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Abstract. In this paper we study the isomorphism problem for centreless
Lie tori that are fgc (finitely generated as modules over their centroid). These
Lie tori play a important role in the theory of extended affine Lie algebras
and of multiloop Lie algebras. We introduce four isomorphism invariants for
fgc centreless Lie tori, and use them together with known structural results to
investigate the classification problem for fgc centreless Lie tori up to isomorphism.
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Suppose that k is a field of characteristic 0, Λ is a finitely generated free abelian
group, and ∆ is an irreducible finite root system. A Lie torus of type (∆,Λ) is a
Lie algebra L over k that has two compatible gradings, one by the root lattice Q
of ∆ and the other by Λ, such that a list of natural axioms hold (see Definition
3.1). In that case the rank of Λ is called the nullity of L . Lie tori were introduced
by Yoshii in [37, 38] and, in an equivalent form that we use here, by Neher in [26].

Centreless (zero centre) Lie tori are of fundamental importance in the theory
of extended affine Lie algebras (EALAs), where they are used as the starting point
for the construction of all EALAs [27]. Perhaps the best known example occurs in
nullity 1. In that case, any centreless Lie torus is isomorphic to the derived algebra
modulo its centre of an affine Kac-Moody Lie algebra g [3], and the full affine
algebra g is constructed from this Lie torus by the familiar process of affinization.

In this article, we focus our attention on centreless Lie tori that are fgc
(finitely generated as modules over their centroids). We do this for two reasons.
First, it is these Lie tori that play an important role in the study of multiloop Lie
algebras; and vice versa (see more about this in Section 3). Second, it is known
that the fgc assumption excludes only one family of centreless Lie tori (see the
discussion preceding Theorem 8.5).

The structure of fgc centreless Lie tori is now quite well understood, using
work of a number of authors over a period of almost 15 years. However, the iso-
morphism problem, by which we mean the problem of determining when two such
Lie tori are isomorphic, is much less understood. Note that here and subsequently,
the term isomorphic means isomorphic as (ungraded) algebras, unless mentioned
to the contrary.
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The isomorphism problem for fgc centreless Lie tori has been solved in
nullities 0, 1 and 2. Indeed, in nullities 0 and 1, a solution follows from classical
conjugacy theorems for maximal split toral k-subalgebras of finite dimensional
simple Lie algebras and affine Kac-Moody Lie algebras respectively. (See Sections
5.4 and 6.3 in [7].) In nullity 2, the problem was solved in [7] as part of the
classification of nullity 2 multiloop Lie algebras. (See [7, Cor. 10.1.3 and Thm.
13.3.1].) In this paper, we consider the problem for arbitrary nullity. As one might
expect, our approach is to look for isomorphism invariants.

In order to describe some of our results, we briefly outline the structure of
this paper, which begins in Sections 1–4 with some basic definitions and properties
of Lie tori.

In Section 5, we investigate the central closure L̃ of an fgc centreless Lie
torus L of type (∆,Λ), which is obtained from L by extending the base ring

from the centroid C of L to its quotient field C̃ . It is known that L̃ is a finite
dimensional isotropic central simple Lie algebra over C̃ , and hence the theory of
such Lie algebras can be brought to bear on our problem. The main result in this
section, Theorem 5.4, describes an explicit maximal split toral C̃ -subalgebra h̃ of
C̃ . ¿From this we deduce Corollary 5.6, which asserts that the relative type of L̃
is the type of the given root system ∆. We note that Corollary 5.6 was a basic
tool in the article [7] mentioned above, but its proof was left to be presented in
this article.

In Section 6, we show that an fgc centreless Lie torus L of type (∆,Λ) has
four isomorphism invariants: (i) the type of the root system ∆, which is called
the root-grading type of L ; (ii) the nullity of L ; (iii) the rank of L as a module
over its centroid C , which is called the centroid rank of L ; and (iv) a vector of
positive integers, called the root-space rank vector of L , that lists the ranks over
C of the root spaces of L in the Q-grading. Indeed, the invariance of the centroid
rank is clear. However, the other three quantities are defined using the graded
structure of L and hence their invariance requires more argument. We establish
the invariance of the root-grading type and the root-space rank vector using the
results of Section 5. We also see that invariance of the nullity follows easily from
known facts about Lie tori.

We note that the four invariants just discussed are rational, by which we
mean, as in [32], that they are defined without using base ring extension. We
also note that, up to this point in the paper, our methods are elementary, using
for the most part linear algebra, sl2 -theory and facts from [32, Chap. I] about
finite dimensional central simple Lie algebras. For another approach, see [31], [19]
and [20], where tools from Galois cohomology are used to study the isomorphism
problem for forms of algebras over Laurent polynomial rings and in particular for
multiloop Lie algebras.

In Section 7, we recall an equivalence relation for Lie tori, called isotopy,
that is finer than isomorphism as it takes into account the grading [5, 8]. We
observe that the group Λ/Γ(L) is an isotopy invariant (but not yet an isomorphism
invariant) of a centreless Lie torus L , where Γ(L) denotes the Λ-support of the
centroid of L . The main result of the section is a simple characterization of isotopy
for centreless Lie tori.
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In the rest of the paper, we assume that k is algebraically closed and
we apply the invariants from Sections 6 and 7 to study classification and the
isomorphism problem for fgc centreless Lie tori. First in Section 8 we summarize
in one theorem the known structure theorems for fgc centreless Lie tori. It states
that any such Lie torus is either classical, which means roughly that it can be
constructed as a special linear Lie algebra, a special unitary Lie algebra, a special
symplectic Lie algebra, or an orthogonal Lie algebra over an associative torus;
or it is one of 27 Lie tori (defined for each sufficiently large nullity) that we call
exceptional. Since the statements of the structure theorems are spread over many
papers, we hope that our summary will be of independent interest to the reader.
Included in this section is a table, numbered as Table 1, of our invariants for
exceptional Lie tori, with references to the literature.

In Section 9, we show how to calculate the invariants for classical Lie tori,
and list the results in two tables, numbered as Tables 2 and 3. The three tables
are then applied in Section 10 to obtain results about the isomorphism problem
for fgc centreless Lie tori. We show that the classes of exceptional and classical
Lie tori have no overlap and that the four classes of classical Lie tori are similarly
disjoint. We then solve the isomorphism problem for special symplectic Lie tori and
orthogonal Lie tori (the latter is easy), and we reduce the problem for exceptional
Lie tori to consideration of at most five particular algebras (in each nullity). This
reduces the classification of fgc centreless Lie tori to the separate isomorphism
problems for (1) five particular exceptional Lie tori, (2) special linear Lie tori, and
(3) special unitary Lie tori.

In the final section, we discuss these three problems under an additional
conjugacy assumption for certain (but not all) maximal split toral k-subalgebras
of an fgc centreless Lie torus. The additional assumption is reasonable since
work in progress by Chernousov, Gille and Pianzola [16] will show that it always
holds (see Remark 11.1). Under the conjugacy assumption, we show that isotopy
and isomorphism coincide for fgc centreless Lie tori and use this to complete the
classification of exceptional Lie tori. Also under the conjugacy assumption, we
complete the classification of special linear Lie tori, leaving only the isomorphism
problem for special unitary Lie tori to be solved.

Finally, we note that the conjugacy assumption could have been used earlier
in the paper to demonstrate the invariance of the root-grading type and the root-
space rank vector. However, we did not do that since we understand that [16]
uses deep results from the theory of group-schemes, whereas our goal has been
to deduce as much as possible about the isomorphism problem for Lie tori using
self-contained and elementary methods.

Acknowledgments. First, we thank Arturo Pianzola for carefully reading
an earlier version of this paper and making several suggestions that substantially
improved its presentation. We also thank him for keeping us informed of the work
in [16] on conjugacy. Second, we thank the referee who noticed and filled a small
gap in the proof of Theorem 7.2. The referee also very helpfully suggested the
expansion, from the first version of the paper, of the material now included in
Sections 9 and 10.
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1. Preliminaries

Throughout the paper, we assume that k is a field of characteristic 0. Unless
mentioned to the contrary, algebra will mean algebra over k .

The centroid. Suppose that A is an algebra over k . The centroid of A is the
subalgebra of Endk(A) defined by

Ck(A) := {c ∈ Endk(A) | c(x · y) = c(x) · y = x · c(y) for x, y ∈ A}.

Then k idA is a subalgebra of Ck(A), which we identify with k in the evident
fashion when A 6= 0. The algebra A is said to be central if Ck(A) = k idA .

Note that A is naturally a left Ck(A)-module; and we say that A is fgc if
this module is finitely generated.

The algebra A is said to be perfect if A · A = A , where · denotes the
product in A . If A is perfect, then Ck(A) is commutative. If A is simple (and
hence perfect), then Ck(A) is a field and A is a central simple algebra as an
algebra over Ck(A).

If A is a unital associative algebra, we denote the centre of A by Z(A).
Then the map z 7→ `z is an isomorphism of Z(A) onto Ck(A), where `z ∈ Endk(A)
is left multiplication by z .

Remark 1.1. (i) If A is an algebra over an extension field F of k and A is
perfect (over F or equivalently over k), then Ck(A) = CF (A).

(ii) Any isomorphism ϕ : A → A′ of algebras induces a unique isomorphism
χ : Ck(A)→ Ck(A′) such that ϕ(cx) = χ(c)ϕ(x) for c ∈ Ck(A), x ∈ A .

Involutions. If A is an algebra, an involution of A is an anti-automorphism
“−” of A (so xy = ȳx̄ for x, y ∈ A) of period 2. In that case, we call (A,−) an
algebra with involution. If the involution is fixed, we often use the notation

A+ = {x ∈ A | x̄ = x} and A− = {x ∈ A | x̄ = −x},

in which case A = A+ ⊕A− . If A is unital and associative, the centre of (A,−)
is defined as Z(A,−) := {x ∈ Z(A) | x̄ = x} = Z(A) ∩ A+ .

Graded algebras. If Λ be an abelian group and A =
⊕

λ∈ΛAλ is a Λ-graded
algebra, we use the notation suppΛ(A) := {λ ∈ Λ | Aλ 6= {0}} for the Λ-support
of A .

If A is a Λ-graded algebra and A′ is a Λ′ -graded algebra we say that A and
A′ are isograded-isomorphic if there exists an algebra isomorphism ϕ : A → A′
and a group isomorphism ϕgr : Λ→ Λ′ such that ϕ(Aλ) = A′ϕgr(λ) for λ ∈ Λ.

There is an evident definition of a graded algebra with involution (the
involution is assumed to be graded) and of isograded-isomorphism for graded
algebras with involution (the map is assumed to preserve the involutions).

Irreducible finite root systems. As in [1] and [26], it will be convenient for us
to work with root systems that contain 0. So, if X is a finite dimensional vector
space over k , by an irreducible finite root system in X we will mean a finite subset
∆ of X such that 0 ∈ ∆ and ∆× := ∆ \ {0} is an irreducible finite root system
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in X in the usual sense (see [15, chap. VI, §1, Définition 1]). We say that ∆ is
reduced if 2α /∈ ∆× for α ∈ ∆× .

An irreducible finite root system ∆ has one of the following types:
A` (` ≥ 1), B` (` ≥ 2), C` (` ≥ 3), D` (` ≥ 4), E6 , E7 , E8 , F4 or G2 if ∆ is
reduced; or BC` (` ≥ 1) if ∆ is not reduced.

We will use the following notation for an irreducible finite root system ∆
in X . Let

Q(∆) := spanZ(∆)

be the root lattice of ∆. Let X ∗ denote the dual space of X , let 〈 , 〉 : X ×X ∗ → k
denote the natural pairing, and, if α ∈ ∆× , let α∨ denote the coroot of α in X ∗ .
Finally, let

∆×ind := ∆× \ 2∆×

denote the set of indivisible nonzero roots in ∆, and let ∆ind := ∆×ind ∪{0} . Then
∆ind is a reduced irreducible finite root system in X ; and, if ∆ is reduced, we
have ∆ind = ∆.

2. Split toral subalgebras and relative type

Suppose that L is a Lie algebra over k .

A split toral k-subalgebra of L is an abelian1 k-subalgebra h of L such that
there is a k-basis for L consisting of simultaneous eigenvectors (with corresponding
eigenvalues in k) for all of the operators ad(h), h ∈ h .

If h is a split toral k-subalgebra of L , then we have the decomposition
L =

⊕
α∈h∗ Lα , called the root-space decomposition of L relative to h , where

Lα = {x ∈ L | [h, x] = α(h)x for h ∈ h}

for α ∈ h∗ . We set
∆k(L, h) := {α ∈ h∗ | Lα 6= 0},

and we call ∆k(L, h) the root system of L relative to h .

The following formal result is well-known and easily checked using Re-
mark 1.1.

Lemma 2.1. Suppose that L (resp. L′ ) is a central perfect Lie algebra over a
field F (resp. F ′ ) that is an extension field of k. Suppose that ϕ : L → L′ is
a k-algebra isomorphism, h is a split toral F -subalgebra of L, and h′ = ϕ(h).
Then h′ is a split toral F ′ -subalgebra of L′ , which is maximal if and only if h is
maximal. Moreover, setting ∆ = ∆F (L, h), Q = spanZ(∆), ∆′ = ∆F ′(L′, h′) and
Q′ = spanZ(∆′), there exists a unique group isomorphism ρ : Q → Q′ such that
ϕ(Lα) = L′ρ(α) for α ∈ Q. Furthermore, ρ(∆) = ∆′ and dimF (Lα) = dimF ′(L′ρ(α))
for α ∈ Q.

A finite dimensional central simple Lie algebra over k is said to be isotropic
if it contains a nonzero split toral k-subalgebra.

1It is not difficult to show that the abelian assumption is superfluous (although we will not
use this fact).
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Theorem 2.2. [32, §I.2] Suppose that L is an isotropic finite dimensional
central simple Lie algebra over k and h is a maximal split toral k-subalgebra
of L. Then

(i) ∆k(L, h) is an irreducible finite root system in h∗ .

(ii) If h′ is another maximal split toral k-subalgebra of L, there exists an auto-
morphism ϕ of L such that ϕ(h) = h′ .

If L is an isotropic finite dimensional central simple Lie algebra, the relative
type of L is defined to be the type of the root system ∆k(L, h), where h is a
maximal split toral k-subalgebra of L . By Theorem 2.2 and Lemma 2.1 (with
F = F ′ = k) this is independent of the choice of h .

3. Lie tori

For the rest of the paper we assume that ∆ is an irreducible finite root system
with Q = Q(∆), and that Λ is a finitely generated free abelian group.

This section contains the definition and some basic properties of Lie tori.
We restrict ourselves to the properties that we will need. For the reader wanting to
learn more about this topic, two recent articles by Neher [28, 29] are recommended.

