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Orbits in real Zm-graded semisimple Lie algebras
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Abstract. In this note we propose a method to classify homogeneous nilpo-
tent elements in a real Zm -graded semisimple Lie algebra g . Using this we
describe the set of orbits of homogeneous elements in a real Z2 -graded semisim-
ple Lie algebra. A classification of 4-vectors (resp. 4-forms) on R8 can be given
using this method.
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1. Introduction

Let g = ⊕i∈Zmgi be a real Zm -graded semisimple Lie algebra. If m ≥ 3 we cannot
associate to this Zm -gradation a compatible finite order automorphism of g as
in the case of complex Zm -graded Lie algebras, unless m is even and the only
nonzero components of g have degree 0 or m/2. To get around this problem we
extend the Zm -gradation on g linearly to a Zm -gradation on the complexification
gC . Denote by θC the automorphism of gC associated with this Zm -gradation, i.e.
θC|gCk

= exp 2π
√
−1k
m
· Id .

Let GC be the connected simply-connected Lie group whose Lie algebra is
gC . Clearly, θC can be lifted to an automorphism ΘC of GC . Denote by GC

0 the
connected Lie subgroup in GC whose Lie algebra is gC0 . A result by Steinberg
[31, Theorem 8.1] implies that GC

0 is the Lie subgroup consisting of fixed points of
ΘC . Note that the adjoint action of group GC

0 on gC preserves the induced Zm -
gradation on gC . Let G be the connected Lie subgroup in GC whose Lie algebra
is g . Denote by G0 the connected Lie subgroup in G whose Lie algebra is g0 . The
adjoint action of G0 on g preserves the Zm -gradation. We note that the adjoint
action of G0 on g coincides with the adjoint action of any connected Lie subgroup
G̃0 of a connected Lie group G̃ having Lie algebras g0 and g correspondingly.
In [33] Vinberg observed that by considering a new Zm̄ -graded Lie algebra ḡ ,
m̄ = m

(m,k)
and ḡp = gpk for p ∈ Zm̄ we can regard the adjoint action of G0 on

gk as the action of G0 on ḡ1 . Thus in this note we will consider only the adjoint
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action of G0 on g1 . We also write “the adjoint action/orbit(s)”, or simply “orbits”,
if no misunderstanding can occur.

The problem of classification of the adjoint orbits in real or complex graded
semisimple Lie algebras g = ⊕i∈Zmgi is related to many important algebraic and
geometric questions. In [32] Vinberg proposed a method to classify the adjoint
orbits in complex Zm -graded semisimple Lie algebras. His work developed further
the theory of Z2 -graded complex semisimple Lie algebras by Kostant and Rallis
[19], and the theory of finite order automorphisms on complex simple Lie algebras
by Kac [20]. It is known that all Cartan subspaces in gC1 are conjugate [33]. Thus
the classification of semisimple elements in gC1 is reduced to the classification of
the orbits of the associated Weyl group on a Cartan subspace in gC1 [33]. To
classify nilpotent elements in gC1 , Vinberg proposed a method of support, which
associates to each nilpotent element e in g1 a Z-graded semisimple Lie algebra
defined by a characteristic h(e) of e , see section 4 for more details. In a complex
Zm -graded semisimple Lie algebra a nilpotent element e in g1 is defined uniquely
up to conjugacy with respect to the centralizer of h(e) [32]. If m = 1, we can also
classify nilpotent orbits in a simple Lie algebra g over an algebraic closed field of
characteristic 0, or of prime characteristic p , provided p is sufficient large. We
refer the reader to the book by Collingwood and McGovern [4] and the book by
Humphreys [15] for surveys.

In a real Zm -graded semisimple Lie algebras g the conjugacy classes of Car-
tan subspaces may consist of more than one element. Furthermore, a given char-
acteristic element in a real Zm -graded Lie algebra can be associated with many
conjugacy classes of nilpotent elements in g1 . These phenomena are main difficul-
ties when we want to classify the adjoint orbits in a real Zm -graded semisimple
Lie algebra g . If m = 1, i.e. g is without gradation, a classification of the adjoint
orbits of nilpotent elements in g can be obtained, using the Cayley transform [9],
[29] and a classification of nilpotent elements in the associated Z2 -graded complex
semisimple Lie algebra, see e.g. [4], [10]. Furthermore, a classification of the ad-
joint orbits of semisimple elements in g can be obtained from the classification of
Cartan subalgebras in g by Kostant [17] and Sugiura [30]. We also like to mention
here the work by Rothschild on the adjoint orbit space in a real reductive algebra
[28], as well as the work by Djokovic on the adjoint orbits of nilpotent elements
in Z-graded Lie algebra e8(8) [8]. An essential part of our method of classification
of nilpotent orbits in real Zm -graded semisimple Lie algebras is a combination of
certain ideas in their works.

In this note we propose a method to classify the adjoint orbits of homoge-
neous nilpotent elements in a real Zm -graded semisimple Lie algebra g . Roughly
speaking, our method of classification of homogeneous nilpotent elements in g
consists of two steps. In the first step we classify the conjugacy classes of charac-
teristics in a given real Zm -graded semisimple Lie algebra. In the second step we
classify the conjugacy classes of nilpotent elements associated with a given con-
jugacy class of a characteristic. The first step uses the Vinberg classification of
characteristics in the complexification gC1 [34] combining with the Djokovic clas-
sification of real forms of a given complex Z-graded semisimple Lie algebra [7],
taking into account our observation that there is an injective map from the set
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of AdG0 -conjugacy classes of characteristics in g0 to the set of AdGC
0
-conjugacy

classes of characteristics in gC0 , see Lemma 4.1 and Remark 4.2. To perform the
second step we analyze the set of singular elements in a real Z-graded semisimple
Lie algebra defined by a given characteristic, see section 4 for more details. It
turns out that we can apply algorithms in real algebraic geometry to distinguish
the conjugacy classes of nilpotent elements associated with a given characteristic.
Our recipe to classify nilpotent elements is summarized in Remark 4.10. We note
that the related algorithm in real algebraic geometry is highly complicated. To
apply our algorithm for interesting cases we will need a powerful computer system
together with a suitable software, see Remark 4.8.

For m = 2 a classification of Cartan subspaces in g1 has been obtained by
Oshima and Matsuki [24]. Using their classification and our results in previous
section, we describe the set of orbits of homogeneous elements of degree 1 in a Z2 -
graded semisimple Lie algebra, following the same scheme proposed by Elashvili
and Vinberg in [12], see Remark 5.6.

The plan of our note is as follows. In section 2 we recall main notions
and prove a version of the Jacobson-Morozov-Vinberg theorem for real Zm -graded
semisimple Lie algebras, see Theorem 2.1. In section 3 we prove the existence
of a R-compatible Cartan involution on g = ⊕i∈Zmgi , which provides us an
isomorphism between the AdG0 -orbit spaces on gi and g−i , see Corollary 3.4.
We also give many important examples of real Zm -graded semisimple Lie algebras
in this section. In section 4 we propose a method to classify homogeneous nilpotent
elements in a real Zm -graded semisimple Lie algebra. We demonstrate our method
in Example 4.11. In section 5 we describe the set of homogeneous elements in a
real Z2 -graded semisimple Lie algebra. In this section we also explain the relation
between a classification of homogeneous elements in real Zm -graded semisimple
Lie algebras and a classification of k-vectors (resp. k-forms) on R8 .

