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Abstract. Let G be a connected reductive algebraic group, H ( G a
reductive subgroup and T ⊂ G a maximal torus. It is well known that if
charactersitic of the ground field is zero, then the homogeneous space G /H
is a smooth affine variety, but never an affine space. The situation changes when
one passes to double coset varieties F\\G//H. In this paper we consider the case
of G classical and H connected spherical and prove that either the double coset
variety T\\G//H is singular, or it is an affine space. We also list all pairs H ⊂ G
such that T\\G//H is an affine space.
Mathematics Subject Classification 2000: 14L30,14M17.
Key Words and Phrases: Double coset varieties.

1. Introduction

The construction of homogeneous spaces G /H has a natural generalisation: one
can take another subgroup F ⊂ G and, instead of H-cosets, consider (F,H)-cosets,
namely, sets F gH. Double cosets in G play an important role in a wide variety of
problems concerning actions of G. For instance, in [17] it was shown that if G is
simple and P = LQ ⊂ G is a parabolic subgroup with abelian unipotent radical Q ,
L being a Levi subgroup of P, then the number of L-orbits in Q is the same as
cardinality of P \G/P, which is finite. Another example is enumeration of simple
modules over simple groups G with finite number of G-orbits on subspaces of
dimension k : if V is a simple G-module satisfying this property and Pk is the
stabiliser in SL(V ) of a k -subspace of V then, as shown in [4],

the set G \SL(V )/Pk is finite.

Many other examples can be found in an expository paper [18].

In this paper we consider double coset varieties. The variety F\\G//H is defined
to be the categorical quotient of G with respect to the action of F×H given
by the formula (f, h) ◦ g = fgh−1 . We get interesting problems by posing the
simplest questions: when F\\G//H exists and when the action F×H : G is locally
transitive?

If no restrictions are imposed upon F and H then the very existence
of F\\G//H is not guaranteed; one can apply results from [1] to find out when
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this variety exists. We limit ourselves to the case of reductive subgroups F and H.
In this case the double coset variety exists and coincides with the spectrum of the
algebra Fk [G] H of functions on G invariant with respect to the described action
of F×H. Remark that F\\G//H parametrises closed double (F,H)-cosets in G.
A result of Luna [9] asserts that the action F×H : G is stable, hence F\\G//H
parametrises generic (F,H)-cosets.

The second question, namely, existence of a dense coset F gH, has also
been extensively studied. In our setting, when F and H are reductive and when
the ground field has zero characterstic, the question on density of FH reduces
to the question on existence of the decomposition G = FH. Indeed, since the
action F×H : G is stable, the dense coset FH is closed and coincides with G.
Compact simple Lie groups admitting a decomposition G = F H are classified
in [11]. Subsequent paper [12] provides this classification in context of reductive
Lie groups.

It is interesting to see what happens when one replaces actions of {e}×H : G
with actions of F×H : G — what are the properties of actions H : G that
change and what are those ones that remain the same? For instance, all orbits
of actions H : G are closed; according to [9], the actions of F×H retain this
property for generic orbits. But some of properties change radically. For example,
as shown in [7], if groups H ( G are reductive, then the homogeneous space G /H
is never an affine space1. Meanwhile, in [2] it was observed that T\\SL4//Sp4 ,
with T being a maximal torus of SL4 , is the affine plane. If one does not require
the subgroups F and H to be reductive then numerous examples of this kind
can be constructed. Indeed, if F and H are excellent, then, as proved in [3], the
variety F\\G//H is an affine space. Recall that a spherical subgroup H ⊆ G is said
to be excellent if the weight semigroup Λ+ (G /H) is generated by disjoint linear
combinations of fundamental weights, that is, no fundamental weight appears with
non-zero coefficient in two or more generators; the weight semigroup Λ+ (G /H)
consists of highest weights of simple G-modules having non-trivial H-invariant
vectors.

It is natural to pose a question to describe double coset varieties that are
“the simplest ones”, that is, those varieties F\\G//H that are affine spaces. The
similar problem has already been resolved for many classes of linear representa-
tions of reductive groups, see [16, Section 8]. For double coset varieties no such
classification exists at the time.

In this paper we prove an easily verifiable necessary condition for F\\G//H to be
an affine space. In one special case, namely, when G is a classical group, H ⊂ G
is a connected spherical reductive subgroup and F ⊂ G is a maximal torus, we
enumerate all pairs H ⊆ G such that the algebra Fk [G] H is free. By “classical”
we mean the groups SLn , SOn and Sp2n . The described class of subgroups F
and H resembles the class considered in [14] which deals with the case where F is
a maximal torus and H is the stabiliser of highest weight vector of a simple G-
module.

1It is important that characteristic of the ground field be zero. For char k = 2 there is an
example of a transitive action SL2 : A2 , see [6]. This remark has been communicated to us by
W. van der Kallen.
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Now let us proceed to the main results of the paper.

Theorem 1.1. Let G be a classical algebraic group, T ⊂ G a maximal torus,
H ⊂ G a connected spherical reductive subgroup, and π : G → T\\G//H the
quotient morphism. Then the double coset variety T\\G//H is an affine space
if and only if the image π(e) of the identity element is a regular point.

Theorem 1.1 resembles the criterion for linear representations of reductive
groups to have free algebra of invariants [16, Section 4.4].

Theorem 1.2. Let G be a classical algebraic group, T ⊂ G be a maximal
torus, H ⊂ G be a connected spherical reductive subgroup. Then the double coset
variety T\\G//H is an affine space if and only if the groups G and H are listed in
the following table:

G H dim T\\G//H
SLn+1 S (GLn×GL1) n
SL4 Sp4 2
SO2n+1 SO2n n
SO2n SO2n−1 n− 1
SO4 GL2 1
SO8 Spin7 3
SO6 GL3 3
SO4 SO2× SO2 2
SO3 GL1 1
Sp4 Sp2× Sp2 2

Remark 1.3. In certain sense the bottom part of the table duplicates the top
one. Indeed, the pair GL3 ↪→ SO6 is an image of S (GL3×GL1) ⊂ SL4 under
the two-fold covering SL4 → SO6 . The pair Sp2× Sp2 ⊂ Sp4 , on the contrary,
is a two-fold covering of SO4 ⊂ SO5 . Similarly, the cases SO2× SO2 ⊂ SO4

and GL1 ⊂ SO3 both reduce to S(GL1×GL1) ⊂ SL2 and the case Spin7 ⊂ SO8

reduces to SO7 ⊂ SO8 .

