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Abstract.  Classical harmonic analysis says that the spaces of homogeneous
harmonic polynomials (solutions of Laplace equation) are irreducible modules
of the corresponding orthogonal Lie group (algebra) and the whole polynomial
algebra is a free module over the invariant polynomials generated by harmonic
polynomials. Dickson invariant trilinear form is the unique fundamental invariant
in the polynomial algebra over the basic irreducible module of Eg. In this paper,
we prove that the space of homogeneous polynomial solutions with degree m for
the dual cubic Dickson invariant differential operator is exactly a direct sum
of [m/2] + 1 explicitly determined irreducible Eg-submodules and the whole
polynomial algebra is a free module over the polynomial algebra in the Dickson
invariant generated by these solutions. Thus we obtain a cubic Fg-generalization
of the above classical theorem on harmonic polynomials.
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1. Introduction

The FEg Lie algebra and group are popular mathematical objects with broad
applications. Dickson [D] (1901) first realized that there exists an Fg-invariant
trilinear form on its 27-dimensional basic irreducible module, whose corresponding
cubic polynomial invariant and constant-coefficient differential operator will also
be the main objects in this paper. The 78-dimensional simple Lie algebra of type
Eg can be realized by all the derivations and multiplication operators with trace
zero on the 27-dimensional exceptional simple Jordan algebra (e.g., cf. [T], [Ad]).
Aschbacher [As] used the Dickson form to study the subgroup structure of the
group Eg. Bion-Nadal [B-N] proved that the Eg Coxeter graph can be realized as
a principal graph of subfactor of the hyperfinite II; factor. Brylinski and Kostant
[BK] obtained a generalized Capelli identity on the minimal representation of Eg.
Binegar and Zierau [BZ] found a singular representation of Eg. Ginzburg [G]
proved that the twisted partial L-function on the 27-dimensional representation
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of GEg(C) is entire except the points 0 and 1. Iltyakov [I] showed that the field
of invariant rational functions of Fg on the direct sum of finite copies of the basic
module and its dual is purely transcendental. Suzuki and Wakui [SW] studied
the Turaev-Viro-Ocneanu invariant of 3-manifilds derived from the Fg-subfactor.
Moreover, Cerchiai and Scotti [CS] investigated the mapping geometry of the Fg
group. Furthermore, the (Ay, Go) duality in Eg was obtained by Rubenthaler [R].

Okamoto and Marshak [OM] constructed a grand unification preson model
with Fg metacolor. The Ejg Lie algebra was used in [HH] to explain the degenera-
cies encountered in the genetic code as the result of a sequence of symmetry break-
ings that have occurred during its evolution. Wang [W] identified Geoner’s model
with twisted LG model and FEjs singlets. Morrison, Pieruschka and Wybourne
[MPW] constructed the Eg interacting boson model. Berglund, Candelas et al.
[BCDH] studied instanton contributions to the masses and couplings of Fj singles.
Haba and Matsuoka [HM] found large lepton flavor mixing in the Fg-type unifi-
cation models. Ghezelbash, Shafiekhani and Abolbasani [GSA] derived explicitly
a set of Picard-Fuchs equations of N = 2 supersymmetric Eg Yang-Mills theory.
Anderson and Blazek [AB1-AB3| found certain Clebsch-Gordan coefficients in
connection with FEjg unification model building. Fernandez-Nuaez, Garcia-Fuertes
and Perelomov [FGP] used the quantum Calogero-Sutherland model correspond-
ing to the root system of Eg to calculate Clebach-Gordan series for this algebra.
Howl and King [HK] proposed a minimal Eg supersymmetric standard model
which allows Planck scale unification, provides a solution to the p problem and
predicts a new Z’. Das and Laperashvili [DL] studied Preon model related to
family replicated Ejg unification.

Classical harmonic analysis says that the spaces of homogeneous harmonic
polynomials (solutions of Laplace equation) are irreducible modules of the corre-
sponding orthogonal Lie group (algebra) and the whole polynomial algebra is a
free module over the invariant polynomials generated by harmonic polynomials.
Cao [C] proved that the subspaces of homogeneous polynomial vector solutions of
the n-dimensional Navier equations in elasticity are exactly direct sums of three
explicitly given irreducible submodules when n # 4 and direct sums of four ex-
plicitly given irreducible submodules if n = 4 of the corresponding orthogonal
Lie group (algebra), and the whole polynomial vector space is also a free module
over the invariant polynomials generated these solutions. Moreover, he solved the
initial value problem for the Navier equations. In particular, Cao’s work can be
viewed as a supplement to Olver’s well known work [O] on algebraic study of lin-
ear elasticity. It is a quadratic vector generalization of the classical theorem on
harmonic polynomials.

