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Abstract. Let (G,K) be a compact Riemannian symmetric pair, and let G0

be the associated Cartan motion group. Under some assumptions on the pair
(G,K), we give a precise description of the set (Ĝ0)gen of all equivalence classes
of generic irreducible unitary representations of G0 . We also determine the
topology of the space (g‡0/G0)gen of generic admissible coadjoint orbits of G0

and we show that the bijection between (Ĝ0)gen and (g‡0/G0)gen is a homeomor-
phism. Furthermore, in the case where the pair (G,K) has rank one, we prove

that the unitary dual Ĝ0 is homeomorphic to the space g‡0/G0 of all admissible
coadjoint orbits of G0 .
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1. Introduction

Let G be a locally compact group. By the unitary dual Ĝ of G , we mean the set
of all equivalence classes of irreducible unitary representations of G equipped with
the Fell topology (see [5]). The first representation-theoretic question concerning

the group G is the description of the set Ĝ . Apart this question, a significant
importance is attached to the determination of the topology of Ĝ . If G is a Lie
group with Lie algebra g , then the investigation of the relationship between Ĝ
and the space g∗/G of G-coadjoint orbits turns out to be a deep mathematical
problem. In this direction, it is well-known that for a simply connected nilpotent
Lie group or, more generally, for an exponential solvable Lie group G , the unitary
dual Ĝ is homeomorphic to the orbit space g∗/G (see [12]).

Let now (G,K) be a compact Riemannian symmetric pair, and let g = k⊕p
be the corresponding Cartan decomposition of the Lie algebra g of G with k =
Lie(K). Since the subspace p is Ad(K)-invariant, one can form the semidirect
product G0 = K n p with respect to the adjoint action of K on p . The group G0

is called the Cartan motion group associated to the pair (G,K). As an example
of this group, we mention the Euclidean motion group Mn = SO(n) n Rn where
SO(n) acts on Rn by rotations. In this paper, we shall restrict ourselves to the
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case where G is semisimple and K is connected. Furthermore, if a is a fixed
maximal abelian subspace of p , then we shall assume that the centralizer M of
a in K is connected. Let us fix a positive Weyl chamber C+(a) in a .! Applying
Mackey’s little group theory (see [14,15]), we obtain that every infinite dimensional
irreducible unitary representation of G0 is determined by a pair (µ,H), where µ is
the highest weight of an irreducible representation of M and H is a non-zero vector
in the closure C+(a). We denote such a representation by π(µ,H) . Apart from
these infinite dimensional representations π(µ,H) , the finite dimensional unitary
representations of K also yield finite dimensional unitary representations of G0 .
If the vector H is contained in C+(a), then the representation π(µ,H) is said to

be generic. We denote by (Ĝ0)gen the set of all equivalence classes of generic
irreducible unitary representations of G0 .

Let G0(ψ) be the stabilizer in G0 of a linear form ψ ∈ g∗0 . Then ψ is called
admissible if there exists a unitary character χ of the identity component of G0(ψ)
such that dχ = iψ|g0(ψ) . We denote by g‡0 the set of all admissible linear forms

on g0 . For ψ ∈ g‡0 , one can construct an irreducible unitary repesentation πψ by
holomorphic induction. According to Lipsman (see [13]), every irreducible unitary
representation of G0 arises in this manner. Thus we obtain a map from the set g‡0
onto the unitary dual Ĝ0 . By observing that πψ is equivalent to πψ ′ if and only if ψ

and ψ
′

lie in the same G0 -orbit, we get finally a bijection between the space g‡0/G0

of admissible coadjoint orbits and the unitary d! ual Ĝ0 . The natural question
arises of whether this bijection is a homeomorphism. In the present work, we give
an affirmative answer to this question in the case where the compact Riemannian
symmetric pair (G,K) has rank one. This result is a generalization of analogous
result in the case of the Euclidean motion group Mn (see [4]). We denote by
(g‡0/G0)gen the set of generic admissible coadjoint orbits of G0 corresponding to

the set (Ĝ0)gen . When the rank of the pair (G,K) is arbitrary, we prove that

the correspondence between the topological spaces (g‡0/G0)gen and (Ĝ0)gen is a
homeomorphism.