In order to recall the definition of a Lie torus, we first introduce some
notation for Q× Λ-gradings. Let

L =
⊕

(α,λ)∈Q×Λ

Lλα

be a Q × Λ-grading on a Lie algebra L .2 Then L =
⊕

α∈Q Lα is a Q-grading of
L with

Lα :=
⊕
λ∈Λ

Lλα for α ∈ Q;

L =
⊕

λ∈Λ Lλ is a Λ-grading of L with

Lλ :=
⊕
α∈Q

Lλα for λ ∈ Λ;

and we have Lλα = Lα ∩ Lλ . Conversely if L has a Q-grading and a Λ-grading
that are compatible (which means that each Lα is a Λ-graded subspace of L or
equivalently that each Lλ is a Q-graded subspace of L), then L is Q×Λ-graded
with Lλα = Lα ∩ Lλ . ¿From either point of view, we can simultaneously regard L
as a Q × Λ-graded algebra, a Q-graded algebra and a Λ-graded algebra; and we
correspondingly have the support sets suppQ×Λ(L), suppQ(L) and suppΛ(L). We
refer to the Q-grading as the root grading of L , and we refer to the Λ-grading as
the external grading of L .

2As is usual in the study of Lie tori, it is convenient to use the notation Lλα rather than L(α,λ)

or L(α,λ) for the homogeneous component of degree (α, λ).
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Definition 3.1. [26] A Lie torus of type (∆,Λ) is a Lie algebra L which has
the following properties:

(LT1) L has a Q× Λ-grading L =
⊕

(α,λ)∈Q×Λ Lλα such that suppQ(L) = ∆.

(LT2) (i) (∆×ind, 0) ⊆ suppQ×Λ(L).

(ii) If (α, λ) ∈ suppQ×Λ(L) with α ∈ ∆× , then there exist elements eλα ∈ Lλα
and fλα ∈ L−λ−α such that Lλα = keλα , L−λ−α = kfλα and

[[eλα, f
λ
α ], xβ] = 〈β, α∨〉xβ (1)

for xβ ∈ Lβ , β ∈ Q .

(LT3) L is generated as an algebra by the spaces Lα , α ∈ ∆× .

(LT4) Λ is generated as a group by suppΛ(L).

In the definition given in [26], it is only assumed that suppQ(L) ⊆ ∆ in
(LT1). However, our stronger assumption is more convenient here and it results
in no loss of generality (see [5, Remark 1.1.11]).

If L is a Lie torus, we assume (unless mentioned to the contrary) that
we have made a fixed choice of a grading L =

⊕
(α,λ)∈Q×Λ Lλα as in (LT1) and

elements eλα and fλα as in (LT2)(ii). Thus if (α, λ) ∈ suppQ×Λ(L) with α ∈ ∆× ,
then (eλα, h

λ
α, f

λ
α) is an sl2 -triple in L , where hλα = [eλα, f

λ
α ] . Hence the space Sλα

spanned by this triple is a 3-dimensional split simple Lie subalgebra of L .

Remark 3.2. If (α, λ) ∈ suppQ×Λ(L) with α ∈ ∆× , then L is a locally finite
dimensional Sλα -module under the adjoint action. Indeed, to see this it suffices to
show that U(Sλα)xβ is finite dimensional for xβ ∈ Lβ , β ∈ ∆, where U(Sλα) is the
universal enveloping algebra of Sλα . This fact in turn follows from the Poincaré-
Birkhoff-Witt theorem for Sλα , (1) and the assumption that ∆ is finite.

Definition 3.3. If L is a Lie torus of type (∆,Λ), we define the nullity of L
to be rankZ(Λ) and the root-grading type of L to be the type of ∆.

We note that a Lie torus is perfect by (1) and (LT3).

Example 3.4. Suppose that ġ is a finite dimensional split simple Lie algebra
with splitting Cartan subalgebra ḣ over k . Let ∆ = ∆k(ġ, ḣ) and Q = Q(∆); and
let ġ =

⊕
α∈Q ġα be the corresponding root-space decomposition. For n ≥ 0, let

Rn := k[t±1
1 , . . . , t±1

n ]

be the algebra of Laurent polynomials in n variables over k with its natural Zn -
grading Rn =

⊕
λ∈Zn R

λ
n . Then ġ⊗Rn is an fgc centreless Lie torus of type (∆,Zn)

with (ġ⊗Rn)λα = ġα ⊗Rλ
n for (α, λ) ∈ Q× Zn . We call ġ⊗Rn the untwisted Lie

torus of type (∆,Zn).
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When k is algebraically closed, there is a twisted version of the above ex-
ample which constructs a subalgebra L(ġ,σ) of ġ⊗Rn from a finite dimensional
(split) simple Lie algebra ġ and an n-tuple σ of commuting finite order automor-
phisms of ġ .3 The algebra L(ġ,σ) is called a nullity n multiloop Lie algebra. If
the common fixed point algebra ġσ is nonzero, then L(ġ,σ) is an fgc centreless
Lie torus of nullity n relative to some Q×Λ grading on L(ġ,σ) [24, Thm. 5.1.4].
Conversely, any fgc centreless Lie torus of nullity n is isomorphic to L(ġ,σ) for
some ġ and σ as above with ġσ 6= 0 [5, Thm. 3.3.1].

We will recall some other constructions of Lie tori in Section 8.

We now prove three lemmas about Lie tori using sl2 -theory. In each lemma
we assume that L is a Lie torus of type (∆,Λ), where we recall that we are
assuming that Λ is a finitely generated free abelian group.

The first lemma is an analogue for Lie tori of the well-known fact that
any associative Λ-torus is a domain. (See Section 8 to recall the definition of an
associative torus.)

Lemma 3.5. If α, β ∈ ∆× with 〈β, α∨〉 < 0, 0 6= xα ∈ Lα and 0 6= yβ ∈ Lβ ,
then ad(xα)−〈β,α

∨〉yβ 6= 0.

Proof. Because of our assumptions on Λ, we know that we can give Λ a linear
order (for example the lexicographic order relative to some Z-basis of Λ). Given
nonzero x ∈ L , this order on Λ allows us to speak of the nonzero component of
highest degree of x .

Suppose for contradiction that ad(xα)−〈β,α
∨〉yβ = 0. Then replacing xα and

yβ by their nonzero components of highest degree in the Λ-grading, we can assume
that xα ∈ Lλα and yβ ∈ Lµβ , where λ, µ ∈ Λ. Thus, since the spaces Lλα and Lµβ
are 1-dimensional, we have ad(eλα)−〈β,α

∨〉eµβ = 0. But, by Remark 3.2, eµβ lies in

a finite dimensional Sλα -submodule of L . Further, by (1), eµβ is an eigenvector

for ad(hλα) with eigenvalue 〈β, α∨〉 < 0. Therefore from the classification of finite
dimensional irreducible Sλα -modules, we have ad(eλα)−〈β,α

∨〉eµβ 6= 0.

The second lemma is an analogue for Lie tori of the well-known fact that
any invertible element in an associative Λ-torus is homogeneous.

Lemma 3.6. Suppose [x, y] ∈ L0
0 , where 0 6= x ∈ Lα , 0 6= y ∈ L−α and

α ∈ ∆× . Then x ∈ Lλα and y ∈ L−λ−α for some λ ∈ Λ.

Proof. We order Λ as in the previous proof. Let x
µ(x)
α ∈ Lµ(x)

α be the
nonzero Λ-homogeneous component of x of highest degree µ(x), and let y

µ(y)
−α ∈

Lµ(y)
−α be the nonzero Λ-homogeneous component of y of highest degree µ(y).

Then, [x, y]− [x
µ(x)
α , y

µ(y)
−α ] is the sum of Λ-homogeneous terms of degree less than

µ(x)+µ(y). But [x
µ(x)
α , y

µ(y)
−α ] 6= 0 by Lemma 3.5 with β = −α . So µ(x) = −µ(y).

Similarly if we use lowest degrees ν(x) and ν(y), we get ν(x) = −ν(y). So µ(x) =

−µ(y) ≤ −ν(y) = ν(x), which implies that x = x
µ(x)
α . Similarly, y = y

µ(y)
−α .

3In [5] and [24], L(ġ,σ) is denoted by Mm(ġ,σ).
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Lemma 3.7. Suppose L is a Lie torus of type (∆,Λ). If {α1, . . . , α`} is a base
for the root system ∆, then the algebra L is generated by

⋃`
i=1 (Lαi ∪ L−αi).

Proof. Let M be the subalgebra of L that is generated by the indicated set,
and let E× = {α ∈ ∆× | Lα ⊆ M} . In view of (LT3), it suffices to show that
E× = ∆× . Now it follows from [5, (4)] that E× is stable under the action of the
Weyl group of ∆. Hence, ∆ind ⊆ E× , and we are done if ∆ is reduced. Assume
now that ∆ is not reduced, and let α be a root of smallest length in ∆× . It remains
to show that 2α ∈ E× . To verify this, it is enough to show that eσ2α ∈ ad(e0

α)Lα
for all σ ∈ Λ. This is an easy exercise using representations of the algebra S0

α .
We leave the details to the reader.

4. Centreless Lie tori

In this section, we assume that L is a centreless Lie torus of type (∆,Λ) and we
recall the basic facts that we will need about L . All of these facts were announced
by Neher in [26] or [28, §5.8(c)]. For the convenience of the reader, we provide a
proof or a reference for a proof in each case.

Set
g = L0 and h = L0

0.

Then, by [5, Prop. 1.2.2], g is a finite dimensional split simple Lie algebra with
splitting Cartan subalgebra h . Moreover [ibid], ∆ can be uniquely identified (by
means of a linear isomorphism of spank(∆) onto h∗ ) as a root system in h∗ in
such a way that

∆ind = ∆k(g, h)

and [e0
α, f

0
α] = α∨ for α ∈ ∆×ind . We will subsequently always make this identifica-

tion. In that case we have [ibid]

[eλα, f
λ
α ] = α∨ for (α, λ) ∈ suppQ×Λ(L), α ∈ ∆×

and
Lα = {x ∈ L | [h, x] = α(h)x for h ∈ h} for α ∈ Q . (2)

(Here α∨ ∈ (h∗)∗ = h .)

Note that (2) tells us that h is a split toral k-subalgebra of L and that the
root grading of L is the root-space decomposition of L relative to h .

Recall that an algebra A is said to be prime if the product of any two
nonzero ideals of A is nonzero.

Proposition 4.1. L is prime.

Proof. The main tool in the argument is Lemma 3.5, which tells us that if
α, β ∈ ∆× with 〈β, α∨〉 < 0, 0 6= xα ∈ Lα and 0 6= yβ ∈ Lβ , then

0 6= ad(xα)−〈β,α
∨〉yβ ∈ Lwα(β), (3)

where wα is the reflection along α in the Weyl group W of ∆.
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Suppose now that I is a nonzero ideal of L . By (2), I is Q-graded; that
is I =

⊕
α∈∆ Iα , where Iα = I ∩ Lα . Let ∆×(I) = {α ∈ ∆× | Iα 6= 0} . We will

see that ∆×(I) = ∆× .

Note first that ∆×(I) 6= ∅ . Indeed otherwise we have I ⊆ L0 , which
implies [I,Lα] = 0 for α ∈ ∆× and hence [I,L] = 0 by (LT3), contradicting our
assumption that L is centreless.

We now claim that W∆×(I) ⊆ ∆×(I). To see this, it is enough to show
that wα(β) ∈ ∆×(I) for α ∈ ∆× and β ∈ ∆×(I). For this we can assume that
〈β, α∨〉 < 0 in which case our claim follows taking yβ ∈ Iβ in (3). Note that in
particular, if β ∈ ∆×(I), we have −β = wβ(β) ∈ ∆×(I).

Next we claim that ∆×(I) and ∆× \∆×(I) are orthogonal. Indeed, if not,
we can choose α ∈ ∆×(I) and β ∈ ∆× \∆×(I) with 〈β, α∨〉 6= 0. Replacing, α
by −α if necessary, we can assume that 〈β, α∨〉 < 0. But then taking xα ∈ Iα in
(3), we see that wα(β) ∈ ∆×(I) and hence (by the previous claim) β ∈ ∆×(I).
This contradiction proves the claim. It then follows from the irreducibility of ∆
that ∆×(I) = ∆× .

To prove the proposition, suppose for contradiction that I and J are
nonzero ideals of L with [I,J ] 6= 0. Then ∆×(I) = ∆× and ∆×(J ) = ∆× .
Hence, for any α ∈ ∆× , we have α ∈ ∆×(I) and −α ∈ ∆×(J ). So Iα 6= {0} and
J−α 6= {0} . Since [Iα,J−α] = 0, this contradicts (3) (with β = −α).

Let C = Ck(L). Then C =
⊕

λ∈ΛC
λ is a Λ-graded commutative asso-

ciative algebra, where Cλ := {c ∈ C | c(Lµ) ⊆ Lµ+λ for µ ∈ Λ} [12, Lemma
3.11(1)].

Set

Γ = Γ(L) := suppΛ(C).

Then Γ is a subgroup of Λ [ibid], and

C ' k[Γ], (4)

as graded algebras, where k[Γ] is the group algebra of Γ with its natural Λ-grading
[12, Prop. 3.13(ii)].

Recall (see Section 3) that Λ is called the external-grading group of L .
Note also that L it is naturally graded by the quotient group Λ/Γ, and we call
the group Λ/Γ the quotient external-grading group of L .

The following proposition follows from [5, Lemma 1.3.7 and Prop. 1.4.1]:

Proposition 4.2. Suppose that L is fgc. Then

(i) Lλ is finite dimensional for λ ∈ Λ.4

(ii) Λ/Γ is finite.

4Part (i) is true without the assumptions that L is fgc and centreless [27, Thm. 5], but the
proposition as stated is all that we need.
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5. The central closure of an fgc centreless Lie torus

In this section we assume that L is an fgc centreless Lie torus of type (∆,Λ) and
we discuss the central closure of L . We continue using the notation h = L0

0 ,
C = Ck(L) and Γ = Γ(L) introduced in Section 4.

Taking into account Proposition 4.2, we now fix a list λ1, . . . , λm of repre-
sentatives of the cosets of Γ in Λ, with λ1 = 0. For α ∈ ∆ and 1 ≤ i ≤ m , we
choose a (finite) k-basis Bi

α for Lλiα . For α ∈ ∆ we let Bα = ∪mi=1B
i
α ; and we let

B = ∪α∈∆Bα . Note that B is finite since ∆ = suppQ(L) is finite.

Proposition 5.1.

(i) If α ∈ Q, Lα is a C -submodule of L and Bα is a Λ-homogeneous C -basis
for Lα . Hence Lα is a free C -module of finite rank.