Theorems 1.1 and 1.2 are proved by walking through Krmer’s list [8] of con-
nected spherical reductive subgroups in simple groups which consists of all sym-
metric pairs and 12 other pairs. We filter out those double coset varieties T\\G//H
that are not affine spaces by pointing out their singular points. To this end we use
the following proposition.

Proposition 1.4. Let F,H ⊆ G be reductive subgroups and π : G → F\\G//H
be the quotient morphism. Suppose that the double coset F H is closed in G. Let Z
be the categorical quotient for the action F∩H : Lie G / (Lie F + Lie H) induced by
the adjoint action of F∩H on Lie G. Then the point π(e) ∈ F\\G//H is regular
if and only if Z is an affine space.

Applying Proposition 1.4 we determine whether π(e) is a regular point or
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not. In cases when π(e) is regular we check that T\\G//H is an affine space.

D. I. Panyushev suggested the following observation: for all pairs H ⊂ G
listed in Theorem 1.2, except SO2× SO2 ⊂ SO4 , the weight semigroup Λ+ (G /H)
is generated by one element.

Conjecture 1.5. Let G be a simple algebraic group and H ⊂ G a connected
spherical reductive subgroup. If T\\G//H is an affine space then rk Λ+ (G /H) = 1.

If Conjecture 1.5 is true then Theorem 1.2 lists all Krmer pairs that have
free algebra Tk[G]H , not only ones with G classical. See Section 3.5 for details.

This paper does not consider Krmer’s pairs with exceptional groups G
because in this case applying Proposition 1.4 is technically more difficult. It seems
that rather than carrying out calculations for exceptional groups, it would be
preferable to give an priori proof of Conjecture 1.5 and Theorem 1.1.

Throughout this text the ground field k is supposed to be algebraically
closed and of characteristic zero. All topological terms refer to Zariski topology.
Simple roots and fundamental weights are numbered as in [13].

The author would like to thank I. V. Arzhantsev for stating the problem
and helpful discussions. Valuable suggestions of D. I. Panyushev have considerably
simplified some of originally employed proofs and improved the overall structure
of the paper. R. S. Avdeev has also made numerous useful suggestions.

2. Necessary condition of smoothness of double coset varieties

Let us begin by proving that double coset varieties depend only on conjugacy
classes of subgroups F and H.

Proposition 2.1. Let F,H ⊆ G be arbitrary closed subgroups of an algebraic
group G and x, y ∈ G be two elements. Let F′ = xFx−1 , H′ = yH y−1 . Then the
algebras Fk [G] H and F′k [G] H

′
are isomorphic. In particular, in case of F and H

reductive, the varieties F\\G//H and F′\\G//H′ are isomorphic.

Proof. The isomorphism takes a function ϕ ∈ Fk [G] H to ϕ′(g) = ϕ (x−1gy).

The above proposition shows that with no loss of generality one may assume
the subgroups F and H to have maximal intersection, that is, for every g ∈ G
dimension of g F g−1 ∩ H is not greater than dimension of F∩H.

Proposition 2.2. Let H ⊆ G be a connected reductive subgroup, F ⊆ G be a
maximal torus (resp. a maximal unipotent subgroup, or a Borel subgroup). If H
and F have maximal intersection, then H∩F is a maximal torus (resp. a maximal
unipotent subgroup or a Borel subgroup) of H.

Proof. Let F0 ⊆ H be a subgroup of the same type as F (maximal torus,
maximal unipotent subgroup or a Borel subgroup). There exists g ∈ G such
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that g F0 g
−1 ⊆ F. For this element we have F0 ⊂ g−1 F g ∩ H. To complete the

proof we need to show that g−1 F g ∩ H is connected.

If F is a maximal torus in G, then g−1 F g ∩ H is commutative and cen-
tralises F0 . By [5, IX.24.1], it coincides with F0 . Unipotent subgroups are au-
tomatically connected. Finally, if F is a Borel subgroup of G then g−1 F g ∩ H
is connected since Borel subgroups are maximal not only as connected solvable
subgroups, but also as closed solvable subgroups, see [5, VIII.23.1].

Proposition 1.4 requires the double coset F H to be closed. Let us show
that this restriction is superfluous.

Proposition 2.3. Suppose that reductive subgroups F,H ⊂ G have maximal
intersection. Then F H is closed in G and F∩H is reductive.

Proof. It is clear that the stabiliser of g∈G in F×H is isomorphic to F∩gH g−1 .
It follows that dim (F gH) = dim G− dim (F∩gH g−1). Since the subgroups F
and H have maximal intersection, the double coset F eH is an orbit of minimal
dimension, therefore it is closed. By Matsushima’s criterion [16, Theorem 4.17],
the intersection F∩H is reductive.

Proof of Proposition 1.4. Let us first find the tangent space of F H at e .
Obviously, Lie F,Lie H ⊆ Te (F H), hence we have Lie F + Lie H ⊆ Te (F H). The
double coset F H is an orbit of e , hence dim Te(F H) = dim(F H) = dim(F×H)−
dim(F∩H). On the other hand,

dim(Lie F + Lie H) = dim Lie F + dim Lie H− dim(Lie F∩Lie H) =

= dim(F×H)− dim(F∩H).

Thus, Te(F H) = Lie F + Lie H.

The double coset F H is a closed orbit of F×H, therefore, by Luna’s
theorem [10] on slice tal, we have the following commutative diagram:

(F×H) ∗R S −−−→ Gyp y
S//R

f−−−→ G // (F×H)= F\\G//H.

In this diagram R denotes the stabiliser in F×H of point e , the slice S is an
open neighbourhood of the origin in the slice module N , p : N → N//R is the
quotient morphism and the morphism f is tale.