2. Semisimple elements and nilpotent elements of a real Zm -graded
semisimple Lie algebra

Let g = ⊕i∈Zmgi be a real Zm -graded semisimple Lie algebra. An element x ∈ gi ,
i = 0,m− 1, is called semisimple (resp. nilpotent), if x is semisimple (resp.
nilpotent) in g . In this section we explain the Jordan decomposition for an element
x ∈ gi . We also prove an analog of the Jacobson-Morozov-Vinberg theorem on the
existence of an sl2 -triple associated to a homogeneous nilpotent element in g1 , see
Theorem 2.1, and we introduce the notion of a Cartan subspace in g1 .

Jordan decomposition in a real Zm -graded semisimple Lie algebra.
Any x ∈ gi has a unique decomposition x = xs + xn , where xs is semisimple, xn
is nilpotent, xs, xn ∈ gi , [xs, xn] = 0.

For a real form g of gC let us denote by τg the complex conjugation of gC

with respect to g . It is easy to see that the existence and the uniqueness of the
Jordan decomposition for x ∈ gi follows from the existence and the uniqueness of
the Jordan decomposition for x in gCi [33], since this decomposition is invariant
under the complex conjugation τg , which preserves the Zm -gradation on gC .
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The case m = 1 has been treated before, see e.g. [13, chapter IX, exercise
A.6], and the references therein.

The following Theorem 2.1 is an analogue of the Jacobson-Morozov-Vinberg
theorem in [34, Theorem 1(1)]. Some partial cases of Theorem 2.1 has been proved
in [8, Lemma 6.1], and in [4, Theorem 9.2.3].

For any element e ∈ g let us denote by ZG0(e) the centralizer of e in G0 .

Theorem 2.1 (Jacobson-Morozov-Vinberg (JMV) theorem for a real Zm -graded
semisimple Lie algebra). Let e ∈ g1 be a nonzero nilpotent element.
i) There is a semisimple element h ∈ g0 and a nilpotent element f ∈ g−1 such
that

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

ii) Element h is defined uniquely up to conjugacy via an element in ZG0(e).
iii) Given e and h, element f is defined uniquely.

Remark 2.2. -The JMV Theorem plays a key role in the study of nilpotent
elements. This Theorem associates to each nilpotent element e a semisimple
element h ∈ g0 , which is defined by e uniquely up to conjugation. The element h
in Theorem 2.1 is called characteristic (or a characteristic) of e . We also denote
a characteristic of e by h(e). We call an element h ∈ g0 characteristic, if it is a
characteristic of some nilpotent element e ∈ g1 .
- Each assertion in Theorem 2.1 has its counterpart in the complex case [34,
Theorem 1]. The converse is not true. We do not have an analogue of Theorem
1(4) in [34], since e is not defined uniquely by h up to ZG0(e). This makes the
classification of nilpotent elements in Lie algebras over R more complicated than
those over C .

We call a triple (h, e, f) satisfying the condition in Theorem 2.1.i an sl2 -
triple.

Proof. [Proof of Theorem 2.1] i) Theorem 2.1.i is obtained by combining the
JMV theorem in [34] for graded complex Lie algebras with a Jacobson’s trick used
in the proof of [4, Lemma 9.2.2]. By the JMV theorem [34, Theorem 1(1)] there
exists a triple (hR+

√
−1h′R ∈ gC0 , e, fR+

√
−1f ′R ∈ gC−1) such that hR, h

′
R, fR, f

′
R ∈ g

and
[hR, e] = 2e, [e, fR] = hR.

A Jacobson’s trick [4, proof of Lemma 9.2.2], provides us with an element
z in the centralizer Zg(e) of e in g such that

(adhR + 2)z = −[hR, fR]− 2fR. (1)

(For the convenience of the reader we recall that the existence of z satisfying (1)
is obtained by showing the positivity of the eigenvalues of adhR acting on Zg(e),
hence the equation (adhR + 2)z = −[hR, fR] − fR has a solution z ∈ Zg(e) since
−[hR, fR] − fR ∈ Zg(e).) It is easy to see that we can assume that z ∈ g−1 .
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Then (hR, e, fR + z) satisfies our condition in Theorem 2.1.i. Any h satisfying the
relation in Theorem 2.1.i is semisimple, since it is a semisimple element in the Lie
algebra sl(2,R) = 〈e, f, h〉R . This proves Theorem 2.1.i.

ii) There are two proofs of this assertion. In the first proof we adapt the
argument in [4, the proof of Theorem 3.4.10],(Theorem of Kostant), which has
been generalized in Theorem 1(2) in [34] for graded Lie algebras. Their proof,
based on the sl2 -theory, works also for field R . Let us explain their argument
adapted to our case. Denote by Zg0(e) the centralizer of e in g0 .

If h′ is another element satisfying the condition in Theorem 2.1.i, then
h − h′ ∈ Zg0(e). The relations in Theorem 2.1.i imply that h − h′ ∈ [g−1, e] . Set
ug0(e) := Zg0(e) ∩ [g−1, e] . Then h′ − h ∈ ug0(e).

Next, we claim that ug0(e) is an adh -invariant nilpotent ideal of Zg0(e). To
prove this claim we use Lemma 3.4.5 in [4].

Lemma 2.3. [4, Lemma 3.4.5] Let e be a nonzero nilpotent element of a
semisimple Lie algebra g. Then ug(e) := Zg(e)∩[g, e] is an adh -invariant nilpotent
ideal of Zg(e).

To obtain our claim from [4, Lemma 3.4.5] we observe that, if a Zm -graded
ideal is nilpotent then its subalgebra consisting of homogeneous elements of zero
degree is a nilpotent ideal in the subalgebra g0 .

Set U0(e) := exp ug0(e) ⊂ ZG0(e).

Lemma 2.4. We have

AdU0(e)(h) = h+ ug0(e). (2)

We note that Lemma 2.4 is a version of Lemma 3.4.7 in [4] due to Kostant.

Proof. [Proof of Lemma 2.4] The proof of Lemma 3.4.7 in [4] carries to our case
easily, since ug0(e) is adh -invariant. Set

u(e)k := {x ∈ ug0(e)| [h, x] = kx}.

Using the sl2 theory we have following decomposition

ug0(e) = ⊕ni=1u(e)k

for some finite positive integer n .

To prove Lemma 2.4 it suffices to find an element z ∈ ug0(e) for a given
v ∈ ug0(e) such that Adexp z(h) = h+v . We approximate z by zj inductively such
that

zj ∈ ⊕1≤i≤ju(e)i, (3)

and
Adexp zjh− (h+ v) ∈ ⊕j+1≤i≤mu(e)i. (4)

Set
z′j+1 := the component of (Adexpzj

h− (h+ v)) in u(e)j+1.
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Let

zj+1 = zj +
1

j + 1
z′j+1 ∈ ⊕1≤i≤j+1u(e)i.

