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Abstract. Let g be any finite-dimensional odd Contact superalgebra over a
field of prime characteristic. By means of determining the minimal dimensions
of image spaces of certain inner superderivations, it is proved that the principal
filtration of g is invariant under the automorphisms of g. Then, the parameters
by which g is defined are proved to be intrinsic and thereby the odd Contact
superalgebras are classified up to isomorphisms. Furthermore, the restrictedness
of g is determined and the automorphism group of g in restrictedness case is
proved to be isomorphic to the admissible automorphism group of the underlying
superalgebra of g under a concrete isomorphism Φ. Further properties of Φ are
given and as an application, the results above are used to discuss the p -characters
of the irreducible representations for g .
Mathematics Subject Classification 2000: 17B50, 17B40.
Key Words and Phrases: Odd contact superalgebra, filtration, automorphism,
character.

Introduction

Since V. G. Kac [5] classified the finite-dimensional simple Lie superalgebras over
algebraically closed fields of characteristic zero, the theory of Lie superalgebras of
characteristic zero has undergone a remarkable evolution. However, for modular
Lie superalgebras, the research results are not so plentiful and as far as we know,
[8, 13] should be the earliest papers. The classification problem remains open for
finite-dimensional simple modular Lie superalgebras [1, 2, 22].

Filtration structures play an important role in modular Lie algebras and
Lie superalgebras over fields of characteristic 0, especially in the classification of
those simple Lie (super)algebras [3, 5, 6, 16]. For example, the invariance of
filtrations can be used to characterize intrinsic properties of Lie (super)algebras
of Cartan type and to determine the automorphism groups [15, 19, 23]. The
natural filtrations of modular Lie algebras of Cartan type are invariant under
their automorphisms [7, 9]. Similar problems were considered for modular Lie
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superalgebras of Cartan type [11, 23, 24].

Let us briefly describe the content and setup of the present paper. Here-
after, all vector spaces and algebras are finite-dimensional; the underlying field
F is of characteristic p > 3. In Section 1 we recall the necessary concepts and
notations concerning Lie superalgebras of Cartan type and state the main results.
In Section 2, by determining the minimal dimensions of image spaces of certain
superderivations of g , it is proved that the principal filtration of g is invariant
under Autg . As a consequence, the odd Contact superalgebras are classified up to
isomorphisms. Section 3 is devoted to the automorphism group of the restricted
odd Contact superalgebra g . We emphasize the isomorphism relations between the
automorphism group of the Lie superalgebra g and of the underlying superalgebra
O, since the latter, O, is a super-commutative associative superalgebra. Speaking
more accurately, it is proved that Autg is isomorphic to a subgroup of AutO under
a concrete isomorphism. Furthermore, the homogeneous automorphism subgroup
and the so-called standard normal series of Autg are considered from the point of
view mentioned above. In Section 4, as an application, we consider the p-character
of the irreducible representations of the restricted odd Contact superalgebras.

This paper is motivated by the results and methods in Lie algebras and
certain results are closely parallel to those in the Lie algebra case [20, 21]. Our
discussion is based on certain known results in modular Lie superalgebras [4, 10, 24]
and the authors benefit much from reading [18, 17]. The authors thank the referee
for the careful reading and valuable suggestions.

1. Basic notions and main results

1.1. Generalized Witt superalgebras. Throughout this paper, N denotes the
set of positive integers and N0 the set of non-negative integers. Let Z2 := {0, 1} be
the field of two elements. Fix n ∈ N\{1}. For an n-tuple α := (α1, . . . , αn) ∈ Nn

0 ,
put |α| :=

∑n
i=1 αi . Fix two n-tuples t := (t1, . . . , tn) ∈ Nn and π := (π1, . . . , πn),

where πi := pti − 1. Let O(n; t) denote the divided power algebra over F
with an F-basis {x(α) | α ∈ A} , where A := {α ∈ Nn

0 | α ≤ π} . Note
that x(0) := 1 ∈ O(n; t), where 0 = (0, . . . , 0). For εi := (δi1, δi2, . . . , δin),
we write xi for x(εi) , i = 1, . . . , n . Let Λ(n + 1) be the exterior superalgebra
over F in n + 1 variables xn+1, xn+2, . . . , x2n+1 . Denote the tensor product by
O(n, n+1; t) := O(n; t)⊗FΛ(n+1). Obviously, O(n, n+1; t) is a finite-dimensional
associative super-commutative superalgebra with a Z2 -grading induced by the
trivial Z2 -grading of O(n; t) and the standard Z2 -grading of Λ(n + 1). For
convenience, put

I0 := {1, 2, . . . , n}, I1 := {n+ 1, n+ 2, . . . , 2n+ 1}, I := I0 ∪ I1.

Set

Br := {〈i1, i2, . . . , ir〉 | n+ 1 ≤ i1 < i2 < · · · < ir ≤ 2n+ 1} ,

and B :=
⋃n+1
r=0 Br with the convention B0 := {∅} . Note that Bn+1 consists of the

unique element ω := 〈n+ 1, n+ 2, . . . , 2n+ 1〉 . If u ∈ B we also let u denote the
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index set of u. For u := 〈i1, i2, . . . , ir〉 ∈ Br , write xu := xi1xi2 · · ·xir , |u| := r and

‖u‖ :=

{
|u|+ 1 if 2n+ 1 ∈ u
|u| if 2n+ 1 /∈ u,

with the convention: |∅| := ‖∅‖ := 0 and x∅ := 1. For u, v ∈ B with u ∩ v = ∅ ,
write u+ v for the unique element w ∈ B satisfying that w = u ∪ v. Similarly, if
v ⊂ u , write u− v for w ∈ B satisfying that w = u\v .

For f ∈ O(n; t), g ∈ Λ(n + 1), we simply write fg for f ⊗ g . Then
{x(α)xu | (α, u) ∈ A× B} constitutes an F-basis of O(n, n + 1; t), called the
standard basis.

Suppose V = V0 ⊕ V1 is a vector superspace. If x ∈ Vθ, θ ∈ Z2 , then θ
is called the parity of x , denoted by p(x) := θ . The symbol p(x) always implies
that x is a Z2 -homogeneous element.

Let ∂r be the superderivation of O(n, n + 1; t) with parity p(∂r) = µ(r),
where µ (r) := 0 if r ∈ I0 and 1 if r ∈ I1, such that ∂r(x

(α)) = x(α−εr) for r ∈ I0,
α ∈ A and ∂r(xs) = δrs for r, s ∈ I1. The following formula will be frequently
used:

[aD, bE] = aD(b)E − (−1)p(aD)p(bE)bE(a)D + (−1)p(D)p(b)ab[D,E],

where a, b ∈ O(n, n+ 1; t), D,E ∈ DerO(n, n+ 1; t).

The generalized Witt superalgebra W (n, n + 1; t), spanned by fr∂r, fr ∈
O (n, n+ 1; t) , r ∈ I , is a finite-dimensional simple Lie superalgebra [22]. Note
that W (n, n+ 1; t) is a free O(n, n+ 1; t)-module with a basis {∂1, . . . , ∂2n+1} .
For simplicity, we usually write O and W for O(n, n + 1; t) and W (n, n + 1; t),
respectively. Recall the so-called standard Z-grading O = ⊕ξi=0Os,[i], where

Os,[i] := spanF{x(α)xu | |α|+ |u| = i, α ∈ A, u ∈ B}, ξ :=
n∑
i=1

pti + 1.

It induces naturally the so-called standard grading W = ⊕ξ−1i=−1Ws,[i], where

Ws,[i] := spanF{f∂j | f ∈ Os,[i+1], j ∈ I}.

The standard gradings of O and W are also called the gradings of type
(1, . . . , 1 | 1, . . . , 1).

We shall also use the so-called principal grading O = ⊕ξ+1
i=0Op,[i], where

Op,[i] := spanF{x(α)xu | |α|+ ‖u‖ = i, α ∈ A, u ∈ B},

and the so-called principal grading W = ⊕ξi=−2Wp,[i], where

Wp,[i] := spanF{f∂s | f ∈ Op,[i+1+δs,2n+1], s ∈ I}

(cf. [4, 6]). The principal gradings of O and W are also called the gradings of
type (1, . . . , 1 | 1, . . . , 1, 2).
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1.2. Odd Contact superalgebras. Let i′ := i + n for i ∈ I0 and i − n for
i ∈ I1 \ {2n+ 1}. Define the linear mapping DKO : O −→ W such that

DKO(a) := TH(a) + (−1)p(a)∂2n+1(a)∆ + (∆(a)− 2a)∂2n+1, a ∈ O,

where

∆ :=
2n∑
i=1

xi∂i, TH(a) :=
2n∑
i=1

(−1)µ(i
′)p(a)∂i′(a)∂i

(cf. [6, 12]). Then KO(n, n + 1; t) := {DKO(a) | a ∈ O(n, n + 1; t)} is a finite-
dimensional simple Lie superalgebra [4, Theorem 3.1], called the odd Contact
superalgebra. For short we usually write g or g(n, n + 1; t) for KO(n, n + 1; t).
The principal Z-grading of W induces a Z-grading of g, called principal, denoted
by g = ⊕i≥−2gp,[i] where

gp,[i] = g ∩Wp,[i] = {DKO(x(α)xu) | |α|+ ‖u‖ − 2 = i, α ∈ A, u ∈ B}. (1.1)

We should note that, in general, g is not a Z-graded subalgebra of W with respect
to the standard grading.

As usual, the corresponding filtration of X is called standard (resp. prin-
cipal), denoted by {Xs,i}i∈Z (resp. {Xp,i}i∈Z ), where X = O, W or g.

Convention: In the sequel we usually write X[i] and Xi for Xp,[i] and Xp,i

respectively, where X = O, W or g.

1.3. Main results. The proofs of the theorems stated in this subsection will
be given in Sections 2, 3 and 4. The following theorem reveals certain invariants
under the automorphism group of the odd Contact superalgebra.