The purpose of this paper is to prove a cubic FEg-generalization of the
classical theorem on harmonic polynomials. It is well known that Dickson invariant
trilinear form is the unique fundamental invariant in the polynomial algebra over
the basic irreducible module of Fz. We prove that the space of homogeneous
polynomial solutions with degree m for the dual cubic Dickson invariant differential
operator is exactly a direct sum of [m/2]+ 1 explicitly determined irreducible Fg-
submodules and the whole polynomial algebra is a free module over the polynomial
algebra in the Dickson invariant generated by these solutions. Below we give a more
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detailed introduction to our results.
Denote by E,, the square matrix with 1 as its (r,s)-entry and 0 as the
others. The orthogonal Lie algebra

O(TL’ R) = Z R(Er,s - Es,r)~ (1)

1<r<s<n

It acts on the polynomial algebra A = Rz, ..., z,| by
(Er,s - Es,’r)|.A - xraws - xsa:cw (2)

Denote by A, the subspace of homogeneous polynomials in A with degree k.
When n > 3, it is well known that the subspace of harmonic polynomials

My ={f € A | (0%, +-- +0,)(f) =0} (3)
forms an irreducible o(n,R)-module and
A =Hp @ (27 + 25 + -+ 22) Ag_o. (4)
Navier equations
(i) + (11 4 12) (V' - V(i) = 0 (5)

are used to describe the deformation of a homogeneous, isotropic and linear elastic
medium in the absence of body forces, where # is an n-dimensional vector-valued
function, A = 82 +092, +---+092 is the Laplace operator, V = (9,,, Op,, ..., Oy,,) 18
the gradient operator, ¢; and ¢y are Lamé constants with ¢y > 0, 241+t > 0 and
11413 # 0. In fact, V*-V is the well-known Hessian operator. Mathematically, the
above system is a natural vector O(n,R)-invariant generalization of the Laplace
equation in (1.3).

Denote
L1 . fi(@)
Ty fal@)
A=A with A, = {f] f; € A}. (7)
k=0
Moreover, we define
Hy = {f € A | uA(F) + (0 +02)(V" - V)(f) = 0} (8)

Cao [C] proved that the subspace H; is a direct sum of three explicitly given
irreducible o(n,R)-submodules when n # 4 and a direct sum of four explicitly
given irreducible o(4, R)-submodules if n = 4. Moreover,

Ay =H, @ (22 4 -+ 22) Aj_s. (9)

The Dynkin diagram of FEj is as follows:
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T2
EG: O O O O

1 3 4 5 6

Denote by A; the ith fundamental weight of Fg with respect to the above labeling.
Let V' be the 27-dimensional irreducible Eg-module of highest weight A;. Denote
by A the polynomial algebra (equivalently, symmetric tensor) over V' and by A,,
the subspace of homogeneous polynomial with degree m. A singular vector in A
is a weight vector annihilated by positive root vectors. We explicitly construct a
linear singular vector z; of weight A\ in (2.25), a quadratic singular vector (; of
weight A¢ in (3.6) and a cubic singular vector 1 of weight 0 in (3.47), where 7
is the unique fundamental invariant corresponding to the Dickson trilinear form.
The following is the main theorem of this paper:

Main Theorem. Denote by L(my,ms) the irreducible Eg-submodule gen-
erated by x"* (7" with highest weight miA1 +maXg. Let D be the unique constant-
coefficient fundamental invariant differential operator dual to n. Then

[m/2]
O = {f € An | D(f) =0} = @ L(m —2i,1) (10)
=0
and
A = B B 1A 3. (11)

Note that (1.11) is exactly a cubic generalization of the quadratic one in
(1.4) and (1.9). The fundamental difference is that our subspace ®,, of homoge-
neous polynomial solutions is a sum of [m/2] + 1 irreducible submodules.
In Section 2, we explicitly construct the 27-dimensional basic representation
of Eg in terms of differential operators via the root lattice construction of the E-
simple Lie algebra. The proof of the main theorem is given in Section 3.
This work is supported by Chinese National Science Foundation NSF 10871193.

2. Basic Representation of Eg

In this section, we will explicitly construct the 27-dimensional basic irreducible
representation of FEj.
For convenience, we will use the notion

hwitji={ii+1,i4+2,..,i+7} (12)
for integer ¢ and positive integer j throughout this paper. We start with the root

lattice construction of the simple Lie algebra of type FE;. As we all known, the
Dynkin diagram of E7 is as follows:
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Let {a; | i € 1,7} be the simple positive roots corresponding to the vertices in the

diagram, and let ®p. be the root system of E;. Set

7
QE? = Z Zai7
=1

(13)

the root lattice of type E;. Denote by (-,-) the symmetric Z-bilinear form on Q g,

such that
qDE? = {Oé € QE7 | (a,a) = 2}
Define F(-,-) : Qp, x Qr, — {£1} by

7 7
FOO " kioi, Y Lay) = (—1)Zm bl Sz bl g, g, e 7,
i=1 =1

Then for o, 3,7 € Qg.,

Fla+8,7) = Fla,)F(8,7), Flo,B+7) = Fla, B)F(a,7),

F(a, B)F(B,a) " = (=)™, F(a,a) = (-1)@72,

In particular,
Fla,p) = -F(3,a) if o,f,a+ 0 € Pp,.

