Journal of Lie Theory
Volume 22 (2012) 163-204
(© 2012 Heldermann Verlag

Some Isomorphism Invariants for Lie Tori

Bruce Allison

Communicated by K.-H. Neeb

Abstract. In this paper we study the isomorphism problem for centreless
Lie tori that are fgc (finitely generated as modules over their centroid). These
Lie tori play a important role in the theory of extended affine Lie algebras
and of multiloop Lie algebras. We introduce four isomorphism invariants for
fgc centreless Lie tori, and use them together with known structural results to
investigate the classification problem for fgc centreless Lie tori up to isomorphism.
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Suppose that k is a field of characteristic 0, A is a finitely generated free abelian
group, and A is an irreducible finite root system. A Lie torus of type (A, A) is a
Lie algebra £ over k that has two compatible gradings, one by the root lattice @)
of A and the other by A, such that a list of natural axioms hold (see Definition
3.1). In that case the rank of A is called the nullity of £. Lie tori were introduced
by Yoshii in [37, 38] and, in an equivalent form that we use here, by Neher in [26].

Centreless (zero centre) Lie tori are of fundamental importance in the theory
of extended affine Lie algebras (EALAs), where they are used as the starting point
for the construction of all EALAs [27]. Perhaps the best known example occurs in
nullity 1. In that case, any centreless Lie torus is isomorphic to the derived algebra
modulo its centre of an affine Kac-Moody Lie algebra g [3], and the full affine
algebra g is constructed from this Lie torus by the familiar process of affinization.

In this article, we focus our attention on centreless Lie tori that are fgc
(finitely generated as modules over their centroids). We do this for two reasons.
First, it is these Lie tori that play an important role in the study of multiloop Lie
algebras; and vice versa (see more about this in Section 3). Second, it is known
that the fgc assumption excludes only one family of centreless Lie tori (see the
discussion preceding Theorem 8.5).

The structure of fge centreless Lie tori is now quite well understood, using
work of a number of authors over a period of almost 15 years. However, the iso-
morphism problem, by which we mean the problem of determining when two such
Lie tori are isomorphic, is much less understood. Note that here and subsequently,
the term isomorphic means isomorphic as (ungraded) algebras, unless mentioned
to the contrary.
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The isomorphism problem for fgc centreless Lie tori has been solved in
nullities 0, 1 and 2. Indeed, in nullities 0 and 1, a solution follows from classical
conjugacy theorems for maximal split toral k-subalgebras of finite dimensional
simple Lie algebras and affine Kac-Moody Lie algebras respectively. (See Sections
5.4 and 6.3 in [7].) In nullity 2, the problem was solved in [7] as part of the
classification of nullity 2 multiloop Lie algebras. (See [7, Cor. 10.1.3 and Thm.
13.3.1].) In this paper, we consider the problem for arbitrary nullity. As one might
expect, our approach is to look for isomorphism invariants.

In order to describe some of our results, we briefly outline the structure of
this paper, which begins in Sections 1-4 with some basic definitions and properties
of Lie tori.

In Section 5, we investigate the central closure L of an fge centreless Lie
torus £ of type (A, A), which is obtained from L by extending the base ring
from the centroid C' of L to its quotient field C. It is known that L is a finite
dimensional isotropic central simple Lie algebra over C , and hence the theory of
such Lie algebras can be brought to bear on our problem. The main result in this
section, Theorem 5.4, describes an explicit maximal split toral C- subalgebra [) of
C. JFrom this we deduce Corollary 5.6, which asserts that the relative type of L
is the type of the given root system A. We note that Corollary 5.6 was a basic
tool in the article [7] mentioned above, but its proof was left to be presented in
this article.

In Section 6, we show that an fgc centreless Lie torus £ of type (A, A) has
four isomorphism invariants: (i) the type of the root system A, which is called
the root-grading type of L; (ii) the nullity of £; (iii) the rank of £ as a module
over its centroid C', which is called the centroid rank of L£; and (iv) a vector of
positive integers, called the root-space rank vector of L, that lists the ranks over
C of the root spaces of £ in the ()-grading. Indeed, the invariance of the centroid
rank is clear. However, the other three quantities are defined using the graded
structure of £ and hence their invariance requires more argument. We establish
the invariance of the root-grading type and the root-space rank vector using the
results of Section 5. We also see that invariance of the nullity follows easily from
known facts about Lie tori.