(ii) B is a Q× Λ-homogeneous C -basis for L. Hence L is a free C -module of
finite rank.

Proof. Since (ii) follows from (i), so we only need to check (i). First, the fact
that Lα is a C -submodule of L follows from (2). Also Bα is Λ-homogeneous by
definition. Finally, the fact that Bα is a C -basis for Lα is easily checked directly
using (4).

The centroid C of L is an integral domain (for example by (4)). Let C̃ be

the quotient field of C , in which case C̃ is an extension field of k . Let

L̃ := C̃ ⊗C L.

Then L̃ is a algebra over C̃ which we call the central closure of L .

Now L is prime (by Proposition 4.1), perfect and fgc. So L̃ is a finite

dimensional central simple algebra over C̃ , and the map x 7→ x⊗1 identifies L as
a C -subalgebra of L̃ . (See for example [6, §3], which uses results from [17, §1].)

It follows from Proposition 5.1(ii) that B is a C̃ -basis of L̃ and hence

dimC̃(L̃) = rankC(L). (5)

Remark 5.2. If L and L′ are fgc centreless Lie torus that are isomorphic (as

k-algebras), it follows easily using Remark 1.1(ii) that L̃ and L̃′ are isomorphic
(as k-algebras).

Next let
h̃ = C̃h

in C̃ . It is clear that h̃ is a nonzero split toral C̃ -subalgebra of L̃ , and hence L̃ is
isotropic (see Section 2). We will show in Theorem 5.4 that h̃ is a maximal split

toral C̃ -subalgebra of L̃ .

We first look at the root space decomposition of C̃ relative to h̃ . For this, let
h∗ = Homk(h,k) be the dual space of h over k (as before), and h̃∗ = HomC̃(h̃, C̃)

be the dual space of h̃ over C̃ .
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Proposition 5.3.

(i) B0
0 is a k-basis for h = L0

0 and B0
0 is a C̃ -basis for h̃. Hence dimC̃(h̃) =

dimk(h), and any k-basis for h is a C̃ -basis for h̃.

(ii) There exists a unique k-linear map α 7→ α̃ of h∗ into h̃∗ with α̃|h = α for

α ∈ h∗ . Under this map, any k-basis for h∗ is sent to a C̃ -basis for h̃∗ ; and
we have

h = {h̃ ∈ h̃ | α̃(h̃) ∈ k for α ∈ ∆}. (6)

(iii) Let ∆̃ = {α̃ | α ∈ ∆} and Q̃ = {α̃ | α ∈ Q}. Then ∆̃ is an irreducible finite

root system over C̃ in h̃∗ of the same type as ∆,5 and we have Q̃ = Q(∆̃).

(iv) Let L̃α̃ := {x̃ ∈ L̃ | [h̃, x̃] = α̃(h̃)x̃ for h̃ ∈ h̃} for α ∈ Q. Then L̃α̃ = C̃Lα
for α ∈ Q and L̃ =

⊕
α̃∈∆̃ L̃α̃ .

(v) ∆C̃(L̃, h̃) = ∆̃.

(vi) If α ∈ ∆, then Bα is a C̃ -basis for L̃α̃ and hence rankC(Lα) = dimC̃(L̃α̃).

Proof. B0
0 was chosen as a k-basis for h = L0

0 , and B0
0 is part of the C̃ -basis

B for L̃ . This implies (i); (ii) follows from (i) and the fact that ∆ contains a
k-basis of h∗ ; and (iii) follows from (ii).

Next L̃ =
∑

α∈Q C̃Lα and C̃Lα ⊆ L̃α̃ for α ∈ Q . Since the sum
∑

α̃∈Q̃ L̃α̃
is direct, this implies (iv). Also, if α ∈ Q , we have L̃α̃ 6= {0} ⇐⇒ C̃Lα 6= 0 ⇐⇒
Lα 6= 0 ⇐⇒ α ∈ ∆. (Here we have used the equality ∆ = suppQ(L) from
(LT1).) So we have (v). Finally, if α ∈ Q , then Bα is part of a C -basis for L by
Proposition 5.1, so (vi) follows from (iv).

Theorem 5.4. Suppose that L is an fgc centreless Lie torus of type (∆,Λ) with

central closure L̃ = C̃L. Let h = L0
0 and h̃ = C̃h. Then, h̃ is a maximal split

toral C̃ -subalgebra of L̃.

Proof. We first claim that if α ∈ ∆× and x̃ is a nonzero element of L̃α̃ , then
ad(x̃)2 maps L̃−α̃ bijectively onto L̃α̃ . Now L̃−α̃ and L̃α̃ have the same dimension

over C̃ , since they are paired by the Killing form of L̃ over C̃ . Hence to prove
the claim it is enough to show that ad(x̃)2|L̃−α̃ is injective. For this, we argue

by contradiction. Suppose that ad(x̃)2ỹ = 0 for some nonzero element ỹ of L̃−α̃ .
Now, by Proposition 5.3(iv), x̃ = c−1x and ỹ = d−1y , where c and d are nonzero
elements of C , 0 6= x ∈ Lα and 0 6= y ∈ L−α . Then ad(x)2y = 0. But this
contradicts Lemma 3.5 (with β = −α), so we have the claim.

To prove the theorem, let t be a maximal split toral C̃ -subalgebra of L̃
containing h̃ , and let E = ∆C̃(L̃, t). By Theorem 2.2(i), E is an irreducible finite

5In fact, one can check that ∆̃ is isomorphic to the root system obtained from ∆ by base
field extension from k to C̃ (as described in [15, Chap. VI, §1, Remark 1]).
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root system over C̃ in t∗ . We choose a Z-basis for the root lattice Q(E) of E
and order Q(E) using the corresponding lexicographic order. For α ∈ ∆ we let

Eα̃ = {ε ∈ E | ε|h̃ = α̃}.

Since [t, h̃] = 0, we have [t, L̃α̃] ⊆ L̃α̃ for α ∈ ∆. Then, since h̃ ⊆ t , it follows
easily that

L̃α̃ =
⊕
ε∈Eα̃

L̃ε. (7)

for α ∈ ∆. (Here L̃α̃ denotes a root space relative to h̃ , whereas L̃ε denotes a
root space relative to t .)

Now let α ∈ ∆× . Then, Eα̃ 6= ∅ by (7). Let ε be the maximum root in Eα̃ ,

and fix nonzero x ∈ L̃ε . Then, again by (7), x ∈ L̃α̃ . So, as we saw above, ad(x)2

maps L̃−α̃ bijectively onto L̃α . It follows from this that Eα̃ = E−α̃ + 2ε . Since
E−α̃ = −Eα̃ , we have Eα̃ = −Eα̃ + 2ε . Hence, if ζ ∈ Eα̃ , we have ζ = −η+ 2ε for
some η ∈ Eα̃ , which gives 2ε = ζ + η . But if ζ < ε this forces 2ε < ε+ η ≤ 2ε , a
contradiction. Therefore Eα̃ = {ε} ; that is Eα̃ is a singleton.

Finally, to show that t ⊆ h̃ , let t ∈ t . Let {α1, . . . , α`} be a base for the
root system ∆, and choose ε1, . . . , ε` in E with Eα̃i = {εi} for 1 ≤ i ≤ ` . But,

by Proposition 5.3(ii), α̃1, . . . , α̃` is a C̃ -basis for h̃∗ , and so we can choose h ∈ h̃
such that α̃i(h) = εi(t) for 1 ≤ i ≤ ` . Then it follows from (7) (with α = αi )

that ad(h) = ad(t) on L̃α̃i for each i . Similarly, since E−α̃i = −Eα̃i = {−εi} ,
ad(h) = ad(t) on L̃−α̃i for each i . So, by Lemma 3.7, ad(h− t) = 0 on L̃ . Since

L̃ is centreless, t = h ∈ h̃ .

Corollary 5.5. h is a maximal split toral k-subalgebra of L.

Proof. Suppose that t is a split toral k-subalgebra of L containing h . Then
t̃ := C̃t is a split toral C̃ -subalgebra of L̃ containing h̃ . Consequently, by Theorem
5.4, t̃ = h̃ .

Now let t ∈ t . So t ∈ t̃ = h̃ . But adL(t) is diagonalizable linear operator

on L over k , and hence adL̃(t) is a diagonalizable linear operator on L̃ over C̃
with eigenvalues lying in k . So α̃(t) ∈ k for α ∈ ∆. Thus, by (6), t ∈ h .

The next corollary was announced in [7] as Theorem 5.5.1 and used there
as one of the main tools in the classification of nullity 2 multiloop Lie algebras.6 7

Corollary 5.6. The relative type of L̃ is the root-grading type of L.

Proof. By Theorem 5.4, the relative type of L̃ is the type of the root system
∆C̃(L̃, h̃), which, by Proposition 5.3(iii) and (v), has the same type as ∆.

6In [7], each result in the sequence Theorem 5.5.1, Corollary 5.5.2, Theorem 9.2.1, Theorem
12.2.1, Table 2, Theorem 13.2.1(b) and the classification Theorem 13.3.1 uses its predecessor.

7The classification of nullity 2 multiloop Lie algebras has subsequently also been obtained
by Gille and Pianzola in [20] as a consequence of their classification of R2 -loop simple adjoint
groups and algebras using cohomological methods .
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6. Some isomorphism invariants

Suppose that L is an fgc centreless Lie torus L of type (∆,Λ) with centroid C .
We now describe four entities that we then show are isomorphism invariants of L .

Recall first that we defined the root-grading type of L and the nullity of L
in Definition 3.3. Next, we define the centroid rank of L to be

crk(L) := rankC(L).

Finally, it follows from [5, (4)] that if α, β ∈ ∆× are in the same orbit under
the Weyl group of L , then rankC(Lα) = rankC(Lβ). Consequently, this equality
of rank holds whenever α, β have the same length. So, we may define rksh(L) to
be rankC(Lα), where α is a short root8 in ∆× . If there exists a long root (resp. an
extra long root) α in ∆× we define rklg(L) (resp. rkex(L)) to be rankC(Lα).
Putting these quantities together, we define a vector of positive integers

rkv(L) =


(rksh(L)) if ∆ is reduced and simply laced,
(rksh(L), rklg(L)) if ∆ is reduced and not simply laced,
(rksh(L), rkex(L)) if ∆ is of type BC1,
(rksh(L), rklg(L), rkex(L)) if ∆ is of type BC`, ` ≥ 2,

which we call the root-space rank vector of L .

Proposition 6.1. Suppose L and L′ are fgc centreless Lie tori with central
closures L̃ and L̃′ respectively. If L̃ and L̃′ are isomorphic as Lie algebras over
k, then

(i) The root-grading type of L equals the root-grading type of L′ .

(ii) The nullity of L equals the nullity of L′ .

(iii) crk(L) = crk(L′).

(iv) rkv(L) = rkv(L′).

Proof. We use the notation (for example h = L0
0 ) of Sections 4 and 5; and we

use corresponding primed notation (for example h′ = L′00 ) for L′ . Let ϕ : L̃ → L̃′
be a k-algebra isomorphism.

(i): It follows from Lemma 2.1 (with F = C and F ′ = C ′ ) that L̃ and L̃′
have the same relative type. Hence, by Corollary 5.6, we have (i).

(ii): This is easy to see (and does not require the results of Section 5).
Indeed, by Proposition 4.2(ii), rankZ(Λ) = rankZ(Γ) and similarly rankZ(Λ′) =

rankZ(Γ′). So it suffices to show that rankZ(Γ) = rankZ(Γ′). Now C̃ = Ck(L̃)

and C̃ ′ = Ck(L̃′), so C̃ ' C̃ ′ . But, by (4), C̃ (resp. C̃ ′ ) is isomorphic to
the field of rational functions in rankZ(Γ) (resp. rankZ(Γ′)) variables over k , so
rankZ(Γ) = rankZ(Γ′) as desired.

8Our root length terminology follows [1]. Roots of minimum length in ∆× are called short,
roots in ∆× ∩ (2∆×) are called extra-long, and all other roots in ∆× are called long.
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(iii): This is clear (and does not use Theorem 5.4). Indeed, it follows easily

from Remark 1.1(ii) (applied to L̃ and L̃′ ) that dimC̃(L̃) = dim
C̃′(L̃′). So, by (5),

rankC(L) = rankC′(L′).

(iv): By Theorem 5.4, h̃ is a maximal split toral C̃ -subalgebra of L̃ . So, by

Lemma 2.1 applied to L̃ and L̃′ , ϕ(h̃) is a maximal split toral C̃ ′ -subalgebra of

L̃′ . Thus, by Theorem 2.2(ii), we can assume that ϕ(h̃) = h̃′ . Now by Proposition

5.3(iii) and (v), we have Q̃ = Q(∆̃) and ∆C̃(L̃, h̃) = ∆̃, as well as corresponding

equations for L′ . Thus, by Lemma 2.1 applied to L̃ and L̃′ , there exists a group
isomorphism ρ : Q̃ → Q̃′ such that ρ(∆̃) = ∆̃′ and dimC̃(L̃α̃) = dim

C̃′(L̃′ρ(α̃))

for α̃ ∈ Q̃ . Finally, we let τ : Q → Q′ be the group isomorphism such that the
following diagram commutes:

Q
τ−−−→ Q′ỹ ỹ

Q̃
ρ−−−→ Q̃′

Then τ(∆) = ∆′ ; and we have rankC(Lα) = rankC′(L′τ(α)) for α ∈ ∆ by

Proposition 5.3(vi). Finally, τ extends to a k-linear isomorphism h∗ → h′∗ which
maps ∆ onto ∆′ . This extension is an isomorphism of root systems, and so it
maps short roots, long roots and extra long roots in ∆× to roots of corresponding
length in ∆′× .

By Remark 5.2, the following result follows immediately from Proposi-
tion 6.1.

Theorem 6.2. If L and L′ are fgc centreless Lie tori that are isomorphic as
k-algebras, then (i), (ii), (iii) and (iv) in Proposition 6.1 hold. That is, the root-
grading type, the nullity, the centroid rank, and the root-space rank vector are
isomorphism invariants of an fgc centreless Lie torus.

The above proofs also show that the rank of L0 over C is an isomorphism
invariant. However, this invariant is redundant, since it can be computed from the
root-grading type, the centroid rank and the root-space rank vector of L .

If L is an fgc centreless Lie algebra that possesses the graded structure of
a Lie torus, we can now unambiguously speak of the root-grading type, the nullity,
the centroid rank and the root-space rank vector of L , since these entities do not
depend on the graded structure.