This paper is organized as follows. Section 2 reviews some facts about
compact Riemannian symmetric pairs, mostly in order to fix our notations and
terminology. Section 3 introduces the coadjoint orbits of a Cartan motion group
G0 associated to a compact Riemannian symmetric pair (G,K) with G semisimple
and K connected. Section 4 deals with the description via Mackey’s little group
theory of the unitary dual Ĝ0 of G0 . In the remaining sections of the paper, the
subgroup M ⊂ K defined above is assumed to be connected. Section 5 contains
some results on the topology of Ĝ0 . Section 6 is devoted to the description of
the space g‡0/G0 of admissible coadjoint orbits of G0 . In the last section, the
convergence in the quotient space g‡0/G0 is studied and the main results of this
work are derived.

2. Preliminaries

This section serves to fix notations and summarizes some facts about compact
Riemannian symmetric pairs. We refer to the standard reference [9] for more
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details.

Let (G,K) be a compact Riemannian symmetric pair where G is semisimple
and K is connected. This means that G is a compact connected semisimple Lie
group and there exists an involutive analytic automorphism Θ of G such that
K coincides with the identity component of the fixed point group of Θ. Let us
denote by θ the differential of Θ. Then θ is an involution on the Lie algebra
g of G . Considering the eigenspaces of θ with respect to the eigenvalues 1 and
−1, we obtain the direct sum decomposition g = k ⊕ p where k coincides with
the Lie algebra of the subgroup K . It is easy to see that the vector space p is
Ad(K)-invariant. Furthermore, the following relations obviously hold:

[k, p] ⊂ p and [p, p] ⊂ k.

Let now a be a maximal abelian subspace of p . The dimension of the real vector
space a is called the rank of the Riemannian symmetric pair (G,K). An important
fact worth mentioning here is that every adjoint orbit of K in p intersects a (see [9,
p. 247]). Let NK(a) and ZK(a) denote respectively the normalizer and centralizer
of a in K , i.e.,

NK(a) = {k ∈ K; Ad(k)a = a},
ZK(a) = {k ∈ K; Ad(k)H = H, ∀H ∈ a}.

The quotient group W (G,K) := NK(a)/ZK(a) is called the Weyl group of the pair
(G,K). We shall denote the action of W (G,K) on a by H 7−→ s.H for H ∈ a
and s ∈ W (G,K).

Let us take the subspaces ã := ia , p̃ := ip and g̃ := k ⊕ p̃ of the
complexification gC of g . On the real semisimple lie algebra g̃ , we fix the involution
θ̃ defined by

θ̃(Y + iZ) = Y − iZ for Y ∈ k, Z ∈ p.

Then (g̃, θ̃) is the orthogonal symmetric Lie algebra of the noncompact type which
is dual to (g, θ). Given a linear form α ∈ ã∗ , we set

g̃α = {X ∈ g̃; [H̃,X] = α(H̃)X, ∀H̃ ∈ ã}.

If α 6= 0 and g̃α 6= {0} , the form α is said to be a restricted root of g̃ . The
set of all restricted roots is denoted by Σ. We obtain the restricted root space
decomposition

g̃ = g̃0 ⊕
⊕
α∈Σ

g̃α

of the Lie algebra g̃ . If m = Zk(a) denotes the centralizer of a in k , then we also
have the direct sum g̃0 = m ⊕ ã . Let dα be the dimension of the root space g̃α .
Consider a basis (Xα,1, ..., Xα,dα) of g̃α and set

Yα,j = Xα,j + θ̃(Xα,j), Z̃α,j = Xα,j − θ̃(Xα,j) and Zα,j = iZ̃α,j.

We can define the subspaces

kα =
dα⊕
j=1

RYα,j and pα =
dα⊕
j=1

RZα,j.



494 Ben Halima and Rahali

Endow the dual space ã∗ with a lexicographic ordering and denote by Σ+ the set
of positive restricted roots. With respect to the Killing form B of g , we have the
direct sum decompositions

k = m⊕
⊕
α∈Σ+

kα and p = a⊕
⊕
α∈Σ+

pα

(see [9, p. 335]). Setting

l =
⊕
α∈Σ+

kα and q =
⊕
α∈Σ+

pα,

we get the relations [a, l] ⊂ q and [a, q] ⊂ l .