For tale morphisms ϕ : X → Y we have x ∈ Xreg ⇔ ϕ(x) ∈ Y reg . Thus,
regularity of π(e) is equivalent to regularity of p(0). By [16, Proposition 4.11] the
latter is equivalent to the fact that k [N ]R is free.

It remains to prove that the representation R : N is isomorphic to the repre-
sentation F∩H : Lie G / (Lie F + Lie H) induced by the adjoint action of F∩H on
Lie G. The tangent algebra Lie G has the following decomposition into R-modules

Lie G = Te (F H)⊕N = (Lie F + Lie H)⊕N.
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It is clear that R = {(f, f−1) | f ∈ F∩H} . Therefore the action R : Lie G is
isomorphic to the adjoint action of F∩H on Lie G, hence its restriction to N is
isomorphic to the action F∩H : Lie G / (Lie F + Lie H).

Later in our reasoning we will have to check whether some specific linear
representations of tori have free algebras of invariants. To this end, let us introduce
necessary notation and prove a monotonicity result concerning linear representa-
tions of tori.

Let T be an algebraic torus acting in a vector space V . Consider the
weight decomposition V =

⊕n
i=1 Vχi

. It will be convenient to suppose that all
weight spaces Vχi

are one-dimensional, but weights χi can have multiplicities.
Denote A(T, V ) a semigroup of linear relations between weights {χi} :

A (T, V ) =

{
(a1, . . . , an) ∈ Zn≥0

∣∣ N∑
i=1

aiχi = 0

}
.

Denote x1, . . . , xn coordinates in a basis of V that consists of T-weight
vectors. It is clear that elements of A are n-tuples (a1, . . . , an) such that monomi-
als xa11 · · ·xann belong to k [V ]T . This observation renders the following proposition
obvious.

Proposition 2.4. The algebra k [V ]T is free if and only if the semigroup A (T, V )
is free.

The following lemma will often be used to prove that certain representa-
tions T : V have singular quotients V//T.

Lemma 2.5. Let T = T0×T1 be an algebraic torus acting in a vector space V
and let {χ1, . . . , χs, χs+1, . . . , χs+r} be the weights of V with respect to this action.
Suppose that the characters χi with i ≤ s have trivial restrictions to T1 . De-
note U =

⊕s
i=1 Vχi

. Under these assumptions, if the categorical quotient U//T0

is singular, then so is V//T.

Proof. Since χi with i ≤ s have trivial restrictions to T1 , we have U//T =
U//T0 , hence U//T is singular; thus, every collection of generators of k[U ]T

has algebraic relations. According to [15, Proposition 1.3], every minimal set
of generators of the algebra k[U ]T can be turned into a minimal set of generators
of k[V ]T by adding several invariant functions; such minimal set of generators
of k[V ]T also has algebraic relations. This implies that the quotient V//T is not
an affine space, hence it is singular.

As we will see later on, numerous families of triples T,H ⊆ G have slice
modules that satisfy conditions of Lemma 2.5. For such series of triples Lemma 2.5
will be used to show that if a double coset variety Tr\\Gr//Hr is not an affine space
when r = r0 then it is not an affine space for all r > r0 .

3. Proof of Theorems 1.1 and 1.2
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3.1. Spherical subgroups of special linear groups. We denote Tn ⊂ SLn
the subgroup of the diagonal matrices. When there is no possibility for confusion
we write T instead of Tn . By maximal torus we always mean the maximal
torus consisting of diagonal matrices. Propositions 2.1 and 2.2 show that we can
assume Tn ∩Hn to be maximal tori in groups Hn . By singular algebra we mean
an algebra of regular functions on a singular affine variety.

Proposition 3.1. Let n and m be two positive integers, n ≥ m, G = SLn+m
and Hn,m = S (GLn×GLm) ⊂ SLn+m . The algebra Tk [G] Hn,m is free if m = 1
and singular otherwise.

Proof. Take m ≥ 2. The slice module Nn,m = Lie SLn+m / (Lie T + Lie Hn,m)
has weights ±(ei − ej) with i ≤ n , j ≤ m . As shown in Appendix, no. 1, the
categorical quotient Nn,m//T with m ≥ 2 is singular. By Proposition 1.4, the
algebra Tk [G] H is singular when m ≥ 2.

Now let us show that if m = 1 then the algebra Tk[G]H is free. Consider the
group R ⊂ H, which is SLn acting on first n basis vectors and consider its action
on space Matn+1 of square matrices of size n + 1. An element r ∈ R transforms
a matrix X ∈ Matn+1 according to the rule r ◦X = Xr−1 ; one easily checks that
the algebra of invariants k [Matn+1]

SLn is generated by following functions:

• Mi — minor of X obtained by removing the i-th row and the last column,

• yi — element of the last column X located in the i-th row.

The group SLn+1 ⊂ Matn+1 is an R-invariant closed subset in Matn+1 ,
therefore all functions in k [SLn+1]

R are restrictions of R-invariant functions on
Matn+1 . Thus, k [SLn+1]

SLn = k [Mi, yj | i, j = 1, . . . , n+ 1]. The group H con-
tains also all diagonal matrices in SLn+1 ; by considering action of these elements
we find that k [SLn+1]

H = k [Miyj | i, j = 1, . . . , n+ 1].

The functions Mi and yj are semiinvariant with respect to action of the
diagonal torus T ⊂ SLn+1 by left multiplications:{

Mi 7→ t−1i Mi,
yi 7→ tiyi.

Therefore Tk [SLn+1]
SLn = k [Miyi | i = 1, . . . , n+ 1]. The listed generators sat-

isfy one linear relation.

n∑
k=1

(−1)n+1+kMkyk = detX = 1.

This relation shows that Tk [SLn+1]
SLn = k [Miyi | i = 1, . . . , n] . It is clear that

these n generators are algebraically independent, hence the algebra Tk [SLn+1]
SLn

is free.

Proposition 3.2. Let n and m be two positive integers, n > m ≥ 1, G =
SLn+m and H = SLn× SLm ⊂ SLn+m . The algebra Tk [G] H is singular for all n
and m.
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Proof. A simple modification of the previous reasoning shows that for all m
the minimal number of generators of the algebra k [N ]T is greater than dimN//T.
Thus, all varieties SLn\\SLn+m//SLm are singular.