Denote .
Hg, =Y Ra.
i=1

The simple Lie algebra of type E7 is

GP" = Hp. @ @ RE,,

Q€D
with the Lie bracket [-,:] determined by:
[He,, He,] = 0, [h, Ea] = (h,a)Ea, [Ea, E-a] = —a,
ifa+ 3¢ g,

0
[EomEﬁ] - { F(a75)Ea+B if a +5 c CI)E7

for a, 8 € ®p, and h € Hg,.
Note that

6
Qr, = ZZ%‘ C Qp,

i=1

(14)

(21)

(22)

(23)
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is the root lattice of Fg and

(I)EG = QEG m (I)E7 (24)

is the root system of Fg. Set

Hg, =Y Ra. (25)

Then the subalgebra
G = Hz, © €P RE, (26)

Ot€<I>E6

of GF is exactly the simple Lie algebra of type Eg. Denote by ®Ff  the set of
positive roots of Fg and by @;57 the set of positive roots of E7. The elements of
(IDJEFG are:

a1 + 2an + 203 + 3oy + 2a5 + ag, (27)

{on+) o [j€26H J{D ] arl2<i<j<6}, (28)

r=i+1

{ias+ZQt‘2§j<k§6} (29)

s=2 t=4
and

7 J k
D a+d a+d a|2<i<j<k<6}. (30)
=1 s=3 t=4

Denote by <i>;57 the set of the following positive roots:

7 6 7
a1+2ar, a3+2a4+a5+zai+zam (31)
r=3 =1 r=1

6

7 7
{QZas—al—k(m—aG—l—ZarHEl,—G}, {Z(JTHGQ,_G}, (32)

s=1 r=i+1 r=i+1

J 7 i J 7
D a+d €28, D a+d an+d a]2<i<j<6) (33)
s=2 t=4 =1 s=3 t=4

Then B
of =of | ok (34)
In particular,

V= > RE (35)

5+
pedl

forms the 27-dimensional basic G¥6-module of highest weight \; with the repre-
sentation adge,. Denote

(L’le

ag20a+as+3 gy oYy o) (36)

Ty = B S as—ontas—ag+Y g o
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T3 = E2 S8 as—artas—ag+S T _, ap Ty = EQZgzl Qs—a1—ag+3 ot
Ty = E2 S8, as—aitastar? T = EZL Yl st
Tr = Ea4+2§:3 st ap 8= EQZle as—ai+ag—as+ar’
Ty = EZ§:3 s+ 10 = Ea4+2§:3 s+
T = EZS:AL Qs+ o 12 = EZ§:3 Qs+ 1g ap? 13 = Ea3+a4+2t7:1 at?
T14 = EZ?:Q art ST s T15 = Ea4+a5+ZZ:1 apr 16 = Ea4+EZ:1 o
T = Ea4+a5+2t7:2 ot? L18 = EZZ:1 at? L19 = Ea4+zt7:2 ag?
Too = Eaﬁ_zzzg apr T21 = EZZ:2 apy T22 = Ea2+ZZ:4 apr P23 = EZZ:3 g’
Tog = EZL; iy T2 = EZZ:s, apr L26 = Ea6+a7a Tor = Ea7-

Then {z;|i € 1,27} forms a basis of V.
Under the above basis

Eolv = =210z, + 1104y, + 1504, + 1602, + T1802y, + T200195

EOQ’V = _x4ax6 - xSa:m - xga.’zlo + x188x20 + leaxgg + x2281247

Eolv = =190, + ©90z,, + 1204, + 13045 + 21055, + 2302y,

Ea4|V = _x3ax4 - x78a,’9 - xloaaflz - xlﬁaxls - xlgaxgl + $248x25,
Ea5’V = _1748:05 - '1.6617 - x128$13 - x158x16 - $178x19 + '1.25833267
Ea6|V = _'T5a.’ltg - x78110 - 1'98112 - xllazls - x148117 + x268$277

Eoitaslv = ®105, — 2905, — 21205, — ¥1303,9 + 218025, + T2005,,,

Eogtaslv = =305 + 25055 + 2802, + 2160050 + 1190205 + 22055,

Ea3+a4‘V = x28x4 + x7ax11 + «Tloamm - x138x18 + leargg + x238x257
Eoitas|lv = £305; — 260z + 10025 — T1505,5 — £1705,, + 2404y,
Eostaglv = 405 + 2605,) — ©905,, — £1105,5 — 1402, + 2504,
Eoz1+a3+o¢4‘V == _371014 - :U7ax14 - $108x17 + 37138:1:21 + leaxgg + 3:2082:257

E012+a3+a4‘v = x2ax6 - x58:1:11 - x88115 + x138x20 - xlgax + x218$257

w24
Eootastas|lv = ¥300; + 24035 — £805,, + 1505, + ¥17035; + 2205,,,
Eoytastas|v = =205, + 0605, — 10025 — 1205, + T170255 + 2305,
Ea4+a5+a6|v = —SCgaxg + xﬁaﬂm + 33'78113 - 1’1183518 - x148x21 + .1'2489527,
By 0|V = =210z + 2505, + 8051, — T1301,5 — L1601y, + 180455,
Eo iy, 0|V = 105, — X602y, + 21002, + 21205, + 115015, + L2900y,
By | 0|V = =290z, — 405, + X805 + 1120150 — L1705y, + 2101y,

