0 ≤ j ≤ t− 1 we have(

a− b + j + 1

i

)
−
(

a− b + j

i

)
=

{
0, if i = 0(

a−b+j
i−1

)
, if 1 ≤ i ≤ t,

we obtain for any 0 ≤ j ≤ t− 1 that

Cj+1 − Cj =
(
0,

(
a− b + j

0

)
, . . . ,

(
a− b + j

t− 1

))
.

Then if we regard det A0 as a multilinear function of the rows of A0 we get,

det A0 = det
(
C0, C1 − C0, . . . , Ct − Ct−1

)
= det


(a−b

0 ) (a−b
1 ) · · · (a−b

t )
0 (a−b

0 ) · · · (a−b
t−1)

· · ·
· · ·
· · ·
0 (a−b+t−1

0 ) · · · (a−b+t−1
t−1 )

 = det

 (a−b
0 ) · · · (a−b

t−1)
· ·
· ·
· ·

(a−b+t−1
0 ) · · · (a−b+t−1

t−1 )

 = 1,

by the inductive hypothesis. This completes the proof of the lemma.
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