Then we check immediately that properties (3) and (4) carry over to zj+1 . Thus
if we begin with z1 := −v1 , where v1 is the component of v is u(e)1 , and setting
z := zn , we get Adexpz(h) = v , as desired. This proves Lemma 2.4.

Noe let us complete the proof of Theorem 2.1.ii. We need to show the
uniqueness of h up to conjugacy via an element in ZG0(e). Suppose the opposite,
i.e. there are two sl2 -triples (f, h, e) and (f ′, h, e′) satisfying the condition of
Theorem 2.1.i. Then h − h′ ∈ ug0(e) as we have observed above. By Lemma 2.4
there is an element x ∈ U0(e) ⊂ ZG0(e) such that expx(h) = h′ and expx(e) = e .
This implies expx(f) = f ′ . This proves Theorem 2.1.ii.

The second proof of Theorem 2.1.ii uses the Vinberg argument in [34, proof
of Theorem 1 (2)]. The first and the second proofs are distinguished by different
methods to prove Lemma 2.4. In the second proof the main point is to show that
the orbit AdU0(e)(h) is open and closed in h+ug0(e). We remark that the closedness
of the orbit AdU0(e)(h) holds, since this orbit is a component of the intersection of
g1 with the complexified orbit AdUC

0 (e)h , which is closed by [34, proof of Theorem
1(2)]. The openess of the orbit also holds, since [h, ug0(e)] = ug0(e), which is a
consequence of the identity [h, ugC0 (e)] = ugC0 (e) proved by Vinberg in [34].

iii) Theorem 2.1.iii follows from the uniqueness of an sl2 -triple in a complex
Lie algebra, see e.g [4, Lemma 3.4.4], or [34, Theorem 1(3)].

Thanks to the JMV theorem we can characterize semisimple elements and
nilpotent elements in g1 using the geometry of their AdG0 -orbits.

Lemma 2.5. Element x ∈ g1 is nilpotent if and only if the closure of its orbit
AdG0(x) contains zero. Element x ∈ g1 is semisimple if and only if its orbit
AdG0(x) is closed.

Proof. Suppose that x ∈ g1 is nilpotent. By Theorem 2.1, there is an element
h ∈ g0 such that [h, x] = x . Clearly limt→−∞Adexp(t·h)(x) = 0. This proves the
“only if” part of the first assertion of Lemma 2.5.

Now we suppose that the closure of the orbit AdG0(x) contains zero. Then
the orbit Adρ(G0)(x) contains zero, in particular AdGC

0
(x) contains zero. By [33,

Proposition 1], x is a nilpotent element in gC1 . Hence x is a nilpotent element in
g1 . This proves the “if” part of the first assertion.

Let us prove the second assertion of Lemma 2.5. If x is not semisimple, let
us consider its Jordan decomposition x = xs+xn . The proof of [33, Proposition 3]
yielda the existence of an element l in the centralizer ZgC(xs) such that [l, xn] =
xn . Writing l = l′ + l′′ where l′ ∈ g0 and l′′ ∈

√
−1g0 , we find that [l′, xn] = xn .

Then limt→−∞Adexp tl′(xn) = xs . Hence the orbit AdG0(x) is not closed. This
proves the “if” part of the second assertion.

Now assume that x is semisimple. Then the orbit AdGC
0
(x) in gC1 is closed.

Hence the intersection of this orbit with g1 ⊂ gC1 is closed in g1 . Note that this
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intersection is a disjoint union of AdG0 -orbits of elements in g1 . Since each orbit
AdG0(y

′) is a submanifold in g1 , it follows that each AdG0 -orbit in this intersection
is also closed. This proves the “only if” part of the second assertion.

We adopt the following definition in [33]. Let g = ⊕mi=1gi be a Zm -graded
semisimple Lie algebra. A Cartan subspace in g1 (resp. gC1 ) is a maximal subspace
in g1 (resp. in gC1 ) consisting of commuting semisimple elements. The classification
of Cartan subspaces in g1 is well-known for m ≤ 2, see [17], [30], [24], and unknown
for m ≥ 3.

3. R-compatible Cartan involutions

In this section we show the existence of a Cartan involution of a real Zm -graded
semisimple Lie algebra g which reverses the Zm -gradation on g , see Theorem
3.3. As a consequence, there is a 1-1 correspondence between AdGC

0
-orbits (resp.

AdG0 -orbits) on gCi and gC−i , (resp. on gi and g−i ), see Corollary 3.4. We also
give important examples of real Zm -graded semisimple Lie algebras.

Let g = ⊕m−1
i=0 gi be a Zm -graded semisimple Lie algebra and θC the au-

tomorphism of gC associated with this induced gradation. It is easy to check
that

τgθ
C = (θC)−1τg. (5)

Since τ 2
g = Id , (5) holds if and only if

τg(θ
C)−1 = (θC)τg. (6)

Now let g be a real form in gC with a Zm -gradation generated by θC . If g satisfies
the relation (5), then for any x ∈ gCk

θC(τg(x)) = τg(θ
C)−1(x) = τg(exp

−2π
√
−1k

m x) = exp
2π
√
−1k
m τg(x).

Hence τg(g
C
k ) = gCk , and therefore

g = ⊕i(g ∩ gCi ). (7)

Thus we say that a real form g of gC is compatible with θC , if (5) holds. Equiva-
lently (6) holds, and equivalently (7) holds.

Remark 3.1. If m 6= 2, any real form g compatible with θC is not invariant
under θC unless m is even and the only nonzero components of g have degree 0
or m/2. A real form g is invariant under θC , if and only if τg commutes with θC .

Let u be a compact real form of gC which is compatible with g , i.e.
τgτu = τuτg . Then g = k⊕p where k = g∩u and p = g∩iu . The restriction of τu to
g is a Cartan involution of g , which we also denote by τu , if no misunderstanding
arises.

Definition 3.1. A Cartan involution τu of a real Zm -graded semisimple Lie
algebra g = ⊕mi=1gi is called R-compatible with the Zm -gradation, if u is invariant
under the automorphism θC associated with this gradation: τuθ

C = (θC)τu .
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Clearly, τu is R-compatible with the Zm -gradation, if and only if τu reverses
the gradation on g : τu(gk) = g−k . That explains our use of the notion of a R-
compatible involution.

Example 3.2. i) Any real Z2 -graded semisimple Lie algebra g = g0 ⊕ g1 has
a R-compatible Cartan involution, see [3], Lemma 10.2. The classification of all
Z2 -graded simple Lie algebras has been given in [3].

ii) Let x ∈ g1 . Let Zg(x) be the centralizer of x in g . Clearly, its
complexification ZgC(x) is invariant under the action of θC . Hence Zg(x) inherits
the Zm -grading, and the commutant Zg(x)′ of Zg(x) is also a real Zm -graded
semisimple Lie algebra. If m = 2 and x ∈ g1 ∩ p or x ∈ g1 ∩ k , the Cartan
compatible involution τu also preserves Zg(x).

iii) If (g, τu) and (g′, τu′) are real Zm -graded semisimple Lie algebras with
R-compatible Cartan involutions τu and τu′ , then their direct sum g ⊕ g′ is also
a real Zm -graded semisimple Lie algebra equipped with the R-compatible Cartan
involution τu⊕u′ . Conversely, if m is prime any real Zm -graded semisimple Lie
algebra is a direct sum of real Zm -graded simple Lie algebras (see [33] for a similar
assertion over C , which implies our assertion).

iv) Let us consider the split algebra g = e7(7) - a normal real form of the
complex Lie algebra e7 . The complex algebra gC = e7 has the following root
system
Σ = {εi − εj, εp + εq + εr + εs, |i 6= j, (p, q, r, s distinct),

∑8
i=1 εi = 0} .