Ea2+2?:4 o |V = _3:385510 - x4az12 - 33585!213 + xllaxgo + 37148;1:23 + :C228127a

Ez?::; ai|V - an:Eg - x68:1315 - x7am16 - xgaxlg + x148122 + I23a$277
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EZL O%_|V = 210z, + 40, — T80s,5 — 120105 — T15025, + T180104 (67
Eq iy, 0V = =100 + 600y, + 170515 + T90sy, + 71102y, + 2000y, (68
Ea4+zf§:2 o lv = 2904y — 2302, — 8025 + 100090 — T170205 + T190u06s (69

Eso o lv = 2200, + 240015 + 050516 + 290520 — 01401, + 021047, (70
By 0|V = =100 + 3305, + ¥8055, — 2100025 — 15055 + 16025, (71

Eso o lv=—=21050 = ©10s,; — ¥500,y — 9055 — T1105, + 18047, (72
Ea4+zf=2 o,V = =200, + 1305,; — T500,5 + 1700y — 11405y, + 1904y, (73

Ea3+a4+2f:1 oy ’

Ea4+2?:1 Ozi|V = mlaCClQ - x38x17 + 'CEE)ale - x7ax23 - x118x25 + x168$277 75

Ea4+a5+2?:2 ai|V = x289613 - ‘T3a$16 aﬂcls + xﬁamo 3314635% + I178x277 (76

)
)
)
)
)
)
)
v = 10z, — 1204y, — 805y, + 21000y, — 1120055 + L1300y,  (74)
)
)
B ptaisy s ailv = —T100, + 22051, — T505 + T7000, — T90s55 + 21305y,  (77)
B irast58  ailv = —%1055 + ©3051, + ©400s) — T601p5 — T110055 + 15005, (78)
Es~s i3 a0,V = 21005 — 220519 — T404y5 + T6000y — 2905 + 21205, (79)
By, ar+2?:1ai|v = 21005 — L9025, + T3015, — T60y5 + 70005 — T100s,,, (80)
)

Ea2+a4+2f:3 ar+30_ |V = xlaﬁﬂzo - IQaﬂﬂzs +x38$24 - x4a’£25 - x5851726 IE27 (81

Recall that we also view «; as the elements of G¥7 (cf. (2.8) and (2.9)).
We write

[()éj7$i] = Q;;T; for i € 1,27, ] € 1,_6 (82)

Then the weight of xz; is Z 1 a; jA\;, where A; is the jth fundamental weight of
GFs. We calculate the followmg table:
Table 1

’ i H Qi1 ‘ ai2 ‘ ai,3 ‘ a4 ‘ ai5 ‘ ai6 H U H Qi1 ‘ ai2 ‘ ai3 ‘ Qi4 ‘ ai5 ‘ ai6 ‘

1 1 0 0 0 0 0O 2| —1 0 1 0 0 0
3 0 0] —1 1 0| 0| 4 0 1 0| -1 1 0
5 0 1 0] 0 —1 1| 6 0] —1 0] O 1 0
7 0 -1 0 1] ~1 1] 8 0 1 0 0 0| -1
9 0 0 1] -1 0 1 10 0 -1 0 1 0| -1
11 1 0] —1 0 0 1 12 0 0 1] -1 1] -1
13 0 0 1 0| -1 014 -1 0 0 0 0 1
15 1 0] -1 0 1] -1116 1 0] —1 1] -1 0
17| -1 0 0 0 1] -1]18 1 1 0| -1 0 0
19 || -1 0 0 1] —1 0 20 1] —1 0 0 0 0
21| -1 1 1] -1 0 0 22 0 1] -1 0 0 0
23| -1 -1 1 0 0 01 24 0] -1 -1 1 0 0
25 0 0 0 -1 1 0| 26 0 0 0 0| -1 1
27 0 0 0 0 0| -1
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In particular,
27

Oéj|V = Z ama?iaxi for j S 1,_6 (83)

i=1
- . 27
We define a symmetric linear operation 1 on the space ZZ i1 Rx;0,; by

Then
E—a|V = —w(Eah/) for a € @Eﬁ (85)

by the second equations in (2.5) and (2.6). In particular,

E,al ‘V == x28$1 - x1482711 - x17ax15 - 33198:)316 - x21a$18 - x2381207

E_o,lv = 2605, + £705; + 10025 — T200z,5 — ©23025, — T240z,,,
E—a3|V = $33x2 - $113x9 - 171533;12 - $163x13 - 962283521 - £E24ax23,
E_o,lv = 2404, + 290y, + 1205, + 1805,5 + 2102, — T2505,,,
E_olv = 505, + 27025 + 21305, + 1605, + 1902, — T260z,5,

E_oslv = 2800, + 21005, + 212029 + 15041, + T17014 — To705,-

3. Proof of the Main Theorem

Now A = R[zy, ..., To7] becomes a G¥6-module via the differential operators in
(2.35)-(2.74)

According to Table 1, we look for a singular vector of the form:
(1 = C121%14 + CoaT11 + C3T3Tg + C4T4T7 + C5T5T6. (92)

By (2.35),
0= Eal(CI) = (Cl — 02)5(711‘11 — C1 = C3. (93)