Proposition 3.3. Let G = SL2m and H = Sp2m ⊂ SL2m . The algebra Tk [G] H

is free if m = 1 or m = 2 and singular otherwise.

Proof. The slice module Lie SL2m / (Lie T2m + Lie Sp2m) is

N2m =

{(
0 B
C A

)∣∣∣∣B = −Bs, C = −Cs, the diagonal of A is zero

}
.

In the above equality As denotes transposition of matrix A with respect to its
secondary diagonal.

With respect to T2m ∩ Sp2m the block A has weights εi − εj , where i 6= j ,
the block B has weights εi + εj with j > i and the block C has weights −εi− εj
with j > i . Thus, the slice representations T2m ∩ Sp2m : N2m satisfy the conditions
of Lemma 2.5.

According to Appendix, no. 2, the slice module for Sp6 ⊂ SL6 has a singular
categorical quotient N6//(T6 ∩ Sp6), hence the algebra Tk [SL6]

Sp6 is singular. By
Lemma 2.5, the algebra T2mk [SL2m] Sp2m is singular if m ≥ 3.

When m = 1 this assertion is trivial because Sp2 = SL2 and T2\\SL2// Sp2 = {pt} .
When m = 2 we begin by considering the action of the group Sp4 on

space of square matrices of order 4 given by the formula g ◦ X = Xg−1 . One
easily checks that k [Mat4]

Sp4 = k [(ui, uj) | i, j = 1, . . . , 4] where (ui, uj) denotes
pairing of rows i and j of matrix X with respect to the bilinear form preserved
by Sp4 . The listed generators are semiinvariant with respect to the action of the
diagonal torus of SL4 by left multiplications. We have

T4k [SL4]
Sp4 = k [(ui, uj) (uk, ul) | {i, j, k, l} = {1, 2, 3, 4}] .

As we can see, the algebra T4k [SL4]
Sp4 is generated by three elements. These

elements satisfy one linear relation.

(u1, u2) (u3, u4)− (u1, u3) (u2, u4) + (u1, u4) (u2, u3) = detX = 1.

Indeed, the expression on the left-hand side is a skew-symmetric bilinear function
of rows and it equals 1 when ui are rows of the identity matrix; hence it coin-
cides with detX . This linear relation shows that one of the generators can be
omitted. The remaining two generators are algebraically independent, hence the
algebra T4k [SL4]

Sp4 is free.

Proposition 3.4. Let G = SL2m+1 and H2m = k× · Sp2m ⊂ SL2m+1 . Then the
algebra T2m+1k [G] H2m is free if m = 1 and singular otherwise.

Proof. Maximal torus of group H2m consists of the diagonal matrices

diag
(
tt1, tt2, . . . , ttm, tt

−1
m , . . . , tt−11 , t−2m

)
.
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It is clear that this torus is isomorphic to (T2m ∩ Sp2m) × k×/ {±1} . Let us
regard the slice module N2m as a module not over T2m+1 ∩H2m , but over its
two-fold covering torus T̃2m = (T2m+1 ∩ Sp2m) × k× . We regard characters εi of

the torus T2m+1 ∩ Sp2m as characters of T̃2m and denote ε the basis character

which corresponds to the factor k× . It is clear that the torus T̃2m acts in the slice
module N2m with the following weights:

± (εi ± εj) , i < j,
± ((2m+ 1)ε± εi) .

As we can see, the slice module N̂2m corresponding to Sp2m ⊂ SL2m and the slice
module N2m satisfy the conditions of Lemma 2.5. It follows from proof of the
previous proposition that the categorical quotient N2m//T̃2m is singular if m ≥ 3.

Two categorical quotients N2m//T̃2m and N2m// (T2m+1 ∩H2m) coincide, hence the
algebra T2m+1k [SL2m+1]

H2m is singular if m ≥ 3.

When m = 2 we get a module considered in Appendix, no. 3, hence the
algebra T5k [SL5]

H4 is singular.

The remaining case m = 1 has already been considered. Indeed, the group
k× · Sp2 ⊂ SL3 coincides with S (GL2×GL1) ⊂ SL3 . By Proposition 3.1, the
algebra T3k [SL3]

H2 is free.

Proposition 3.5. Let G = SL2m and H = SO2m ⊂ SL2m . The algebra Tk [G] H

is free if m = 1 and singular otherwise.

Proof. The slice module Lie SL2m / (Lie T2m + Lie SO2m) is

N2m =

{(
0 B
C A

)∣∣∣∣B = Bs, C = Cs, the diagonal of A is zero

}
.

Thus, the slice module N̂2m corresponding to Sp2m ⊂ SL2m and the
slice module N2m are isomorphic. From the proof of Proposition 3.3 and from
Lemma 2.5 it follows that T2mk [SL2m] SO2m is singular if m ≥ 3.

If m = 2 then the slice module N4 has weights ±ε1 ± ε2 , ±2ε1 and ±2ε2 .
According to Appendix, no. 4, the categorical quotient N4//T is singular, hence
the algebra T4k [SL4]

SO4 is singular.

Finally, let us consider the case SO2 ⊂ SL2 . The group SO2 coincides with
the diagonal torus of SL2 and hence it coincides with S (GL1×GL1) ⊂ SL2 . By
Proposition 3.1, the algebra T2k [SL2]

SO2 is free. In this case the double coset
variety is A1 .

Proposition 3.6. Let G = SL2m+1 and H = SO2m+1 ⊂ SL2m+1 . The alge-
bra Tk [G] H is singular for all m.

Proof. The slice module N̂2m corresponding to SO2m ⊂ SL2m and the slice
module N2m+1 = Lie SO2m+1 / (Lie T2m+1 + Lie SO2m+1) satisfy the conditions of
Lemma 2.5. Hence, from the proof of Proposition 3.5 it follows that the alge-
bra T2m+1k [SL2m+1]

SO2m+1 is singular if m ≥ 2.
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If m = 1 then the slice module N3 has weights ±ε1 and ±2ε1 . Accord-
ing to Appendix, no. 5, the quotient N3//(T3 ∩ SO3) is singular, hence the alge-
bra T3k [SL3]

SO3 is singular.