Remark 6.3. If L is an fgc centreless Lie torus (or more generally any prime
perfect fgc Lie algebra), the (Tits) index of L is the index, as defined in [34, §2.3],
of the connected component of the automorphism group of the finite dimensional
central simple Lie algebra L̃ over C̃ . (See Section 5 for the notation.) The index of
L is a (non-rational) isomorphism invariant of L [7, Lemma 14.1.5]. We won’t use
the index in this article. However, to provide a link to recent work on multiloop
algebras [5, 7, 19, 20], we will later display without proof the index of each fgc
centerless Lie torus (see Table 1 and Remark 9.3).
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7. Isotopy

Suppose that L is a Lie torus of type (∆,Λ) and L′ is a Lie torus of type (∆′,Λ′).
An isotopy of L onto L′ is an algebra isomorphism ϕ : L → L′ such that

ϕ(Lλα) = L′ϕe(λ)+ϕs(α)
ϕr(α) ,

for α ∈ Q and λ ∈ Λ, where ϕr : Q→ Q′ and ϕe : Λ→ Λ′ are group isomorphisms
and ϕs : Q→ Λ′ is a group homomorphism. In that case, it is easy to check using
(LT2)(i) and (LT4) that the maps ϕr , ϕe and ϕs are uniquely determined. It is
also easy to check that the composite of two isotopies is an isotopy and that the
inverse of an isotopy is an isotopy. We say that L and L′ are isotopic9 if there
exists an isotopy from L onto L′ .

Finally, we define a bi-isomorphism10 of L onto L′ to be an isotopy
ϕ : L → L′ with ϕs = 0. If such a bi-isomorphism exists we say that L and
L′ are bi-isomorphic.

If L is bi-isomorphic to L′ , then by definition L is isotopic to L′ ; however
the converse is not true [5, Example 4.3.1]. Also, if L is isotopic to L′ , then
by definition L is isomorphic to L′ . We will consider the converse statement in
Section 11.

We next show that Λ/Γ(L) is an isotopy invariant of a centreless Lie torus.

Proposition 7.1. Suppose that L and L′ are centreless Lie tori of type (∆,Λ)
and (∆′,Λ′) respectively. If L is isotopic to L′ , then Λ/Γ(L) ' Λ′/Γ(L′).

Proof. Let ϕ : L → L′ be an isotopy, C = C(L) and C ′ = C(L′). Since ϕ
is an isomorphism, we have an induced isomorphism χ : C → C ′ as in Remark
1.1(ii). Then for λ, µ ∈ Λ and α ∈ Q , we have, setting λ′ = ϕe(µ) + ϕs(α), that

χ(Cλ)(L′λ
′

ϕr(α)) = χ(Cλ)ϕ(Cµ
α) = ϕ(CλLµα) = ϕ(Lµ+λ

α ) = L′ϕe(λ)+λ′

ϕr(α) .

But for α ∈ Q , ϕe(Λ) + ϕs(α) = Λ′ . Hence χ(Cλ) ⊆ (C ′)ϕe(λ) for λ ∈ Λ. Thus,
since ϕe is invertible, χ(Cλ) = (C ′)ϕe(λ) for λ ∈ Λ. Hence ϕe(Γ(L)) = Γ(L′), and
therefore ϕe induces the desired isomorphism.

It does not follow from Proposition 7.1 that Λ/Γ(L) is an isomorphism
invariant. We will consider this issue later in Section 11 for fgc centreless Lie tori.

We have the following simple characterization of isotopies of centreless Lie
tori.

Theorem 7.2. Suppose that L and L′ are centreless Lie tori of type (∆,Λ)
and (∆′,Λ′) respectively. Let h = L0

0 and h′ = L′00 . If ϕ : L → L′ is an algebra
isomorphism, then

ϕ is an isotopy ⇐⇒ ϕ(h) = h′.

9The term isotopic was defined in a different way in [5, Def. 2.2.9] and [8, Def. 5.5], but it is
easy to check that the definitions are equivalent.

10Bi-isomorphism is short for the more suggestive but cumbersome term bi-isograded-
isomorphism.
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Proof. The implication “⇒” is trivial. To prove the reverse implication,
suppose that ϕ(h) = h′ .

We use the notation of Section 4 for L , and we set

Λα = {λ ∈ Λ | Lλα 6= 0}

for α ∈ ∆× . We also use primed versions of this notation for L′ . Note that if
α ∈ ∆× , then Λ−α = −Λα by LT2(ii).

Let ϕ̂ : h∗ → (h′)∗ be the transpose of ϕ−1|h′ : h′ → h . Then, by
(2), ϕ(Lα) = L′ϕ̂(α) for α ∈ h∗ . So ϕ̂(∆) = ∆′ and hence ϕ̂(Q) = Q′ . Let
ϕr = ϕ̂|Q : Q → Q′ . Then ϕr : Q → Q′ is a group isomorphism such that
ϕr(∆) = ∆′ (and hence also ϕr(∆

×) = ∆′× ) and

ϕ(Lα) = L′ϕr(α)

for α ∈ Q .

Next let α ∈ ∆× . If λ ∈ Λα , then 0 6= eλα ∈ Lα , 0 6= fλα ∈ L−α and
[eλα, f

λ
α ] ∈ h . Thus, since ϕ(h) = h′ , we have 0 6= ϕ(eλα) ∈ L′ϕr(α) , 0 6= ϕ(fλα) ∈

L′−ϕr(α) and [ϕ(eλα), ϕ(fλα)] ∈ h′ . So, by Lemma 3.6, we have ϕ(eλα) ∈ L′ρα(λ)
ϕr(α)

and ϕ(fλα) ∈ L′−ρα(λ)
−ϕr(α) for some ρα(λ) ∈ Λ′ϕr(α) . So counting dimensions, we have

ϕ(Lλα) = L′ρα(λ)
ϕr(α) and ϕ(L−λ−α) = L′−ρα(λ)

−ϕr(α) . Since ϕ is an isomorphism, we have a

bijection ρα : Λα → Λ′ϕr(α) such that

ϕ(Lλα) = L′ρα(λ)
ϕr(α) and ϕ(L−λ−α) = L′−ρα(λ)

−ϕr(α) (8)

for λ ∈ Λα .

If α ∈ ∆× and λ ∈ Λα , we have ϕ(L−λ−α) = L′ρ−α(−λ)
ϕr(−α) since −λ ∈ −Λα =

Λ−α . Comparing this with the second equation in (8), we obtain

ρ−α(−λ) = −ρα(λ) (9)

We next claim that if α, β ∈ ∆× , λ ∈ Λα and µ ∈ Λβ , we have11

µ− 〈β, α∨〉λ ∈ Λwα(β) (10)

and
ρwα(β)(µ− 〈β, α∨〉λ) = ρβ(µ)− 〈β, α∨〉ρα(λ). (11)

Indeed, this is clear if 〈β, α∨〉 = 0. Next, suppose 〈β, α∨〉 < 0. Then, by Lemma

3.5, we have 0 6= ad(Lλα)−〈β,α
∨〉Lµβ ⊆ L

µ−〈β,α∨〉λ
wα(β) , which implies (10). Moreover,

counting dimensions, we see that Lµ−〈β,α
∨〉λ

wα(β) = ad(Lλα)−〈β,α
∨〉Lµβ . Applying ϕ we

get

Lρwα(β)(µ−〈β,α∨〉λ)

ϕr(wα(β)) = ad(Lρα(λ)
ϕr(α))

−〈β,α∨〉Lρβ(µ)

ϕr(β),

which implies (11). Finally, if 〈β, α∨〉 > 0, then 〈β, (−α)∨〉 < 0 and −λ ∈ −Λα =
Λ−α . Hence, by our previous case, we have (10) and (11) with α replaced by −α

11The equalities (10) and (12) are well-known (see for example [5, §1.1] and the earlier references
there), but they arise naturally here so we give the arguments.
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and λ replaced by −λ , which gives (10) and (11) for α and λ using (9). So we
have the claim.

To simplify notation, we now denote the reduced irreducible finite root
system ∆ind by E . Let W denote the Weyl group of ∆ (= the Weyl group of
E ). If α ∈ E× , then 0 ∈ Λα by LT(i). So by (10) (with λ = 0), we see that
Λβ ⊆ Λwα(β) for α ∈ E× , β ∈ ∆× . Hence Λβ = Λw(β) for β ∈ ∆× and w ∈ W .
Thus

Λα = Λβ (12)

if α, β ∈ ∆× have the same length.

Define σ : E× → Λ′ by σ(α) = ρα(0). Putting λ = µ = 0 in (11), we
obtain

σ(wα(β)) = σ(β)− 〈β, α∨〉σ(α) (13)

for α, β ∈ E× . Let {α1, . . . , αr} be a base for the root system ∆, and choose
ϕs ∈ HomZ(Q,Λ′) such that ϕs(αi) = σ(αi) for 1 ≤ i ≤ r . Define δ : E× → Λ by
δ(α) = σ(α)− ϕs(α). Then, since ϕs is Z-linear, it follows from (13) that

δ(wα(β)) = δ(β)− 〈β, α∨〉δ(α) (14)

for α, β ∈ E× . Now the set X := {α ∈ E× | δ(α) = 0} contains {α1, . . . , αr} ; and
so, by (14), X is stable under the action of W . Since E is reduced, this implies
that X = E× , so σ(α) = ϕs(α) for α ∈ E× . Hence

ρα(0) = ϕs(α)

for α ∈ E× .

Next for α ∈ E× , we define τα : Λα → Λ′ by

τα(λ) = ρα(λ)− ϕs(α). (15)

Observe that τα(0) = 0.

Suppose that α, β ∈ E× . Then, since ϕs is Z-linear, we have ϕs(wα(β)) =
ϕs(β)− 〈β, α∨〉ϕs(α). Subtracting this from (11) we see that

τwα(β)(µ− 〈β, α∨〉λ) = τβ(µ)− 〈β, α∨〉τα(λ) (16)

for λ ∈ Λα , µ ∈ Λβ . Taking λ = 0, we have τwα(β)(µ) = τβ(µ) for µ ∈ Λβ . Hence

τw(β) = τβ (17)

for β ∈ E× and w ∈ W .

Now fix a short root γ in E× , and let S = Λγ , which does not depend on
the choice of γ by (12). It is known that 0 ∈ S , −S = S , S + 2Λ ⊆ S , Λα ⊆ S
for α ∈ E× and S generates the group Λ (see for example [5, Lemma 1.1.12]).
Hence S contains a Z-basis {ν1, . . . , νn} for Λ [1, Prop. II.1.11].

We define τ : S → Λ′ by τ = τγ , which does not depend on the choice of γ
by (17). We claim next that

τα = τ |Λα (18)
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for α in E× . Indeed, if α has the same length as γ , we already know that (18)
holds. So we can assume that α is long and 〈γ, α∨〉 = −1. But then taking β = γ
and µ = 0 in (16), we see that τwα(γ)(λ) = τα(λ) for λ ∈ Λα , and so τ(λ) = τα(λ)
for λ ∈ Λα .

Next taking α = γ and β = −γ in (16), we see using (17) that

τ(µ+ 2λ) = τ(µ) + 2τ(λ)

for µ, λ ∈ S .

Define ϕe ∈ Hom(Λ,Λ′) by ϕe(νi) = τ(νi) for 1 ≤ i ≤ n . Further, define
ε : S → Λ′ by ε(λ) = τ(λ)− ϕe(λ). Then ε(νi) = 0 for 1 ≤ i ≤ n and

ε(µ+ 2λ) = ε(µ) + 2ε(λ) (19)

for µ, λ ∈ S . So, taking µ = −λ , we have ε(−λ) = −ε(λ) for λ ∈ S . Hence
ε(±νi) = 0 for 1 ≤ i ≤ n .

It follows by induction on k using (19) that

ε(µ+ 2
k∑
i=1

λi) = ε(µ) + 2
k∑
i=1

ε(λi)

for µ, λ1, . . . , λk ∈ S . But each λ ∈ S is the sum of elements from {±ν1, . . . ,±νn}
and ε vanishes on the elements of this set. So we have ε(µ + 2λ) = ε(µ) for
µ, λ ∈ S . Therefore by (19), 2ε(λ) = 0 for λ ∈ S , and hence, since Λ has no
2-torsion, ε = 0. So τ(λ) = ϕe(λ) for λ ∈ S . Thus, by (15) and (18), we have

ρα(λ) = ϕe(λ) + ϕs(α). (20)

for α ∈ E× , λ ∈ Λα . So by (8), we have

ϕ(Lλα) ⊆ L′ϕe(λ)+ϕs(α)
ϕr(α) (21)

for α ∈ E× , λ ∈ Λα . But, by Lemma 3.7, every element of L is the sum of
products of elements chosen from Lλα , α ∈ E× , λ ∈ Λ. So (21) holds for α ∈ Q ,
λ ∈ Λ.

Finally, the isomorphism ϕ−1 : L′ → L satisfies an inclusion of exactly
the same form as (21). Using this it is easy to check that ϕe : Λ → Λ′ is an
isomorphism and hence that equality holds in (20) for α ∈ Q , λ ∈ Λ. We leave
these arguments to the reader.

8. The structure of fgc centreless Lie tori

For the rest of the article we assume that k is algebraically closed.

In this section, we recall the structure theorems for fgc centreless Lie tori.
We combine these results into one theorem, which states that any fgc centreless
Lie torus is either classical or exceptional.

Classical Lie tori and, in several cases, exceptional Lie tori are constructed
from associative tori. So we begin the section with a discussion of these graded
algebras.
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Associative tori. Recall [35] that an associative Λ-torus (or simply an associative
torus) is a Λ-graded unital associative algebra A =

⊕
λ∈ΛAλ such that every Aλ

is spanned by an invertible element for λ ∈ Λ. (Equivalently, A is a twisted group
algebra of Λ over k .) In that case, we call the rank of the group Λ the nullity
of A .

It is easy to check that if A is an associative Λ-torus, A′ is an associative
Λ′ -torus, and ϕ : A → A′ is an algebra isomorphism, there exists a group
isomorphism ϕgr : Λ → Λ′ such that ϕ(Aλ) = A′ϕgr(λ) for λ ∈ Λ. Thus it is
not necessary to distinguish between isomorphism and isograded-isomorphism for
associative tori.

If A is an associative Λ-torus, we set Γ(A) := suppΛ(Z(A)). Then Γ(A)
is a subgroup of Λ and Z(A) is a commutative associative Γ(A)-torus.

It is easily checked (and well-known) that any associative torus A is a
domain and hence prime (as a k-algebra or equivalently as a ring).