Moreover, (2.36) implies
0= Eoyc) = — (€4 + ¢5)T45 = €5 = —c4. (94)
Furthermore, (2.37) gives
0= FEoyc) = (2 — €3)a9 => 2 = c3. (95)
In addition, (2.38) yields
0= Eoc) = —(c3+ ca)r3a7 = ¢4 = —c3. (96)

The last equation in (3.3) implies F,,((1) = 0 by (2.39). Besides, F,,(¢1) =0
naturally holds by (3.1) and (2.40). Taking ¢; = 1, we have the singular vector

(1 = T1%14 + TaX11 + T3Tyg — T4T7 + T5Te (97)
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of weight Ag.
According to (2.75)-(2.80), we set

G = E_0s(C1) = 21217 + Tox15 + T3X 12 — T4T10 + TeTs,

(3 = F_o;(C2) = 1219 + T2%16 + T3%13 — T5X10 + T7s,
G = FE_0,((3) = 1221 + T2%18 + TaZ13 — T5T12 + Tso,
G = E_0,(G) = —21290 + T318 — TaT16 + T5T15 — TeT11,
(6 = E_0,(C1) = —21293 — To%og + TeT13 — L7212 + Ty,
Cr= E—ag(Ce) = T1T24 — XT3T20 — TeL16 T T7T15 — T10211,
(s = F_0,((5) = —Toag — T3%21 + Tak19 — T5T17 + TsT1a,
Go = E—a4(§7) = —T1T95 — T4T20 — TeT18 + T9T15 — T11T12,

Co = E_o,((7) = ooy + 323 + Tx19 — T7X17 + T10T14,

C1 = —E_0;(Co) = =126 + T5T20 + T7T18 — ToT16 + T11213,

Ci2 = E_q,(Clo) = —@2Ta5 + T4T93 + T6T21 — ToT17 + T12T14,

Ci3 = E7a3<612> = —X3T95 — TyToq — TeT22 + T11X17 — T14T15,
Cla = —Efaf;(Cn) = —X1T97 — TgTop — T10T18 + T12T16 — L1315,
G5 = —E—a5(C12) = —X9%9s — T5T23 — L7T21 + T9T19 — T13T14-

Define a map ¢ : 1,27 — 1,27 by
1(13) =13, «(14) = 14, «(15) =15,
(i) =28 —i for ¢ € 1,27\ {13,14,15}.
Let 7 be an algebraic automorphism of A determined by

7(x;) = x4 for i€ 1,27.

Now we set
G = 7((s—y) for i € 16,27.

It can be verified that .
V-3 R
r=1

an irreducible G¥-submodule and {¢, | 7 € 1,27} forms a basis of V.

©
co
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(112)
(113)

(114)

(115)

(116)

From the Dynkin diagram of Ejg, we have the following automorphism of

QEG :

6
O'(Z /{ZzOéZ) = ]{Z6C¥1 + ]{72&2 + k5a3 + ]{74044 + kgOé5 + k1066
=1

(117)

for Z?:1 kio; € Qg,. Let v be an associative algebra homomorphism of the

associative algebra

Z Al -0k

(118)
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of differential operators to itself determined by

v(x;) =G, v(0y) =0 for ie1,27. (119)
It can be proved that
Eoly = v(Egwlv) for o€ @f . (120)
Moreover,
27
ajly = Z b; ;GO (121)
i=1
where
bi,l = G;6, bz',S = a5, bz‘,Q = G;2, bi,4 = Qai4. (122)

Thus we have the following table:

Table 2
’ i H bia ‘ bi2 ‘ bis ‘ bia ‘ bis ‘ bis H v H bia ‘ bi2 ‘ bis ‘ bia ‘ bis ‘ bis ‘
1 0 0 0 0 0 1 2 0 0 0 1| -1
3 0 0 0 1] -1 0 4 0 1 1] -1 0 0
5) 1 1| -1 0 0 0 6 0] —1 1 0 0 0
7 1| -1 -1 1 0 0 81 —1 1 0 0 0 0
9 1 0 0] —1 1 010 —-1] -1 0 1 0 0
11 1 0 0 0] —1 112 —1 0 1| -1 1 0
13 0 0] —1 0 1 01 14 1 0 0 0 0] -1
15 || —1 0 1 0] -1 1] 16 0 0] —1 1| -1 1
17| —1 0 1 0 0] =11 18 0 1 0] —1 0 1
19 0 0] —1 1 0] =11 20 0] —1 0 0 0 1
21 0 1 0] —1 1| -—-11 22 0 1 0 0] -1 0
23 0] —1 0 0 1] -11 24 0] —1 0 1| -1 0
25 0 0 1| -1 0 01 26 1 0] -1 0 0 0
27 1| —1 0 0 0 0 0

According to Table 1 and Table 2, we look for an invariant of the form

12
n= Z(dz‘%‘@s—i + dog—iTas—i(;) + di313C13 + d1ax14C1a + di5T15Crs, (123)