We note that the four invariants just discussed are rational, by which we
mean, as in [32], that they are defined without using base ring extension. We
also note that, up to this point in the paper, our methods are elementary, using
for the most part linear algebra, sly-theory and facts from [32, Chap. I] about
finite dimensional central simple Lie algebras. For another approach, see [31], [19]
and [20], where tools from Galois cohomology are used to study the isomorphism
problem for forms of algebras over Laurent polynomial rings and in particular for
multiloop Lie algebras.

In Section 7, we recall an equivalence relation for Lie tori, called isotopy,
that is finer than isomorphism as it takes into account the grading [5, 8. We
observe that the group A/T'(L£) is an isotopy invariant (but not yet an isomorphism
invariant) of a centreless Lie torus £, where I'(£) denotes the A-support of the
centroid of £. The main result of the section is a simple characterization of isotopy
for centreless Lie tori.
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In the rest of the paper, we assume that k is algebraically closed and
we apply the invariants from Sections 6 and 7 to study classification and the
isomorphism problem for fgc centreless Lie tori. First in Section 8 we summarize
in one theorem the known structure theorems for fgc centreless Lie tori. It states
that any such Lie torus is either classical, which means roughly that it can be
constructed as a special linear Lie algebra, a special unitary Lie algebra, a special
symplectic Lie algebra, or an orthogonal Lie algebra over an associative torus;
or it is one of 27 Lie tori (defined for each sufficiently large nullity) that we call
exceptional. Since the statements of the structure theorems are spread over many
papers, we hope that our summary will be of independent interest to the reader.
Included in this section is a table, numbered as Table 1, of our invariants for
exceptional Lie tori, with references to the literature.

In Section 9, we show how to calculate the invariants for classical Lie tori,
and list the results in two tables, numbered as Tables 2 and 3. The three tables
are then applied in Section 10 to obtain results about the isomorphism problem
for fgc centreless Lie tori. We show that the classes of exceptional and classical
Lie tori have no overlap and that the four classes of classical Lie tori are similarly
disjoint. We then solve the isomorphism problem for special symplectic Lie tori and
orthogonal Lie tori (the latter is easy), and we reduce the problem for exceptional
Lie tori to consideration of at most five particular algebras (in each nullity). This
reduces the classification of fgc centreless Lie tori to the separate isomorphism
problems for (1) five particular exceptional Lie tori, (2) special linear Lie tori, and
(3) special unitary Lie tori.

In the final section, we discuss these three problems under an additional
conjugacy assumption for certain (but not all) maximal split toral k-subalgebras
of an fgc centreless Lie torus. The additional assumption is reasonable since
work in progress by Chernousov, Gille and Pianzola [16] will show that it always
holds (see Remark 11.1). Under the conjugacy assumption, we show that isotopy
and isomorphism coincide for fgc centreless Lie tori and use this to complete the
classification of exceptional Lie tori. Also under the conjugacy assumption, we
complete the classification of special linear Lie tori, leaving only the isomorphism
problem for special unitary Lie tori to be solved.

Finally, we note that the conjugacy assumption could have been used earlier
in the paper to demonstrate the invariance of the root-grading type and the root-
space rank vector. However, we did not do that since we understand that [16]
uses deep results from the theory of group-schemes, whereas our goal has been
to deduce as much as possible about the isomorphism problem for Lie tori using
self-contained and elementary methods.

Acknowledgments. First, we thank Arturo Pianzola for carefully reading
an earlier version of this paper and making several suggestions that substantially
improved its presentation. We also thank him for keeping us informed of the work
in [16] on conjugacy. Second, we thank the referee who noticed and filled a small
gap in the proof of Theorem 7.2. The referee also very helpfully suggested the
expansion, from the first version of the paper, of the material now included in
Sections 9 and 10.
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1. Preliminaries

Throughout the paper, we assume that k is a field of characteristic 0. Unless
mentioned to the contrary, algebra will mean algebra over k.