Next, we shall extend complex linearly the restricted roots to aC . An
element H ∈ a is said to be regular if α(H) 6= 0 for all α ∈ Σ. Fix a regular
element H0 ∈ a , and set cα = 1

α(H0)
for α ∈ Σ+ . We have the equalities

[H0, cαYα,j] = Zα,j and [H0, cαZα,j] = Yα,j,

where Yα,j and Zα,j are as above. Consequently, we deduce that the linear maps
ad(H0)|l : l −→ q and ad(H0)|q : q −→ l are surjective, where ad refers to the
adjoint representation of g . Let S be the closure of the one-parameter subgroup
exp

G
(RH0). Since S is a torus, its centralizer in G is connected [9, p. 287], and in

fact has Lie algebra m ⊕ a . On the other hand, the centralizer in G of the torus
A = exp

G
(a) is also connected and has Lie algebra m ⊕ a (see [9, p. 263]). This

implies that ZG(H0) = ZG(a), and hence ZK(H0) = ZK(a).

A connected component of the set of regular elements in a is called a
Weyl chamber of the pair (G,K). As an example of Weyl chambers, let us set

C+(a) := i C̃+(ã) with

C̃+(ã) = {H̃ ∈ ã; α(H̃) > 0, ∀α ∈ Σ+}.

It is well-known that every s ∈ W (G,K) permutes the Weyl chambers and that
W (G,K) acts simply transitively on the set of Weyl chambers (see [9, p. 288]).
Furthermore, we have the following important result (see [9, p. 322]):

Theorem 2.1. Let C ⊂ a be a Weyl chamber. Each orbit of W (G,K) in a
intersects the closure C in exactly one point.

3. Cartan motion groups and their coadjoint orbits

Let (G,K) be a compact Riemannian symmetric pair with G semisimple and K
connected. Then K is the fixed point group of an involutive analytic automor-
phism Θ of G . As before, the automorphism of the Lie algebra g of G which is
the differential of Θ is denoted by θ . Let g = k ⊕ p be the decompositiopn of
g into ±1 eigenspaces of θ , so that k = Lie(K). The subgroup K acts on the
vector space p via the adjoint representation. The semidirect product G0 = Knp
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is called the Cartan motion group of the pair (G,K). The multiplication rule in
this group is given by

(k1, X1) · (k2, X2) = (k1k2, X1 + Ad(k1)X2).

As mentioned in the introduction, the group Mn = SO(n) n Rn is an example of
Cartan motion groups. More precisely, Mn is the Cartan motion group associated
to the compact Riemannian symmetric pair (SO(n+ 1), SO(n)).

Let Ad0 and ad0 denote respectively the adjoint representations of G0 and
its Lie algebra g0 . It follows easily from the group law in G0 that

Ad0((k,X))(U
′
, X

′
) = (Ad(k)U

′
, Ad(k)X

′ − [Ad(k)U
′
, X]),

ad0((U,X))(U
′
, X

′
) = ([U,U

′
], [U,X

′
]− [U

′
, X])

for all k ∈ K , all U,U
′ ∈ k and all X,X

′ ∈ p . Using the Killing form B of g , we
define the following scalar product on g0 :

〈(U,X), (U
′
, X

′
)〉 = −B(U,U

′
)−B(X,X

′
),

where U,U
′ ∈ k and X,X

′ ∈ p . To an arbitrary element ξ ∈ g0 , we associate the
natural linear form Fξ ∈ g∗0 given by Fξ(η) = 〈ξ, η〉 . In the sequel, we will use the
map ξ 7−→ Fξ to identify g0 with its dual g∗0 . Let us now calculate the coadjoint
representation Ad∗0 of G0 . For (k0, X0) ∈ G0 and (U,X), (U

′
, X

′
) ∈ g0 , let us set

(?) =
[
Ad∗0((k0, X0))F(U,X)

]
(U

′
, X

′
).