=1

where d; € R. By (2.35), (2.40) and (3.29), we have

0= Em(n)
= —dyx1(26 + d14711C1a + d17715C11 + d19T16Co + d21718C7 + d23T20(s
—d20$20C5 - d18$18C7 - d16$16C9 - d15I15C11 - d11$11C14 + d1$1C26>(124)

0= Fu ("7)
= —d8355C20 - d109€7C18 - d12$9C16 - d15$11C15 - d17$14511 + d279526C1
—da6w26C1 + d14714C11 + d11211Ci5 + doroCis + drarCis + dsxsCao.  (125)
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So we take
do =dy, diy =dy, dip =dis, dig = dig, dog = dig, daz = dap, (126)
ds = dq, dig=d7, dig=dy, di5=dy1, di7 = dy, dor = dag. (127)
Moreover, (2.37), (2.39) and (3.29) imply
0= Eo;(n)

= —d3x2Qos + di129C17 + di5T12C15 + di6T13C12 + d22%21C + d2aT23Cs
—da393Cs — donw21(s — d13213C12 — d12T12C15s — doxoCir + daxaCos, (128)

0= Eas (77)
= —d5$4C23 - d7$CGC21 - d13£12§13 - d16x15<12 - d19$17C9 + d261325C2
—da5x95Cs + di7x17Co + di5215C12 + d12212C13 + dereCor + dazaCas. (129)

Hence we get

dy =dz, di=dy, diz=diz, dig=diz, dop=d, dog= ds3, (130)
ds = dy, d7 =ds, dig =dra, dig =di5, dig=di7, dog = dos. (131)
Furthermore, (2.36), (2.38) and (3.29) yield
0= Eq, (77)

= —d6$4g22 - d22$22C4 - d7$5C21 - d21£21§5 - d10$8C18 - d18$18C8
+daox18Cs + dssCrs + dost21(s + d5x5Ca1 + doa®aaCy + dawsCaa, (132)

0= EOt4 (77)
= —d4$3C24 - d24$24C3 - d9$7C19 - d19I19C7 - d12£10§16 - d16$16C10
—d15716C10 — d10%10C16 — d21219C7 — d727C19 + dosT24Cs + d3xsCag. (133)

Thus we obtain
de = dy, doy = dap, d7 =ds, doz = da1, dip=dg, dyo = dis, (134)

dy =ds3, dys =dyy, dg=—dy, dy = —dig, dig = —dyo, dig=—di. (135)
By (3.35), (3.36), (3.39), (3.40), (3.42) and (3.43), we have
dl:d2:d3:d4:d5:d6:d7:d8:—d9:d10:—d11 (136)
= —dig = —di3 = —dyy = —dy5 = —dig = —di7 = dyg
= —dyg = dog = do1 = dag = daz = dayy = da5 = das = da7. (137)
Therefore, we have the following invariant

8 15

n= Z(fEiCQS—z‘ + @a8-iCi) + T10C18 — Z (zrCos—r + T28—1(p) — Z z5Cs. (138)

i=1 r=9,11,12 s=13
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According to (3.6)-(3.24), n =

(1214 + Tox11 + T3%9)Tar + (1217 + To1s + T312) T2 + (L1219 + TaT16
+x3%13)To5 + (Ta13 — T5T12 + Teo)Tog — (XaT16 — T5T15 + Ts11)Tos + (Te13
—T7%12 + ToZ10)T22 + (X7215 + TeT16 — T10%11)T21 + (TaZrg — T5T17 + TsT14) T2

+(26218 — ToZ15 + T11T12)T19 + (L1014 — T7217)T18 + (ToT16 — T11213)T17

—T12%14%16 + T1a815213) + (Tak7 — B5%6) o7 + (TaT10 — T6s)T26 + (T5210

—X708) o5+ (1021 +T218) Toa+H(T3T18— X1 T22) Tog— (TaToo+T3T21 ) To0.  (139)

Lemma 3.1.  Any homogeneous singular vector in A is a monomial in x1, (1
and 7.

Proof. Note that

[S—Y
N
D

T1%94 = (7 + X3To0 + TT16 — T7T15 + T10T11,

T1T95 = —Cg — TaTop — TeT1g + ToT1s — T11T12,

T1%14 = (1 — TaX11 — T3Tg + T4T7 — T5Tg (140)
12717 = G2 — TaT15 — T3T12 + T4T1o — TeTs, (141)
T1%19 = (3 — Tak1g — T3T13 + TsT1o — T7Ts, (142)
T1T91 = (4 — TaT18 — T4T13 + T5T12 — Ty, (143)

T1T22 = —(5 — T3T18 — TaT16 + T5T15 — TeL11, (144)
T1T93 = —( — Talag + TeT13 — T7T12 + T9T1o, (145)
(146)
(148)

T1T26 = —Ci1 + TsToo + T7T18 — ToT1e + T11713

by (3.6)-(3.12), (3.14) and (3.16). Moreover, (3.47) can be written as

(Bz1214 + 320211 + 3T3%9 + Tak7 — T5T)Tor

= 0= 3[(x1217 + T215 + T3T12) X6 + (L1219 + To16 + T3T13)Tas + (Tal1s
—X5%12 + TsTg)Tog — (TaZ16 — T5T15 + TsT11)Ta3 + (TeT13 — T7T12 + ToT10)Ta2
+H(@7215 + TeT16 — T10%11) P21 + (TaZ19 — T5T17 + TsT14)T20 + (T6T1s
—ToZ15 + T112T12)T19 + (L1014 — T7%17)T1s + (ToT16 — T11213)T17
—T12%14%16 + 3714510159513] - ($451710 - 5176558)5526 - ($51’10 - IB7$8)3725