For the purpose of fixing notations we recall the following root decomposition
of a complex semisimple Lie algebra gC and its compact real form u , see e.g.
[13, Theorem 4.2] and [13, Theorem 6.3]. Let us choose a Cartan subalgebra
hC0 of gC . Denote by Eα , α ∈ Σ, the corresponding root vectors such that
[Eα, E−α] = 2Hα

α(Hα)
∈ hC0 , see e.g. [13], p.258. We decompose g as

gC = ⊕α∈Σ〈Hα〉R ⊕α∈Σ 〈Eα〉R ⊕α∈Σ 〈E−α〉R. (8)

gC has the following compact form u , which is compatible with g :

u = ⊕α∈Σ〈iHα〉R ⊕α∈Σ 〈i(Eα + E−α)〉R ⊕α∈Σ 〈(Eα − E−α)〉R. (9)

Let θC be the involution of e7 defined in [1] as follows

θC|h0 = Id, (10)

θC(Eα) = Eα, if α = εi − εj, (11)

θC(Eα) = −Eα, if α = εi + εj + εk + εl. (12)

Then θC(g) = g , and θC(u) = u . Hence θC commutes with τg as well as with τu .
Denote by θ the restriction of θC to g . Automorphism θ defines a Z2 -gradation:
g = g0 ⊕ g1 , where g0 = sl(8,R). Clearly τu is a R-compatible with this Z2 -
gradation. In [1] Antonyan proved that the space g − 1C is linearly isomorphic to
the space Λ4(C8) of 4-vectors on C8 . Let GC

0 ⊂ EC
7 be the connected Lie subgroup

with the Lie algebra gC0 . Antonyan showed that the adjoint action of GC
0 on gC1 is

exactly the canonical action of SL(8,C) on the space Λ4(C8).
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v) Let us consider a real Z3 -graded simple Lie algebra e8(8) which is a
normal form of the complex algebra e8 . The root system Σ of e8 is

Σ = {εi − εj,±(εi + εj + εk)}, (i, j, k distinct),
9∑
i=1

εi = 0}.

In [12] Vinberg and Elashvili proved that there is an automorphism θC of order 3
on e8 defined by the following formulas

θC|〈Hα,Eα, α=εi−εj〉C = Id,

θC|〈Eα,α=(εi+εj+εk)〉C = exp(i2π/3) · Id,

θC|〈Eα,α=−(εi+εj+εk)〉C = exp(−i2π/3) · Id.

It is easy to see that θC defines a Z3 -grading on e8 as well as on e8(8) . Namely,
we have e8(8) = g0 ⊕ g1 ⊕ g−1 where

g0 = 〈Hα, Eα, α = εi − εj〉R,

g1 = 〈Eα, α = (εi + εj + εk)〉R,
g−1 = 〈Eα, α = −(εi + εj + εk)〉R.

The compact form u of e8 defined as in (9) is R-compatible with this Z3 -grading of
e8(8) . In [12] Vinberg and Elashvili proved that the space gC1 is linearly isomorphic
to the space Λ3(C9) of 3-vectors on C9 and the space gC−1 is linearly isomorphic to
the space Λ3(C9)∗ of 3-forms on C9 . Let GC

0 ⊂ EC
8 be the connected Lie subgroup

with the Lie subalgebra gC0 . Vinberg and Elashvili showed that the adjoint action
of GC

0 on gC1 (resp. gC−1 ) is exactly the canonical action of SL(9,C) on the space
Λ3(C9) (resp. Λ3((C9)∗).

The following Theorem is an analogue of Theorem 7.1 in [13] for real Zm -
graded Lie semisimple Lie algebras. The case m = 2 is well-known, see [3].

Theorem 3.3. Let u′ be a real compact form of gC , which is invariant under
θC .
1) There exists an automorphism φ of gC , which commutes with θC , such that
u = φ(u′) is invariant under τg and under θC .
2) Any real Zm -graded semisimple Lie algebra has a Cartan involution, which
reverses the gradation.

Proof. 1) Our arguments are similar to those in the proof of [13, Theorem 7.1].
Let B denote the Killing form on gC × gC . The Hermitian form Bu′ defined on
gC × gC by

Bu′(X, Y ) = −B(X, τu′(Y ))

is strictly positive definite, since u′ is compact. The composition τgτu′ is an
automorphism of gC , so it leaves the Killing form invariant. Thus we have

B(τgτu′X, τu′Y ) = B(X, (τgτu′)
−1τu′Y ) (13)
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Taking into account τ 2
g = τ 2

u′ = Id we get from (13)

B(τgτu′X, Y ) = B(X, τgτu′
−1τu′Y ) = B(X, τu′(τgτu′)Y ) = Bu′(X, τgτu′Y ).

Hence (τgτu′)
2 is positive self-adjoint w.r.t. Bu′ , moreover it commutes with

θC , because τgθ
C = (θC)−1τg and τu′ commutes with θC . It follows that the

automorphism φ := [(τgτu′)
2]1/4 commutes with θC . (To see it, we choose an

orthogonal basis (ej) of gC w.r.t. Bu′ which are also eigenvectors with eigenvalues
ai > 0 of (τgτu′)

2 for all i . We note that θC commutes with (τgτu′)
2 if and only

if θ(ei) is also eigenvector of (τgτu′)
2 with value ai for all i . Clearly, (ei) and

θC(ei) are also eigenvectors of [(τgτu′)
2]1/4 with eigenvalue (ai)

1/4 . Therefore θC

commutes also with [(τgτu′)
2]1/4 .) Hence φ(u′) is invariant under θC .

The invariance of φ(u′) under τg has been shown in the proof of [13,
Theorem 7.1]. (For the convenience of the reader we briefly recall the proof. The
invariance of φ(u′) under τg is equivalent to the identity

τgτφ(u′) = τφ(u′)τg. (14)

Using the relation
τu′(τgτu′)τ

−1
u′ = (τgτu′)

−1

we get
τu′φτ

−1
u′ = φ−1 (15)

Note that τφ(u′) = φτu′φ
−1 . Using (15) and φ = [(τgτu′)

2]1/4 we get easily that
the LHS of (14) is equal to RHS of (14) and equal to Id .) This proves the first
assertion of Theorem 3.3.

2) By Lemma 5.2, chapter X in [13], p. 491, there is a real compact form
u′ of gC which is invariant under θC . Taking into account the first assertion of
Theorem 3.3, we prove the second assertion.