Theorem 1.1. Any isomorphism between odd Contact superalgebras preserves
the principal filtrations. In particular, the principal filtration of the odd Contact
superalgebra g is invariant under the automorphism group Autg.

The next theorem essentially gives the classification of the odd Contact
superalgebras up to isomorphisms.

Theorem 1.2. The parameters n and t by which the odd Contact superalgebra
is defined are intrinsic.

To state the next result, we recall certain notion and notation. Let A be
a finite-dimensional superalgebra over F and Q a sub Lie superalgebra of the full
superderivation superalgebra DerA . Let

Aut(A : Q) := {σ ∈ AutA | σ̃(Q) ⊂ Q},

where σ̃(D) := σDσ−1 for D ∈ Q. Then Aut(A : Q) is a subgroup of AutA ,
which is referred to as the admissible automorphism group of A (to Q) (see [10]
for details). Put

Aut∗pX := {σ ∈ AutX | σ(Xp,[j]) ⊂ Xp,[j], j ∈ Z},
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Autp,iX := {σ ∈ AutX | (σ − 1)(Xp,j) ⊂ Xp,i+j, j ∈ Z}, i ≥ 0,

where X = O, W or g . Then Aut∗pX is a subgroup of AutX, called the
homogeneous automorphism group of X . By Theorem 1.1, the principal filtration
of g is invariant and therefore, Autp,ig is a normal subgroup of Autg for each
i ≥ 0. We call Autp,0g > Autp,1g > · · · the standard normal series of Autg . Set

Aut∗p(O : X) := Aut∗pO ∩ Aut(O : X),

Autp,i(O : X) := Autp,iO ∩ Aut(O : X), i ≥ 0,

where X = W or g. Similarly, we call Aut∗p(O : X) the homogeneous admissible
automorphism group of O . Note that the principal filtration of O is invariant
under Aut(O : g) (see Lemma 3.4). We call Autp,0(O : g) > Autp,1(O : g) > · · ·
the standard normal series of Aut(O : g).

Recall that a Lie superalgebra L = L0 ⊕ L1 is restricted provided that
both the Lie algebra L0 and L0 -module L1 are restricted (see [8, 13]). By
Proposition 3.2, g(n, n+ 1; t) is restricted if and only if t = 1. For the rest of this
subsection, suppose g is restricted, that is, g = g(n, n+1; 1), and correspondingly,
O = O(n, n+ 1; 1). Let

Φ : Aut(O : g) −→ Autg, Φ(σ) = σ̃|g.

Theorem 1.3. Φ is an isomorphism of groups. Moreover,

(i) Φ(Autp,i(O : g)) = Autp,ig for i ≥ 0;

(ii) Φ(Aut∗p(O : g)) = Aut∗pg;

(iii) Autp,1g is a solvable normal subgroup of Autg and Autg = Autp,1goAut∗pg.

To determine the factors Autp,ig/Autp,i+1g (i ≥ 1) of the standard normal
series, put

Endp,i(g) := {ϕ ∈ End(g) | ϕ(gp,j) ⊂ gp,i+j, j ∈ Z}, i ∈ Z,

where End(g) denotes the linear space of all linear transformations of g. Thus

Autp,ig = {ϕ ∈ Autg | ϕ− 1 ∈ Endp,i(g)}, i ≥ 0.

The factors of the standard normal series of Autg are determined as follows.
The result is completely analogous to [21, Theorem 1].

Theorem 1.4. If i ≥ 1, then there exists a group epimorphism λi of Autp,ig
onto the additive group g[i] ∩ g0 satisfying that

kerλi = Autp,i+1g and σ̃ − adλi(σ̃)− 1 ∈ Endp,i+1(g) for all σ̃ ∈ Autp,ig.

In particular, Autp,ig/Autp,i+1g ' g[i] ∩ g0.

Let χ ∈ (g0)
∗ := HomF(g0,F). A representation ρ : g −→ gl(M) is

called having p-character χ if ρ(D)p − ρ(D[p]) = χ(D)p · 1M for all D ∈ g0 .
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Clearly, restricted modules have the p-character χ = 0. As in the Lie algebra
case [18, Theorem 5.2.5], it is easy to verify that every irreducible representation
of a restricted Lie superalgebra has a p-character χ . The group Autg acts on
(g0)

∗ according to the rule χφ(D) = χ(φ(D)) for χ ∈ (g0)
∗, φ ∈ Autg, D ∈ g0.

Following [14], define the height of the p-character χ by

htχ := min{i ≥ −2 | χ(gi ∩ g0) = 0}

and as an application of Theorem 1.4 we have

Theorem 1.5. Suppose F is algebraically closed and χ ∈ (g0)
∗. If htχ = 1,

then there exists σ̃ ∈ Autg such that (i) htχσ̃ = 1; (ii) χσ̃(g[−1] ∩ g0) = 0 and
χσ̃(DKO(xixj)) = 0 for all i ∈ I0, j ∈ I1\{2n+ 1} with i < j′.

Remark 1.6. Note that g[0] ' cp̃(n) = p̃(n)⊕ F · 1, where

p̃(n) =
{[A B

C −At
]
| A,B,C ∈ Mn(F), B = Bt, C = −Ct

}
.

In view of Theorem 1.5, when htχ = 1 one may replace χ by a convenient χσ̃

with height 1 for some σ̃ ∈ Autg such that χσ̃ vanishes on the even matrices in
which the first blocks A are strictly upper triangular, with the advantage such
that certain arguments are thus simplified.

2. Filtration

In this section, we mainly show that the principal filtration of g is invariant under
Autg (Theorem 1.1) and then complete the classification of the odd Contact
superalgebras up to isomorphisms (Theorem 1.2). By definition, one can verify
the following formula (cf. [4, 6]):

[DKO(a), DKO(b)] = DKO(DKO(a)(b)− (−1)p(a)2∂2n+1(a)b). (2.1)

Moreover, DKO is an odd linear mapping of O into W, that is, p(DKO(a)) =
p(a)+1 for a ∈ O (cf. [4, 6]). Note also that DKO is of Z-degree −2 with respect
to the principal grading.

Since DKO is injective, in view of (2.1), g can be identified with the Lie
superalgebra having Π(O) = Π(O)0 ⊕Π(O)1 as its underlying vector superspace,
where Π is the change of parity functor, and the Lie bracket is given by:

[a, b] :=
2n∑
i=1

(−1)µ(i
′)p(a)∂i′(a)∂i(b) + (−1)p(a)∂2n+1(a)∆(b)

+(∆(a)− 2a)∂2n+1(b)− (−1)p(a)2∂2n+1(a)b, (2.2)

where a, b ∈ O and we adopt the general convention: p(a) denotes the parity
with respect to the Z2 -grading of O for a ∈ Π(O) = g. By (1.1), the principal
Z-grading is as follows: g = ⊕ξ−1i=−2g[i], where

g[i] := spanF{x(α)xu | |α|+ ‖u‖ − 2 = i, α ∈ A, u ∈ B}.



Chen and Liu 735

In particular,
g[−2] = F · 1;

g[−1] = spanF
{
xi | i ∈ I\{2n+ 1}

}
;

g[0] = spanF
{
x2n+1, xixj | i, j ∈ I\{2n+ 1}

}
.

Suppose V is a finite-dimensional Z-graded vector superspace. For 0 6= v ∈
V , let λ(v) denote the nonzero Z-homogeneous component of the lowest Z-degree
of v . The symbol zd(v) always implies that v is a Z-homogeneous element with
Z-degree zd(v).

Lemma 2.1. [24, Lemma 2] Suppose that we have y1, y2, . . . , yk ∈ V \{0}.
If {yi | i = 1, . . . , k} is linearly dependent, so is {λ(yi) | i = 1, . . . , k}.

The next two technical lemmas are straightforward.

Lemma 2.2. Let 0 6= a ∈ O .

(i) Let T ⊂ I0 . If ∂i(a) = 0 for all i ∈ T , then a
(∏

i∈T x
(kiεi)

)
6= 0, 0 ≤ ki ≤

πi.

(ii) Let T ⊂ I1 . If ∂i(a) = 0 for all i ∈ T , then a
(∏

i∈T xi
)
6= 0.

Lemma 2.3. Let f := x(α)xu ∈ g and i, j ∈ I\{2n+ 1}. Then

(i) [f, xixj] = (−1)µ(i
′)p(f)∂i′(f)xj + (−1)µ(j

′)p(f)+µ(i)µ(j)∂j′(f)xi .

(ii) [f, xixi′ ] = (−1)µ(i
′)p(f)∂i′(f)xi′ + (−1)µ(i)p(f)∂i(f)xi = af for some a ∈ F.

Lemma 2.4. Suppose 0 6= f ∈ (g0 ∪ g1) \ spanF{x(π)xω}. Then there exist
standard basis elements y1, y2 of g with zd(yi) ≥ 0 such that {[f, y1], [f, y2]} is
linearly independent.

Proof. In view of Lemma 2.1, one may assume that f is a Z-homogeneous
element. The discussion is divided into two parts.

Part 1. Suppose ∂r(f) = 0 for all r ∈ I1 . Then f =
∑

α∈A kαx
(α) , where kα ∈ F.

If there exist distinct i, j ∈ I0 such that ∂i(f) 6= 0, ∂j(f) 6= 0, say, i = 1, j = 2,
then

z1 := [f, x1′x2n+1] = ∂1(f)x2n+1 − (|α| − 2)fx1′ 6= 0,

z2 := [f, x2′x2n+1] = ∂2(f)x2n+1 − (|α| − 2)fx2′ 6= 0.