The centroid. Suppose that A is an algebra over k. The centroid of A is the
subalgebra of Endy(A) defined by

Cx(A) :=={c € Endg(A) | c(z-y) =c(x) -y =x - c(y) for z,y € A}.

Then kid, is a subalgebra of Cg(A), which we identify with k in the evident
fashion when A # 0. The algebra A is said to be central if Cy(A) =kidy.

Note that A is naturally a left Cy(.A)-module; and we say that A is fgc if
this module is finitely generated.

The algebra A is said to be perfect if A- A = A, where - denotes the
product in A. If A is perfect, then Ci(A) is commutative. If A is simple (and
hence perfect), then Cg(A) is a field and A is a central simple algebra as an
algebra over Ci(A).

If A is a unital associative algebra, we denote the centre of A by Z(A).
Then the map z +— £, is an isomorphism of Z(.A) onto Ck(.A), where £, € Endg(.A)
is left multiplication by z.

Remark 1.1. (i) If A is an algebra over an extension field F' of k and A is
perfect (over F' or equivalently over k), then Cy(A) = Cr(A).

(ii) Any isomorphism ¢ : A — A’ of algebras induces a unique isomorphism
X : Ck(A) = Cy(A’) such that ¢(cz) = x(c)p(x) for c € Cx(A), = € A.

Involutions. If A is an algebra, an involution of A is an anti-automorphism
“—7 of A (so 7y = yx for x,y € A) of period 2. In that case, we call (A,—) an
algebra with involution. If the involution is fixed, we often use the notation

A, ={reAlz=2} and A-={recA|z=—z},

in which case A = A, & A_. If A is unital and associative, the centre of (A, —)
is defined as Z(A,—) ={rz e Z(A) |z =z} =Z(A)NA,.
Graded algebras. If A be an abelian group and A = @,_, A* is a A-graded
algebra, we use the notation supp,(A) := {\ € A | A* # {0}} for the A-support
of A.
If A isa A-graded algebra and A’ is a A’-graded algebra we say that A and
A’ are isograded-isomorphic if there exists an algebra isomorphism ¢ : A — A’
and a group isomorphism g : A — A’ such that ¢(A*) = AP for A e AL
There is an evident definition of a graded algebra with involution (the
involution is assumed to be graded) and of isograded-isomorphism for graded
algebras with involution (the map is assumed to preserve the involutions).

Irreducible finite root systems. As in [1] and [26], it will be convenient for us
to work with root systems that contain 0. So, if X is a finite dimensional vector
space over k, by an irreducible finite root system in X we will mean a finite subset
A of X such that 0 € A and A* := A\ {0} is an irreducible finite root system
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in X in the usual sense (see [15, chap. VI, §1, Définition 1]). We say that A is
reduced if 2a ¢ A* for a € A*.

An irreducible finite root system A has one of the following types:
Ag(£ Z 1), Bg(g 2 2), Cg(g 2 3), Dg(f Z 4), Eﬁ, E77 Eg, F4 or G2 if A is
reduced; or BC, (¢ > 1) if A is not reduced.

We will use the following notation for an irreducible finite root system A
in X. Let

Q(A) := spang(A)
be the root lattice of A. Let X* denote the dual space of X', let (, ) : X xX* = k
denote the natural pairing, and, if a € A*, let " denote the coroot of a in X'*.
Finally, let

A= AT\ 2A%
denote the set of indivisible nonzero roots in A, and let Ajyq := A, U{0}. Then

Ainq is a reduced irreducible finite root system in X'; and, if A is reduced, we
have Ajnqg = A.

2. Split toral subalgebras and relative type

Suppose that £ is a Lie algebra over k.

A split toral k-subalgebra of L is an abelian! k-subalgebra b of £ such that
there is a k-basis for £ consisting of simultaneous eigenvectors (with corresponding
eigenvalues in k) for all of the operators ad(h), h € .

If b is a split toral k-subalgebra of £, then we have the decomposition
L= ®aeb* L., called the root-space decomposition of L relative to b, where

Lo={x € L]|[h,x] =ah)x for h € b}

for v € b*. We set
Ap(L,b) :={a € b” | L, # 0},
and we call Ag(L,h) the root system of L relative to b.

The following formal result is well-known and easily checked using Re-
mark 1.1.