Here is another short proof of the second assertion due to Vinberg [35]. Let
us consider the group G(θC, τg) generated by θC and τg acting on the space GC/U
of all compact real forms of gC . This group is finite, since τgθ

C = (θC)−1τg . As E.
Cartan proved [6], see also [13, Theorem 13.5, chapter I] for a modern treatment,
any compact group of motions of a simply connected symmetric space of non-
positive curvature has a fixed point. Is is known that GC/U is a symmetric space
of noncompact type, hence it has nonpositive curvature, [13, chapter VI]. The fixed
point of G(θC, τg) is the required compact form.

Corollary 3.4. A R-compatible involution τu gives an isomorphism between
AdG0 -orbits in gi and g−i . The C-linear extension τCu (= τu ◦ τg) of τu gives an
isomorphism between AdGC

0
-orbits in gCi and gC−i .

Proof. Denote by τ̂Cu the involutive automorphism on GC whose differential
is τCu . Since τCu (g0) = g0 and τCu (gC0 ) = gC0 we get

τ̂Cu (G0) = G0, τ̂Cu (GC
0 ) = GC

0 .

For any v ∈ gC0 and e ∈ gCi we have τ̂Cu (exp v) = exp(τCu (v)) and

τCu (Adexp ve) = Adexp(τCu (v))(τ
C
u (e)).
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Consequently

τu(AdG0e) = AdG0(τue), τCu (AdGC
0
(e)) = AdGC

0
(τCu (e)).

This proves our corollary.

4. Classification of homogeneous nilpotent elements

To characterize the set of orbits of homogeneous nilpotent elements in a real Zm -
graded semisimple Lie algebra g is more complicated than to characterize the set
of orbits of nilpotent elements in the case of complex Zm -graded semisimple Lie
algebras, since the orbit of a nilpotent element e in g is not defined uniquely
by its characteristic. If m = 1, i.e. g is regarded without gradation, a complete
classification of nilpotent elements in g can be obtained using the Cayley transform
and the Vinberg method of classification of nilpotent elements in an associated
complex Z2 -graded semisimple Lie algebra, see e.g. [10]. We do not know how
to generalize this method for m ≥ 2. Our method of characterization of the
set of orbits of homogeneous nilpotent elements in a real Zm -graded Lie algebra
g is divided in the following steps. In Lemma 4.1 we prove that there is an
injective map from the set of the AdG0 -conjugacy classes of characteristics in
g to the set of AdGC

0
-conjugacy classes of characteristics in gC . Recall that a

classification of characteristics in gC can be obtained by the Vinberg method of
support [34]. In Remark 4.2, taking account the Djokovic classification of real
forms of a complex Z-graded semisimple Lie algebra, we summarize these results
in an algorithm to classify characteristics in g . Then we show in Theorem 4.3 that
there is a 1-1 correspondence between AdG0 -orbits of nilpotent elements e ∈ g1

with a given characteristic h and the set of open ZG0(h)-orbits in g1(h
2
). This

set is closely related to the set of connected components of a semialgebraic set in
g1(h

2
). In Remark 4.10 we explain our algorithm to count the number of conjugacy

classes of nilpotent elements in g1 as well as to choose a sample representative for
each conjugacy class. We note that this algorithm is highly complicated, so we
need a sufficient computer power and a suitable software package for interesting
applications, see Remark 4.8. In Example 4.11 we demonstrate our algorithm in
a very simple case with a Z2 -graded Lie algebra g = sl2(C) regarded as a Lie
algebra over R .

Let e be a nilpotent element in g1 and h ∈ g0 its characteristic. Then h
is also a characteristic of e in gC . A classification of AdGC

0
-conjugacy classes of

characteristics in gC0 can be obtained by using the support method of Vinberg in
[34]. To define a support of a nilpotent element e ∈ gC1 we choose a Cartan subspace
h in the normalizer NgC0

(e) such that h 3 h , where h ∈ gC0 is a characteristic of e .
Let φ be the character of h defined by

[u, e] = φ(u)(e) for all u ∈ h and

Set

g(h, φ) :=
⊕
k

gk(h, φ), gk(h, φ) = {x ∈ gk mod m : [u, x] = kφ(u)x ∀u ∈ h}.



296 Lê

It is known that g(h, φ) is a Z-graded reductive Lie algebra [34, Lemma 2]. Recall
that a complex support sC(h) of e is defined by

sC(h) := g′(h, φ)− the commutant of g(h, φ).

Clearly sC(h) is defined by h uniquely up to conjugacy by elements in NGC
0
(e).

Vinberg proved that sC(h) is a locally flat Z-graded semisimple Lie algebra in
gC whose defining element is half of a characteristic h of e (“locally flat” means
dim s0(h) = dim s1(h)) [34, §4]. We define a real support s(h) of a nilpotent
element e in a real Zm -graded semisimple Lie algebra g in the same way. Here we
choose h to be a maximal R-diagonalizable Cartan subspace in Ng0(e) containing
h . Such a choice is unique up to a conjugacy by elements in NG0(e). Clearly, the
complexification of a real support of e is a complex support of e in gC .

It is known that the AdGC
0
-conjugacy classes of characteristic elements

h ∈ gC0 are in a 1-1 correspondence with the AdGC
0
-conjugacy classes of locally

flat Z-graded semisimple Lie subalgebras s(h) in gC [34]. We refer the reader to
[34] and [7] for more details on Z-graded semisimple Lie algebras and Z-graded
locally flat semisimple Lie algebras over C or over R .

Lemma 4.1. i) There exists an injective map from the set of AdG0 -orbits of
characteristics in g to the set of GC

0 -orbits of characteristics in gC .
ii) Let h ∈ g0 be a characteristic of a nilpotent element in g1 . Then AdGC

0
(h)∩g0 =

AdG0(h).

Proof. i) First we note that if h ∈ g is a characteristic element then it is also
a characteristic element in gC . Thus we have a map from the conjugacy classes
of characteristics in g to the conjugacy classes of characteristics in gC . We will
show that this map is injective. Suppose that h1, h2 ∈ g0 are characteristics in g
such that AdXh1 = h2 for X ∈ GC

0 . Let τu be a R-compatible Cartan involution
in Theorem 3.3. Note that the restriction of τu to g0 leaves the center of g0 as
well as the commutant g′0 of g0 invariant. Moreover the restriction of τu to g′0
is also a Cartan involution of g′0 . By the theory of Cartan subalgebras in real
reductive Lie algebras, see. e.g. [13, chapter IX, Corollary 4.2] we can assume that
h1, h2 ∈ Z(g0) ⊕ p′0 , where g′0 = k′0 ⊕ p′0 is the Cartan decomposition of g′0 with
respect to τu . By [28, Theorem 2.1], which asserts that two semisimple elements
in p′0 are GC

0 -conjugate if and only if they are G0 -conjugate, there exists Y ∈ G0

such that AdY h1 = h2 , since h1 and h2 are GC
0 -conjugate.

ii) Clearly Lemma 4.1.ii is a consequence of Lemma 4.1.i.