It is easy to see that {z1, z2} is linearly independent. If there is only one index
i ∈ I0 such that ∂i(f) 6= 0, one may suppose f = x(kε1) , where 0 ≤ k ≤ π1 . For
k = 0, that is, f = 1, we have

z1 := [f, x2n+1] = −2 6= 0,

z2 := [f, x1x2n+1] = −2x1 6= 0.
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For k > 0, we have

z1 := [f, x1′x2n+1] = x((k−1)ε1)x2n+1 − (k − 2)x(kε1)x1′ 6= 0,

z2 := [f, x1′x2′ ] = x((k−1)ε1) 6= 0.

In any case, {z1, z2} is linearly independent.

Part 2. Suppose there exists r ∈ I1 such that ∂r(f) 6= 0. We consider two cases
separately.

Case 1. Suppose ∂πii (f) 6= 0 for all i ∈ I0.

Subcase 1.1. Suppose f = x(π)xu +
∑

α,vmα,vx
(α)xv with u 6= ∅, ω , mα,v ∈ F .

Then there exists s ∈ I1\2n+ 1 such that s /∈ u. Pick l ∈ u . Lemma 2.3 shows
that

z1 := [f, xl′xl] = −2x(π)xu +
∑
α,v

mα,vaα,vx
(α)xv 6= 0,

z2 := [f, xlxl′xs] = −2x(π)xuxs +
∑
α,v

mα,v

(
bα,vx

(α)xvxs + cα,vx
(α)xvxl′xl

)
6= 0,

where aα,v, bα,v, cα,v ∈ F . Since zd(z1) 6= zd(z2), {z1, z2} is linearly independent.

Subcase 1.2. Suppose f = x(π) +
∑

γ,vmγ,vx
(γ)xv with γ 6= π. Then one easily

verifies that

z1 := [f, x1′x2′ ] = x(π−ε1)x2′ − x(π−ε2)x1′ + · · · 6= 0,

z2 := [f, x1′x2n+1] = x(π−ε1)x2n+1 + (n+ 2)x(π)x1′ + · · · 6= 0.

Observing zd(z1) 6= zd(z2), one sees that {z1, z2} is linearly independent.

Case 2. Suppose there exists some i ∈ I0 such that ∂πii (f) = 0.

Subcase 2.1. Assume that ∂j(f) 6= 0 for every j ∈ I1 . First, suppose f has a
nonzero summand containing xω as a factor, that is, f = x(α)xω+

∑
β,umβ,ux

(β)xu ,
where αi, βi < πi , mβ,u ∈ F . Then there exists some 0 ≤ k ≤ ti − 1 such that

x(α)x(p
kεi) 6= 0. For l ∈ I0 \ i, by Lemma 2.3 we have

z1 := [f, x(p
kεi)xl] = λx(α)x(p

kεi)xω−<l
′> + · · · 6= 0,

and
z2 := [f, xixi′ ] = −x(α)xω + · · · 6= 0,

where λ = 1 or −1. Note that x(α)xω does not appear in the monomials of z1 .
Therefore, {z1, z2} is linearly independent.

Second, suppose f has no nonzero summands containing xω as a factor, that
is, f = x(α)xux2n+1 +

∑
β,vmβ,vx

(β)xv , where αi, βi < πi , and u+ 〈2n+ 1〉, v 6= ω ,
mβ,v ∈ F . If u = ∅ , choose l, s ∈ I1\{2n+ 1} with l 6= s . Then

z1 := [f, x2n+1] = |α|x(α)x2n+1 + · · · ,
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z2 := [f, xlx2n+1] = (|α| − 1)x(α)xlx2n+1 + · · · ,
z3 := [f, xlxsx2n+1] = (|α| − 2)x(α)x2n+1xlxs + · · ·

Since p > 3, there exist at least two linearly independent elements among z1, z2
and z3, since they are of distinct Z-degrees.

If u 6= ∅ , pick l ∈ u . Since u+〈2n+1〉 6= ω , there exists s ∈ I1\{2n+1} such
that s /∈ u . As αi < πi, there exists k ∈ {0, 1, . . . , ti−1} such that x(α)x(p

kεi) 6= 0.
According to Lemma 2.3 we have that z1 := [f, xl′xs] 6= 0. If k 6= ti − 1, then
z2 := [f, x(p

kεi)xl′xs] 6= 0. If k = ti − 1, then αi = 0. It follows that

z3 := [f, x(2εi)xl′ ] = λx(α)x(2εi)xu−<l>x2n+1 + · · · 6= 0,

where λ = 1 or −1. Since zd(z1) 6= zd(z2), {z1, z2} is linearly independent. Simi-
larly, {z1, z3} is linearly independent.

Subcase 2.2. Suppose there exists j ∈ I1 such that ∂j(f) = 0. Then one can write
f = x(α)xu+

∑
β,vmβ,vx

(β)xv , where u 6= ∅, j /∈ u, j /∈ v and αi, βi < πi , mβ,v ∈ F .
If j = 2n+ 1, pick l ∈ u, since u 6= ∅ . Then we have

z1 := [f, xl′x2n+1] = λx(α)xu−<l>x2n+1 + (|α|+ ‖u‖ − 2)x(α)xuxl′ + · · · 6= 0,

where λ = 1 or −1. In the case k 6= ti − 1, one sees that z2 := [f, x(p
kεi)xl′ ] 6= 0.

In the case k = ti − 1, we obtain z3 := [f, xixl′x2n+1] 6= 0. Since zd(z1) 6= zd(z2),
{z1, z2} is linearly independent. Similarly, {z1, z3} is linearly independent. For
j 6= 2n + 1, the proof is similar to the second part of Subcase 2.1. The proof is
complete.

Let L be a Lie superalgebra. For D ∈ DerL , put I(D) := dim Im(D). For
a nonempty subset T ⊂ DerL , we call

I(T ) := min{I(D) | 0 6= D ∈ T}

the minimal dimension of image spaces of the superderivations in T .

Lemma 2.5. I(adf) = 2n+ 2, where f := x(π)xω.

Proof. Since [x(π)xω, g1] = 0, it suffices to compute
dim[x(π)xω, g[0] + g[−1] + g[−2]] .

Firstly, consider [x(π)xω, g[0]]. For i, j ∈ I\{2n+ 1} , one can verify that

[x(π)xω, xixj] = −2x(π)xω when j = i′ and 0 otherwise.

In addition, [x(π)xω, x2n+1] = 4(x(π)xω) = (|π|+ n)x(π)xω = 0. Secondly, consider
[x(π)xω, g[−1]]. We have

[x(π)xω, xi] = (−1)p(x
ω)+i−1x(π)xω−<i

′> 6= 0 for all i ∈ I0;

[x(π)xω, xj] = x(π−εj′ )xω 6= 0 for all j ∈ I1\{2n+ 1}.
Thirdly, consider [x(π)xω, g[−2]]. We have

[x(π)xω, 1] = 2x(π)xω−<2n+1> 6= 0.

Therefore, I(adf) = 2n+ 2.
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In order to prove Theorem 1.1, we need the following lemma. Put S ′ :=
{s′ | s ∈ S} for a nonempty subset S ⊂ I \ {2n+ 1}.

Lemma 2.6. Suppose f ∈ g0 ∪ g1 and f /∈ spanF{x(π)xω}. Then I(adf) >
2n+ 2.

Proof. By Lemma 2.1, one may assume that f is a Z-homogeneous element.
Let I1 = I1\{2n+ 1}, I = I\{2n+ 1} . Put

R := {i ∈ I0 | [f, xi] = 0}, R1 := {i ∈ I1 | [f, xi] = 0}.

Case 1. Suppose [f, 1] = 0. Then ∂2n+1(f) = 0.

Subcase 1.1. Suppose R ∪R1 = I . Then ∂i(f) = 0 for all i ∈ I and one may sup-
pose f = 1. Since [1, x(α)xu] = 2x(α)xu−<2n+1>, we have I(adf) ≥ pn2n > 2n+ 2.

Subcase 1.2. Suppose R ∪ R1 = ∅ . Then R = R1 = ∅ and {[f, xi] | i ∈ I} is
linearly independent. Therefore, ∂i′(f) 6= 0 for all i ∈ I . Then by Lemma 2.2, we
have

[f, xix2n+1] = (−1)µ(i
′)p(f)∂i′(f)x2n+1 + (−1)µ(i)(∆(f)− 2f)xi 6= 0. (2.3)

Thus, I(adf) ≥ 2n+ 2n > 2n+ 2.

Subcase 1.3. Suppose ∅ 6= R ∪ R1 ( I . Let J := {i ∈ R1 | i′ ∈ R}, J1 := R1\J,
J2 := R\J ′, Y := I\(R ∪R1 ∪ J ′1). Suppose

x(γ) :=
∏
k∈J ′

x(γkεk), where γk = 0, 1, . . . , p− 1;

xq :=
∏
j∈J

x
qj
j , where qj = 0, 1.

Selecting any l ∈ J1 , we have ∂l(f) 6= 0. For arbitrary βl′ ∈ {1, 2, . . . , p− 1} ,

[f, x(γ)xqx(βl′εl′ )] = (−1)p(f)∂l(f)x(γ)xqx((βl′−1)εl′ ), (2.4)

[f, x(γ)xqx(βl′εl′ )x2n+1] = (−1)p(f)∂l(f)x(γ)xqx((βl′−1)εl′ )x2n+1 +(∆(f)−2f)a, (2.5)

where a = ∂2n+1(x
(γ)xqx(βl′εl′ )x2n+1). For any k ∈ Y , we have

[f, x(γ)xqxk] = (−1)µ(k
′)p(f)+p(xq)∂k′(f)x(γ)xq. (2.6)

Letting s ∈ J ′2 , one gets

[f, x(γ)xqxsx2n+1] = (−1)p(f)+p(xq)∂s′(f)x(γ)xqx2n+1 + (∆(f)− 2f)b, (2.7)

where b = ∂2n+1(x
(γ)xqxsx2n+1). Since ∂k(f) = 0 for k ∈ J ∪ J ′ , we have

∂k(∂l(f)) = (−1)µ(k)µ(l)∂l(∂k(f)) = 0
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for all l ∈ J1 . Then Lemma 2.2 shows that ∂l(f)x(γ)xq 6= 0. Similarly, by Lemma
2.2, ∂l(f)x(γ)xqx

((βl′−1)εl′ ) 6= 0. By the same token, the elements (2.4)–(2.7) are
nonzero and therefore linearly independent. Then, letting |J | = m, |J1| = t and
|J2| = h, we have

I(adf) ≥ pm2m(p− 1)t+ pm2m(p− 1)t+ pm2m(2n− (m+ t)

−(m+ h)− t) + pm2mh

= pm2m(2n− 2m+ 2(p− 2)t).