So, we can write

(?) = F(U,X)

(
Ad0((k−1

0 ,−Ad(k−1
0 )X0))(U

′
, X

′
)
)

= F(U,X)

(
(Ad(k−1

0 )U
′
, Ad(k−1

0 )X
′ − [Ad(k−1

0 )U
′
,−Ad(k−1

0 )X0])
)

= −B(U,Ad(k−1
0 )U

′
)−B(X,Ad(k−1

0 )X
′
+ Ad(k−1

0 )[U
′
, X0])

= −B(Ad(k0)U + [X0, Ad(k0)X], U ′)−B(Ad(k0)X,X
′
)

= F(Ad(k0)U+[X0,Ad(k0)X],Ad(k0)X)(U
′
, X

′
).

Under the identification of g0 and g∗0 , we have

Ad∗0((k0, X0))(U,X) = (Ad(k0)U + [X0, Ad(k0)X], Ad(k0)X).

Therefore, the coadjoint orbit of G0 through (U,X) is given by

OG0

(U,X) = Ad∗0(G0)(U,X)

= {(Ad(k0)U + [X0, Ad(k0)X], Ad(k0)X); k0 ∈ K, X0 ∈ p}.

4. Dual spaces of Cartan motion groups

Let (G,K) be a compact Riemannian symmetric pair, and let G0 = K n p be
the associated Cartan motion group. We shall briefly review the description of the
unitary dual of G0 via Mackey’s little group theory.
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Let ϕ be a non-zero linear form on p . We denote by χϕ the unitary
character of the vector Lie group p given by χϕ = eiϕ . Let Kϕ be the stabilizer
of ϕ under the coadjoint action of K on p∗ , and let ρ be an irreducible unitary
representation of Kϕ on some Hilbert space Hρ . The map

ρ⊗ χϕ : (k,X) 7−→ eiϕ(X)ρ(k)

is a representation of the semidirect product Kϕ n p , which we may induce up so
as to obtain a unitary representation of G0 . Let L2

ρ(K,Hρ) be the subspace of
L2(K,Hρ) consisting of the maps f which satisfy the covariance condition

f(kk0) = ρ(k−1
0 )f(k)

for k0 ∈ Kϕ and k ∈ K . The induced representation

π(ρ,ϕ) := IndG0
Kϕnp(ρ⊗ χϕ)

is realized on L2
ρ(K,Hρ) by

π(ρ,ϕ)(k0, X)f(k) = eiϕ(Ad(k−1)X)f(k−1
0 k),

where (k0, X) ∈ G0 , f ∈ L2
ρ(K,Hρ) and k ∈ K . Mackey’s theory tells us

that the representation π(ρ,ϕ) is irreducible and that every infinite dimensional
irreducible unitary representation of G0 is equivalent to some π(ρ,ϕ) . Furthermore,
two representations π(ρ,ϕ) and π(ρ ′ ,ϕ ′ ) are equivalent if and only if ϕ and ϕ

′
lie

in the same coadjoint orbit of K and the representations ρ and ρ
′

are equivalent
under the identification of the conjugate subgroups Kϕ and Kϕ ′ . In this way, we
obtain all irreducible representations of G0 which are not trivial on the normal
subgroup p . On the other hand, every irreducible unitary representation τ of K
extends trivially to an irreducible representation, also denoted by τ , of G0 by
τ(k,X) := τ(k) for k ∈ K and X ∈ p .

Next, we shall provide a more precise description of the so-called “generic
irreducible unitary representations” of G0 . Denote again by 〈 , 〉 the restriction to
p×p of the Ad(K)-invariant scalar product 〈, 〉 on g0 . Let a be a maximal abelian
subspace of p , and let M be the centralizer of A = exp

G
(a) in K . In general, the

compact Lie group M is not connected, and one can prove that M = Me · (M ∩A)
with Me being the identity component of M . For the sake of convenience, we will
give a short proof of the following well-known result.

Lemma 4.1. Let C ⊂ a be a Weyl chamber. Every adjoint orbit of K in p
intersects the closure C in exactly one point.