Remark 4.2. Using Lemma 4.1 we obtain a classification of conjugacy classes
of characteristics in g as follows. First we find all complex supports in gC by
Vinberg method in [34]. There are only a finite number of them. Next, we find
the real forms of these complex supports using the Djokovic classification of real
forms of complex Z-graded semisimple Lie algebras in [7]. In the third step we
decide which real form of a given complex support admits an embedding to g
whose complexification is the given complex support. This step can be done using
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the theory of representations of real semisimple Lie algebras, see e.g. [16], [36].
Lemma 4.1 shows that in the third step there exists not more than one real form
for each given complex support. The defining element of the corresponding real
support is half of our desired characteristic.

Now let us fix a characteristic h ∈ g0 corresponding to a nilpotent element
e ∈ g1 . Let us consider the following Z-graded algebra

g(
h

2
) :=

⊕
k

gk(
h

2
), gk(

h

2
) = {x ∈ gk mod m : [

h

2
, x] = kx}.

Clearly the centralizer ZG0(h) of h in G0 acts on g(h
2
) preserving the Z-gradation.

The Lie algebra of ZG0(h) is g0(h
2
). It is known [34, proof of Theorem 1 (4)]

that e ∈ g1(h
2
), moreover [g0(h

2
), e] = g1(h

2
). Equivalently, e belongs to an open

AdZG0
(h) -orbit in g1(h

2
). An element e ∈ g1 (resp. gC1 ) is called generic, if orbit

AdZG0
(h)(e) is open in g1 , (resp. AdZ

GC
0

(h)(e) is open in gC1 ). Otherwise e is

called singular. By the definition the genericity of an element e ∈ g1 implies the
genericity of any element in the orbit AdZ

GC
0

(h)(e). The following Theorem 4.3

generalizes a theorem [8, Theorem 6.1] due to Djokovic.

Theorem 4.3. Let (h, e, f) be a sl2 -triple. The inclusion g1(h
2
)→ g1 induces a

bijection between the open AdZG0
(h) -orbits in g1(h

2
) and the AdG0 -orbits contained

in AdGC
0
(e) ∩ g1 .

Proof. Suppose that AdZG0
(h)(e

′) is an open orbit in g1(h
2
). then e and e′ are

generic elements in g− 1C , hence e′ belongs to the orbit AdZ
GC
0

(h)(e) in gC1 , (that

is a remark due to Vinberg in [34, proof of Theorem 1(4)]. This defines a map
from the set of open AdZG0

(h) -orbits in g1(h
2
) to the set of AdG0 -orbits contained

in AdGC
0
(e) ∩ g1 .

We will show that this map is surjective. Let e′ ∈ AdGC
0
(e)∩g1 . Let h′ ∈ g0

be a characteristic of e . By the JMV theorem for the complex case, h and h′ belong
to the same AdGC

0
-orbit. Lemma 4.1.ii implies that there exists X ∈ G0 such

that AdX(h′) = h . Clearly AdXe
′ ∈ g1(h

2
), since [AdX(h′), AdX(e′)] = AdX(e′).

Element AdXe
′ is generic in g1(h

2
), since it lies in the orbit AdZ

GC
0

(h)(e). This

proves the surjectivity of the considered map.

It remains to show that this map is injective. First we will prove the
following

Lemma 4.4. (cf. Lemma 6.4 in [8]) Let e′ be a generic element in g1(h
2
).

Then there exists f ′ ∈ g−1(h
2
) such that (h, e′, f ′) is an sl2 -triple.

Proof. Let e and e′ be nilpotent elements satisfying the condition of Lemma
4.4. Then e and e′ are generic elements in gC1 . By a Vinberg remark in [34,
proof of Theorem 1.4] there is an element Y ∈ ZGC

0
(h) such that AdY (e) = e′ .

Clearly (h, e′, AdY (f)) is a slC2 -triple in gC1 , moreover AdY (f) ∈ gC−1(h
2
), since
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f ∈ g−1(h
2
). Since h and e′ define their sl2 -triple uniquely by Theorem 2.1.iii, we

get AdY (f) ∈ gC−1(h
2
) ∩ g−1 = g−1(h

2
).

Let us complete the proof of Theorem 4.3. Suppose that e and e′ are generic
elements of g1(h

2
) such that e′ = AdXe for some X ∈ G0 . We will show that e

and e′ are in the same open orbit of ZG0(h). By Lemma 4.4 there are elements f
and f ′ in g−1(h

2
) such that (h, e, f) and (h, e′, f ′) are sl2 -triples in g . Note that

(AdXh, e
′, AdXf) is a sl2 -triple in g . By Theorem 2.1.ii there exists an element

Y ∈ G0 such that AdY (e′) = e′ , AdY (AdXh) = h and AdY (AdXf) = f ′ . Thus
e′ = AdY ·Xe , where Y ·X ∈ ZG0(h). This proves the injectivity of our map.

Now we proceed to classify the open ZG0(h)-orbits in g1(h
2
).

Denote by gi(
h
2
)′ the i-th component of the commutant of g(h

2
) which has

the induced Z-gradation from g(h
2
). Since g1(h

2
) = [g0(h

2
), g1(h

2
)], we get

g1(
h

2
)′ = g1(

h

2
). (16)

Since Z(g(h
2
)) ⊂ g0(h

2
), we have g0(h

2
) = Z(g(h

2
))⊕ g0(h

2
)′ . Hence

[g0(
h

2
)′, g1(

h

2
)] = g1(

h

2
). (17)

Denote by ZG0(h)′ the connected subgroup in G0 whose Lie algebra is g0(h
2
)′ . An

element ei ∈ gi(
h
2
)′ is called generic, if the orbit AdZG0

(h)′(ei) is open in gi(
h
2
).

Equivalently, [g0(h
2
)′, ei] = gi(

h
2
).

Let ZG0(h)0 be the identity connected component of ZG0(h). From (16)
and (17) we get immediately

Lemma 4.5. There exists a 1-1 correspondence between the set of open
AdZG0

(h)0 -orbits in g1(h
2
) and the set of open AdZG0

(h)′ -orbits in g1(h
2
)′ = g1(h

2
).

Remark 4.6. Clearly, all elements in gCi (h
2
)′ are nilpotent, if i 6= 0. Proposition

2 in [33] asserts that there is only a finite number of ZGC
0
(h)′ -conjugacy classes

of nilpotent elements in gCi (h
2
)′ . Hence it follows that the set of generic nilpotent

elements in gCi (h
2
) is open and dense in gCi (h

2
)′ . Since the number of Ad′ZG0

(h) -

orbits in a AdZ
GC
0

(h)′ -orbit is finite [5], Proposition 2.3, it follows that for any

i 6= 0 the set of generic elements in gi(
h
2
)′ is open and dense.

Let us analyze the set of open AdZG0
(h)′ -orbits in g1 . Recall that an element

e in g1(h
2
) (resp. in gC1 (h

2
)) is called singular, if it is not generic. Equivalently

dim[g0(
h

2
)′, e] ≤ dim g1(

h

2
)− 1. (18)

Let f1, · · · , fm be a basis in g0(h
2
)′ . Let us choose an basis e1, · · · , en in g1 .

We write e =
∑

j aj(e)ej, aj ∈ R . Then [e, fi] =
∑
aj(e)[ej, fi] =

∑
j,k aj(e)c

k
ijfk .