Lemma 2.1.  Suppose that L (resp. L) is a central perfect Lie algebra over a
field F (resp. F') that is an extension field of k. Suppose that ¢ : L — L' is
a k-algebra isomorphism, b is a split toral F -subalgebra of L, and ' = ¢(h).
Then b is a split toral F'-subalgebra of L', which is mazximal if and only if b is
mazximal. Moreover, setting A = Ap(L,h), Q = spany(A), A= Ap (L', h) and
Q' = spany(A’), there exists a unique group isomorphism p : Q — Q" such that
e(La) = L, for a € Q. Furthermore, p(A) = A" and dimp(La) = dimp/ (L))
for a € Q.

A finite dimensional central simple Lie algebra over k is said to be isotropic
if it contains a nonzero split toral k-subalgebra.

Tt is not difficult to show that the abelian assumption is superfluous (although we will not
use this fact).
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Theorem 2.2. [32, §1.2] Suppose that L is an isotropic finite dimensional
central simple Lie algebra over k and b is a maximal split toral k-subalgebra
of L. Then

(i) Ax(L,b) is an irreducible finite root system in bh*.

(i) If ¥ is another mazimal split toral k-subalgebra of L, there ezists an auto-
morphism ¢ of L such that p(h) =h’.

If £ is an isotropic finite dimensional central simple Lie algebra, the relative
type of L is defined to be the type of the root system Ayg(L,h), where b is a
maximal split toral k-subalgebra of £. By Theorem 2.2 and Lemma 2.1 (with
F = F’ = k) this is independent of the choice of .

3. Lie tori

For the rest of the paper we assume that A is an irreducible finite root system
with Q@ = Q(A), and that A is a finitely generated free abelian group.
This section contains the definition and some basic properties of Lie tori.
We restrict ourselves to the properties that we will need. For the reader wanting to
learn more about this topic, two recent articles by Neher [28, 29] are recommended.
In order to recall the definition of a Lie torus, we first introduce some
notation for ) x A-gradings. Let

L= P =

(,\)EQXA

be a ) x A-grading on a Lie algebra £.2 Then £ = @aEQ L, is a @Q-grading of
L with
L, ::@Eé for a € Q;

AEA

L=, L is a A-grading of £ with

=Ly  for AeA;
a€eqQ

and we have £) = £, N L£*. Conversely if £ has a Q-grading and a A-grading
that are compatible (which means that each L, is a A-graded subspace of £ or
equivalently that each £* is a Q-graded subspace of £), then £ is Q x A-graded
with £} = £, N L£*. jFrom either point of view, we can simultaneously regard £
as a ) x A-graded algebra, a ()-graded algebra and a A-graded algebra; and we
correspondingly have the support sets suppg, (L), suppg(£) and supp,(£). We
refer to the Q-grading as the root grading of £, and we refer to the A-grading as
the external grading of L.

2 As is usual in the study of Lie tori, it is convenient to use the notation £ rather than L)
or L4,y for the homogeneous component of degree (a, A).
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Definition 3.1.  [26] A Lie torus of type (A, A) is a Lie algebra £ which has
the following properties:

LT1) £ hasa @ x A-grading £ = L) such that supp, (L) = A.
(a,N)EQXA ~a Q

(LT2) (i) (Afa,0) € suppgya(£).
(i) If (a, A) € suppgya(£) with a € A*, then there exist elements e} € L),
and f2 € £Z) such that £} =ke}, £Z) = kf?} and

(len: fa)s 5] = (B a¥)as (1)
for zg € Lg, BEQ.
LT3) L is generated as an algebra by the spaces L., o € A*.
( g g y the sp

(LT4) A is generated as a group by supp, (£).

In the definition given in [26], it is only assumed that suppgy(£) € A in
(LT1). However, our stronger assumption is more convenient here and it results
in no loss of generality (see [5, Remark 1.1.11]).

If £ is a Lie torus, we assume (unless mentioned to the contrary) that
we have made a fixed choice of a grading £ = D, rcqx A L2 as in (LT1) and
elements e} and f2 as in (LT2)(ii). Thus if (o, A) € suppg,,(£) with a € AX,
then (e}, h), f2) is an sly-triple in £, where h)) = [e, f2]. Hence the space S)

spanned by this triple is a 3-dimensional split simple Lie subalgebra of L.