Proof. Let X be a fixed element in p . Then X is Ad(K)-conjugate to some
H0 ∈ a . Let H be the unique point which belongs to the intersection of the
orbit W (G,K).H0 with the closure C . Writing H = Ad(k0)H0 for some k0 in the
normalizer NK(a), we see that X is Ad(K)-conjugate to H . If H

′ ∈ C is another
element with the property that X is Ad(K)-conjugate to H

′
, then there exists

k ∈ K such that H
′
= Ad(k)H . It follows that H

′
= s.H for some s ∈ W (G,K)

(see [9, p. 285]). Using the result of Theorem 2.1, we deduce that H = H
′

as
desired.
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From the above lemma, we deduce that every infinite dimensional unitary
representation of G0 has the form π(ρ,ϕ

H
) , where H is a non-zero vector in C+(a)

and ϕ
H

is the linear form on p given by ϕ
H

(X) = 〈H,X〉 . Observe that the
isotropy group Kϕ

H
coincides with the centralizer ZK(H). Let us fix a regular

element H in a . The subgroups Kϕ
H

and M of K are identical. If ρ is an
irreducible representation of M , then the representation π(ρ,ϕ

H
) corresponding

to the pair (ρ, ϕ
H

) is said to be generic. We denote by (Ĝ0)gen the set of all
equivalence classes of generic irreducible unitary representations of G0 . Notice that
(Ĝ0)gen has full Plancherel measure in the unitary dual Ĝ0 (see [10]). Applying
Mackey’s ! analysis and the result of Lemma 1, we obtain the bijection

(Ĝ0)gen ' M̂ × C+(a).

In the particular case where the Riemannian symmetric pair (G,K) has rank one,
we can find a vector H0 ∈ a such that C+(a) = R∗+H0 . We derive in this case the
bijections

(Ĝ0)gen ' M̂ × R∗+ and Ĝ0 '
(
M̂ × R∗+

)
∪ K̂.

In the remainder of this paper, we shall assume that M is connected. Let ρµ be
an irreducible representation of M with highest weight µ . For simplicity, we shall
write π(µ,H) instead of π(ρµ,ϕH ) .

5. Convergence of irreducible representations of G0

Let N be an abelian group, and assume that a compact Lie group K acts on
the left on N by automorphisms. As sets, the semidirect product K n N is the
Cartesian product K ×N and the group multiplication is given by

(k1, x1) · (k2, x2) = (k1k2, x1 + k1x2).

Let χ be a unitary character of N , and let Kχ be the stabilizer of χ under the

action of K on N̂ defined by

(k · χ)(x) = χ(k−1x).

If ρ is an element of K̂χ , then the triple (χ, (Kχ, ρ)) is called a cataloguing triple.
Following the notations of [4], we denote by π(χ,Kχ, ρ) the induced representation
IndKnN

KχnN(ρ⊗ χ). Referring to a work of Baggett (see [2]), we have

Proposition 5.1. The mapping (χ, (Kχ, ρ)) −→ π(χ,Kχ, ρ) is onto K̂ nN .

Let A(K) be the set of all pairs (K
′
, ρ
′
), where K

′
is a closed subgroup

of K and ρ
′

is an irreducible representation of K
′
. We equip A(K) with the

Fell topology (see [5]). Therefore, every element in K̂ nN can be catalogued by

elements in the topological space N̂ ×A(K). The following result of Baggett (see

[2]) provides a precise and neat description of the topology of K̂ nN .
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Theorem 5.2. Let Y be a subset of K̂ nN and π an element of K̂ nN .
Then π is weakly contained in Y if and only if there exist: a cataloguing triple
(χ, (Kχ, ρ)) for π , an element (K

′
, ρ
′
) of A(K), and a net {(χn, (Kχn , ρn))} of

cataloguing triples such that:

(i) for each n, the irreducible unitary representation π(χn, Kχn , ρn) of K n N
is an element of Y ;

(ii) the net {(χn, (Kχn , ρn))} converges to (χ, (K
′
, ρ
′
));

(iii) Kχ contains K
′
, and the induced representation Ind

Kχ

K ′
(ρ
′
) contains ρ.

Let us now return to the context and notations of Section 4. To an irre-
ducible representation ρµ of M with highest weight µ and a vector H ∈ C+(a),
we associate the generic representation π(µ,H) of G0 and its corresponding cata-
loguing triple (χϕ

H
, (M,ρµ)). Consider an irreducible representation τλ of K with

highest weight λ . By (0, (K, τλ)), we mean the cataloguing triple of the trivial
extension of τλ to G0 . A direct application of Theorem 5.2 gives us the following
results.