Observe that the function 2x(2n − x) is descending for 1 ≤ x < 2n . Suppose
m > 0. If t > 0, since n > 1 and p > 3, we conclude that

I(adf) ≥ 22m(2n− 2m) + 22m(2(p− 2)t) ≥ 8n > 2n+ 2.

If t = 0, since n > 1 and p > 3, we get

I(adf) ≥ pm2m(2n− 2m) ≥ (p− 2)m2m(2n− 2m) + 22m(2n− 2m)

≥ 2(22(2n− 2)) > 2n+ 2.

For m = 0, if t > 0, then I(adf) ≥ 2n + 2(p − 2)t > 2n + 2. If t = 0, then
R1 = ∅ . Noting that R∪R1 6= ∅ , we may assume that R = J2 := {j1, . . . , jh} 6= ∅.
Hence {[f, xi] | i ∈ I\R} is linearly independent. Lemma 2.2 and (2.3) ensure that
{[f, xix2n+1] | i ∈ I\R} is linearly independent. Put

xθ :=
∏
j∈J ′

2

x
θj
j , where θj = 0, 1 and θj are not all zero for j ∈ J ′2.

One gets

[f, xθ] =
∑
j∈J ′

2

(−1)µ(j
′)p(f)∂j′(f)∂j(x

θ) =
∑
j∈J ′

2

∂j′(f)∂j(x
θ).

Since j ∈ J ′2 , we have j′ ∈ J2 = R . Then ∂j(f) = 0, but ∂j′(f) 6= 0. According
to Lemma 2.2, we have

∑
j∈J ′

2
∂j′(f)∂j(x

θ) 6= 0, that is, [f, xθ] 6= 0. Similarly,

[f, xθx2n+1] 6= 0. Therefore,

I(adf) ≥ 2(h(2h−1 − 1) + 2n− h− h) = 4n+ 2h · h− 6h.

If h ≥ 3, then I(adf) > 2n + 2. If h = 2, put R = J2 := {i′, j′}. It is
obvious that {[f, xl] | l ∈ I\R} is linearly independent. By Lemma 2.2 and
(2.3), {[f, xlx2n+1] | l ∈ I\R} is also linearly independent. Furthermore, we can
obtain by a straightforward computation that [f, xixj] 6= 0 and [f, xixjx2n+1] 6= 0.
For l′ ∈ R , since

[f, xlxl′ ] = (−1)µ(l
′)p(f)∂l′(f)xl′ + (−1)µ(l)p(f)∂l(f)xl = −f 6= 0, (2.8)

we have
I(adf) ≥ 2(2n− 2) + 2 + 1 = 4n− 1 > 2n+ 2.

If h = 1, by (2.8) and the fact that the sets
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{[f, i] | i ∈ I\R} and {[f, xix2n+1] | i ∈ I\R}
are linearly independent, we obtain

I(adf) ≥ 2(2n− 1) + 1 = 4n− 1 > 2n+ 2.

Case 2. Now we consider the situation [f, 1] 6= 0. Assume that R∪R1 = I . Then
[f, xi] = 0 for all i ∈ I . Note that [xi, xi′ ] = (−1)µ(i) · 1, where i ∈ I . Hence

(−1)µ(i)[f, 1] = [f, [xi, xi′ ]] = [[f, xi], xi′ ] + (−1)µ(i)p(f)[xi, [f, xi′ ]] = 0. (2.9)

Thus [f, 1] = 0, contradicting the assumption that [f, 1] 6= 0. Therefore, we can
assume that R ∪R1 ( I .

Subcase 2.1. Suppose R ∪ R1 = ∅ . Then {[f, xi] | i ∈ I} is linearly independent.
Lemma 2.4 ensures that there exist b1, b2 with nonnegative Z-degrees such that
{[f, b1], [f, b2]} is linearly independent. Since [f, 1] 6= 0, we obtain

I(adf) ≥ 2n+ 1 + 2 > 2n+ 2.

Subcase 2.2. Suppose R ∪ R1 6= ∅ . If i ∈ R , claim that i′ /∈ R1 . Indeed, if
i′ ∈ R1 , by (2.9) one gets [f, 1] = 0, contradicting the assumption that [f, 1] 6= 0.
Similarly, if i ∈ R1 , then i′ /∈ R . Thus R′ ∩R1 = ∅, R′1 ∩R = ∅. Suppose |R| = k
and |R1| = r. Write

x(α) :=
∏
i∈R′

1

x(γiεi), where 0 ≤ γi ≤ p− 1 for i ∈ R′1;

xu :=
∏
j∈R′

x
qj
j , where qj = 0, 1.

Letting g := x(α)xu , assert that [f, g] 6= 0. Indeed, by the assumption that
[f, 1] 6= 0, one can assume that zd(g) > −2. Then there exists some i ∈ R ∪ R1

such that ∂i′(g) 6= 0 and

[f, ∂i′(g)] = (−1)µ(i)p(f)+p(g)[xi, [f, g]] = 0.

Thus by induction one sees that [f, 1] = 0, contradicting the general assumption
in Case 2. Hence the assertion holds.

Put X := I\(R ∪R1 ∪R′ ∪R′1). For i ∈ R, l ∈ X , we have

[f, xi′xl] = (−1)µ(l
′)p(f)+µ(l)∂l′(f)xi′ + ∂i(f)xl.

Noticing that ∂l′(f)6=0 and ∂i′(f)=0, one gets ∂i′(∂l′(f))=(−1)µ(i
′)µ(l′)∂l′(∂i′(f))=0.

By Lemma 2.2, we have ∂l′(f)xi′ 6= 0. Obviously, [f, xj] 6= 0 for all j ∈ X . Hence

I(adf) ≥ pr2k + (2n− 2k − 2r) + 1.

Since R ∪R1 6= ∅ , we have r + k > 0. If k > 0, then

I(adf) ≥ (p− 2)r2k + 2t2k + 2n− 2k − 2r + 1 > 2n+ 2.

If k = 0, then r > 0. It follows that

I(adf) ≥ pr + 2n− 2r + 1 ≥ 1 + (p− 1)r + 2n− 2r + 1 > 2n+ 2.

The proof is complete.
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To study the invariance of the principal filtration of g , we establish the
following lemmas. The first one is straightforward.

Lemma 2.7. Norg(T ) = g0, where T := spanF{x(π)xω}.

For n′ ∈ N\{1}, t′ ∈ Nn′
, put

π′ := (π′1, . . . , π
′
n′) and ω′ := 〈n′ + 1, n′ + 2, . . . , 2n′ + 1〉 .

Write g′ := KO(n′, n′ + 1; t′) and T ′ := spanF{x(π
′)xω

′}.

Lemma 2.8. Suppose σ is an isomorphism of g to g′ . Then σ(g0) = g′0 .

Proof. Employing Lemmas 2.5 and 2.6, we can prove that σ(T ) = T ′ . Since

[x, T ] ⊂ T ⇔ [σ(x), σ(T )] ⊂ σ(T ) = T ′ for all x ∈ g,

by Lemma 2.7, σ(g0) = σ(Norg(T )) = Norg′(T
′) = g′0. The proof is complete.

Let ρ : g0 −→ gl(g/g0) be the representation of g0 in g/g0 induced by the
adjoint representation.

Lemma 2.9. g−1/g0 is the unique irreducible g0 -submodule of g/g0.

Proof. Obviously, g−1/g0 is a g0 -submodule of g/g0. Let M be an arbitrary
nonzero g0 -submodule of g/g0 . Put 0 6= y + g0 ∈ M . Without loss of generality,
we can assume that y = 1 + y′ , where y′ ∈ g[−1] . Then [xix2n+1, 1 + y′] + g0 ∈M
for all i ∈ I\{2n+ 1}. Noticing that [xix2n+1, y

′] + g0 ∈ M , we obtain that
[xix2n+1, 1] + g0 ∈M , that is, xi + g0 ∈M for all i ∈ I\{2n+ 1} . It follows that
g−1/g0 ⊂M , completing the proof.

From Lemmas 2.8 and 2.9, we have

Lemma 2.10. If σ is an isomorphism of g to g′ then σ(g−1) = σ(g′−1).

Lemma 2.11. gi = {x ∈ gi−1 | [x, g−1] ⊂ gi−1} for all i ≥ 1.

Proof. Let hi = {x ∈ gi−1 | [x, g−1] ⊂ gi−1} . One inclusion is obvious.
For y ∈ hi , write y :=

∑ξ−1
j=i−1 yj , where yj ∈ g[j] . Then [yi−1, g−1] = 0. Put

yi−1 :=
∑

α,u bα,ux
(α)xu , where bα,u ∈ F , α ∈ A, u ∈ B . For any fixed β 6= 0,

there exists βk ≥ 1 for some k ∈ I0 , and then

0 =
[∑
α,u

bα,ux
(α)xu, xk′

]
=
∑
α,u

bα,u(∂k(x
(α)xu)− (−1)p(x

u)∂2n+1(x
(α)xu)xk′).

Consequently, bβ,u = 0 whenever α 6= 0. It remains to consider the case α = 0.
Fixing any v 6= ∅ and an index l ∈ v , we have

0 =
[∑

0,u

b0,ux
u, xl′

]
=
∑
0,u

b0,u((−1)p(x
u)∂l(x

u)− (−1)p(x
u)∂2n+1(x

u)xl′).