Proposition 3.7. Let G = SL2m+1 and H = Sp2m ⊂ SL2m+1 . The alge-
bra Tk [G] H is singular for all m.

Proof. The slice module N = Lie SL2m+1 / (T + Lie Sp2m) is
0 B

x1
...

C A
...

x2m
y1 . . . . . . y2m 0

 ,

where A , B and C are square matrices of order m ; B = Bs , C = Cs and A has
only zero elements in its primary diagonal. Therefore, the maximal torus of Sp2m

acts in the slice module with weights ±εi ± εj and ±εk with i, j, k ≤ m . As we
can see, the slice modules corresponding to Sp2m ⊂ SL2m+1 satisfy the conditions
of Lemma 2.5, thus it suffices to prove that T\\SL3//Sp2 is singular.

The case m = 1 has already been considered: it is SL2 ⊂ SL3 . As we know
from proof of Proposition 3.2, the categorical quotient N//T is singular. Thus,
for every m ≥ 1 the variety T\\SL2m+1//Sp2m is singular.

3.2. Spherical subgroups of symplectic groups. Let us settle notations
and definitions concerning symplectic groups. In vector space k2n we fix a ba-
sis denoted e1, . . . , en, e

′
n, . . . , e

′
1 . We define the symplectic group Sp2n as the

group of isometries of a skew-symmetric bilinear form ω such that ω (ei, e
′
i) =

−ω (e′i, ei) = 1 and all other pairings of basis vectors are zero. The described
choice of symplectic groups simplifies calculations because when defined in this
way, the groups Sp2m have maximal tori that consist of the diagonal matri-
ces diag

(
t1, . . . , tn, t

−1
n , . . . , t−11

)
.

When considering groups Sp2n× Sp2m ⊂ Sp2n+2m , we use another conven-
tion and define Sp2n+2m as isometry groups of orthogonal direct sum k2n ⊕ k2m

where both summands are equipped with aforementioned skew-symmetric bilinear
forms.

Proposition 3.8. Let n and m be two positive integers, G = Sp2n+2m and
H = Sp2n× Sp2m ⊂ Sp2n+2m . The algebra Tk [G] H is free if n = m = 1 and
singular otherwise.

Proof. The maximal torus T acts in Lie G /Lie H with weights ±εi ± εj
with i ≤ n and j > n . So, the slice module corresponding to Sp2n× Sp2m ⊂
Sp2n+2m and the one corresponding to Sp2r× Sp2s ⊂ Sp2r+2s satisfy the conditions
of Lemma 2.5 if r ≥ n and s ≥ m .
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In the case Sp2× Sp4 ⊂ Sp6 the slice module N has weights ±ε1 ± ε2
and ±ε1 ± ε3 . According to Appendix, no. 6, the categorical quotient N//T is
singular. Thus, the algebra Tk

[
Sp2n+2m

]
Sp2n× Sp2m is singular for all m and n

except m = n = 1.

Let us now consider the remaining case Sp2× Sp2 ⊂ Sp4 . There is an
isomorphism Sp4

∼= Spin5 , hence we a have a two-fold covering Sp4 → SO5 ;
this covering takes the subgroup Sp2× Sp2 ⊂ Sp4 to (Sp2× Sp2)/{±E} ∼= SO4 .
Thus, Tk[Sp4]

Sp2× Sp2 = Tk[SO5]
SO4 . It will be shown in Proposition 3.16 that the

latter algebra is free.

Proposition 3.9. Let G = Sp2n+2 and H = Sp2n×k× ⊂ Sp2n+2 . The alge-
bra Tk [G] H is singular for all n.

Proof. In this case it is convenient to define the group Sp2n+2 as the group
of isometries of the orthogonal direct sum k2n ⊕ k2 with summands equipped
with standard skew-symmetric forms. When Sp2n+2 is defined this way, the
central torus k× of the group H acts as the diagonal torus {diag (t, t−1)} on
the summand k2 .

The slice module N = Lie Sp2n+2 /Lie H has weights ±εi ± εn+1 , i ≤ n
and ±2εn+1 . According to Appendix, no. 7, the categorical quotient N//T is
singular, hence the algebra Tk

[
Sp2n+2

]
Sp2n×k× is singular.

Proposition 3.10. Let G = Sp2n and H = GLn ↪→ Sp2n . The algebra Tk [G] H

is free if n = 1 and singular otherwise.

Proof. The group H = GLn imbeds into Sp2n as

H =

{(
A 0

0 (As)−1

) ∣∣∣∣ A ∈ GLn

}
.

Therefore the slice module N is

Lie Sp2n /Lie H =

{(
0 B
C 0

) ∣∣∣∣ Bs = B, Cs = C

}
.

Thus, the slice modules corresponding to GLn ↪→ Sp2n satisfy the conditions of
Lemma 2.5.

In the case GL2 ↪→ Sp4 the slice module has weights ε1 + ε2 , −ε1 − ε2
and ±2εi where i = 1, 2. By Appendix, no. 9 and Lemma 2.5, the alge-
bra Tk [Sp2n] GLn is singular if n ≥ 2.

If n = 1 then the group Sp2 coincides with SL2 and the group H coincides
with S (GL1×GL1). By Proposition 3.1, the algebra Tk [Sp2]

GL1 is free.

3.3. Spherical subgroups of orthogonal groups. Let us settle notations and
definitions concerning orthogonal groups. In even-dimensional vector space k2n

we fix a basis denoted e1, . . . , en, e
′
n, . . . , e

′
1 . We define the orthogonal group O2n

to be the group of isometries of a symmetric bilinear form such that (ei, e
′
i) =
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(e′i, ei) = 1 and all other pairings of basis vectors are zero. In odd-dimensional
vector spaces k2n+1 we fix a basis e1, . . . , en, e, e

′
n, . . . , e

′
1 and consider the fol-

lowing symmetric bilinear form: pairings of ei and e′i are the same as above,
vector e is orthogonal to all other basis vectors and (e, e) = 1. The described
choice of orthogonal groups simplifies calculations because when defined in this
way, the groups SOn have maximal tori that consist of the diagonal matri-
ces diag

(
t1, . . . , tn, 1, t

−1
n , . . . , t−11

)
. The unit component in the middle is present

only in torus of SO2n+1 .