Proposition 5.3. Let (π(µn,Hn))n be a sequence of generic irreducible represen-

tations of G0 . Then (π(µn,Hn))n converges to π(µ,H) in (Ĝ0)gen if and only if (Hn)n
tends to H as n −→ +∞ and µn = µ for n large enough.

Proposition 5.4. Let (π(µn,Hn))n be a sequence of generic irreducible represen-

tations of G0 . Then (π(µn,Hn))n converges to τλ in Ĝ0 if and only if (Hn)n tends
to 0 as n −→ +∞ and ρµn occurs in the restriction ResKM(τλ) for n large enough.

Remark 5.5. By Proposition 5.3, we immediately see that (Ĝ0)gen has a Haus-

dorff topology. Proposition 5.4 implies that sequences in (Ĝ0)gen which converge

in K̂ have infinitely many different limit points.

6. Admissible coadjoint orbits of G0

We shall freely use the notations of the previous sections. Let hk be a Cartan
subalgebra of k , and let hm ⊂ hk be a Cartan subalgebra of m . Consider an
irreducible representation ρµ of M with highest weight µ . We denote by Uµ the
unique element of hm such that B(Uµ, U) = −iµ(U) for all U ∈ hm . Fix a vector
H ∈ C+(a). Under the identification of g0 and g∗0 , we can define a linear form
ψ ∈ g∗0 by ψ = (Uµ, H). To simplify notation, we shall write OG0

(µ,H) instead of

OG0

(Uµ,H) . Such an orbit is called a generic coadjoint orbit of G0 .

Let l be the orthogonal complement of m in k with respect to the Killing
form of g . The stabilizer G0(ψ) of ψ in G0 is given by

G0(ψ) =
{

(k,X) ∈ G0; (Ad(k)Uµ + [X,Ad(k)H], Ad(k)H) = (Uµ, H)
}

=
{

(k,X) ∈ G0; k ∈M, Ad(k)Uµ + [X,H] = Uµ
}

=
{

(k,X) ∈ G0;X ∈ Zp(H), k ∈M, Ad(k)Uµ = Uµ
}
,
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since Ad(k)Uµ ∈ m and [X,H] ∈ l for all k ∈ K and all X ∈ p . Thus, we have
G0(ψ) = K(ψ) n p(ψ), and hence ψ is aligned (see [13]). A linear form ψ ∈ g∗0 is
called admissible if there exists a unitary character χ of the identity component
of G0(ψ) such that dχ = iψ|g0(ψ) . Observe that the linear forms (Uµ, H) are
all admissible. Then, according to Lipsman (see [13]), the representation of G0

obtained by holomorphic induction from (Uµ, H) is equivalent to the generic

representation π(µ,H) . Let g‡0 ⊂ g∗0 be the set of all admissible linear forms on

g0 . The orbit space g‡0/G0 is called the space of admissible coadjoint orbits of G0 .
We denote by

(
g‡0/G0

)
gen

the subspace of gene! ric admissible coadjoint orbits of

G0 , that is the subspace formed by all the coadjoint orbits OG0

(µ,H) .

Let τλ be an irreducible representation of K with highest weight λ . We
attach to τλ the linear form (Uλ, 0) of g∗0 , where Uλ is the unique element of hk
such that B(Uλ, U) = −iλ(U) for all U ∈ hk . The representation of G0 obtained
by holomorphic induction from (Uλ, 0) is equivalent to τλ . We denote by OG0

λ the
coadjoint orbit of (Uλ, 0). It is clear that OG0

λ is an admissible coadjoint orbit of
G0 . Furthermore, if the Riemannian symmetric pair (G,K) has rank one, then
one can check that g‡0/G0 is the union of

(
g‡0/G0

)
gen

and the set of all the coadjoint

orbits OG0
λ .