Remark 3.2. If (a,)) € suppgy,(£) with o € A*, then £ is a locally finite
dimensional 8-module under the adjoint action. Indeed, to see this it suffices to
show that U(S2)z; is finite dimensional for x5 € Lg, 8 € A, where U(S?2) is the
universal enveloping algebra of 8. This fact in turn follows from the Poincaré-
Birkhoff-Witt theorem for S, (1) and the assumption that A is finite.

Definition 3.3. If £ is a Lie torus of type (A, A), we define the nullity of £
to be rankz(A) and the root-grading type of L to be the type of A.

We note that a Lie torus is perfect by (1) and (LT3).

Example 3.4.  Suppose that g is a finite dimensional split simple Lie algebra

with splitting Cartan subalgebra b over k. Let A = Ag(g,h) and Q = Q(A); and
let g = @aeQ go be the corresponding root-space decomposition. For n > 0, let

R, =Kk, ... ]

be the algebra of Laurent polynomials in n variables over k with its natural Z"-
grading R, = @,z R). Then §® R, is an fgc centreless Lie torus of type (A, Z")
with (§® R,)) = ga ® R} for (o, \) € Q x Z". We call § ® R, the untwisted Lie
torus of type (A,Z").
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When k is algebraically closed, there is a twisted version of the above ex-
ample which constructs a subalgebra L(g,o) of § ® R,, from a finite dimensional
(split) simple Lie algebra g and an n-tuple o of commuting finite order automor-
phisms of §.> The algebra L(g, o) is called a nullity n multiloop Lie algebra. If
the common fixed point algebra g is nonzero, then L(g, o) is an fgc centreless
Lie torus of nullity n relative to some @ x A grading on L(g, o) [24, Thm. 5.1.4].
Conversely, any fgc centreless Lie torus of nullity n is isomorphic to L(g, o) for
some g and o as above with g7 # 0 [5, Thm. 3.3.1].

We will recall some other constructions of Lie tori in Section 8.

We now prove three lemmas about Lie tori using sly-theory. In each lemma
we assume that L is a Lie torus of type (A, A), where we recall that we are
assuming that A is a finitely generated free abelian group.

The first lemma is an analogue for Lie tori of the well-known fact that
any associative A-torus is a domain. (See Section 8 to recall the definition of an
associative torus.)

Lemma 3.5. If o, € A* with (8,a") <0, 0# x4 € L, and 0 # ys € Lg,
then ad(xq)~ % ys #£0.

Proof. Because of our assumptions on A, we know that we can give A a linear
order (for example the lexicographic order relative to some Z-basis of A). Given
nonzero x € L, this order on A allows us to speak of the nonzero component of
highest degree of x.

Suppose for contradiction that ad(:na)’w’av)yg = 0. Then replacing z, and
ys by their nonzero components of highest degree in the A-grading, we can assume
that x, € £} and yz € Lf;, where A, € A. Thus, since the spaces £} and Ly
are 1-dimensional, we have ad(eé)_<5’“v>eg = 0. But, by Remark 3.2, e lies in
a finite dimensional S2-submodule of £. Further, by (1), eg is an eigenvector
for ad(h)) with eigenvalue (3, ") < 0. Therefore from the classification of finite
dimensional irreducible S)-modules, we have ad(eg)*w’aweg # 0. n

The second lemma is an analogue for Lie tori of the well-known fact that
any invertible element in an associative A-torus is homogeneous.

Lemma 3.6.  Suppose [z,y| € L), where 0 # z € L,, 0 # y € L_, and
a € A*. Then x € L) and y € L= for some X € A.

Proof. We order A as in the previous proof. Let z/“ € £"*) bhe the

nonzero A-homogeneous component of x of highest degree u(z), and let y" (3) €

E’i(ff) be the nonzero A-homogeneous component of y of highest degree u(y).