Set bik(e) :=
∑

j aj(e)c
k
ij . Note that e is singular, if and only if the matrix
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(bij(e))
j=1,n
i=1,m has rank less than or equal to n − 1. Note that m ≥ n . Denote

by Pl , l = 1,
(
n
m

)
, the sub-determinants of (bij). Clearly e is singular, if and only

if Pl(e) = 0 for all l .

Lemma 4.7. There is a 1-1 correspondence between the set of open AdZG0
(h)0 -

orbits in g1(h
2
) and the set of connected components of the semialgebraic set

{x ∈ g1(h
2
)|
∑(nm)

l=1 P
2
l (x) > 0}. The number of open AdZG0

(h)0 -orbits in g1(h
2
) is

finite.

Proof. The first assertion follows from Lemma 4.5 and our consideration above.
The second assertion follows from the first one.

Remark 4.8. In [2, chapter 16, Theorem 16.14] the authors offer an algorithm
to compute the number of the connected components of a semisalgebraic set and
produce sample representative for each connected component. Their algorithm
also allows to recognize, whether given two points in a semialgebraic set belong to
the same connected component of this set. This algorithm is highly complicated
and we hope to implement it in future using an appropriate software package.

It remains to consider whether two given open connected AdZG0
(h)0 -orbits

in g1(h
2
)′ belong to the same AdZG0

(h) -orbit in g1(h
2
). Let ei , i = 1,M , be

representatives of the connected open AdZG0
(h)0 -orbits in g1(h

2
) obtained by the

algorithm in [2], see Remark 4.8. Since the group ZAdG0
(h) is connected [18,

Lemma 5], the group AdZG0
(h) is generated by AdZG0

(h)0 and the subgroup AdZ(G0)

acting g1 . Denote by F (ek) the set of all elements X ∈ Z(G0) such that AdX(ek)
belongs to the orbit AdZG0

(h)0(ek). Clearly F (ek) is a subgroup of Z(G0).

Lemma 4.9. The quotient Z(G0)/F (ek) is a finite abelian group. There exists
an algorithm to find representatives Yk,i, i = 1, N , of the coset Z(G0)/F (ek) in
Z(G0). The orbit AdZG0

(h)(ek) is a disjoint union of N open connected orbits

AdZG0
(h)0(Yk,i(ek)), i = 1, N .

Proof. We know that Z(G0) is a finitely generated abelian group, which can
be find explicitly [36]. Let X1, · · · , Xl be generators of Z(G0). Since the number
of connected open AdZG0

(h)0 -orbits in g1(h
2
) is finite, for each j ∈ 1, l there exists

a finite number p(j) such that Ad
X
p(j)
j

(ek) belongs to the orbit AdZG0
(h)0((ek)).

This proves the first assertion of Lemma 4.9. The second assertion follows from
the proof of the first assertion using the algorithm in [2], see Remark 4.8. The last
assertion follows from the second assertion.

Remark 4.10. We summarize our result in the following algorithm to find
conjugacy classes of nilpotent elements of degree 1 in a real Zm -graded semisimple
Lie algebra g . First we classify characteristics of nilpotent elements in g1 using
the algorithm in Remark 4.2. Theorem 4.3 shows that the conjugacy classes of
nilpotent elements in g1 having a given characteristic h is in a 1-1 correspondence
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with the set of open AdZG0
(h)-orbits in g1(h

2
). Using Lemma 4.7 and Lemma

4.9 we compute the number of open AdZG0
(h)-orbits in g1(h

2
) as well as choose

sample representatives for each open orbit with help of the algorithm in [2], see
also Remark 4.8.

Example 4.11. Let us consider one very simple example to show how our
algorithm works. let g = sl2(C) be a simple Lie algebra over C and g0 = sl2(R)
its Lie subalgebra. Then g0 is the fixed point set of the involution θon g defined by
θ(x) = x̄ . We write g = g0 + g1 , where g1 =

√
−1g0 ⊂ sl2(C). The adjoint action

of G0 = SL(2,R) on g1 is equivalent to the adjoint action of G0 on sl2(R).
Clearly, gC = sl2(C) + sl2(C), and gC0 = sl2(C). It is known that there is
only a unique nilpotent AdGC

0
-orbit in gC1 , whose characteristic is conjugate to

h = diag(1,−1) ∈ gC0 . By Lemma 4.1 the element h is also the unique (up to
conjugacy) characteristic element in g0 . Let us consider the Z-graded Lie algebra
g(h

2
). We have

g(
h

2
) = g−1(

h

2
) + g0(

h

2
) + g1(

h

2
)

where

g0(
h

2
) = 〈h〉R,

g1(
h

2
) =〉

(
0
√
−1

0 0
)

〉
R
⊂ g1,

g−1(
h

2
) =〉

(
0 0√
−1 0

)

〉
R
⊂ g1.

By Theorem 4.3 there is a 1-1 correspondence between the conjugacy classes of
nilpotent elements in g1 and open AdZG0

(h) -orbits in g1(h
2
). Since Z(G0) = Id .

by Lemma 4.7 there is a 1-1 correspondence between the latter orbits and the
connected components of the semialgebraic set {x2 > 0} in g1(h

2
) = R . Hence

there are exactly two conjugacy classes of nilpotent elements in g1 .

5. Orbits in a real Z2 -graded semisimple Lie algebra

In this section, using results in the previous sections, we describe the set of
homogeneous elements in a real Z2 -graded Lie algebra g , see Remark 5.6 for
a summarization.

The restriction to real Z2 -graded semisimple Lie algebras is motivated by
the fact that we do not have a classification of Cartan subspaces in g1 , if m ≥ 3. A
classification of Cartan subspaces in g1 in a Z2 -graded real semisimple Lie algebra
has been given by Matsuki and Oshima [24], based on an earlier work by Matsuki
[22].

Let us first consider the class of semisimple elements in g1 . Any semisimple
element in g1 belongs to a Cartan subspace in g1 .

Lemma 5.1 ([24]). Let τu be a R-compatible Cartan involution of a real Z2 -
graded semisimple Lie algebra g. Every Cartan subspace h ⊂ g1 is AdG0 -conjugate
to a Cartan subspace hst in g1 which is invariant under the action of τu .
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A Cartan subspace hst in g1 which is invariant under the action of τu is
called a standard Cartan subspace. It is known that there are only finite number
of standard Cartan subspaces, moreover there is algorithm to find them [24]. Let
g = k⊕p be the Cartan decomposition of g w.r.t. τu . Then hst = (hst∩k)⊕(hst∩p).
Denote by K0 the connected Lie subgroup in G0 with Lie algebra k .

Proposition 5.2. Suppose that h, h′ ∈ hst are AdG0 -conjugate. Then they are
AdK0 -conjugate.