7. Convergence in the quotient space g‡
0/G0

We continue to use the notations of the previous sections. Let T
K

and T
M

be
maximal tori respectively in K and M such that T

M
⊂ T

K
. The corresponding

Lie algebras are denoted by hk and hm . The Weyl groups of K and M associated
respectively to the tori T

K
and T

M
are denoted by W

K
and W

M
. Let P

K
be

the integral weight lattice of T
K

. Notice that every element λ in P
K

takes pure
imaginary values on hk , hence can be considered as an element of (ihk)

∗ . Fix a
positive Weyl chamber C+

K
in (ihk)

∗ , and write P+
K

= P
K
∩ C+

K
for the set of

dominant integral weights of T
K

. We recall that every W
K

-orbit in k∗ intersects
the closure i!C+

K
⊂ h∗k in exactly one point (see [3, p. 203]). For λ ∈ P+

K
, denote by

OKλ the K -coadjoint orbit passing through the point −iλ . As proved by Kostant
in [11], the projection of OKλ on h∗k is a convex polytope with vertices −i(w.λ) for
w ∈ W

K
, that is the convex hull of −i(W

K
.λ). In a similar way, we fix a positive

Weyl chamber C+
M

in h∗m and we introduce the set P+
M

of dominant integral weights
of T

M
.

Denote by q the C-linear extension of both the natural projection of k∗

onto m∗ and the natural projection of h∗k onto h∗m . Consider two irreducible

representations τλ ∈ K̂ and ρµ ∈ M̂ with respective highest weights λ ∈ P+
K

and
µ ∈ P+

M
. We have

Lemma 7.1. If µ = q(w.λ) with w ∈ W
K

, then ρµ occurs in the restriction
ResKM(τλ).

A proof of this lemma can be found in [1]. Let us take the coadjoint orbits
OKλ and OMµ of K and M passing through −iλ and −iµ , respectively. According
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to Guillemin and Sternberg [6,7] (compare [8, Theorem 7.5]), we have the following
result.

Lemma 7.2. If the restriction ResKM(τλ) contains ρµ , then the orbit OMµ occurs
in q(OKλ ).

It is well-known that K̂ (resp. M̂ ) is in bijective correspondence with P+
K

(resp. P+
M

), and hence (
g‡0/G0

)
gen
' P+

M
× C+(a).

When the Riemannian symmetric pair (G,K) has rank one, we have(
g‡0/G0

)
gen
' P+

M
× R∗+ and g‡0/G0 ' (P+

M
× R∗+) ∪ P+

K
.

To study the convergence in the quotient space g‡0/G0 , we need the following
lemma (see [12]).

Lemma 7.3. Let G be a unimodular Lie group with Lie algebra g and let g∗ be
the vector dual space of g. We denote g∗/G the space of coadjoint orbits and by
p
G

: g∗ −→ g∗/G the canonical projection. We equip this space with the quotient
topology, i.e., a subset V in g∗/G is open if and only if p−1

G
(V ) is open in g∗ .

Therefore, a sequence (OGk )
k

of elements in g∗/G converges to the orbit OG in
g∗/G if and only if for any l ∈ OG , there exist lk ∈ OGk , k ∈ N, such that
l = lim

k−→+∞
lk .

Now, we are in position to prove

Proposition 7.4. Let
(
OG0

(µn,Hn)

)
n

be a sequence of generic admissible coadjoint

orbits of G0 . Then
(
OG0

(µn,Hn)

)
n

converges to OG0

(µ,H) in (g‡0/G0)gen if and only if

(Hn)n tends to H as n −→ +∞ and µn = µ for n large enough.

Proof. If (Hn)n tends to H as n −→ +∞ and µn = µ for n large enough,
then we have lim

n−→+∞
(Uµn , Hn) = (Uµ, H), and thus lim

n−→+∞
OG0

(µn,Hn) = OG0

(µ,H) .

Conversely, let us assume that
(
OG0

(µn,Hn)

)
n

converges to OG0

(µ,H) . Then there

exist two sequences (kn)n ⊂ K and (Xn)n ⊂ p such that:

lim
n−→+∞

(Ad(kn)Uµn + [Xn, Ad(kn)Hn]) = Uµ,

lim
n−→+∞

Ad(kn)Hn = H.