Then, [z, y] — [#4", 5] is the sum of A-homogeneous terms of degree less than

p(x)+p(y). But [sz(’”),yﬁf)] # 0 by Lemma 3.5 with § = —a. So u(x) = —u(y).
Similarly if we use lowest degrees v(z) and v(y), we get v(x) = —v(y). So u(z) =
—1(y) < —v(y) = v(z), which implies that = = 24 Similarly, y = Y. [

3In [5] and [24], L(g,0) is denoted by M, (g,0).
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Lemma 3.7.  Suppose L is a Lie torus of type (A, A). If ial, ..., qq} s a base
for the root system A, then the algebra L is generated by \J;,_; (Lo, U L_0,)-

Proof. Let M be the subalgebra of £ that is generated by the indicated set,
and let E* = {a € A* | L, € M}. In view of (LT3), it suffices to show that
E* = A*. Now it follows from [5, (4)] that E* is stable under the action of the
Weyl group of A. Hence, Ayq € E*, and we are done if A is reduced. Assume
now that A is not reduced, and let @ be a root of smallest length in A*. It remains
to show that 2a € E*. To verify this, it is enough to show that e, € ad(e?)L,
for all o € A. This is an easy exercise using representations of the algebra S°.
We leave the details to the reader. [ |

4. Centreless Lie tori

In this section, we assume that L is a centreless Lie torus of type (A, A) and we
recall the basic facts that we will need about L. All of these facts were announced
by Neher in [26] or [28, §5.8(c)]. For the convenience of the reader, we provide a
proof or a reference for a proof in each case.
Set
g=L" and bh=L).
Then, by [5, Prop. 1.2.2], g is a finite dimensional split simple Lie algebra with
splitting Cartan subalgebra h. Moreover [ibid], A can be uniquely identified (by

means of a linear isomorphism of span,(A) onto h*) as a root system in h* in
such a way that

Aind = Ak(ga [j)

and [€2, [ = oY for a € A . We will subsequently always make this identifica-
tion. In that case we have [ibid]

[ei\u fci\] = O'/v for (O[, )‘> € SuprXA(£)7 o€ AX

and

Lo={x € L]|[hx]=a(h)rfor hebh} for aec@. (2)

(Here a¥ € (h*)* =1.)

Note that (2) tells us that b is a split toral k-subalgebra of £ and that the
root grading of L is the root-space decomposition of L relative to .

Recall that an algebra A is said to be prime if the product of any two
nonzero ideals of A is nonzero.

Proposition 4.1. L is prime.
Proof. The main tool in the argument is Lemma 3.5, which tells us that if
a,p e A* with (8,a") <0, 0+# z, € L, and 0 # yz € L3, then

0 # ad(za)"?ys € Lo, (8), (3)

where w, is the reflection along a in the Weyl group W of A.



172 ALLISON

Suppose now that Z is a nonzero ideal of £. By (2), Z is @)-graded; that
is T =@, cnZa, where Z, = I N L,. Let AX(T) = {a € A* | Z, # 0}. We will
see that AX(Z) = A*.

Note first that A*(Z) # (). Indeed otherwise we have Z C L, which
implies [Z, L,] = 0 for a € A* and hence [Z, L] = 0 by (LT3), contradicting our
assumption that L is centreless.

We now claim that WA*(Z) C A*(Z). To see this, it is enough to show
that w,(8) € A*(Z) for a« € A* and f € A*(Z). For this we can assume that
(B,a") < 0 in which case our claim follows taking ys € Zs in (3). Note that in
particular, if € A*(Z), we have —f = wg(8) € A*(Z).

Next we claim that A*(Z) and A*\ A*(Z) are orthogonal. Indeed, if not,
we can choose aw € A*(Z) and f € A*\ A*(Z) with (f,a") # 0. Replacing, «
by —a« if necessary, we can assume that (3,a") < 0. But then taking z, € Z, in
(3), we see that w,(5) € A*(Z) and hence (by the previous claim) g € A*(Z).
This contradiction proves the claim. It then follows from the irreducibility of A
that A*(Z) = A*.

To prove the proposition, suppose for contradiction that Z and J are
nonzero ideals of £ with [Z,J] # 0. Then A*(Z) = A* and AX(J) = A*.
Hence, for any o € A* | we have o € A*(Z) and —a € A*(J). So Z, # {0} and
J-o # {0}. Since [Z,, J_o] = 0, this contradicts (3) (with f = —«). n

Let C' = Cy(L£). Then C = @, , C* is a A-graded commutative asso-
ciative algebra, where C* := {c € C | ¢(L") C L' for p € A} [12, Lemma
3.11(1)].