As with symplectic groups, when considering groups SOn× SOm ⊂ SOn+m ,
we define groups On+m as isometry groups of orthogonal direct sum kn⊕km where
both summands are equipped with aforementioned symmetric bilinear forms.

Proposition 3.11. Let G = SO2n and H = GLn ↪→ SO2n . The alge-
bra Tk [G] H is free if n ≤ 3 and singular otherwise.

Proof. The embedding GLn ↪→ SO2n is the same as GLn ↪→ Sp2n , hence the
slice module N is

Lie SO2n /Lie H =

{(
0 B
C 0

) ∣∣∣∣ Bs = −B, Cs = −C
}
.

The slice module N has weights εi + εj and −εi − εj , where i < j , so the
slice modules corresponding to GLn ↪→ SO2n satisfy the conditions of Lemma 2.5.

When n = 4 we get a module considered in Appendix, no. 8. Thus the
algebra Tnk [SO2n] GLn is singular if n ≥ 4.

The case n = 3 has already been considered. Indeed, one has the isomor-
phism SO6

∼= SL4 /{±E} which takes H to S (GL3×GL1) /{±E} . Remark that
the generators of the algebra Tk [SL4]

S(GL3×GL1) that have been found in proof
of Proposition 3.1 are invariant with respect to multiplication by ±E , hence they
they are, in fact, functions on SO6 . This shows that the algebra Tk [SO6]

GL3 is
isomorphic to Tk [SL4]

S(GL3×GL1) and therefore free.

If n = 2 then we begin by applying a properly selected transformation
from GL2 that takes a generic matrix from SO4 to a matrix

1 0 p 0
0 1 0 −p
u 0 1 + up 0
0 −u 0 1 + up

 .

Further reducing an open subset of generic matrices we can assume that u 6= 0.
Applying a properly selected transformation from T×GL2 , namely, the conju-
gation with diag (u, 1, u−1, 1) we can replace a generic matrix with the following
one: 

1 0 up 0
0 1 0 −up
1 0 1 + up 0
0 −1 0 1 + up

 .

It is clear that the function up extends to a T×GL2 -invariant function F on the
group SO4 , hence Tk [SO4]

GL2 = k [F ] . This shows that this algebra is free.
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The last remaining case n = 1 is trivial because SO2 = {diag (t, t−1) | t ∈ k×}
and we have T\\SO2//GL1 = {pt} .

Proposition 3.12. Let G = SO2n and H = SLn ↪→ SO2n . The algebra Tk [G] H

is singular for all n.

Proof. As in the case GLn ↪→ SO2n , the torus Tn ∩ SLn acts in the slice
module Nn with weights εi + εj and −εi − εj with i < j ≤ n , but this time the
vectors εi are linearly dependent: ε1 + · · ·+ εn = 0. Because of this linear relation
the slice modules corresponding to different pairs SLn ↪→ SO2n do not satisfy the
conditions of Lemma 2.5. That is why we need to give a direct proof for every n .

Let us point out some of linear relations between generators of semi-
groups A(N,T) that have to be included into minimal sets of their generators.
Obviously, one has to include relations (εi + εj) + (−εi − εj) = 0 into minimal set
of generators because these are the generators with minimal number of non-zero
coefficients. Also there are two families of relations that have only coefficients 0
and 1 and that have to be included into minimal set of generators. These families
are constructed in the following way: begin with the sum (ε1 + εi1) + (ε1 + εj1)
and add summands (εi1 + εi2) + (εj1 + εj2), (εi2 + εi3) + (εj2 + εj3) and so on;
if n is odd we add a final summand (εis + εjs). The sum that is constructed in
this way equals 2ε1 + · · · + 2εn = 0. Similarly one constructs a family of rela-
tions (−ε1 − εi) + (−ε1 − εj) + · · · = 0. The number of generators of A(N,T)
that we have listed is greater than dimN//T; thus, by Proposition 2.4, the alge-
bra Tk[G]H is singular.

Proposition 3.13. Let G = SO2n+1 and H = GLn ↪→ SO2n+1 . The alge-
bra Tk [G] H is free if n = 1 and singular otherwise.

Proof. Slice modules corresponding to GLn ↪→ SO2n+1 satisfy the conditions
of Lemma 2.5. When n = 2, a trivial modification of proof of Proposition 3.10
shows that the algebra Tk [SO5]

GL2 is singular; thus, varieties T\\SO2n+1//GLn
are singular if n ≥ 2.

In the case n = 1 we have SO3
∼= SL2 /{±E} and this isomorphism takes H

to S (GL1×GL1) /{±E} . By Proposition 3.1, the algebra Tk [SO3]
GL1 is free.

Proposition 3.14. Let n and m be two positive integers, n,m ≥ 2, G =
SOn+m and H = SOn× SOm ⊂ SOn+m . The algebra Tk [G] H is free if m = n = 2
and singular otherwise.

Proof. The slice module Lie G /(Lie H + Lie T) is

N =

{(
0 B
C 0

)∣∣∣∣ C = −Bs

}
,

where B is a n×m-matrix and C is a m× n-matrix.

Denote εi and δj the standard basis characters of maximal tori of groups SOn

and SOm respectively; we regard εi and δj as characters of the maximal torus
of SOn+m .
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Let both n and m be even and put n = 2r and m = 2s . In this case
the slice module has weights ±εi ± δj where i = 1, . . . , r , j = 1, . . . , s and
indices i and j can be equal. Note that this description of weights is also
true when r = 1 or s = 1. As we can see, if r′ ≥ r and s′ ≥ s then the
slice module corresponding to SO2r× SO2s ⊂ SO2r+2s and the one corresponding
to SO2r′ × SO2s′ ⊂ SO2r′+2s′ satisfy the conditions of Lemma 2.5. When we
put n = 2 and m = 4 we obtain a module considered in Appendix, no. 10.
Therefore the algebra Tk [SO2r+2s]

SO2r × SO2s is singular if one of numbers r or s
is greater than 1.