Passing to a subsequence if necessary, we may assume that lim
n−→+∞

kn = k0 . There-

fore, we have lim
n−→+∞

Hn = Ad(k−1
0 )H . Furthermore, we know that there exists

s ∈ W (G,K) such that Ad(k−1
0 )H = s.H (see [9, p. 285]). Since the element s.H

belongs to the intersection of the closure C+(a) with the orbit W (G,K).H , we
obtain the equality s.H = H . We conclude that lim

n−→+∞
Hn = H and k0 ∈ M .
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Setting Yn = [Ad(k−1
n )Xn, Hn] , we can write

lim
n−→+∞

(Uµn + Yn) = Ad(k−1
0 )Uµ.

Consider the direct sum decomposition k = m⊕l with respect to the Killing form of
g . For all n , it is clear that Yn ∈ l . Thus, we deduce that lim

n−→+∞
Uµn = Ad(k−1

0 )Uµ .

On the other hand, we have Ad(k−1
0 )Uµ = w.Uµ for some w in the Weyl group W

M
.

By observing that w.Uµ = Uw.µ , we get lim
n−→+∞

Uµn = Uw.µ and hence µn = w.µ

for n large enough. Since the weights µn and µ are contained in the set iC+
M

and

since every W
M

-orbit in m∗ intersects the closure iC+
M

in exactly one point, it
follows that µn = µ for n large enough.

Combining the results of Proposition 5.3 and Proposition 7.4, we obtain

Theorem 7.5. The topological spaces (Ĝ0)gen and (g‡0/G0)gen are homeomor-
phic.

Proposition 7.6. Let
(
OG0

(µn,Hn)

)
n

be a sequence of generic admissible coadjoint

orbits of G0 . Then
(
OG0

(µn,Hn)

)
n

converges to OG0
λ in g‡0/G0 if and only if (Hn)n

tends to 0 as n −→ +∞ and ρµn occurs in the restriction ResKM(τλ) for n large
enough.

Proof. Assume that
(
OG0

(µn,Hn)

)
n

converges to OG0
λ . There exist two sequences

(kn)n ⊂ K and (Xn)n ⊂ p such that:

lim
n−→+∞

(Ad(kn)Uµn + [Xn, Ad(kn)Hn]) = Uλ,

lim
n−→+∞

Ad(kn)Hn = 0.

By compactness of K , we may assume that lim
n−→+∞

kn = k0 . Then we easily see

that lim
n−→+∞

Hn = 0. From the equality

lim
n−→+∞

(Uµn + [Ad(k−1
n )Xn, Hn]) = Ad(k−1

0 )Uλ,

we deduce that lim
n−→+∞

Uµn belongs to the projection of Ad(K)Uλ ∩ hk onto hm .

Equivalently, this implies that −iµn belongs to the set q(OKλ ∩ h∗k ) for n large
enough, i.e., µn ∈ q(W

K
.λ) for n large enough. By Lemma 7.1, it follows that ρµn

occurs in ResKM(τλ) for n large enough.

Conversely, assume that lim
n−→+∞

Hn = 0 and that ρµn occurs in ResKM(τλ)

for n large enough. By Lemma 7.2, we know that the orbit OMµn occurs in q(OKλ )
for n large enough. Then for such n , there exist hn in K and Yn in the subspace
l of k with Uµn + Yn = Ad(hn)Uλ . Fix an element (Ad(k)Uλ, 0) in OG0

λ and set
kn = kh−1

n . Of course, we have lim
n−→+∞

Ad(kn)Hn = 0. Since for every regular

element H in a , the linear map ad(H)|q : q −→ l is surjective, we deduce for all
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n there exists Zn ∈ q such that [Zn, Hn] = Yn . For Xn = Ad(kn)Zn with n large
enough, we have

Ad(kn)Uµn + [Xn, Ad(kn)Hn] = Ad(k)Uλ.

We conclude that the sequence
(
OG0

(µn,Hn)

)
n

converges to OG0
λ in g‡0/G0 . This

completes the proof of the proposition.

The above analysis allows us to derive the following theorem.

Theorem 7.7. In the setting as above, assume that the compact Riemannian
symmetric pair (G,K) has rank one. Then the unitary dual Ĝ0 is homeomorphic
to the space of admissible coadjoint orbits g‡0/G0 .

The special case of Theorem 7.7 where (G,K) = (SO(n + 1), SO(n)) has
been proved in [4]. The authors method of proof makes essential use of the classical
branching rule from SO(n) to SO(n− 1) for n ≥ 2.
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