Set

['=T(L) := supp, (C).

Then I' is a subgroup of A [ibid], and
¢ ~ KT, (1)
as graded algebras, where k[I'] is the group algebra of T with its natural A-grading
[12, Prop. 3.13(ii)].
Recall (see Section 3) that A is called the external-grading group of L.
Note also that £ it is naturally graded by the quotient group A/T", and we call

the group A/I" the quotient external-grading group of L.
The following proposition follows from [5, Lemma 1.3.7 and Prop. 1.4.1]:

Proposition 4.2.  Suppose that L is fgc. Then
(i) L* is finite dimensional for X\ € A

(i) A/T is finite.

4Part (i) is true without the assumptions that £ is fgc and centreless [27, Thm. 5], but the
proposition as stated is all that we need.
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5. The central closure of an fgc centreless Lie torus

In this section we assume that L is an fgc centreless Lie torus of type (A, A) and
we discuss the central closure of £. We continue using the notation b = L3,
C' = Ck(L) and T' =T'(£) introduced in Section 4.

Taking into account Proposition 4.2, we now fix a list A\q,...,\,, of repre-
sentatives of the cosets of I' in A, with A\ = 0. For « € A and 1 <i < m, we
choose a (finite) k-basis B’ for ,C)‘ For a € A we let B, = U™, B’ ; and we let
B = UqeaB,. Note that B is finite since A = suppy(£) is finite.

Proposition 5.1.

(i) If « € Q, L, is a C-submodule of L and B, is a A-homogeneous C -basis
for L. Hence L, is a free C'-module of finite rank.

(ii) B is a Q x A-homogeneous C-basis for L. Hence L is a free C'-module of
finite rank.

Proof.  Since (ii) follows from (i), so we only need to check (i). First, the fact
that £, is a C'-submodule of £ follows from (2). Also B, is A-homogeneous by
definition. Finally, the fact that B, is a C-basis for L, is easily checked directly
using (4). n

The centroid C' of £ is an integral domain (for example by (4)). Let C be
the quotient field of ', in which case C' is an extension field of k. Let

EIZ@@Cﬁ.

Then £ is a algebra over C which we call the central closure of L.

Now L is prime (by Proposition 4.1), perfect and fgc. So L is a finite
dimensional central simple algebra over C , and the map x — x®1 identifies L as
a C-subalgebra of £. (Sece for example [6, §3], which uses results from [17, §1].)

It follows from Proposition 5.1(ii) that B is a C-basis of £ and hence

dimé(z) = rankqo(L). (5)

Remark 5.2. If £ and L' are fgc centreless Lie torus that are isomorphic (as

k-algebras), it follows easily using Remark 1.1(ii) that £ and £’ are isomorphic
(as k-algebras).

Next let o
h=Ch

in C. It is clear that E is a nonzero split toral C -subalgebra of L , and hence Lis
isotropic (see Section 2). We will show in Theorem 5.4 that b is a maximal split
toral C- subalgebra of L.

We first look at the root space decomposition of C relative to h For this, let
b* = Homy(h,k) be the dual space of b over k (as before), and h* = Homo(f) C)
be the dual space of E over C.
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Proposition 5.3.

(1) BY is a k-basis for h = L) and BY is a C -basis for F) Hence dlmC(E) =
dimg(h), and any k-basis for b is a C -basis for f)

(ii) There exists a unique k-linear map o — & of b* into []* with &l = « for

a € h*. Under this map, any k-basis for h* is sent to a C -basis for h* :
we have o )
h={hebh|ah) ek foraec A} (6)

(iii) Let A={a|a € A} and Q={a|aecQ}. Then A is an irreducible finite
root system over C in f)* of the same type as A,> and we have Q QA).

(iv) Let Lq = {& €~£N|[l~1,x] = a(h)E for h € b} for « € Q. Then Ls = CL,
foraeQ and L=EP,.x La-

(v) As(L,h) =A.
(vi) If « € A, then B, is a C -basis for L and hence ranke (L) = dimé(E&).