The simplest example of an fgc associative torus is the Zn -associative torus
Rn = F [t±1

1 , . . . , t±1
n ] with its natural Zn -grading. (If n = 0, Rn = k is graded by

Z0 = {0} .) Another important example is obtained as follows. Let ζ ∈ k× and let
Q(ζ) be the algebra presented by the generators x±1

1 , x±1
2 subject to the inverse

relations xix
−1
i = x−1

i xi = 1, i = 1, 2, and the relation x1x2 = ζx2x1 . Then Q(ζ),
with its natural Z2 -grading, is an associative Z2 -torus which is fgc if and only if
ζ is a root of unity. We call Q(ζ) the quantum torus determined by ζ .

If Ai is an associative Λi -torus for 1 ≤ i ≤ k , then A1 ⊗ · · · ⊗ Ak is an
associative Λ-torus with Λ = Λ1 ⊕ · · · ⊕ Λk . Moreover,

Z(A1 ⊗ · · · ⊗ Ak) = Z(A1)⊗ · · · ⊗ Z(Ak),

and A1 ⊗ · · · ⊗ Ak is fgc if and only if each Ai is fgc.

Any fgc associative torus is isomorphic to a tensor product

A1 ⊗ · · · ⊗ Ak ⊗Rq, (22)

where k ≥ 0, q ≥ 0 and Ai ' Q(ζi) with ζi a root of unity 6= 1 in k× for
i = 1, . . . , k . Moreover, the ζi ’s can be chosen satisfying further restrictions,
and under those restrictions Neeb has given necessary and sufficient conditions for
isomorphism (or equivalently isograded-isomorphism) of two such tensor products
[25, Thm. 4.5] (although a subtle point about determinants of certain integral
matrices is not resolved—see [25, Conjecture 4.2]).

Associative tori with involution. An associative Λ-torus with involution is a
Λ-graded associative algebra with involution (A,−) such that A is an associative
Λ-torus.

If (A,−) is an associative Λ-torus with involution, we use the notation
Γ(A,−) := suppΛ(Z(A,−)). Then Γ(A,−) is a subgroup of Λ and Z(A,−) is a
commutative associative Γ(A,−)-torus. Also we have

Z(A) = Z(A,−)⊕ (Z(A) ∩ A−), (23)

and we say that (A,−) is of first kind (resp. second kind) if Z(A) = Z(A,−)
(resp. Z(A) 6= Z(A,−)). If (A,−) is of second kind, then there exists a nonzero
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homogeneous element s0 ∈ Z(A) ∩ A− , and for any such s0 we have

Z(A) ∩ A− = s0Z(A,−) and A− = s0A+. (24)

Hence
[Γ(A) : Γ(A,−)] = 1 or 2 (25)

according as (A,−) is of first or second kind.

Four basic examples of associative tori with involution are

(Rn, 1), (R1, \), (Q(−1), \) and (Q(−1), ∗),

graded by Zn , Z1 , Z2 and Z2 respectively, where the standard involution \ of
R1 anti-fixes the generator x1 (x\1 = −x1 ); the standard involution \ of Q(−1)
anti-fixes the generators x1 and x2 ; and the reversal involution ∗ of Q(−1) fixes
the generators x1 and x2 .12

If (Ai,−) is an associative Λi -torus with involution for 1 ≤ i ≤ k , then
(A1,−) ⊗ · · · ⊗ (Ak,−) is an associative Λ-torus with involution, where Λ =
Λ1 ⊕ · · · ⊕ Λk ; and we have

Z((A1,−)⊗ · · · ⊗ (Ak,−)) = Z(A1,−)⊗ · · · ⊗ Z(Ak,−).

Any associative torus with involution (A,−) is isomorphic (or equivalently
isograded-isomorphic) to a unique tensor product of the form

(A1,−)⊗ · · · ⊗ (Ak,−)⊗ (Ak+1,−)⊗ (Rq, 1), (26)

where k ≥ 0, q ≥ 0, (Ai,−) ' (Q(−1), \) for i = 1, . . . , k , and (Ak+1,−)
is isomorphic to one of the associative tori with involution (k, 1), (R1, \) or
(Q(−1), ∗) (see [36, Thm. 2.7] or [9, Remark 5.20]). In that case (A,−) is of
second kind if and only if (Ak+1,−) ' (R1, \).

We will use the following lemmas about associative tori.

Lemma 8.1. Suppose that (A,−) is an associative torus with involution. If
(A,−) is not isomorphic to (Q(−1), \) ⊗ (Rq, 1) for q ≥ 0, then [A−,A−] ⊆
A+A+ .

Proof. Now (A,−) is isomorphic to an associative torus with involution of
the form (26). If (Ak+1,−) ' (R1, \), then (A,−) is of second kind, and choosing
s0 as in (24), we have [A−,A−] = [s0A−, s−1

0 A−] ⊆ A+A+ . Also, if k = 0, then
[A−,A−] = 0.

To complete the proof we assume that k ≥ 1, (Ak+1,−) ' (k, 1) or
(Q(−1), ∗), and, if k = 1, (Ak+1,−) ' (Q(−1), ∗). We show by induction that

A−A− = A and A+A+ = A. (27)

First, if k = 1, then (A,−) ' (Q(−1), \) ⊗ (Q(−1), ∗) ⊗ Rq and (27) is easily
checked. Suppose next that k ≥ 2. When (A,−) ' (Q(−1), \)⊗ (Q(−1), \)⊗Rq ,

12The term reversal involution is used since ∗ reverses the order of products of the generators
x±11 , x±12 . So (xi11 x

i2
2 )∗ = xi22 x

i2
1 = (−1)i1i2xi11 x

i2
2 for i1, i2 ∈ Z .
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(27) is again easily checked. Otherwise, we can identify (A,−) = (B,−)⊗ (C,−),
where (B,−) ' (Q(−1), \) and (C,−) is of the form needed to apply our induction
hypothesis. Thus, A+A+ ⊇ (B− ⊗ C−)(B− ⊗ C−) = B−B− ⊗ C−C− = B ⊗ C = A
and A−A− ⊇ (B− ⊗ C+)(B− ⊗ C+) = B−B− ⊗ C+C+ = B ⊗ C = A .

Lemma 8.2.

(i) Suppose that A is an fgc associative Λ-torus. Then [Λ : Γ(A)] is finite.
Further, if X is a graded Z(A)-submodule of A, then X is a free Z(A)-
module of rank ≤ [Λ : Γ(A)], with equality holding if X = A.

(ii) Suppose that (A,−) is an associative Λ-torus with involution. Then A is fgc
and [Λ : Γ(A,−)] is finite. Further, if X is a graded Z(A,−)-submodule of
A, then X is a free Z(A,−)-module of rank ≤ [Λ : Γ(A,−)], with equality
holding if X = A.

Proof. i): This is well-known (see [4, Remark 4.4.2] and the earlier references
there), but we indicate a proof for the convenience of the reader and as a model
for the proof of (ii). Let X be a graded Z(A)-submodule of A , and let X =
suppΛ(X ). Then Γ(A) + X ⊆ X . Thus, X is the union of cosets of Γ(A) in Λ,
so we can choose a set of representatives {µi}i∈I of these cosets. Further, choose
0 6= mi ∈ Aµi for i ∈ I . Then {mi}i∈I is a Z(A)-basis for X , so X is a free
Z(A)-module of rank equal to the cardinality of I . In particular, A is a free
Z(A)-module of rank [Λ : Γ(A)], which must therefore be finite since A is fgc.

(ii): The component associative tori in the tensor product decomposition
(26) of (A,−) are fgc, and hence so is A . So by (i), [Λ : Γ(A)] is finite, and hence,
by (25) [Λ : Γ(A,−)] is finite. The rest of the proof of (ii) is similar to the proof
of (i).

Classical Lie tori. We next recall constructions of some fgc centreless Lie tori
of root-grading type Ar, r ≥ 1; BCr or Br, r ≥ 1; Cr, r ≥ 1; and Dr, r ≥ 4
respectively. Here types B1 and C1 should be interpreted as A1 , and type C2

should be interpreted as B2 .

In each of these constructions, we use Ms(A) to denote the associative
algebra of s× s matrices over A if s ≥ 1 and A an associative algebra. Note that
Ms(A) is therefore also a Lie algebra under the commutator product. Furthermore
Ms(A) is a free left A-module with basis {eij}1≤i,j≤s , where the action of A on
Ms(A) is by left multiplication on entries and where eij denotes the (i, j)-matrix
unit.

In the last three constructions we will use the notation Jp := (δi,p+1−j) ∈
Mp(k), for p ≥ 1. In other words, Jp is the p × p matrix with ones on the
anti-diagonal and zeroes elsewhere.

Constructions 8.3.

(A): [13, §2], [8, §10], [29, §4.4].13 Suppose that r ≥ 1 and A is an fgc

13In some of the references cited in this section, additional assumptions (such as k = C or
r ≥ 2) are made that can be checked to be unnecessary for our purposes.
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associative Λ-torus. Let L = slr+1(A) be the derived algebra of the Lie algebra
Mr+1(A) under the commutator product. More explicitly, one easily checks that

L = slr+1(A) = {X ∈ Mr+1(A) | tr(X) ∈ [A,A]}, (28)

where [A,A] is the space spanned by commutators in A . Let

h =
r∑
i=1

k(eii − ei+1,i+1).

Then h is a split toral k-subalgebra of L with irreducible finite root system
∆ = ∆k(L, h) of type Ar . Moreover L is an fgc centreless Lie torus of type
(∆,Λ), where the Q-grading of L is the root-space decomposition relative to
h and the Λ-grading of L is induced by the Λ-grading of A . We call L the
(r + 1)× (r + 1)-special linear Lie torus over A .

(BC–B): [1, §III.3], [2, §7.2]. Suppose that r ≥ 1, L is a finitely generated
free abelian group (which we will embed in a larger group Λ of the same rank
below), and (A,−) is an associative L-torus with involution. Suppose also that
m ≥ 1 and D = diag(d1, . . . , dm) ∈ Mm(A), where d1, . . . , dm are nonzero
homogeneous hermitian elements of A whose respective degrees δ1, . . . , δm in L
are distinct modulo 2L with d1 = 1 and δ1 = 0. To eliminate overlap with the
other constructions, we assume that if r = 1 and − = 1, then m ≥ 5. Let
G = diag(J2r, D) in block diagonal form, and let L = su2r+m(A,−, D) be the
derived algebra of the Lie algebra {X ∈ M2r+m(A) | G−1X̄ tG = −X} under the
commutator product. More explicitly we have [2, §7.2.3]

L = su2r+m(A,−, D) = {X ∈ M2r+m(A) | G−1X̄ tG = −X, tr(X) ∈ [A,A]}.

To describe the external grading on L , we first embed L in the rational vector space
Q⊗Z L and let Λ be the subgroup of Q⊗Z L generated by L and 1

2
δ1, . . . ,

1
2
δm .

Further we define τi ∈ L for 1 ≤ i ≤ 2r+m by τi = 0 for 1 ≤ i ≤ 2r and τ2r+i = δi
for 1 ≤ i ≤ m . Then the associative algebra M2r+m(A) is Λ-graded by assigning
the degree λ + 1

2
τi − 1

2
τj to each element in Aλeij for λ ∈ L , 1 ≤ i, j ≤ 2r + m ;

and one checks directly that the involution X 7→ G−1X̄ tG of M2r+m(A) is Λ-
graded. Consequently, the Lie algebra M2r+m(A) under the commutator product
is Λ-graded, and L is a Λ-graded subalgebra of this algebra. To describe the
root grading on L , let h =

∑r
i=1 k(eii − e2r+1−i,2r+1−i). Then h is a split toral

k-subalgebra of L with irreducible finite root system ∆ = ∆k(L, h), and the type
of ∆ is BCr if − 6= 1 and Br if − = 1. Also, the root-space decomposition of
L relative to h is a Q-grading of L which is compatible with the Λ-grading just
described. With the resulting Q × Λ-grading, L is an fgc centreless Lie torus of
type (∆,Λ).14 We call L the (2r +m)× (2r +m)-special unitary Lie torus over
(A,−) determined by D .

(C): [1, §III.4], [8, §11]. Suppose that r ≥ 1 and (A,−) is an associative
Λ-torus with involution. To avoid degenerate cases and eliminate overlap with

14As an example, if we take (A,−) = (R2, 1), r = 1 and D = diag(1, t1, t2), su5(A,−, D) is
the centreless Lie torus whose universal central extension is called the baby TKK algebra in [33].
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the other constructions, we assume that if r = 1 or 2, then (A,−) is not
isomorphic to (Rq, 1), (R1, \) ⊗ (Rq, 1) or (Q(−1), \) ⊗ (Rq, 1) for q ≥ 0. Let
G =

[
0 Jr
−Jr 0

]
∈ M2r(k) in block form, and let L = ssp2r(A,−) be the derived

algebra of the Lie algebra {X ∈ M2r(A) | G−1X̄ tG = −X} under the commutator
product. Once again, we have more explicitly that

L = ssp2r(A,−) = {X ∈ M2r(A) | G−1X̄ tG = −X, tr(X) ∈ [A,A]}.

Indeed, if r ≥ 2 this is easily checked directly, whereas if r = 1 it is easily checked
using Lemma 8.1. Let h =

∑r
i=1 k(eii − e2r+1−i,2r+1−i). Then h is a split toral k-

subalgebra of L with irreducible finite root system ∆ = ∆k(L, h) of type Cr (see
the proof of Proposition 9.2 below for this calculation), and L is an fgc centreless
Lie torus of type (∆,Λ) with gradings determined by h and A as in (A) above.
We call L the (2r)× (2r)-special symplectic Lie torus over (A,−).

(D): Suppose that r ≥ 4 and A = Rn with its natural grading by Λ = Zn .
Let

L = o2r(A) := {X ∈ M2r(A) | J−1
2r X

tJ2r = −X}.
Then L is a Lie algebra under the commutator product. Let

h =
r∑
i=1

k(eii − e2r+1−i,2r+1−i).

Then h is a split toral k-subalgebra of L with irreducible finite root system
∆ = ∆k(L, h) of type Dr , and L is an fgc centreless Lie torus of type (∆,Λ)
with gradings determined by h and A as in (A) above. In fact, L ' o2r(k)⊗ Rn

is just the untwisted Lie torus of type (∆,Zn) (see Example 3.4), viewed as an
algebra of matrices. We call L the (2r)× (2r)-orthogonal Lie torus over A .

We note that in each of the constructions, the indicated subalgebra h is
the maximal split toral k-subalgebra L0

0 of L that was denoted by h in Sections
4 to 7.

We call an fgc centreless Lie torus that arises from any one of the Construc-
tions (A), (BC–B), (C) or (D) a classical Lie torus.