It follows that b0,v = 0. Therefore, yi−1 = 0, implying that hi ⊂ gi .
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We can now prove one of the main theorems.

Proof of Theorem 1.1. Suppose σ is an isomorphism of g to g′ . Using Lemmas
2.8, 2.10 and 2.11, one sees that σ(gi) = g′i for every i ≥ −2. This completes the
proof.

Employing Theorem 1.1, we want to show that n and t are intrinsic for the
odd Contact superalgebra g(n, n+ 1; t).

Proof of Theorem 1.2. Suppose n, n′ ∈ N\{1}, t ∈ Nn, t′ ∈ Nn′
. Let us show

that g ' g′ if and only if n = n′ and t ∼ t′ . Here t ∼ t′ means that there exists
a permutation τ of I0 such that tτ(i) = t′i for all i ∈ I0 .

Assume that σ : g −→ g′ is an isomorphism of Lie superalgebras. By
Lemma 2.9, g−1/g0 and g′−1/g

′
0 are the unique irreducible g0 -submodule of g/g0

and g′0 -submodule of g′/g′0 , respectively. Then σ(g−1/g0) = g′−1/g
′
0. This implies

that dimg[−1] = dimg′[−1] and then n = n′ .

Assume without loss of generality that t1 ≥ t2 ≥ · · · ≥ tn and t′1 ≥ t′2 ≥
· · · ≥ t′n . If t 6= t′ , we may suppose for some k ∈ I0 ,

tk > t′k but tj = t′j for k < j ≤ n (maybe k = n).

Then, noticing that x(p
t′kεk) ∈ g

[p
t′
k−2] and x(p

t′kεk) /∈ g′
[p

t′
k−2]

, we can obtain

g
[p

t′
k−2] ) g′

[p
t′
k−2]

. Therefore, dimg[pt′εk−2] > dimg′
[p

t′
k−2]

, which contradicts Theo-

rem 1.1.

The converse implication is automatic. The proof is complete.

3. Automorphisms

In this section, the automorphism group of the restricted Lie superalgebra g will
be studied, in particular, Theorem 1.3 will be proved. We begin with a simple
fact, which needs only a direct observation.

Lemma 3.1. Suppose L = L0 ⊕ L1 is a restricted Lie superalgebra and H =
H0 ⊕H1 is a subalgebra of L. Then H is a restricted subalgebra of L if and only
if H0 is a restricted subalgebra of L0 .

Just as in the Lie algebra case [18], the restrictedness of g can be charac-
terized by the parameter t by which the divided power algebra is defined.

Proposition 3.2. g(n, n+ 1; t) is restricted if and only if t = 1.

Proof. Suppose g(n, n+ 1; t) is restricted. Then (ad∂i)
p are inner derivations

of g0 for all i ∈ I0 , and therefore, zd((ad∂i)
p) ≥ −2. On the other hand, noticing

that zd(ad∂i) = −1, we have zd((ad∂i)
p) = −p . As a consequence, (ad∂i)

p = 0
for i ∈ I0 . Therefore, t = 1 since

DKO(x(π−pεi)) = (ad∂i)
p(DKO(x(π))) = 0 for all i ∈ I0.
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Suppose conversely t = 1. Then W (n, n+1; 1) is a restricted Lie superalge-
bra with respect to the usual p-mapping [22, Theorem 5]. Hence, by Lemma 3.1, it
suffices to show that KO(n, n+1; 1)0 is a restricted subalgebra of W (n, n+1; 1)0 .
Let x(α)xu be a basis element of O(n, n+ 1; 1) with p(x(α)xu) = 1. Then

DKO(x(α)xu) = TH(x(α)xu) +M(x(α)xu),

where

TH(x(α)xu) =
n∑
i=1

(x(α−εi)xu∂i′ − (−1)ix(α)xu−<i
′>∂i),

M(x(α)xu) := (|α|+ |u| − 2)x(α)xu∂2n+1 − x(α)xu−<2n+1>∆.

One can verify that TH(x(α)xu) and M(x(α)xu) commute. Consequently,

DKO(x(α)xu)p = TH(x(α)xu)p +M(x(α)xu)p.

First consider TH(x(α)xu)p . If 2n + 1 ∈ u , then TH(x(α)xu)2 = 0. If
2n + 1 /∈ u , letting Di′i(x

(α)xu) := x(α−εi)xu∂i′ − (−1)ix(α)xu−<i
′>∂i, and noting

that
(
2α−εi−εj
α−εi

)
=
(
2α−εi−εj

α

)
, we have

[Di′i(x
(α)xu), Dj′j(x

(α)xu)] = 0 for all i, j ∈ I0; u ∈ B with 2n+ 1 /∈ u.

It follows that TH(x(α)xu)p =
∑2n

i=1Di′i(x
(α)xu)p. If ‖u‖ > 1, then Di′i(x

(α)xu)2 =
0. If ‖u‖ = 1, then Di′i(x

(α)xu)2 = 0 unless xu = xi′ . Keep in mind that t = 1.
A direct computation shows that Di′i(x

(α)xu)p = 0 unless α = εi . Since xi′∂i′ and
xi∂i commute for i ∈ I0 ,

Di′i(xixi′)
p = (xi′∂i′)

p − (−1)i(xi∂i)
p = xi′∂i′ − (−1)ixi∂i = Di′i(xixi′).

One gets

TH(x(α)xu)p =

{
TH(x(α)xu) if α = εi and u = 〈i′〉 for some i ∈ I0;
0 otherwise.

(3.1)

Next compute M(x(α)xu)p . If u 6= 〈2n + 1〉 , then M(x(α)xu)2 = 0 by a direct
computation. If u = 〈2n+1〉 , then M(x(α)x2n+1) = (|α|−2)x(α)x2n+1∂2n+1−x(α)∆.
Since t = 1, we have M(x(α)x2n+1)

p = 0, unless α = 0. On the other hand,
M(x2n+1)

p = M(x2n+1). This combining with (3.1) shows that DKO(x(α)xu)p ∈
KO(n, n + 1; 1)0 . By [16, Proposition 2.1.3(1)], KO(n, n + 1; 1)0 is a restricted
subalgebra of W (n, n+ 1; 1)0 .

In the sequel we only consider the restrictedness case. Thus X := X(n, n+
1; 1), where X = O,W or g. By virtue of (2.1), it is easy to verify that

[DKO(1), DKO(xi)] = −2δi,2n+1DKO(1) for i ∈ I; (3.2)

[DKO(xi), DKO(x2n+1)] = −DKO(xi) for i ∈ I\{2n+ 1}; (3.3)

[DKO(xi), DKO(xj)] = (−1)µ(i)δi′jDKO(1) for i ∈ I\{2n+ 1}. (3.4)

By using an argument completely analogous to [10, Lemma 2.3], one can verify
that

gp,0 = gs,0. (3.5)
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Lemma 3.3. Suppose φ ∈ Autg. If {Gi | i ∈ I} ⊂ g is an O -basis of W , so
is {φ(Gi) | i ∈ I}.

Proof. By Theorem 1.1, the principal filtration {gp,i}i∈Z is invariant under φ .
Similar to [10, Lemma 2.4(ii)], using (3.5) one can prove this lemma.

Let M2n+1(O) be the F-algebra of all (2n + 1) × (2n + 1) matrices over
O. Denote by prs,[0] and prs,1 the projections of O onto Os,[0] = F and Os,1 ,
respectively. For A = (aij) ∈ M2n+1(O), put prs,[0](A) := (prs,[0](aij)) and
prs,1(A) := (prs,1(aij)).

Proof of the first part of Theorem 1.3. Clearly,

Φ : Aut(O : g) −→ Autg, σ 7−→ σ̃|g

is a homomorphism of groups, where σ̃(D) = σDσ−1 for D ∈ g. Let us first show
that Φ is injective. To that aim, letting σ ∈ Aut(O : g) such that σ̃|g = 1|g , we
are going to verify that σ = 1O. For i ∈ I, j ∈ I\2n+ 1, we have

∂2n+1(xi) = δi,2n+1 = ∂2n+1(σ(xi)),

DKO(xj)(xi) = (−1)µ(j)δj′i = DKO(xj)(σ(xi)),

DKO(xj)(x2n+1) = −xj = DKO(xj)(σ(x2n+1)).

As a consequence, ∂2n+1(xi−σ(xi)) = 0 and DKO(xj)(xi−σ(xi)) = 0 for all i ∈ I ,
j ∈ I\{2n+ 1} . This implies that xi− σ(xi) ∈ F. On the other hand, [10, Lemma
3.3] ensures that σ(xi) ∈ Os,1. It follows that σ(xi) = xi for all i ∈ I . As O is
generated by xr , r ∈ I, we have σ = 1O.