Proof.  B? was chosen as a k-basis for h = £3, and B? is part of the C-basis
B for £. This implies (i); (i) follows from (i) and the fact that A contains a
k-basis of h*; and (iii) follows from (ii).
Next £ = e CL, and CL, C L for o € Q. Since the sum Y ae

is direct, this implies (iv). Also, if « € @), we have L5 # {0} «~— CL,#0 <:>
Lo, #0 <= a &€ A. (Here we have used the equality A = suppg(£) from
(LT1).) So we have (v). Finally, if o € @, then B, is part of a C-basis for £ by
Proposition 5.1, so (vi) follows from (iv). n

Theorem 5.4. Suppose that L is an fgc centreless Lie torus of type (A, A) with
central closure L = CL. Let h =LY and Ij = Cb Then, h s a maximal split
toral C - subalgebra of L.

Proof. We first claim that if o € A* and Z is a nonzero element of L’d, then
ad(z ) maps £_g bijectively onto L. Now £_s and L have the same dimension
over C since they are paired by the Killing form of L over C'. Hence to prove
the claim it is enough to show that ad(Z)?|z _ is injective. For this, we argue
by contradiction. Suppose that ad(Z)?*y = 0 for some nonzero element ¢ of Z_d.
Now, by Proposition 5.3(iv), Z = ¢ 'z and § = d~'y, where ¢ and d are nonzero
elements of C, 0 # z € L, and 0 # y € L_,. Then ad(z)’y = 0. But this
contradicts Lemma 3.5 (with § = —a), so we have the claim.

To prove the theorem, let t be a maximal split toral 5—subalgebra of £
containing b, and let £ = A5(L,t). By Theorem 2.2(i), £ is an irreducible finite

5In fact, one can check that A s isomorphic to the root system obtained from A by base
field extension from k to C' (as described in [15, Chap. VI, §1, Remark 1]).
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root system over C in t. We choose a Z-basis for the root lattice Q(E) of E
and order Q(F) using the corresponding lexicographic order. For o € A we let

Es={e€ E|clz=a}.
Since [t, E} = 0, we have [t, Ea] C L for a € A. Then, since b C t, it follows

easily that
Ls= P L.. (7)

for « € A. (Here EN& denotes a root space relative to E, whereas ZE denotes a
root space relative to t.)

Now let o« € A*. Then, Ez # () by (7). Let € be the maximum root in Fy,
and fix nonzero = € L£.. Then, again by (7), # € L. So, as we saw above, ad ()2
maps L£_; bijectively onto L. It follows from this that E; = E_g + 2. Since
E_;= Ed, we have Fg = —FE5+2¢. Hence, if ( € E5, we have ( = —n+ 2¢ for
some 1 € Fg, which gives 2¢ = ( + 7. But if {( < ¢ this forces 2e <e+n < 2¢, a
contradiction. Therefore E5 = {¢}; that is Ej is a singleton.

Finally, to show that t C H let t € t. Let {ai,...,as} be a base for the
root system A, and choose ¢1,...,e; in E with Es, = {51} for 1 <4 < /. But,

by Proposition 5.3(ii), @i,...,da, is a C'-basis for b* and so we can choose h € f)
such that &;(h) = ¢;(t) for 1 < ¢ < ¢. Then it follows from (7) (Wlth a = ;)
that ad(h) = ad(t) on Ls, for cach i. Similarly, since E_z, = = {—&i},
ad(h) = ad(t) on L_s, for each i. So, by Lemma 3.7, ad(h —t) = 0 on L. Since
L is centreless, t = h E h [ |

Corollary 5.5. b is a mazimal split toral k-subalgebra of L.

Proof. Suppose that t is a split toral k-subalgebra of £ containing h. Then
t:=Ct is a split toral C'-subalgebra of £ containing . Consequently, by Theorem
54, t=1h.

Now let t € t. So t € = b. But adz(t) is diagonalizable linear operator
on L over k, and hence ad;(t) is a diagonalizable linear operator on L over C
with eigenvalues lying in k. So a(t) € k for a € A. Thus, by (6), t € b. [

The next corollary was announced in [7] as Theorem 5.5.1 and used there
as one of the main tools in the classification of nullity 2 multiloop Lie algebras