Remark 8.4. If we allow r = 0 in Constructions (A) and (BC–B), we obtain
multiloop Lie algebras that are not Lie tori.15 Indeed, one can show that they
are multiloop Lie algebras (see the discussion following Example 3.4) using the
multiloop realization theorem [4, Cor. 8.3.5]. (The hypotheses of that theorem
can be checked using a base ring extension argument as in Proposition 9.1 below.)
Also, one can show that they do not contain nonzero split toral k-subalgebras
(using [7, §4.5.9] and [2, Prop. 5.2.5]), which shows that they are not Lie tori.
Since our interest in this article is in Lie tori, we omit the details in this remark
and we do not consider the r = 0 case further.

Exceptional Lie tori. We next display in Table 1 a list of fgc centreless Lie
tori that we call exceptional Lie tori. For convenience of reference we have labeled

15A few low rank cases must be excluded but these are easy to identify.



Allison 187

these Lie tori as #1–27 in the column labeled #. Each row of the table represents
exactly one Lie torus of nullity n for each n ≥ n0 , where the minimum nullity n0

is displayed in the second column (not counting the # column) of the table.16

#

Root-
grading
type n0 crk(L) rkv(L) Λ/Γ(L) Index Reference

1 A1 3 133 (27) Z3
3 E78

7,1 [35, Example 6.8(3)]

2 A2 3 78 (8) Z3
2

1E28
6,2 [8, Example 9.2]

3 C3 3 133 (8, 1) Z3
2 E28

7,3 [10, Thm. 4.87(ii)]

4 E6 0 78 (1) {0} 1E0
6,6 untwisted

5 E7 0 133 (1) {0} E0
7,7 untwisted

6 E8 0 248 (1) {0} E0
8,8 untwisted

7 G2 0 14 (1, 1) {0} G0
2,2 untwisted

8 ” 1 28 (3, 1) Z3
3D2

4,2 [10, Thm. 5.63, p=1]

9 ” 2 78 (9, 1) Z2
3

1E16
6,2 [10, Thm. 5.63, p=2]

10 ” 3 248 (27, 1) Z3
3 E78

8,2 [10, Thm. 5.63, p=3]

11 F4 0 52 (1, 1) {0} F0
4,4 untwisted

12 ” 1 78 (2, 1) Z2
2E2

6,4 [10, Thm. 5.50, p=1]

13 ” 2 133 (4, 1) Z2
2 E9

7,4 [10, Thm. 5.50, p=2]

14 ” 3 248 (8, 1) Z3
2 E28

8,4 [10, Thm. 5.50, p=3]

15 BC1 3 52 (8, 1) Z3
2 F21

4,1 [9, Thm. 5.19(b), k=0]

16 ” 4 78 (16, 8) Z4
2

2E29
6,1 [9, Thm. 5.19(b), k=1]

17 ” 5 133 (32, 10) Z5
2 E48

7,1 [9, Thm. 5.19(b), k=2]

18 ” 6 248 (64, 14) Z6
2 E91

8,1 [9, Thm. 5.19(b), k=3]

19 ” 5 78 (20, 1) Z5
2

2E35
6,1 [9, Thm. 10.6(a), case 1]

20 ” 6 133 (32, 1) Z6
2 E66

7,1 [9, Thm. 10.6(a), case 2]

21 ” 7 248 (56, 1) Z7
2 E133

8,1 [9, Thm. 10.6(a), case 3]

22 ” 5 133 (32, 1) Z5
2 E66

7,1 [9, Remark 10.6(a)]

23 ” 3 133 (32, 1) Z2 ⊕ Z2
4 E66

7,1 [9, Thm. 13.3, case 1]

24 ” 3 248 (56, 1) Z3
4 E133

8,1 [9, Thm. 13.3, case 2]

25 BC2 3 78 (8, 12, 1) Z3
2

2E16′

6,2 [18, Lem. 7, ñ = 0]

26 ” 4 133 (16, 16, 1) Z4
2 E31

7,2 [18, Lem. 7, ñ = 1]

27 ” 5 248 (32, 24, 1) Z5
2 E66

8,2 [18, Lem. 7, ñ = 2]

Table 1: Exceptional Lie tori and their invariants

We do not provide here precise definitions of the exceptional Lie tori, be-
cause to do so would take us rather far afield into the fascinating world of nonas-
sociative tori. Instead, in each case we have given a reference for the definition
in the last column of the table.17 If the Lie torus is the untwisted Lie torus

16For the Lie tori numbered 25, 26 and 27, there are parameters σ0 and µ in the description
given in [18]. However, one can argue as in [8, §10], that the Lie torus does not depend on these
choices up to bi-isomorphism.

17We only cite the reference that we find most convenient in our context. Additional and
sometimes earlier references can be found in the cited articles as well as in Section 7 of the
survey article [8].
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with the indicated root-grading type and nullity n (see Example 3.4), we indicate
this simply with the word untwisted. In the case of the Lie tori numbered 15–24
(resp. 25–27), the Lie torus is constructed using the Kantor construction from a
structurable torus (resp. quasi-torus) that is defined in the indicated reference.
(See [11, Thm. 5.6] and [18, Thm. 3].) Also, for the Lie tori numbered 25–27, the
quantity ñ used in the last column is the integer denoted by n in [18, Lemma 7].

For each exceptional Lie torus L , Columns 1, 3 and 4 of the table contain
the isomorphism invariants of L (besides the nullity) that are described in Theorem
6.2, namely the root-grading type of L , the centroid rank of L and the root-space
rank vector of L respectively. Column 5 contains the isotopy invariant described
in Proposition 7.1, namely the quotient external-grading group Λ/Γ(L) (up to
isomorphism) of L .18

Finally, Column 6 contains the index of L (see Remark 6.3). These indices
were calculated using Tits’ classification of indices [34, Table II], Theorem 5.4, and
the entries in Columns 1, 3 and 4, together with some special arguments in a few
cases. (See [7, §14.2] for some similar calculations.)

The structure theorem. In about the last 15 years, structure theorems (coordi-
natization theorems) have been proved for centreless Lie tori of each root-grading
type. This is work of (in alphabetical order) Allison, Benkart, Berman, Faulkner,
Gao, Krylyuk, Neher and Yoshii in various combinations beginning with [13]. The
reader can consult Section 7 of the survey article [8] for precise references.

It turns out from these theorems that the only centreless Lie tori that are
not fgc are the Lie tori slr+1(A) defined exactly in (A) using an associative torus
A that is not fgc.

The following theorem summarizes the results of the structure theorems for
fgc centreless Lie tori. There is some work needed to translate the known results
into our form, but it is not difficult to supply these arguments and we omit them.

Theorem 8.5. If k is algebraically closed, every fgc centreless Lie torus is bi-
isomorphic and hence isotopic and isomorphic to either a classical Lie torus or an
exceptional Lie torus.

9. Invariants of classical Lie tori

In this section, we calculate the invariants described in Theorem 6.2 and Propo-
sition 7.1 for classical Lie tori. For this, we first need to calculate the centroid in
each case.

Proposition 9.1. Let L be slr+1(A) as in (A), su2r+m(A,−, D) as in (BC–B),
ssp2r(A,−) as in (C), or o2r(A) as in (D). Correspondingly let M be Mr+1(A),
M2r+m(A), M2r(A) or M2r(A), in which case L is a Lie subalgebra of M under
the commutator product. Also correspondingly, let Z be Z(A), Z(A,−), Z(A,−)
or A, and regard M as a Lie algebra over Z , where the action of Z on M is
by left multiplication on entries. Then L is a Z -subalgebra of M and the map

18In this column and subsequently, we denote the direct sum of s copies of the group Z` of
integers mod ` by Zs` for ` ≥ 1 and s ≥ 0. (If s = 0 this direct sum is 0.)
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ρ : Z → Ck(L) defined by ρ(z)(x) = zx is a Λ-graded algebra isomorphism.

Proof. This can be proved using Corollary 5.16 and Theorem 4.18 of [12],
although care must be taken in low rank. Instead, we present an argument using
base ring extension and results about finite dimensional simple Lie algebras from
[22, Chap. X]. We record this for the algebra L = slr+1(A) as in (A), with the
other cases being similar.

It is clear that L is a Z -subalgebra of M and that that ρ is an injective
Λ-graded algebra homomorphism. So it remains to show that ρ is surjective. Let
C = Ck(L) and use ρ to regard C as an algebra over Z .

Now Z ' k[Ω] and C ' k[Γ] as Λ-graded algebras, where Ω and Γ are
subgroups of Λ. (The first statement is clear and the second is (4).) Hence, Ω is
a subgroup of Γ and C is a free Z -module of rank [Γ : Ω]. So, to show that ρ is
surjective, it suffices to show that rankZ(C) ≤ 1.

Note that L is a free Z -module (for example since C is a free Z -module
and L is a free C -module by Proposition 5.1(ii)).

Next, since L is perfect, we have C = CZ(L), where

CZ(L) = {c ∈ EndZ(L) | c[x, y] = [c(x), y] = [x, c(y)] for x, y ∈ L}.

So we have a natural Z̃ -algebra homomorphism

Z̃ ⊗Z C = Z̃ ⊗Z CZ(L) 7→ CZ̃(Z̃ ⊗Z L), (29)

where Z̃ is the quotient field of Z . We claim that this map is injective. Indeed, any
element of Z̃ ⊗Z C is of the form z−1⊗ c , where 0 6= z ∈ Z and c ∈ C . But if this
element is in the kernel of the map (29) then so is 1⊗ c . So 1⊗ cx = 0 for x ∈ L ,
which implies that cx = 0 for x ∈ L , since L is a free Z -module. Thus c = 0,
and we have proved the claim. So it suffices to show that dimZ̃(CZ̃(Z̃ ⊗Z L)) ≤ 1,
or in other words that Z̃ ⊗Z L is central over Z̃ .

Since A is a free Z -module by Lemma 8.2, A embeds naturally in the
Z̃ -algebra Z̃ ⊗Z A . Moreover, since A is an fgc domain, it is easily checked
that Z̃ ⊗Z A is a finite dimensional central division algebra over Z̃ . Also, by
definition, L = [M,M] , so Z̃ ⊗Z L = Z̃ ⊗Z [M,M] ' [Z̃ ⊗ZM, Z̃ ⊗ZM] as
Z̃ -algebras, where the last holds since Z̃/Z is a flat extension. But Z̃ ⊗ZM =
Z̃ ⊗Z Mr+1(A) ' Mr+1(Z̃ ⊗Z A), so

Z̃ ⊗Z L = [Mr+1(Z̃ ⊗Z A),Mr+1(Z̃ ⊗Z A)].

Thus by [22, Thm. X.8], Z̃ ⊗Z L is a finite dimensional central simple Lie algebra
over Z̃ .

Parameterization of classical Lie tori. To tabulate the invariants of classical
Lie tori, we need to view each of the Constructions (A), (BC–B), (C) and (D) as
a construction from a list of parameters. We now do this using for the most part
the tensor product decomposition of associative tori.

(A): Suppose L = slr+1(A) is a special linear Lie torus as in Construction
8.3(A). Then, as noted in Section 8, we can assume that

A = A1 ⊗ · · · ⊗ Ak ⊗Rq,
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where k ≥ 0, q ≥ 0 and Ai = Q(ζi) with ζi a root of unity 6= 1 in k× for
i = 1, . . . , k . So we can view L as being constructed from the parameters

r ≥ 1, k ≥ 0, ζ1, . . . , ζk ∈ k× and q ≥ 0.

The only restrictions on the integral parameters r , k and q are those indicated,
and the only restrictions on the parameters ζ1, . . . , ζk are

2 ≤ |ζi| <∞ for 1 ≤ i ≤ k,

where |ζi| denotes the order of ζi in the group k× .

(BC–B): Suppose L = su2r+m(A,−, D) is a special unitary Lie torus as in
Construction 8.3(BC–B). Then as noted in Section 8 we can assume that

(A,−) = (A1,−)⊗ · · · ⊗ (Ak,−)⊗ (Ak+1,−)⊗ (Rq, 1),

where k ≥ 0, q ≥ 0,

(Ai,−) = (Q(−1), \) for i = 1, . . . , k, (30)

and
(Ak+1,−) = (k, 1), (R1, \) or (Q(−1), ∗) (31)

(as associative tori). Corresponding to these 3 choices for (Ak+1,−) we set

p := 0, 1 or 2.

Note that the grading group for (A,−) is L = L1⊕· · ·⊕Lk+2 , where L1, . . . , Lk =
Z2 , Lk+1 = Zp and Lk+2 = Zq . Moreover the set L+ consisting of the degrees
of nonzero homogeneous elements in A+ is then determined by k , p and q . (For
example if k = 1, p = 1 and q ≥ 0, we have

L+ = 2L+ Lk+2 + {0, ε11 + ε21, ε12 + ε21, ε11 + ε12 + ε21},

n where {ε11, ε12} is a Z-basis for L1 , and {ε21} is a Z-basis for L2 .) Recall
that D = diag(d1, . . . , dm) and that δi is the degree of di in L . We note that if
the elements d2, . . . , dm are replaced by nonzero scalar multiples (d1 = 1 is fixed),
then L is not changed up to isomorphism (in fact bi-isomorphism) [2, Cor. 6.6.4].
Hence, we can view L as being constructed from the parameters

r ≥ 1, k ≥ 0, p ∈ {0, 1, 2}, q ≥ 0, m ≥ 1 and δ1, . . . , δm ∈ L+. (32)

The restrictions on the integral parameters r, k, p, q,m are those indicated as well
as the additional restriction

m ≥ 5 if (r, k, p) = (1, 0, 0) (33)

imposed in Construction 8.3(BC–B). The restrictions on the δi ’s in L+ are that

δ1 = 0 and δi + 2L 6= δj + 2L for i 6= j.
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(C): Suppose L = ssp2r(A,−) is a special symplectic Lie torus as in
Construction 8.3(C). Then we can assume as in (BC–B) above that

(A,−) = (A1,−)⊗ · · · ⊗ (Ak,−)⊗ (Ak+1,−)⊗ (Rq, 1) (34)

where k, q ≥ 0 and (A1,−), . . . , (Ak+1,−) satisfy (30) and (31). Again, we define

p = 0, 1 or 2 (35)

corresponding to the choice of (Ak+1,−) in (31). Then we can view L as con-
structed from the integral parameters

r ≥ 1, k ≥ 0, p ∈ {0, 1, 2} and q ≥ 0, (36)

subject to the indicated restrictions as well as the additional restriction

(k, p) 6= (0, 0), (0, 1), (1, 0) if r = 1 or 2 (37)

imposed in Construction 8.3(C).

(D): Suppose finally that L = o2r(Rq) is an orthogonal Lie torus as in
Construction 8.3(D), where q ≥ 0. Then L is constructed from the integral
parameters

r ≥ 4 and q ≥ 0.