Proof. We employ ideas in [28] for our proof. Let h = hk +hp and h′ = h′k +h′p
be the decomposition of h and h′ into elliptic and vector parts. Suppose that
h = AdX(h′), where X ∈ G0 . Since AdX does not change the eigenvalues,
hp = AdX(h′p). Suppose that hp 6= 0. We note that G0 = exp(g0 ∩ p) · K0 ,

and exp(g0 ∩ p) ⊂ exp
√
−1u0 . Now suppose that X = A · Y where Y ∈ K0

and A ∈ exp iu0 . Let y = AdY hp ∈
√
−1u1 . Then (AdA)

√
−1y =

√
−1h′p =

τu(AdA
√
−1y) = Ad−1

A

√
−1y , so Ad2

Ay = y . If A 6= Id this implies that AdA has
at least one eigenvalue (−1), which contradicts the fact that AdA is a positive
definite transformation.

Hence A = Id and X = Y ∈ K0 ⊂ G0 . This proves the first assertion, if
hp 6= 0. If hp = 0 then hk 6= 0 and we can apply the same argument to conclude
that X ∈ K0 .

Since any semisimple element in g1 is AdG0 -conjugate to an element in some
standard Cartan subspace in g1 , using the Cartan theory of symmetric spaces, see
e.g.[13], we get

Corollary 5.3. The set of AdG0 -conjugacy classes of semisimple elements in
g1 with pure imaginary or zero eigenvalues (elliptic semisimple elements) coincides
with the quotient set of a Cartan subspace (maximal abelian subspace) h1k ⊂
(g1∩k) under the action of the Weyl group of the Z2 -graded symmetric Lie algebra
k0 ⊕ k ∩ g1 . The set of AdG0 -conjugacy classes of real semisimple elements in g1

coincides with the quotient set of a Cartan subspace (maximal abelian subspace)
h1p ⊂ (g1 ∩ p) under the action of the Weyl group of the Z2 -graded symmetric Lie
algebra k0 ⊕ g1 ∩ p.

By Corollary 5.3 hk is conjugate to some element in a Cartan subspace
h1k ⊂ g1 ∩ p . Thus to classify all semisimple elements in g1 it suffices to classify
all semisimple elements in g1 whose elliptic part is an element in h1k .

Corollary 5.4. The set of AdG0 -equivalent elements h with given elliptic part
hk ∈ h1k coincides with the quotient set of a Cartan subspace in Zg1∩p(hk) under the
action of the Weyl group of the Z2 -graded symmetric Lie algebra
Zk0(hk)⊕ (Zg1∩p(hk)).

The following theorem describes the set of orbits of general mixed elements
in g1 . Recall that for an element e ∈ g1 we denote by es + en its Jordan
decomposition.
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Theorem 5.5. Two elements es + en, e
′
s + e′n ∈ g1 are in the same AdG0 -

orbit, if and only if es belongs to the orbit AdG0(e
′
s) and en belongs to the orbit

AdZG0
(es)(e

′
n).

Theorem 5.5 is straightforward, since the Jordan decomposition is unique,
see Theorem 2.1. We note that AdZG0

(es) may disconnected, but it is a subgroup
in the connected group AdZG(es) (by the Kostant theorem in [18]), so it seems
possible to determine this subgroup.

Remark 5.6. We summarize our results in the following description of the set
of the adjoint orbits in g1 . Any element in g1 is AdG0 -conjugate to an element of
the form hk + hp + en such that
i) hk is an elliptic semisimple element in h1k ,
ii) hp is a real semisimple element, commuting with hk ,
iii) en is a nilpotent element, commuting with hk + hp .
Furthermore, two elements hk+hp+en and h′k+h′p+e′n are conjugate, only if hk is
conjugate to h′k under the action of the associated Weyl group, see Corollary 5.3.
Thus we can assume that hk = h′k . Two elements hk +hp + en and hk +h′p + e′n are
conjugate, only if hp and h′p are conjugate under the action of the associated Weyl
group, see Corollary 5.4. Thus we can assume that hp = h′p . Finally, two elements
hk +hp + en and hk +hp + e′n are conjugate, if and only en and e′n are in the same
orbit of nilpotent elements of the associated Zm -graded reductive Lie algebra, see
Theorem 5.5. The classification of these nilpotent orbits can be obtained using
the method in section 4.

We finish this section by showing the relation between the set of orbits on
real (resp. complex) Zm -graded Lie algebras and the GL(8,R)-orbit spaces (resp.
the GL(8,C)-orbit space) of k-vectors and k-forms on R8 (resp. on C8 ). To find
a classification of k-forms on R8 is an important problem in classical invariant
theory. Many interesting applications in geometry, [11], [14], [21], are related to
this classification problem. This problem motivates the author to write this note.

Kac observed that the orbit space of homogeneous elements of degree 1
in the Z3 -graded complex algebra e8 (see example 3.2.v) can be identified with
the SL(9,C)-orbit space of 3-vectors on C9 , and the orbit space of homogeneous
elements of degree 1 in the Z2 -graded complex algebra e7 (see example 3.2.iv)
can be identified with the orbit space of 4-vectors in C8 [20]. In [12] Elashvili
and Vinberg classified all homogeneous elements of degree 1 in the Z3 -graded Lie
algebra e8 . They also observed that, all 3-vectors in Ck , k ≤ 8, can be considered
as nilpotent elements of degree 1 in this Z3 -graded Lie algebra e8 , furthermore
a classification of GL(k,C)-orbits on Λ3(Ck) is equivalent to a classification of
these homogeneous nilpotent elements. In [8], based on this remark, Djokovic
classified all 3-vectors in C8 and R8 . His classification is reduced to a classification
of homogeneous nilpotent elements of degree 1 in a Z-graded Lie algebra e8

(resp.e8(8) ). His method is close to our one (more precisely, our method is a
generalization of his method), but he used a method of the Galois cohomology
theory, first used by Revoy in [26], to compute the number of the open orbits in Z-
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graded e8(8) . Djokovic used the Vinberg method of support to find a representative
for each open orbit in Z-graded e8(8) .

A classification of 4-vectors in C8 has been given by Antonyan in [1]. Using
his classification and our method in this note it is possible to classify all 4-vectors
in R8 , which is reduced to the classification of homogeneous elements of degree 1
in the Z2 -graded Lie algebra e7(7) , (see example 3.2.iv).

A classification of SL(9,C)-orbits of 3-forms on C9 (resp. SL(9,R)-orbits
on Λ3(R9)∗ ) is equivalent to a classification of homogeneous elements of degree
(-1) in the Z3 -graded Lie algebra e8 (resp. e8(8) ) [12]. By Corollary 3.4 this
classification can be obtained from a classification 3-vectors on C9 (resp. on
R9 ). In particular, a classification of 3-forms on R8 can be obtained from the
classification of 3-vectors in R8 in [8].

We note that a classification of GL(8,R)-orbits on the space Λk(R8) can
be obtained easily from a classification of SL(8,R)-orbits on the same space.

Given a volume element vol∗ ∈ Λ8(R8)∗ , there is a unique element vol∗ ∈
Λ8(R8) such that 〈vol∗, vol∗〉 = 1. Further there is a natural Poincare isomorphism
P∗ : Λk(R8)∗ → Λ8−k(R8), 〈P∗(x), y〉 = 〈x ∧ y, vol∗〉 , which commutes with the
SL(8,R)-action.

Thus we can get a classification of all k-vectors and k-forms on R8 (resp. on
C8 ) using the theory of real (resp. complex) Zm -graded semisimple Lie algebras.
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