— (21291 + Tox18)Tog — (T3T18 — T1%22)T23 + (T2Z2 + T3T21)T20. (149)

Let f be any homogenous singular vector in A. According to the above
equations, f can be written as a rational function f; in

{z:,¢om | i € {1,13,15,16,18,20}; r € {1,7,9,11}}. (150)
By (2.63)-(2.70), (3.28) and (3.29),

0= Ea3+a4+2?:1 ai(fl) = xlarn(fl)7 (151)
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0= EO&4+Z?:1041-(f1) = 210.,,(f1), (152)

0= Boitastst, a (1) = 2200 (f1) + G0 (f), (153)
0= Eyprarss,a(fi) = —01005(f1), (154)

0= Eoc4+a5+§j?:1ai|v = —2105,5(f1), (155)
0=Eys_ 0150 alv=2100,(f1), (156)

0=FE, 5 0450, alv = 2100, (f1), (157)

0=F a5 arts0 o, (f1) = 21000 (f1)- (158

So f1 is independent of w11, 212, %13, T15, T16, T18, T2o and (i1, that is, f; is a
rational function in

{zi, ¢y | 1€ 1,10; r € {1,7,9}}. (159)
Next (2.56)-(2.62), (3.28) and (3.29) imply that
0= EZ?:lai(fl) = 104, (f1), (160)
0=Eq 50 o (1) = —210:,(f1), (161)
0="FE, 53 0, (f1) = 2200 (1) + G20 (f1), (162)
0= FEs~o_ o (f1) = 2205, (f1) + Q0 (f1), (163)
0=FE, 153 a,(f1) = =210 (f1), (164)
0= Ezﬁzlai(fl) = —2104,,(f1)- (165)
Hence f; is independent of x7,xs,x9,210,(7 and (g, that is, f; is a rational

function in
{a:iaCr‘vn ‘ (254 617_6} (166)

Now (2.41), (2.45)-(2.50), (2.52), (2.55), (3.28) and (3.29) give that
0= Eoytas(f1) = 210:4(f1), (167)

0= Eagtas(f1) = G0c (1), (168)

0= Eoyrastos(f1) = =710, (f1), (169)

0= Faytastas (f1) = 22024 f1), (170)

0= Eoyrastas|v = Q0 ([f1), (171)

0 = Eaytastas (f1) = =220 (f1) — ©20¢(f1), (172)

0= Fastastas(f1) = =G0, (f1), (173)

0= Ea1+z§:3 ai(fl) = 3318:c5(f1)- (174)

Thus f; is independent of {z;,¢; | i € 3,6} , that is, f; is a rational function in
{z1, 22,1, (2, n}. Finally, (2.35), (2.40), (3.28) and (3.29) yield

0= Eal(fl) = _l.la’l?z(fl)a 0= Ea6(f1) = _Cla@(fl)' (175)

Therefore, f; is independent of x5 and (s, that is, f = f; is a rational function
in z1, ¢; and n. By (3.48) and (3.57), it must be a polynomial in 7, (; and
1. Recall that the weights of =1, (; and n are A;, A\¢ and 0, respectively. The
homogeneity of f implies that it must be a monomial in x;, {; and 7. ]
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Let L(my,my, m3) be the G¥-submodule generated by x7"'(]"*n™:. Note
that (2.15) is a Cartan root space decomposition over R. Moreover, (2.71) 1mplies
that A is a direct sum of weigh subspaces of G¥ and subspaces of homogeneous
polynomials are finite-dimensional G¥¢-submodules. Thus L(my,mo,m3) is a
finite-dimensional irreducible submodule of highest weight mi\; + maoAg. By the
Weyl’s theorem of completely reducibility and the above lemma, we have

o0

A= > L(mi,myms). (176)

m1,mz,m2=0

Recall we denote by V(A) the finite-dimensional irreducible module of highest
weight \. The above equation implies

1 1 S 3 m1+2m
GoaF ~Tog, 2 (AmVimb s mda)m. (1)
mi,mo=
Equivalently, we have:

Lemma 3.2.  The following dimensional property of irreducible G¥6 -modules

holds: .
(1-¢)* Z (dim V (mids 4+ male))g™ ™ = 14+ g+ ¢*. (178)

m1,m2=0
Set
27

W= Ro.. (179)

Then W isomorphic to the module of linear functions on V' via 0,,(z;) =
Indeed, the linear map determined by 0,, — CL @ (cf. (3.21), (3.22)) is a QEG
by

module isomorphism. We define a linear map & : A — R[0,,, ..., Oy, ]
S(aag? - agy) = 950 0. (150)