Let us consider the case SO2× SO2 ⊂ SO4 . The group SO2× SO2 is the
diagonal torus T of the group SO4 . Note that SO4

∼= (SL2× SL2) /{±E} and
recall that the double coset variety T2\\SL2//T2 is the affine line A1 . Remark also
that T2×T2 -invariant functions on SL2 are invariant with respect to multiplica-
tion by ±E and hence define functions on SO4 . Therefore we have

T\\SO4//T = (T2×T2)\\(SL2× SL2)//(T2×T2),

and the variety on the right-hand side is the affine plane A2 .

Now consider the case where n = 2r is even, and m = 2s + 1 is odd. In
this case the slice module has weights ±εi ± δj and ±εi where i = 1, . . . , r , j =
1, . . . , s , hence the slice modules corresponding to different pairs SO2r× SO2s+1 ⊂
SO2r+2s+1 satisfy the conditions of Lemma 2.5. When r = s = 1 we get a module
considered in Appendix, no. 11. Therefore

the varieties T\\SO2r+2s+1//SO2r× SO2s+1 are singular for all r, s .

The last case when both n and m are odd is similar to the previous one. As
in the previous case, all varieties T\\SO2r+2s+2//SO2r+1× SO2s+1 are singular.

Proposition 3.15. Let G = SO2n and H = SO2n−1 . The algebra Tk [SO2n] SO2n−1

is free for all n.

Proof. Consider the standard basis e1, . . . en, e
′
n, . . . , e

′
1 in V = k2n and

let x1, . . . , xn , x′n, . . . , x
′
1 be coordinates in this basis. The homogeneous space

SO2n / SO2n−1 is a quadric Z ⊂ k2n , namely, Z = {x1x′1 + · · ·+ xnx
′
n = 1} . Obvi-

ously, the algebra k [V ]T is freely generated by zi = xix
′
i . Thus, Z//T ⊂ V//T is

a hyperplane {z1 + · · ·+ zn = 1} , hence T\\SO2n// SO2n−1 = Z//T is isomorphic
to an affine space.

Proposition 3.16. Let G = SO2n+1 and H = SO2n .The algebra Tk [SO2n+1]
SO2n

is free for all n.

Proof. Take the standard basis e1, . . . en, e, e
′
n, . . . , e

′
1 in space V = k2n+1 and

let x1, . . . , xn, x, x
′
n, . . . , x

′
1 be coordinates in this basis. As in the previous proof,

SO2n+1 / SO2n is a quadric Z ⊂ k2n+1 , this time Z = {x1x′1 + · · ·+ xnx
′
n + x2 = 1} .

Since k [V ]T = k [x1x
′
1, . . . , xnx

′
n, x] , the subset Z//T ⊂ V//T is a cylinder over a

parabola, hence it is isomorphic to an affine space.

Proposition 3.17. Let G = SO8 and H = Spin7 . The algebra Tk [G] H is free.
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Proof. All Spin8 -modules that are not SO8 -modules have no T-invariant non-
zero vectors, hence Tk[SO8]

Spin7 = Tk[Spin8]
Spin7 . Clearly, the latter algebra is

isomorphic to Tk[SO8]
SO7 , and, by Proposition 3.15, the algebra Tk[SO8]

SO7 is
free.

Proposition 3.18. Let G = SO9 and H = Spin7 . The algebra Tk [G] H is
singular.

Proof. The group Spin7 embeds into the group SO9 via Spin7 ↪→ SO8 ↪→ SO9 ,
hence the slice module corresponding to Spin7 ↪→ SO9 is the one considered
in Appendix, no. 12. This shows that the algebra Tk [SO9]

Spin7 is singular.

Proposition 3.19. Let G = SO10 and H = Spin7× SO2 . The algebra Tk [G] H

is singular.

Proof. In this case the slice module coincides with a module considered in Ap-
pendix, no. 13. Thus the algebra Tk [SO10]

H is singular.

Proposition 3.20. Let G = SO7 or G = SO8 and let H = G2 . The alge-
bra Tk [G] H is singular.

Proof. The group G2 embeds into SO8 via G2 ↪→ SO7 ↪→ SO8 , hence the slice
modules for G2 ↪→ SO7 and G2 ↪→ SO8 satisfy the conditions of Lemma 2.5. The
slice module for G2 ↪→ SL7 is listed in Appendix, no. 14, hence T\\SO7//G2 is
singular. By Lemma 2.5, T\\SO8//G2 is also singular.

3.4. Proof of Theorems 1.1 and 1.2. We walk through Krmer’s list of
connected spherical reductive subgroups in simple groups. Every item of the list
corresponds to one of Propositions 3.1 through 3.20; each proposition first rejects
pairs H ⊂ G that have singular algebras Tk[G]H . To this end, Proposition 1.4
is applied; thus, singularity of algebra Tk[G]H follows from singularity of the
point π(e) ∈ T\\G//H. For the remaining pairs the point π(e) is regular and
it turns out that in these cases Tk[G]H is free. In this way we obtain the list of
Theorem 1.2 and show that regularity of π(e) implies that T\\G//H is an affine
space, thus proving Theorem 1.1.

3.5. A remark on exceptional groups G. Assuming that Conjecture 1.5 is
true we can assert that Theorem 1.2 lists all Krmer pairs with simple G that have
free algebra Tk[G]H . Indeed, there are only two pairs with exceptional G and
rk Λ+(G /H) = 1, they are A2 ⊂ G2 and B4 ⊂ F4 ; let us check them.

Proposition 3.21. Let G = F4 and H = B4 . The algebra Tk[G]H is singular.

Proof. The weights of the slice module N = Lie G /Lie H are
(±ε1 ± ε2 ± ε3 ± ε4)/2.
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By Appendix, no. 15, the quotient N//T is singular, hence T\\F4//B4 is singular.

Proposition 3.22. Let G = G2 and H = A2 . The algebra Tk[G]H is singular.

Proof. The weights of the slice module N = Lie G /Lie H are ±ei . According
to Appendix, no. 16, the quotient N//T is singular, hence T\\G2//A2 is singular.