The invariants of classical Lie tori. We can now calculate the invariants
of classical Lie tori. These will appear in Tables 2 and 3, where we use the
parameterizations described above. In the tables and subsequently, we also use
the following additional notation:

• For each of the four constructions, we define two additional positive integers
d and s in the Construction column of Table 2. In the definition of d in
(BC–B) and (C), b c is the floor function, so that d = 2k if p = 0 or 1, and
d = 2k+1 if p = 2.

• In the last column of Table 2, the symbol ̂ above an entry of a vector
indicates that the entry is to be omitted when r = 1.

• In Construction (BC–B), L/2L (resp. L/(2L + Lk+2)) is a vector space of
dimension 2k + p + q (resp. 2k + p) over the field Z2 of integers modulo
2. In Table 3, we let a (resp. b) denote the dimension of the Z2 -vector
space generated by the cosets represented by δ1, . . . , δm in L/2L (resp.
L/(2L+ Lk+2)).

Proposition 9.2. If L is a classical Lie torus depending on parameters as
described above, then the root-grading type, the nullity, the centroid rank and the
root-space rank vector of L are listed in Table 2, and the quotient external-grading
group of L is listed in Table 3.
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Construction
Root-grading
type of L

Nullity
of L crk(L) rkv(L)

(A)
with
d =

∏k
i=1 |ζi|,

s = (r + 1)d

Ar 2k + q s2 − 1 (d2)

(BC–B)
with
d = 2k+b

p
2 c,

s = (2r +m)d

Br
if (k, p) = (0, 0);

BCr
if (k, p) 6= (0, 0)

2k+p+q
s(s− (−1)k)

2
if p 6= 1;

s2 − 1
if p = 1

(m, 1̂)
if (k, p) = (0, 0);

(md2, d̂2,
d(d− (−1)k)

2
)

if (k, p) 6= (0, 0)
and p 6= 1;

(2md2, 2̂d2, d2)
if p = 1

(C)
with
d = 2k+b

p
2 c,

s = 2rd

Cr 2k+p+q
s(s+ (−1)k)

2
if p 6= 1;

s2 − 1
if p = 1

(d̂2,
d(d+ (−1)k)

2
)

if p 6= 1;

(2̂d2, d2)
if p = 1

(D)
with
d = 1,
s = 2r

Dr n
s(s− 1)

2
(d2) = (1)

Table 2: Invariants of classical Lie tori—Part 1

Proof. We outline the proof for special symplectic Lie tori. The interested
reader will be able to supply the missing details in this case and provide the
arguments in the other three cases. (Admittedly more work is involved for special
unitary Lie tori, but the approach is the same.)

Let L = ssp2r(A,−) with the assumptions and notation as in (C) above,
and let

Z = Z(A,−).

Then, by Proposition 9.1, M2r(A) is a Lie algebra over Z under the commutator
product and L is a Z -subalgebra of M2r(A).

To compute some of the invariants of L , it will be helpful to work in a
larger Z -subalgebra U of the Lie algebra M2r(A). Let G =

[
0 Jr
−Jr 0

]
∈ M2r(k)

and

U = {X ∈ M2r(A) | G−1X̄ tG = −X}

= {
[
A B
C −JrĀtJr

]
| A,B,C ∈ Mr(A), JrB̄

tJr = B, JrC̄
tJr = C}. (38)

Then, as we saw in Construction 8.3(C),

L = {X ∈ U | tr(X) ∈ [A,A]} (39)
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Construction Λ/Γ(L)

(A)
⊕k

i=1 Z2
|ζi|

(BC–B) Z2k+p+a−2b
2 ⊕ Zb4

(C) Z2k+p
2

(D) {0}

Table 3: Invariants of classical Lie tori—Part 2

Also, it is known that A = Z(A) ⊕ [A,A] (see [2, Lemma 5.1.3] for a proof).
Hence

A− = (Z(A) ∩ A−)⊕ ([A,A] ∩ A−). (40)

Thus
U = (Z(A) ∩ A−)I2r ⊕ L (41)

Indeed the inclusion from right to left is clear, and the reverse inclusion follows
easily using (38), (39) and (40).

Next let h =
∑r

i=1 k(eii − e2r+1−i,2r+1−i). Recall from Construction 8.3(C)
that h is a split toral k-subalgebra of L with irreducible finite root system
∆ = ∆k(L, h) of type Cr . In fact if we define εi ∈ h∗ for 1 ≤ i ≤ r by
εi(ejj − e2r+1−j,2r+1−j) = δij we have

∆ = {εi − εj | 1 ≤ i 6= j ≤ r} ∪ {±(εi + εj) | 1 ≤ i ≤ j ≤ r}, (42)

with

Lεi−εj = {a eij − ā e2r+1−j,2r+1−i | a ∈ A} for 1 ≤ i 6= j ≤ r,

Lεi+εj = {a ei,2r+1−j − ā ej,2r+1−i | a ∈ A} for 1 ≤ i < j ≤ r,

L−εi−εj = {a e2r+1−i,j − ā e2r+1−j,i | a ∈ A} for 1 ≤ i < j ≤ r,

L2εi = {h ei,2r+1−i | h ∈ A+} for 1 ≤ i ≤ r.

(43)

(L0 is the set of diagonal matrices in L .) Recall also that L is an fgc centreless Lie
torus of type (∆,Λ) with gradings determined by h and A , where Λ is the grading
group of A . So, as already observed in Construction 8.3(C), the root-grading type
of L is Cr .

Next we have

(A,−) = (A1,−)⊗ · · · ⊗ (Ak+2,−),

where for convenience we have set (Ak+2,−) = (Rq, 1). Hence, by definition, the
grading group of A is

Λ = Λ1 ⊕ · · · ⊕ Λk+2,

where Λi is the grading group of Ai for 1 ≤ i ≤ k + 2. But Λ1, . . . ,Λk = Z2 ,
Λk+1 = Zp and Λk+2 = Zq , so Λ ' Z2k+p+q . Hence the nullity of L is 2k + p+ q .

Now by Proposition 9.1, we have a graded isomorphism ρ : Z → Ck(L),
which we now use to identify

Ck(L) = Z. (44)
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Hence, we have
Γ := Γ(L) = Γ(A,−),

where, as in Section 8, Γ(A,−) := suppΛ(Z).

As we observed in Section 8, we have

Z = Z1 ⊗ · · · ⊗ Zk+2, (45)

where Zi = Z(Ai,−). Hence Γ = Γ1 ⊕ · · · ⊕ Γk+2 , where Γi = suppΛi
(Zi) for

1 ≤ i ≤ k + 2. One checks that Γi = 2Λi for 1 ≤ i ≤ k + 1, and clearly
Γk+2 = Λk+2 , so

Γ = 2Λ1 ⊕ · · · ⊕ 2Λk+1 ⊕ Λk+2,

Thus, Λ/Γ(L) = Λ/Γ ' Z2k+p
2 .

Observe next that by Lemma 8.2(ii), A is a free Z -module with

rankZ(A) = [Λ : Γ] = 22k+p =

{
d2 if p 6= 1,

2d2 if p = 1,
(46)

where recall that d = 2k+b p
2
c . Also, by Lemma 8.2(ii), Z(A) ∩ A− , A+ and A−

are free Z -modules of finite rank. Moreover,

rankZ(Z(A) ∩ A−) = δ1p, (47)

rankZ(A+) =

{
d(d+(−1)k)

2
if p 6= 1,

d2 if p = 1,
(48)

rankZ(A−) =

{
d(d−(−1)k)

2
if p 6= 1,

d2 if p = 1.
(49)

We will justify these equalities at the end of the proof, but for the moment we
assume that they hold and use them to calculate the remaining invariants.

First

crk(L) = rankCk(L)(L) = rankZ(L) by (44)

= rankZ(M)− rankZ(Z(A) ∩ A−) by (41)

= rankZ(M)− δ1p by (47)

= r2 rankZ(A) + 2
(r(r − 1)

2
rankZ(A) + r rankZ(A+)

)
− δ1p by (38)

= (2r2 − r) rankZ(A) + 2r rankZ(A+)− δ1p.

If we plug in the expressions (46) and (48) for rankZ(A) and rankZ(A+) into this
last expression and simplify, we obtain the values of crk(L) appearing in Table 2.

Also,

rkv(L) = ( ̂rankZ(Lε1−ε2), rankZ(L2ε1)) = ( ̂rankZ(A), rankZ(A+))

using (43). Again, plugging in our expressions for rankZ(A) and rankZ(A+), we
obtain the values of rkv(L) appearing in Table 2.
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We conclude the proof by justifying (47), (48) and (49).

Suppose first that p 6= 1. Then (A,−) is of first kind, so we have (47).
Also, if p = 0, we have

(A,−) = (Q(−1), \)⊗ · · · ⊗ (Q(−1), \)︸ ︷︷ ︸
k factors

⊗(Rq, 1),

and (48) and (49) and be proved simultaneously by induction on k using (45). We
leave the details to the reader. Moreover, the equations (48) and (49) for the case
p = 2 can easily be deduced from the equations (48) and (49) for the case p = 0
(tensor with (Q(−1), ∗)). Again we leave the details to the reader.

Finally, if p = 1, then (A,−) is of second kind and our equalities follow
from (24).

Remark 9.3. In this remark, we list the index of each classical Lie torus L
(see Remark 6.3) using the notation of Table 2. We computed these indices using
the methods outlined in the proofs of Propositions 9.1 and 9.2, together with the
detailed information about the indices of classical algebraic groups found in [34,
Table II]. We omit any details since, as we have mentioned, we do not use the
index in this article.

If L = slr+1(A) is as in (A) above, then L has index 1A
(d)
s−1,r . Next, if

L = su2r+m(A,−, D) as in (BC–B), then L has index

C
(d)
s
2
,r if p 6= 1 and k is odd;

B s−1
2
,r

if p 6= 1, (k, p) = (0, 0) and m is odd;

tD
(d)
s
2
,r if p 6= 1, k is even and either (k, p) 6= (0, 0) or m is even; and

2A
(d)
s−1,r if p = 1.

(In the second last case t = 1 or 2, and one can write down necessary and sufficient
conditions involving the parameters (32) for t to be 1.) Further, if L = ssp2r(A,−)
as in (C), then L has index

1D
(d)
s
2
,r if p 6= 1 and k is odd;

C
(d)
s
2
,r if p 6= 1 and k is even; and

2A
(d)
s−1,r if p = 1.

Finally, if L = o2r(A) as in (D), then L has index 1D
(1)
s
2
,r = 1D(1)

r,r .

10. The isomorphism problem

To provide a classification of fgc centreless Lie tori up to isomorphism, it remains
to solve the isomorphism problem for fgc centreless Lie tori as they are described
in Theorem 8.5.

In this section, we describe the results about the isomorphism problem that
we can deduce using our isomorphism invariants and their values listed in Tables
1 and 2.
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Theorem 10.1.

(i) The classes of classical Lie tori and exceptional Lie tori are disjoint. That
is, there is no Lie algebra that is isomorphic to a classical Lie torus and to
an exceptional Lie torus.

(ii) The classes of classical Lie tori obtained using constructions (A), (BC–B),
(C) and (D) are pairwise disjoint.

Proof. (i): Suppose for contradiction that L is a Lie algebra that is isomorphic
to a classical Lie torus and an exceptional Lie torus. Then, comparing Tables 1
and 2, we see that L has root-grading type A1 , A2 or C3 . Hence, by Table 1,
crk(L) = 78 or 133. But from Table 2, we see that crk(L) has the form s2− 1 or
s(s±1)

2
for some positive integer s . This rules out crk(L) = 133, so crk(L) = 78.

Hence by Table 1, L has root grading type A2 . Thus, by Table 2, crk(L) = s2− 1
for some positive integer s , so 78 = s2 − 1. This is a contradiction.19

(ii): Suppose for contradiction that there is a Lie algebra that is isomorphic
to Lie tori L and L′ coming from two different constructions from the list (A),
(BC–B), (C) and (D). We will use the notation of Section 9 for L and corresponding
primed notation for L′ . Since the root-grading type is an isomorphism invariant,
we see from Table 2 that we must have one of the following (up to an exchange of
L and L′ ):

(a) L arises from (A) with r = 1, and L′ arises from (BC–B) with (r′, k′, p′) =
(1, 0, 0);

(b) L arises from (A) with r = 1, and L′ arises from (C) with r′ = 1; or

(c) L arises from (BC–B) with (r, k, p) = (2, 0, 0), and L′ arises from (C) with
r′ = 2.

Suppose first that (a) holds. Then we have r = 1 and s = 2d in construction
(A); and we have d′ = 1 and s′ = m′ + 2 in construction (BC–B). Comparing
the root-space rank vectors in Table 2 we see that d2 = m′ , whereas comparing
centroid-rank vectors we see that 4d2 − 1 = s′(s′−1)

2
= (m′+2)(m′+1)

2
. So 4m′ − 1 =

(m′+2)(m′+1)
2

which forces m′ = 1 or 4. But these values of m′ were excluded
in (33).

Suppose next that (b) holds. Then arguments (which we leave to the reader)
that are similar to the one in (a) handle all but one case:

L = sl2(A) and L′ = ssp2(A′,−) with p′ = 1.

In this case, we have k′ 6= 0 by (37), so d′ ≥ 2. We now indicate, omitting the
details, how this leads to a contradiction using base-ring extension and a theorem
about finite dimensional central simple Lie algebras from [22]. (Alternatively, one
could compare the indices of both sides using Remark 9.3.) Let Z = Z(A) and

19(i) can also be seen by comparing indices or, in all but one case, absolute types (see for
example [7, §3.3] for this terminology).
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Z ′ = Z(A′,−), with quotient fields Z̃ and Z̃ ′ respectively. Now, as in the proof of
Proposition 9.2, we see that A has rank d2 over Z and A′ has rank 2d′2 over Z ′ .
Moreover, as in the proof of Proposition 9.1, we see that that Z̃ ⊗ZA is a division
algebra of dimension d2 over its centre Z̃ , and (Z̃ ′⊗Z′ A,−) is a division algebra

with involution of dimension 2d′2 over its centre Z̃ ′ (as an algebra with involution).
Also, again as in the proof of Proposition 9.1, we see that the central closures of
L and L′ are respectively sl2(Z̃ ⊗Z A) and ssp2(Z̃ ′ ⊗Z′ A,−). (These last two
Lie algebras are defined as in Constructions 8.3(A) and (C).) So, by Remark 5.2,

we have sl2(Z̃ ⊗Z A) ' ssp2(Z̃ ′ ⊗Z′ A,−). Since d′ ≥ 2, this contradicts the last
statement in Theorem X.11 of [22].

Finally, case (c) is handled easily using the method in (a) and the exclu-
sion (37).