Set
D = (1), Zxaxz, D, = Z@ (G- (181)
Then D, D; and D, are invariant dlfferentlal operators, that is,
(DE)|a = (ED)|a; (Dr€)la = (EDy)]a for & € G™. (182)
Note that Lemma 3.1 implies
V? = 1(2,0,0) + L(0,1,0). (183)

Symmetrically,

W?=1(0,2,0) + L'(1,0,0), (184)

where L/(0,2,0) is a module generated by the highest weight vector 03, with
weight 2)\¢ and L'(1,0,0) is a module generated by the highest weight vector
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$((o7) with weight A;. Thus the subspace of invariants (the trivial submodule) in
V2W? is two-dimensional. The trivial submodule of L(0,1,0)L/(1,0,0) is RD;,.
In L(2,0,0)L'(0,2,0), there exists an invariant D3 with a term 2302 . So any
invariant in V2W? must be in RD, +RD5. In particular, the invariant differential

operator
[D,n] = Dn —nD = by + biDy + byDy + b3Ds (185)

for some by € R. According to (3.47), n does not contain z%. So b3 = 0. Moreover,
(3.47) also implies by = 111.

According to (3.57), the coefficient of 2970, in [Dy,n] must be 11, which
implies by = 11. Observe that there exists a unique monomial in 7 containing
x1T14, which is 3z1214297. Thus the coefficient of z12140,,0,,, in [D,n] must be
9, that is, by = 9. So we have:

Lemma 3.3.  As operators on A,

[D,n] = 111 4 11D, + 9D,. (186)

Let m; and msy be nonnegative integers. If D(z7"({"*) # 0, then it is also
a singular of degree mi +2ms —3 with the same weight miA; +mo)g. But Lemma
3.1 implies that any singular vector with weight m;A; + maAg must has degree
> my + 2ms. This leads a contradiction. Thus

D(x" (") =0 for my,my € N. (187)
Moreover, (3.90) implies
D(L(my,ms,0)) = {0} for my, my € N. (188)

Since Dy(x]"(]™) is also a singular vector of degree m; + 2msy with the same
weight miA; + molg, we have

Dy ™) = e ¢ (189)
for some ¢ € R. Let
2 =0 for 1,14 £i€1,27 (190)
in (3.97) and we get ca" "l =

hmxiﬂo; 8,10£i€2,11 L1714 (am axm + axz axu + 6563 8509 - a33482?7 + 8955 aﬂfs) [x71n1

X (21214 + Tox11 + T3T9 — T4T7 + T5T6)"?] (191)
= my(my + my + 4)a7 22 (192)

by (3.6)-(3.24), that is, ¢ = ma(my +mg +4). We get:
Lemma 3.4.  For m;,ms € N,

Dy (27" (") = ma(my + mo + 4)x 7 (™. (193)
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According to Lemma 3.1,
V*=L(4,0,0) + L(2,1,0) + L(1,0,1). (194)
Moreover, L(1,0,1) = nV . Thus the invariants in VAW are RnD;. Hence
[Dq,n] = c1n + canD; for some ¢, ¢y € R. (195)
Letting the above equation act on 1, we have
Dy(n) = a1n. (196)
By (3.6)-(3.24) and (3.47), 3ci1x1214%97 =

hmmﬁo; 14£ic2,16 11 = 11m$i—>0; 14£i€32,16 Dy(n)
= 3(2121405, T14 + T1402704, ,Oyy + T102705, Ta7) (X1214%27) = 921 214%07, (197)

So ¢; = 3. Letting (3.102) act on x;, we have:

Dsy(nx1) = (3 + c2)nzy. (198)
As (3.104),
3(3 + 02)$%$14$27 = lim 3+ c)nz = lim  Dy(nz)
x;—0; 14#i€2,16 x;—0; 14#£i€2,16

= 3(2121402, T14+T14%2704,, Oy +T1T270, Ta7) (56%17142527):1533%%14@7- (199)

Hence ¢y = 2. We get:

Lemma 3.5.  As operators on A,

[D2,m] = n(3 + 2Dy). (200)
For m, my,my € N with m > 0, we have
D(n"z (") = [m(111 + 11my + ma(my + ma + 26))

+3 " 5(33 4+ 9(3s + my + 2mg)) ™ 2T £ 0 (201)

s=1

by Lemmas 3.3-3.5. According to (3.84) and (3.108), we have:

Lemma 3.6. Forany 0# f € A,

D(nf) # 0. (202)
The above lemma implies that
{feAID(NY= D Limi,my,0). (203)
m1,ma2=0

Recall that A,, be the subspace of homogeneous polynomials of degree m in A.
Denote

¢, ={f €A, |D(f) =0} (204)

In summary, we have the following version of the main theorem.
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Theorem 3.7.  The set {z1"({"*n™ | ny, ma, mg € N} is the set of all singular
vectors in A up to a scalar multiple. In particular, n is the unique fundamental
invariant (up to a scalar multiple) and the identity

(L=)* D (dimV(mid +made))g™ " = 1+ q+ ¢ (205)
m1,ma=0
holds. Furthermore,
Ak =&, P 77./4]973 fOT’ keN (206)
and
[m/2]
O, = Y L(m—2i,i,0) for meN, (207)
i=0

where we treat A, = {0} if r <0.
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