We have to show that Φ is surjective. Let φ ∈ Autg . Put Ei := φ(DKO(xi))
for all i ∈ I\{2n + 1} and E2n+1 := φ(DKO(1)). Observe that {DKO(1)} ∪
{DKO(xi) | i ∈ I\{2n + 1}} is an O -basis of W . Lemma 3.3 ensures that
{Ei | i ∈ I} is again an O -basis of W . Setting E0 := φ(DKO(x2n+1)), we may
assume that

E0 =
∑

j∈I\{2n+1}

(−1)µ(j
′)yj′Ej + y2n+1E2n+1, where yj ∈ O. (3.6)

Hence, from (3.2)–(3.4) we have

[E2n+1, Ei] = −2δi,0E2n+1 for i ∈ I; (3.7)

[Ei, E0] = −Ei for i ∈ I\{2n+ 1}; (3.8)

[Ei, Ej] = (−1)µ(i)δi′jE2n+1 for i ∈ I\{2n+ 1}. (3.9)

Using (3.6) and (3.7), we know that

−2E2n+1 =
2n∑
j=1

(−1)µ(j
′)E2n+1(yj′)Ej + E2n+1(y2n+1)E2n+1. (3.10)
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For i ∈ I\{2n+ 1} , by (3.6) and (3.8), we can obtain

−Ei =
∑

j∈I\{2n+1}

(−1)µ(j
′)Ei(yj′)Ej+(−1)p(Ei)p(yi)yiE2n+1+Ei(y2n+1)E2n+1. (3.11)

From (3.10) and (3.11) we have

E2n+1(yi) = −2δi,2n+1 for i ∈ I;

Ei(yj) = −(−1)µ(i
′)δij′ for j 6= 2n+ 1;

Ei(y2n+1) = −(−1)p(Ei)p(yi)yi for i ∈ I\{2n+ 1}.
A direct computation shows that prs,[0]((Ei(yj))) ∈ GL2n+1(F). Write

(E1, . . . , E2n+1)
T = M(∂1, . . . , ∂2n+1)

T

where M ∈ M2n+1(O). Then we have

(Ei(yj)) = M(∂1, . . . , ∂2n+1)
T (y1, . . . , y2n+1) = M(∂i(yj))

and
prs,[0](Ei(yj)) = prs,[0](M) · prs,[0](∂i(yj)). (3.12)

As {Ei | i ∈ I} is an O -basis of W , M is invertible and then by [10, Lemma 2.2],
prs,[0](M) ∈ GL2n+1(F). It follows from (3.12) that prs,[0](∂i(yj)) ∈ GL2n+1(F). In
view of [10, Lemma 2.5], there is σ ∈ AutO such that σ(xi) = yi for all i ∈ I.
Furthermore, it is easy to see that

σ̃(DKO(1))(yi) = E2n+1(yi) for j ∈ I,

σ̃(DKO(xj))(yi) = Ej(yi) for i ∈ I\{2n+ 1}, j ∈ I.

Hence σ̃|g[i] = φ|g[i] for i = −2,−1. Then one can inductively show that σ̃|g[i] =
φ|g[i] for all i ≥ −2. Therefore, Φ(σ) = φ, showing that Φ is surjective. The proof
is complete.

Lemma 3.4. The principal filtration of O is invariant under Aut(O : g).

Proof. Note that

DKO(xj′) = (−1)µ(j
′)∂j − xj′∂2n+1. (3.13)

We have

−DKO(x2n+1) =
2n∑
j=1

(−1)µ(j
′)xjDKO(xj′) +

( 2n∑
j=1

(−1)µ(j
′)xjxj′ + 2x2n+1

)
∂2n+1.

(3.14)
Thus

σ
(

2x2n+1 +
2n∑
j=1

(−1)µ(j
′)xjxj′

)
σ̃(∂2n+1) +

2n∑
j=1

(−1)µ(j
′)σ(xj)σ̃(DKO(xj′))

= −σ̃(DKO(x2n+1)) ∈ g0 ⊂ W0. (3.15)
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Theorem 1.3 ensures that σ̃|g ∈ Autg. Then, by Theorem 1.1, σ̃ induce an
automorphism of the quotient space gi/gi+1. Therefore, σ̃(∂2n+1) ∈ g−2\g−1,
σ̃(DKO(xj′)) ∈ g−1\g0 for all j ∈ I\{2n+ 1}. Consequently, {prs,[−1](σ̃(∂2n+1))}∪
{prs,[−1](σ̃(DKO(xj′))) | j ∈ I\{2n + 1}} ⊂ spanF{∂i | i ∈ I}, where prs,[−1] is the
projection of W onto Ws,[−1]. Note that

{σ̃(∂2n+1)} ∪ {σ̃(DKO(xj′)) | j ∈ I\{2n+ 1}}
is an O -basis of W. By [10, Lemma 2.4(i)], {prs,[−1](σ̃(∂2n+1))}∪{prs,[−1](σ̃(DKO(xj′))) |
j ∈ I\{2n+ 1}} is also an O -basis of W. Now, we obtain from (3.15) that

σ(2x2n+1 +
2n∑
j=1

(−1)µ(j
′)xjxj′) ∈ O2, (3.16)

σ(xj) ∈ O1 for j ∈ I\{2n+ 1}. (3.17)

(3.16) and (3.17) yield that
σ(x2n+1) ∈ O2.

Therefore, induction on i shows that σ(Oi) ⊂ Oi for i ∈ I.

Proof of the second part of Theorem 1.3. (i) We first show the inclusion
“ ⊂ ”. Let σ ∈ Autp,i(O : g). By Lemma 3.4, it is a routine to verify that
σ̃(∂j) ≡ ∂j (mod Wi−1) for all j ∈ I\{2n+ 1} and σ̃(∂2n+1) ≡ ∂2n+1 (mod Wi−2).
A simple computation shows

σ̃(f∂j) = σ(f)σ̃(∂j) for all j ∈ I, f ∈ Ol.
Then it can be readily seen that

σ̃(f∂j) ≡ f∂j (mod Wl−1+i) for j ∈ I\{2n+ 1}
and σ̃(f∂2n+1) ≡ f∂2n+1 (mod Wl−2+i). Therefore σ̃ ∈ Autp,iW. Thus σ̃ ∈
Autp,iW ∩ Autg ⊂ Autp,ig. Hence

Φ(Autp,i(O : g)) ⊂ Autp,ig.

To prove the converse inclusion, let ϕ ∈ Autp,ig for i ≥ 0 and set σ :=
Φ−1(ϕ). Observe that ϕ(DKO(x2n+1)) ≡ DKO(x2n+1) (mod gi). Then (3.13) and
(3.14) ensure that

σ
(

2x2n+1 +
2n∑
j=1

(−1)µ(j
′)xjxj′

)
ϕ(∂2n+1) +

2n∑
j=1

(−1)µ(j
′)σ(xj)ϕ(DKO(xj′))

= −σ̃(DKO(x2n+1)) = −ϕ(DKO(x2n+1)) ≡ −DKO(x2n+1)

≡
(

2x2n+1+
2n∑
j=1

(−1)µ(j
′)xjxj′

)
∂2n+1+

2n∑
j=1

(−1)µ(j
′)xjDKO(xj′) mod(gi). (3.18)

Since ϕ(∂2n+1) ≡ ∂2n+1 (mod gi−2), ϕ(DKO(xj′)) ≡ DKO(xj′) (mod gi−1), we
may assume that ϕ(∂2n+1) = ∂2n+1 + G2n+1, ϕ(DKO(xj′)) = DKO(xj′) + Gj′ ,
where G2n+1 ∈ gi−2, Gj ∈ gi−1, j ∈ I\{2n+ 1} . Thus we obtain from (3.18) that(

σ
(

2x2n+1 +
2n∑
j=1

(−1)µ(j
′)xjxj′

)
− (2x2n+1 +

2n∑
j=1

(−1)µ(j
′)xjxj′)

)
∂2n+1

+
2n∑
j=1

(−1)µ(j
′)(σ(xj)− xj)DKO(xj′) ≡ G (mod Wi), (3.19)
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where G := −σ(2x2n+1 +
∑2n

j=1(−1)µ(j
′)xjxj′)G2n+1 −

∑2n
j=1(−1)µ(j

′)σ(xj)Gj′ . It
follows from Lemma 3.4 that G ∈ Wi . Applying (3.19) gives(

σ
(

2x2n+1 +
2n∑
j=1

(−1)µ(j
′)xjxj′

)
− (2x2n+1 +

2n∑
j=1

(−1)µ(j
′)xjxj′)

)
∂2n+1

≡ −
2n∑
j=1

(−1)µ(j
′)(σ(xj)− xj)DKO(xj′) (mod Wi). (3.20)

Note that {DKO(xj) | j ∈ I\{2n+ 1}}∪{∂2n+1} is an O -basis of W . From (3.20)
we have

σ
(

2x2n+1 +
2n∑
j=1

(−1)µ(j
′)xjxj′

)
≡
(

2x2n+1 +
2n∑
j=1

(−1)µ(j
′)xjxj′

)
(mod Oi+2)

(3.21)
and

2n∑
j=1

(−1)µ(j
′)(σ(xj)− xj) ≡ 0 (mod Oi+1). (3.22)

It follows form (3.22) that

σ(xj) ≡ xj (mod Oi+1). (3.23)

This implies that σ(xjxj′) ≡ xjxj′ (mod Oi+1). As a consequence, one gets
from (3.21), σ(x2n+1) ≡ x2n+1 (mod Oi+2). Hence σ ∈ Autp,iO ∩ Aut(O : g) =
Autp,i(O : g), that is, Autp,ig ⊂ Φ(Autp,i(O : g)).

(ii) Suppose ϕ ∈ Aut∗pg and set σ := Φ−1(ϕ). Note that DKO(x2n+1) ∈ g[0] .
From (3.18) we have

σ
(

2x2n+1 +
2n∑
j=1

(−1)µ(j
′)xjxj′

)
ϕ(∂2n+1) +

2n∑
j=1

(−1)µ(j
′)σ(xj)ϕ(DKO(xj′))

= −ϕ(DKO(x2n+1)) ∈ g[0] ⊂ W[0]. (3.24)

Clearly, ϕ(DKO(xj′)) ∈ g[−1] and ϕ(∂2n+1) ∈ g[−2] for j ∈ I\{2n + 1} . Note that
{DKO(xi) | i ∈ I\{2n+ 1}} ∪ {∂2n+1} is an O -basis of W . Form (3.24) it follows
that

σ
(

2x2n+1 +
2n∑
j=1

(−1)µ(j
′)xjxj′

)
∈ O[2] (3.25)

and
∑2n

j=1(−1)µ(j
′)σ(xj) ∈ O[1]. Then, σ(xj) ∈ O[1] for j ∈ I\{2n + 1}. Since∑2n

j=1(−1)µ(j
′)xjxj′ ∈ O[2] , (3.25) implies σ(x2n+1) ∈ O[2] . Using induction on i,

we can show that σ(O[i]) ⊂ O[i] for every i ≥ 0. Hence σ ∈ Aut∗p(O : g).