Combining Theorems 8.5 and 10.1, we see that the isomorphism problem for
fgc centreless Lie tori reduces to 5 separate problems, one for exceptional Lie tori
and one for each of the four Constructions (A), (BC–B), (C) and (D) of classical
Lie tori.

The next theorem solves the isomorphism problem for Constructions (C)
and (D).

Theorem 10.2.

(i) Let PC be the set of all vectors (r, k, p, q) in Z4 such that r ≥ 1, k ≥ 0,
p ∈ {0, 1, 2}, q ≥ 0 and if, r = 1 or 2, (k, p) /∈ {(0, 0), (0, 1), (1, 0)}.
Then the map that sends (r, k, p, q) to the isomorphism class represented by
ssp2r(A,−), where (A,−) is the tensor product of basic associative tori with
involution constructed from (k, p, q) as in (34)–(36), is a bijection from PC
onto the set of isomorphism classes of special symplectic Lie tori. Moreover,
special symplectic tori are classified by their root-grading type, nullity and
root-space rank vector. That is, two special symplectic Lie tori are isomorphic
if and only if they have same root-grading type, the same nullity and the same
root-space rank vector.

(ii) Let PD = {(r, n) ∈ Z2 | r ≥ 4, n ≥ 0}. Then the map that sends (r, n) to
the isomorphism class represented by o2r(Rn) is a bijection from PD onto
the set of isomorphism classes of orthogonal Lie tori. Moreover, orthogonal
Lie tori are classified by their root-grading type and nullity.

Proof. (i): Before beginning, let N = {k ∈ Z | k ≥ 1} , S = N× {0, 1, 2} , and
define f : S → N by

f(k, p) =

{
2k+ p

2
−1(2k+ p

2 + (−1)k) if p 6= 1,

22k if p = 1.

It is not difficult to show that if (k, p) ∈ S then

f(k, p) = 1 ⇐⇒ (k, p) ∈ {(0, 0), (1, 0), (0, 1)}; (50)
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and that
f |S\{(0,0),(1,0),(0,1)} is one-to-one. (51)

We leave these facts for the reader to check.

Now to begin the proof of (i), observe that the map described in the first
statement of (i) is surjective by the discussion of parameterization in Section 9.

Next suppose that (r, k, p, q) and (r′, k′, p′, q′) are in PC . We let L =
ssp2r(A,−), where (A,−) is the tensor product of basic associative tori with
involution constructed from (k, p, q) as in (34)–(36), and we let L′ = ssp2r′(A′,−),
where (A′,−) is obtained in the same way from (k′, p′, q′). Observe that by Table
2, we have

rkv(L) = (2̂2k+p, f(k, p)),

and we have a similar expression for rkv(L′).

We will show that the following statements are equivalent:

(a) L ' L′ ,

(b) L and L′ have the same root-grading type, the same nullity and the same
root-space rank vector,

(c) (r, k, p, q) = (r′, k′, p′, q′).

Note that this will compete the proof of both of the statements in (i).

Now “(a) ⇒ (b)” holds by Theorem 6.2, and “(c) ⇒ (a)” is trivial. Thus
it suffices to show that “(b) ⇒ (c)”. So, suppose that (b) holds. Then r = r′ ,

2k + p+ 1 = 2k′ + p′ + q′, (52)

f(k, p) = f(k′, p′), and (53)

22k+p = 22k′+p′ if r ≥ 2. (54)

Suppose first that (k, p) ∈ {(0, 0), (1, 0), (0, 1)} . Then, f(k, p) = 1 by (50),
so (k′, p′) ∈ {(0, 0), (1, 0), (0, 1)} by (50) and (53). But r ≥ 3 by definition of PC ,
so by (54) we have 2k + p = 2k′ + p′ . Hence (k, p) = (k′, p′). Finally, by (52), we
have q = q′ .

Lastly, suppose that (k, p) /∈ {(0, 0), (1, 0), (0, 1)} , so by the argument just
given (k′, p′) /∈ {(0, 0), (1, 0), (0, 1)} . Thus, by (53) and (51), we have (k, p) =
(k′, p′), and therefore also q = q′ as above.

(ii): Since o2r(Rn) ' o2r(k)⊗Rn , this follows from well-known facts about
multiloop algebras (see for example [7, Cor. 8.19]). From our point of view here,
it also follows immediately using the argument in (i) and Table 2.

Corollary 10.3. Fix r ≥ 3. Then the fgc centreless Lie tori of type Cr are
classified by their nullity and root-space rank vector.

Proof. Suppose that L and L′ are fgc centreless Lie tori of type Cr with the
same nullity and the same root-space rank vector. If L and L′ are classical, we
have L ' L′ by Theorem 10.2(i). On the other hand if L and L′ are exceptional,
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then r = 3 and L ' L′ by Table 1. Finally, if L is exceptional and L′ is
classical, then r = 3 and rkv(L′) = rkv(L) = (8, 1) by Table 1, which contradicts
Table 2.

The remaining isomorphism problems. The 3 remaining isomorphism prob-
lems are now listed, together with some comments. We will say more about each
of these problems in the next section.

(1) The isomorphism problem for exceptional Lie tori. It follows looking at
root-space rank vectors in Table 1 that the only possible isomorphisms between
Lie tori of a given root-grading type and nullity are between the tori numbered
20, 22 and 23, or between the tori numbered 21 and 24. So it remains to decide
if any such isomorphisms exist. Note however that the tori numbered 20, 22 and
23 have distinct quotient external-grading groups, as do the tori numbered 21 and
24. Therefore, the exceptional Lie tori listed in Table 1 are pairwise not isotopic.

(2) The isomorphism problem for special linear Lie tori. The Lie tori
in construction (A) are not classified by the four isomorphism invariants from
Theorem 6.2, even in nullity 2.20 (The index adds no extra information; that is,
if the four invariants match for two special linear Lie tori, one can check that the
indices match as well.) However, it is clear that two special linear Lie tori that
have the same root-grading type, the same nullity and the same root-grading rank
vector, have a common r , a common nullity for their coordinate associative tori
A and A′ , and a common rank for A and A′ as modules over their centres. So
these quantities can be fixed when considering the problem.

(3) The isomorphism problem for special unitary Lie tori. The Lie tori in
construction (BC–B) are not classified by the four isomorphism invariants from
Theorem 6.2, even in nullity 3. (Again, including the index does not provide
enough information for classification.) However, one can check (using the argument
in the proof of Theorem 10.2(i))) that with one exception, two special unitary
Lie tori that have the same root-grading type, nullity, centroid rank and root-
grading rank vector have a common r , a common coordinate associative torus
with involution (A,−) up to isomorphism, and a common value for m = |D| . So
these entities can be fixed when considering the problem.

In summary, the classification of fgc centreless Lie tori up to isomorphism
is reduced to the separate isomorphism problems for (1) five particular exceptional
Lie tori, (2) special linear Lie tori, and (3) special unitary Lie tori.

11. Conjugacy and its implications

In this section we consider the three isomorphism problems just discussed under a
conjugacy assumption for certain maximal split toral k-subalgebras.

A conjugacy assumption. We say that an fgc centreless Lie algebra L satisfies
Assumption (C) if the following holds:

20For example, it follows from [7, Thm. 11.3.2] that if ζ is a 5th root of unity, then slr+1(Q(ζ))
and slr+1(Q(ζ2)) are not isomorphic. However, by Table 2, they each have nullity 2, root-grading
type Ar , centroid rank 25(r + 1)2 − 1 and root-space rank vector (25).
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(C) If L has the graded structure L =
⊕

(α,λ)∈Q(∆)×Λ Lλα of a Lie torus of

type (∆,Λ) with h = L0
0 and if (the same) L has the graded structure

L =
⊕

(α′,λ′)∈Q(∆′)×Λ′ L′
λ′

α′ of a Lie torus of type (∆′,Λ′) with h′ = L′00 , then

there exists ϕ ∈ Aut(L) such that ϕ(h) = h′ .

Less precisely, this assumption says that two maximal split toral k-subalge-
bras of L that arise from Lie torus structures on L are conjugate under the action
of Aut(L).

Remark 11.1. Our motivation for making Assumption (C) in the theorems
below is work in progress by V. Chernousov, P. Gille and A. Pianzola [16]. This
work will show that Assumption (C) holds for any fgc centreless Lie torus and
therefore the assumption is superfluous. It is already known that this is the case
for untwisted Lie tori [30].

An immediate consequence of Assumption (C) together with Theorem 7.2
is the following:

Theorem 11.2. Suppose that L and L′ are fgc centreless Lie tori satisfying
Assumption (C). Then L is isomorphic to L′ if and only if L is isotopic to L′ .

Proof. Suppose that ϕ : L → L′ is an isomorphism. By Assumption (C) we
can assume that ϕ(h) = h′ , where h = L0

0 and h′ = L′00 . Then ϕ is an isotopy by
Theorem 7.2.

Putting this result together with Proposition 7.1, we have:

Corollary 11.3. The quotient external-grading group is an isomorphism in-
variant for an fgc centreless Lie torus satisfying Assumption (C).

In the remaining sections, we discuss the implications of Assumption (C)
and our results for the three isomorphism problems listed at the end of Section 10.

Isomorphism of exceptional Lie tori. In the discussion of Problem 1 at the
end of Section 10, we used the quotient external-grading group to show that the
exceptional Lie tori in Table 1 are pairwise not isotopic. Therefore, it follows from
Theorem 11.2 that if exceptional Lie tori satisfy Assumption (C), then they are
listed up to isomorphism without redundancy in Table 1.

Isomorphism of special linear Lie tori. For special linear Lie tori, the quotient
external-grading group Λ/Γ adds no further information. That is, if the four
invariants in Theorem 6.2 match for two special linear Lie tori, one can check
that the quotient external-grading groups also match. However, under assumption
(C) we can prove the following theorem, which was proved in nullity 2 in [7,
Thm. 11.3.2] without Assumption (C).

Theorem 11.4. Suppose that A and A′ are fgc associative tori of nullity n,
r ≥ 1, and the Lie tori slr+1(A) and slr+1(A′) satisfy Assumption (C). Then
slr+1(A) and slr+1(A′) are isomorphic if and only A and A′ are isomorphic.
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Proof. The implication from right to left is clear and so we consider only the
converse. This can be seen to follow using Assumption (C) from Theorems 8.6(ii),
9.11 and 10.6 of [8] in the cases r = 1, r = 2 and r ≥ 3 respectively. However for
the readers convenience we give a uniform argument that follows the approach in
Section 9 of [8].

We begin arguing that (as noted in [8, Remark 9.12]) A ' Aop , where Aop

denotes the opposite algebra of A with product (x, y) 7→ yx . Indeed, using the
tensor product decomposition (22) of A , it is sufficient to consider the case when
A = Q(ζ), where ζ is a root of unity. But in this case we have A ' Aop under
the homomorphism exchanging x1 and x2 .

Let L = slr+1(A), L′ = slr+1(A′) and L′′ = slr+1(A′op). Then h = L0
0 , h′ =

L′00 and h′′ = L′′00 are identified in Construction 8.3(A) with∑r
i=1 k(eii − e2r+1−i,2r+1−i) in L , L′ and L′′ respectively. So we can identify

h , h′ and h′′ in the evident fashion. In this way, h =
∑r

i=1 k(eii − e2r+1−i,2r+1−i)
is a subalgebra of L , L′ and L′′ ; and we have

∆ := ∆k(L, h) = ∆k(L′, h) = ∆k(L′′, h).

Assume now that slr+1(A) ' slr+1(A′). Then, by Assumption (C) applied
to L′ , we have an isomorphism ϕ : L → L′ such that ϕ(h) = h . Thus, as in
the proof of Theorem 7.2, ϕ induces a linear automorphism ϕ̂ of h∗ such that
ϕ(Lα) = L′ϕ̂(α) for α ∈ h∗ . So ϕ̂ is an automorphism of the root system ∆.

Next define ψ : L′ → L′′ by ψ(x) = −xt for x ∈ L′ . Then ψ is an algebra
isomorphism with ψ(h) = h , and we have ψ̂ = −1. Thus, replacing A′ by A′op

and ϕ by ψϕ if necessary, we can assume that ϕ̂ is in the Weyl group of ∆.

So, replacing ϕ by πϕ , where π is conjugation by an appropriate permuta-
tion matrix over k , we can assume that ϕ̂ = 1. Therefore, for 1 ≤ i 6= j ≤ r + 1,
we have a linear bijection ϕij : A → A′ with

ϕ(aeij) = ϕij(a)eij

for a ∈ A .

Now, if a, b, c ∈ A , we have

[[ae12, be21], ce12] = [abe11 − bae22, ce12] = (abc+ cba)e12.

Applying ϕ to this equation, yields

ϕ12(a)ϕ21(b)ϕ12(c) + ϕ12(c)ϕ21(b)ϕ12(a) = ϕ12(abc+ cba). (55)

If we put a = c = 1 in this equation we get

ϕ12(1)ϕ21(b)ϕ12(1) = ϕ12(b) (56)

for b ∈ A . So ϕ12 = `ϕ12(1)rϕ12(1)ϕ21 , where `ϕ12(1) and rϕ12(1) in Endk(A′) are left
and right multiplication respectively by ϕ12(1). Thus, `ϕ12(1)rϕ12(1) = rϕ12(1)`ϕ12(1)

is invertible, and so ϕ12(1) is a unit in A′ .
Replacing ϕ by µϕ , where µ is conjugation by diag(ϕ12(1)−1, 1, . . . , 1), we

can assume that ϕ12(1) = 1. Hence, by (56), ϕ21 = ϕ12 . So putting b = 1 in



202 Allison

(55), we have ϕ12(a)ϕ12(c) + ϕ12(c)ϕ12(a) = ϕ12(ac + ca) for a, c ∈ A . That
is ϕ12 : A → A′ is a Jordan isomorphism. Hence, since A′ is a prime ring, a
theorem of Herstein [21, Thm. 3.1] tells us that ϕ12 is either an isomorphism or
an anti-isomorphism of A onto A′ . Since A′ ' A′op it follows that A ' A′ .

If all special linear Lie tori satisfy Assumption (C), Theorem 11.4 reduces
their classification to Neeb’s classification of fgc associative tori mentioned in
Section 8.

Isomorphism of special unitary Lie tori. If all special unitary Lie tori satisfy
Assumption (C), Theorem 11.2 tells us that their classification up to isomorphism
is reduced to determining when two such Lie tori are isotopic. We are optimistic
that the latter can be accomplished along the lines of [2, §7], perhaps using a notion
of isotope for graded hermitian forms (following the philosopy of [8]). However, at
this point the isotopy problem for special unitary Lie tori is open.

Summary. If all fgc centreless Lie tori satisfy Assumption (C), our work in this
article has reduced their classification up to isomorphism to solving the isotopy
problem for special unitary Lie tori.
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