4. Appendix. Some torus modules with singular quotients

This appendix lists several linear representations of tori that arise as slice modules
corresponding to pairs H ⊂ G considered in section 3. All of the listed representa-
tions have singular categorical quotients V//T. All cases are handled by a uniform
reasoning, namely, we list T-invariant monomials that have to be included into
minimal sets of generators of algebras k[V ]T and in all cases it turns out that
their number is greater than dimV//T. We denote Xλ coordinates in V in a
basis that consists of T-weight vectors; so, for t ∈ T we have t ◦Xλ = λ(t)−1Xλ .
In cases 1, 14 and 16 the weights are linear combinations of vectors ei which have
one linear relation e1+ · · ·+er = 0. If T is represented as a product of two subtori
then we denote εi and δj the basis characters of these subtori and regard εi and δj
as characters of T.

Every item in the following list describes a linear representation T : V by
enumerating the weights of V and then lists elements of the algebra k[V ]T that
have to be included into its minimal set of generators.

1. Torus of rank n + m − 1 (n ≥ m ≥ 2) acts with weights ±(ei − ej) where
1 ≤ i ≤ n and n+ 1 ≤ j ≤ n+m :
Xei−ejX−ei+ej , Xei−ejXek−elX−ei+elX−ek+ej , Xei−elXek−ejX−ei+ejX−ek+el ,
where 1 ≤ i, j ≤ n and n+ 1 ≤ k, l ≤ n+m .
2. Torus of rank 3 acts with weights ±εi ± εj where i < j :
There are 6 invariant monomials of degree 2; they are
Xεi+εjX−εi−εj , Xεi−εjX−εi+εj . Let us point out six monomials of degree 3:
Xε1+ε2Xε3−ε1X−ε2−ε3 , Xε1+ε2Xε3−ε2X−ε1−ε3 and four monomials obtained by cyclic
permutations of indices 1, 2, 3.
3. Torus of rank 3 acts with weights ±ε1 ± ε2 and ± (5ε3 ± εi),
where i = 1, 2:
Xε1−ε2Xε2−ε1 , Xε1+ε2X−ε1−ε2 , X5ε3±εiX−5ε3∓εi and
X5ε3±εiX−5ε3±εjX∓εi∓εj , where i 6= j .
4. Torus of rank 2 acts with weights ±ε1 ± ε2 and ±2εi :
Xε1±ε2X−ε1∓ε2 , X2εiX−2εi , Xε1−ε2X−ε1−ε2X2ε2 , Xε2−ε1Xε1+ε2X−2ε2 and
X2ε1X2ε2X

2
−ε1−ε2 .

5. Torus of rank 1 acts with weights ±ε1 and ±2ε1 :
Xε1X−ε1 , X2ε1X−2ε1 , X2

ε1
X−2ε1 , X2

−ε1X2ε1 .
6. Torus of rank 3 acts with weights ±ε1 ± ε2 and ±ε1 ± ε3 :
Xε1±εi +X−ε1∓εi , i = 2, 3 and
Xε1+ε2Xε1−ε2X−ε1+ε3X−ε1−ε3 , Xε1+ε3Xε1−ε3X−ε1+ε2X−ε−ε2 .
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7. Torus of rank n+ 1 acts with weights ±εi ± εn+1 and ±2εn+1 , where i ≤ n :

Xεi±εn+1X−εi∓εn+1 , Xεi+εn+1X−εi+εn+1X−2εn+1 , Xεi−εn+1X−εi−εn+1X2εn+1 and
X2εn+1X−2εn+1 .
8. Torus of rank 4 acts with weights ± (εi + εj), where i < j :

Xεi+εjX−εi−εj , Xε1+ε2Xε3+ε4X−ε1−ε3X−ε2−ε4 , Xε1+ε2Xε3+ε4X−ε1−ε4X−ε2−ε3 ,
Xε1+ε3Xε2+ε4X−ε1−ε2X−ε3−ε4 , Xε1+ε3Xε2+ε4X−ε1−ε4X−ε2−ε3 .
9. Torus of rank 2 acts with weights ± (ε1 + ε2) and ±2εi :

Xε1+ε2X−ε1−ε2 , X2εiX−2εi , X
2
ε1+ε2

X−2ε1X−2ε2 , X2
−ε1−ε2X2ε1X2ε2 .

10. Product of tori of ranks 1 and 2 acts with weights ±ε1 ± δj :
Xε1±δiX−ε1∓δi , Xε1+δ1Xε1−δ1X−ε1+δ2X−ε1−δ2 , Xε1+δ2Xε1−δ2X−ε1+δ1X−ε1−δ1 .
11. Product of two tori of ranks 1 acts with weights ±ε1 ± δ1 and ±ε1 :

Xε1X−ε1 , Xε1±δ1X−ε1∓δ1 , Xε1+δ1Xε1−δ1X
2
−ε1 , X−ε1+δ1X−ε1−δ1X

2
ε1

.
12. Torus of rank 3 acts with weights ±2εk and ±ε1 ± ε2 ± ε3 :

X2εkX−2εk , X±ε1±ε2±ε3X∓ε1∓ε2∓ε3 , Xε1±ε2±ε3Xε1∓ε2∓ε3X−2ε1 .
13. Product of tori of ranks 3 and 1 acts with weights ±ε1 ± ε2 ± ε3 ± δ1
and ±2εk :

X2εkX−2εk , X±ε1±ε2±ε3+δX∓ε1∓ε2∓ε3−δ , Xε1±ε2±ε3±δXε1∓ε2∓ε3∓δX−2ε1 .
14. Torus of rank 2 acts with weights ± (ei + ej), where i < j :

Xei+ejX−ei−ej , Xe1+e2Xe1+e3Xe2+e3 , X−e1−e2X−e1−e3X−e2−e3 .
15. Torus of rank 4 acts with weights (±ε1 ± ε2 ± ε3 ± ε4)/2:

Xε1±ε2±ε3±ε3X−ε1∓ε2∓ε3∓ε3 and
Xε1+ε2+ε3−ε4Xε1+ε2−ε3+ε4X−ε1−ε2+ε3+ε4X−ε1−ε2−ε3−ε4 .
16. Torus of rank 2 acts with weights ±e1,±e2,±e3 :

XeiX−ei , Xe1Xe2Xe3 , X−e1X−e2X−e3 .
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