Assume conversely that σ ∈ Aut∗p(O : g). Let ϕ := Φ(σ). Then ϕ = σ̃|g .
It is clear that σ̃(∂i) ∈ W[−1] for all i ∈ I\{2n + 1}, σ̃(∂2n+1) ∈ W[−2] . Thus
σ̃ ∈ Aut∗pW. Furthermore, by Theorem 1.3, σ̃ ∈ Autg . Thus

ϕ(g[i]) = σ̃(g[i]) = σ̃(W[i] ∩ g) ⊂ W[i] ∩ g = g[i].

(iii) The first part follows from Theorem 1.1 and [10, Lemma 3.1(i)]. The
second follows from Theorem 1.1 and [10, Lemma 3.1(ii)]. The proof is complete.
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Remark 3.5. We should note that the principal filtration of O is not invariant
under its automorphisms. Let

σ : xi 7−→ xi for i ∈ I0; xn+1 7−→ x2n+1, xj 7−→ xj−1 for j ∈ I1 \ {n+ 1}.

Then the mapping σ induces an automorphism of O(n, n+ 1; 1), denoted still by
σ. Clearly, σ(Op,2) 6⊂ Op,2, since σ(x2n+1) = x2n.

Remark 3.6. The principal filtration of W is not invariant under its automor-
phisms. For σ , defined in Remark 3.5, we have σ̃ ∈ AutW and

σ̃(∂2n)(x2n+1) = σ∂2nσ
−1(x2n+1) = σ(1) = 1.

This shows that σ̃(Wp,−1) 6⊂ Wp,−1.

4. p-characters

In this section, suppose the underlying field F is algebraically closed. We first
determine the factors of the standard normal series of the automorphism group
Autg (Theorem 1.4). As an application, we consider the p-character of g (Theorem
1.5).

Lemma 4.1. Suppose V = ⊕V[k] is a finite-dimensional Z-graded vector space.
If φ ∈ End(V ), then there exists unique φj ∈ End(V ) for j ∈ Z such that
φ =

∑
φj and φj(V[k]) ⊂ V[k+j] for j, k ∈ Z.

Lemma 4.2. g = NorW (g).

Proof. It suffices to show that NorW (g) ⊂ g. It is easily seen, by (2.1)
that if F ∈ g then there exists G ∈ g such that F = [G,DKO(1)]. Thus, for
D ∈ NorW (g), we may assume that [D,DKO(1)] = 0. Again using (2.1) we see
that if F ∈ g satisfies 0 = [F,DKO(1)] = [F,DKO(xj)] for 1 ≤ j < i, where
i ∈ I\{2n+1}, then there exists G ∈ g such that 0 = [G,DKO(1)] = [G,DKO(xj)]
for 1 ≤ j < i and F = [G,DKO(xi)]. As in the above, we can thus assume
0 = [D,DKO(1)] = [D,DKO(xi)] for i ∈ I\{2n+ 1}. This implies that D = 0.

In order to prove Theorem 1.4, we recall certain basic concepts (cf. [5, 6]).
Let Ω(n; 1) be the superalgebra over O(n; 1) with the generators dx1, . . . , dxn
and with the defining relations: dxi ∧ dxj = −dxj ∧ dxi, p(dxi) = 1 for i, j ∈ I0.
Every element ϑ ∈ Ω(n; 1) can be written uniquely as a sum of elements of the form
ϑk =

∑
i1<···<ik fi1...ikdxi1∧· · ·∧dxik , where fi1...ik ∈ O(n; 1), i1, . . . , ik ∈ I0. Define

on Ω(n; 1) the differential d as the derivation of degree 1 for which d(xi) = dxi,
d2(xi) = 0 for i ∈ I0. We denote by Ω(n+ 1) the superalgebra over Λ(n+ 1) with
the generators dxn+1, . . . , dx2n+1 and the defining relations dxi · dxj = dxj · dxi,
p(dxi) = 0 for i, j ∈ I1. Then every element ϑ ∈ Ω(n+ 1) can be written uniquely
as a sum of elements of ϑr =

∑
i1≤···≤ir gi1...irdxi1 · · · dxir , where gi1...ir ∈ Λ(n+ 1),

i1, . . . , ir ∈ I1. Define on Ω(n+1) the differential d as the derivation of degree 1 for
which d(xi) = dxi, d2(xi) = 0 for i ∈ I1. Let Ω(n, n+1; 1) := Ω(n; 1)⊗F Ω(n+1).
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It is clear that Ω(n, n + 1; 1) is a finite-dimensional Z-graded associative super-
commutative superalgebra. Denote the differential d on Ω(n, n + 1; 1) in the
natural manner, namely, d = d⊗ 1 + 1⊗ d.

For simplicity, we write Ω for Ω(n, n + 1; 1). Note that Ω possesses the
so-called principal grading Ω = ⊕i=1Ωp,[i], where

Ωp,[i]:=spanF{fdxi1 · · · dxil |f ∈ Op,[k], 1 ≤ i1≤ · · ·≤il ≤ 2n+ 1, k + l + δil,2n+1=i}.

The corresponding filtration is called principal, denoted by Ωp,i. We write Ω[i] and
Ωi for Ωp,[i] and Ωp,i, respectively. Following [6], write

ωKO :=
n∑
i=1

(xidxi′ + xi′dxi) + dx2n+1.

Lemma 4.3. Suppose ψ ∈ Aut(O : W ) and ψ(ωKO) ≡ uωKO (mod Ωl+2),
where u is a unit in O, l ≥ 0. Then ψ(ωKO) ≡ vωKO + E(ωKO) (mod Ωl+3) for
some unit v ∈ O and some E ∈ W[l+1].

Proof. A direct computation shows that

ψ(ωKO) = fωKO +
n∑
j=1

θj(ψ)dxj +
2n∑

j=n+1

ηj(ψ)dxj,

where

f =
n∑
i=1

ψ(xi)∂2n+1ψ(xi′) + ∂2n+1ψ(x2n+1),

θj(ψ) =
n∑
i=1

ψ(xi′)∂jψ(xi)− fxj′ ,

ηj(ψ) =
n∑
i=1

ψ(xi)∂jψ(xi′) + ∂jψ(x2n+1)− fxj′ .

We also have

E(ωKO) = gωKO +
n∑
j=1

θj(E)dxj +
2n∑
n+1

ηj(E)dxj, (4.1)

where

g = (−1)p(E)
( n∑
i=1

xi∂2n+1E(xi′) + ∂2n+1E(x2n+1)
)
, (4.2)

θj(E) = E(xj′) + (−1)p(E)

n∑
i=1

xi′∂jE(xi)− gxj′ , (4.3)

ηj(E) = E(xj′) + (−1)p(E)

n∑
i=1

xi∂jE(xi′) + (−1)p(E)∂jE(x2n+1)− gxj′ . (4.4)
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Hence, f is a unit in O and θj(ψ) ≡ ηj(ψ) ≡ 0 (mod Ol+1). Then there exists
E ∈ W[l+1] such that θj(ψ) ≡ θj(E) (mod Ol+2) and ηj(ψ) ≡ ηj(E) (mod Ol+2).
Therefore,

n∑
j=1

θj(ψ)dxj +
2n∑

j=n+1

ηj(ψ)dxj + gωKO ≡ E(ωKO) (mod Ωl+3).

Setting v := f − g , we have

ψ(ωKO) = fωKO +
n∑
j=1

θj(ψ)dxj +
2n∑

j=n+1

ηj(ψ)dxj ≡ vωKO +E(ωKO) (mod Ωl+3).

Note that g := {D ∈ W | D(ωKO) = uωKO, u ∈ O} is a subalgebra of W.

Lemma 4.4. g = g.

Proof. Since DKO(h)(ωKO) = (−1)p(h)2∂2n+1(h)ωKO for all h ∈ O, we have
g ⊂ g. On the other hand, for E ∈ g, we have E(ωKO) = fωKO for some
f ∈ O. (4.1) and (4.2) ensure that x2n+1 does not appear in f. Therefore,
E(ωKO) = ∂2n+1(x2n+1f)ωKO = (−1)p(f)+1 1

2
DKO(x2n+1f)(ωKO), that is, E ∈ g.

The proof is complete.

The following proof is similar to the one of [21, Theorem 1].

Proof of Theorem 1.4. If σ̃ ∈ Autp,ig, by Theorem 1.3(i) we can find σ ∈
Autp,i(O : g) such that σ̃(E) = σEσ−1 for all E ∈ g. According to Lemma
4.1, there exist even linear transformations σ̃j and σj such that σ̃ =

∑
j σ̃j

and σ =
∑

j σj. One can easily check that σ̃0 = 1, that σ̃j = 0 if j < 0 or
0 < j < i and that σ̃i = adσi. Similarly, we can obtain that σ0 = 1, that σj = 0
if j < 0 or 0 < j < i and that σi ∈ DerO = W. Thus σi ∈ W[i]. Obviously,
λi(σ̃τ̃) = λi(σ̃) + λi(τ̃) for all σ̃, τ̃ ∈ Autp,ig. Therefore, the map λi (i ≥ 1) is a
group homomorphism from Autp,ig to g[i] ∩ g0 with kernel Autp,i+1g by Lemma
4.2. We also have

σ̃ − adλi(σ̃)− 1 = σ̃ − σ̃i − 1 = σ̃i+1 + σ̃i+2 + · · · ∈ Endp,i+1(g).

Thus it suffices to show that λi is surjective. To that aim, suppose
D ∈ g[i] ∩ g0 ⊂ W[i], i > 0.

Then [10, Lemma 2.5] ensures that there exists unique ψD ∈ Autp,i(O : W ) such
that ψD(xk) = xk +D(xk) for k ∈ I. Setting ψ0 := ψD, from (4.1)–(4.3) we have

ψ0(ωKO) = ωKO +D(ωKO) ≡ v0ωKO (mod Ωi+2),

where v0 is a unit in O. Thus, by Lemma 4.3 there exists a unit v1 ∈ O
and E1 ∈ W[i+1] such that ψ0(ωKO) ≡ v1ωKO + E1(ωKO) (mod Ωi+3) . Put
ψ1 := ψ0ψ−E1 . It is clear that ψ1 ∈ Autp,i(O : W ) and

ψ1(ωKO) = ψ0(ωKO − E1(ωKO))

≡ v1ωKO + E1(ωKO)− ψ0(E1(ωKO)) ≡ v1ωKO (mod Ωi+3).
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Again using Lemma 4.3, we see that ψ1(ωKO) ≡ v2ωKO + E2(ωKO) (mod Ωi+4)
for some unit v2 ∈ O and some E2 ∈ W[i+2]. Repeating the process above,
we can inductively construct a sequence ψ0, ψ1, . . . in Autp,i(O : W ) satis-
fying ψj(ωKO) ≡ vjωKO (mod Ωi+j+2), where vj ∈ O are units for j ≥ 0.
Since Ω is finite-dimensional, we can obtain ϕD ∈ Autp,i(O : W ) such that
ϕD(ωKO) = vωKO for some unit v ∈ O. Letting ϕ̃D(E) = ϕDEϕ

−1
D for E ∈ W,

we have ϕ̃D ∈ Autp,iW. Computation shows that ϕ̃D(g) ⊂ g and λi(ϕ̃D) = D.
According to Lemma 4.4, we have that ϕ̃D ∈ Autp,iW ∩Autg ⊂ Autp,ig. So λi is
surjective, completing the proof.

Let V=V0⊕V1 be a vector superspace over F with basis {v1, . . . , vn|vn+1, . . . , v2n} .
Let f denote the nondegenerate skew symmetric bilinear form on V whose matrix

with respect to the fixed basis is

[
0 In
−In 0

]
. Set

P(V ) := {φ ∈ GL0(V ) | f(x, y) = 0⇐⇒ f(φ(x), φ(y)) = 0 for all x, y ∈ V }.

Remark 4.5. It is easy to show that P(V ) consists of all matrices

[
A 0
0 (At)−1

]
,

where A ∈ GLn(F).

Let ϕ : M −→ N be a linear transformation of vector spaces over F.
If M = ⊕M[i] is graded, we denote by ϕ[i] the restriction of ϕ to M[i]. Define
ϕ∗ : N∗ −→ M∗ the dual map given by (ϕ∗(f))(m) = f(ϕ(m)), where f ∈ N∗,
m ∈M. Then we have the following Lemma.

Lemma 4.6. If χ[−1] 6= 0, then there exists σ̃ ∈ Aut∗pg such that χσ̃(DKO(xi)) =
δi,2n for i ∈ I1\{2n+ 1}.

Proof. Let ζ ∈ (g[−1] ∩ g0)
∗ such that ζ(Dko(xi)) = δi,2n for i ∈ I1\{2n + 1}.

Then there exists σ ∈ P((g[−1])
∗) such that σ(ζ) = χ[−1], since χ[−1] 6= 0. If the

map ν : Aut∗pg −→ P((g[−1])
∗) given by σ̃ 7−→ ((σ̃[−1])

∗)−1 is surjective, then we
can choose σ̃ ∈ Aut∗pg such that ((σ̃[−1])

∗)−1 = σ. Therefore,

χσ̃(DKO(xi)) = (σ̃[−1])
∗(χ(DKO(xi))) = σ−1(χ(DKO(xi))) = ζ(DKO(xi)) = δi,2n,

as required.

Let us show that ν : Aut∗pg −→ P((g[−1])
∗) is surjective. Since g[−1] is dual

to O[1] , we can identify g[−1] with (O[1])
∗. It suffices to verify that ν : Aut∗pg −→

P(O[1]), σ̃ 7−→ σ[1] is surjective and σ̃[−1] = (σ−1[1] )∗.

If σ̃ ∈ Aut∗pg, by Theorem 1.3(ii) there exists σ ∈ Aut∗p(O : g) such that
σ̃(E) = σEσ−1 for E ∈ g. Observe that σ̃[−1] ∈ P(g[−1]). Thus σ[1] ∈ P(O[1]),
that is, ν is well-defined. If σ[1] ∈ P(O[1]), then by [10, Lemma 2.5], σ[1] extends
uniquely to an element σ ∈ Aut∗p(O : W ). Consequently, there exists σ̃ ∈ Aut∗pW
such that σ̃(E) = σEσ−1 for all E ∈ W. It is easy to verify that σ̃(g[i]) ⊂ g[i] for
i ≤ 0 and hence σ̃(g) ⊂ g. Therefore, σ̃ ∈ Aut∗pg, that is, ν is surjective. For

D ∈ g[−1], we have σ̃[−1](D) = σDσ−1[1] = Dσ−1[1] = (σ−1[1] )∗(D), since Dσ−1[1] (O[1]) ⊂ F
and σ fixes the elements of F. The proof is complete.
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Proof of Theorem 1.5. Suppose χ[−1] 6= 0. By Theorem 1.1, it is easy to
see that the automorphisms of g leave the height of χ invariant. Then we may
assume that χ(DKO(xk)) = δk,2n for k ∈ I1\{2n + 1} by Lemma 4.6. Since
χ[0] 6= 0, suppose first that χ(DKO(x2n+1)) 6= 0 and χ(DKO(xixj)) = 0 for all
i ∈ I0, j ∈ I1\{2n+ 1}. Putting c := −χ(DKO(x2n+1))

−1, by Theorem 1.4 we find
σ̃ ∈ Autg satisfying

σ̃(DKO(xk))− [cDKO(xnx2n+1), DKO(xk)]−DKO(xk) ∈ g1 ∩ g0

for k ∈ I1\{2n+ 1}. Noting that htχ = 1, we obtain χ(g1 ∩ g0) = 0. Thus

χσ̃(DKO(xk)) = χ(σ̃(DKO(xk))) = χ([cDKO(xnx2n+1), DKO(xk)]) + χ(DKO(xk))

= c(δn′kχ(DKO(x2n+1)) + χ(DKO(xnxk))) + χ(DKO(xk))

= c(δn′kχ(DKO(x2n+1))) + χ(DKO(xk)).

Summarizing, we have χσ̃(DKO(xk)) = 0 for k ∈ I1\{2n+ 1}.
It remains to consider the case in which there exist i ∈ I0, j ∈ I1\{2n+ 1}

such that χ(DKO(xixj)) 6= 0. Assume in addition that i is chosen to be maximal.
By Theorem 1.4, there exists σ̃ ∈ Autg such that

σ̃(DKO(xk))− [c′DKO(xixjxn), DKO(xk)]−DKO(xk) ∈ g1 ∩ g0

for k ∈ I1\{2n+ 1}. Consequently,

χσ̃(DKO(xk)) = χ(σ̃(DKO(xk)) = χ([c′DKO(xixjxn), DKO(xk)]) + χ(DKO(xk))

= c′(δi′kχ(DKO(xjxn)) + δn′kχ(DKO(xixj))) + χ(DKO(xk))

If i = n, put c′ =: −1
2
χ(DKO(xnxj))

−1. If i 6= n, putting c′ =: −χ(DKO(xixj))
−1,

by the maximality of i, we have χ(DKO(xjxn)) = 0. Arguing as in the above, we
conclude that χσ̃(DKO(xk)) = 0 for k ∈ I1\{2n+ 1}.
Note that DKO(xixj) = (−1)µ(i)xj∂i′ + (−1)µ(j)+µ(i)µ(j)xi∂j′ for i, j ∈ I\{2n + 1}.
Assume D :=

∑
i∈I0,j∈I1\{2n+1} bij′DKO(xixj) ∈ g[0] ∩ g0 and

χ[0] :=
∑

i∈I0,j∈I1\{2n+1}

cij′(DKO(xixj))
∗,

where bij′ , cij′ ∈ F and (DKO(xixj))
∗(DKO(xkxl)) = 2δikδjl. Put B1 := −(bij′)

and C1 := −(cij′). Set B :=

[
B1 0
0 −Bt

1

]
and C :=

[
C1 0
0 −Ct

1

]
, where X t denotes

the transpose of the matrix X. A computation shows that χ[0](D) = tr(CtB).
Select G1 ∈ GLn(F) such that G1C1G

−1
1 is lower triangular, since F is algebraically

closed. Let G :=

[
G1 0
0 (Gt

1)
−1

]
. Then GCG−1 =

[
G1C1G

−1
1 0

0 −(G1C1G
−1
1 )t

]
.

Let φ ∈ GL0(O[1]) be such that its matrix with respect to the standard basis of
O[1] is Gt. It is easy to verify that φ ∈ P(O[1]). As in the proof of Lemma 4.6,
there exists τ̃ ∈ Aut∗pg such that φ = τ[1], where τ ∈ Aut∗p(O : g) satisfying
τ̃(E) = τEτ−1 for E ∈ g. Then we have

χτ̃ (D) = χ(τ̃(D)) = χ[0](τ[1]Dτ
−1
[1] ) = χ[0](φDφ

−1) = tr(Ct(GtB(G−1)t))

= tr((GCG−1)tB) = tr

[
(G1C1G

−1
1 )tB1 0

0 G1C1G
−1
1 Bt

1

]
.
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From the equation above, we can obtain that χτ̃ (D) = 0 if B1 is strictly upper tri-
angular, since (G1C1G

−1
1 )t is upper triangular. This implies that χτ̃ (DKO(xixj)) =

0 for all i ∈ I0, j ∈ I1\{2n + 1} with i < j′. Note that τ̃ ∈ Aut∗pg. It is easily

seen that χσ̃τ̃ (g[−1] ∩ g0) = χσ̃(g[−1] ∩ g0) = 0. The proof is complete.
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