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Abstract. We call the Lie algebra of a Lie group with a left invariant pseudo-
Riemannian flat metric pseudo-Riemannian flat Lie algebra. We give a new proof
of a classical result of Milnor on Riemannian flat Lie algebras. We reduce the
study of Lorentzian flat Lie algebras to those with trivial center or those with
degenerate center. We show that the double extension process can be used to
construct all Lorentzian flat Lie algebras with degenerate center generalizing a
result of Aubert-Medina on Lorentzian flat nilpotent Lie algebras. Finally, we
give the list of Lorentzian flat Lie algebras with degenerate center up to dimen-
sion 6.
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1. Introduction

A pseudo-Riemannian flat Lie group is a Lie group with a left invariant pseudo-
Riemannian flat metric. The Lie algebra of such a Lie group is called pseudo-
Riemannian flat Lie algebra. If the metric on the Lie group is complete the Lie
algebra is called complete. It is a well-known result that a pseudo-Riemannian
flat Lie algebra is complete if and only if it is unimodular. A Riemannian (resp.
Lorentzian) flat Lie group is a pseudo-Riemannian flat Lie group for which the
metric is definite positive (respectively, of signature (−,+ . . .+)). In [6], Milnor
showed that a Lie group is a Riemannian flat Lie group if and only if its Lie alge-
bra is a semi-direct product of an abelian algebra b with an abelian ideal u and,
for any u ∈ b , adu is skew-symmetric. The characterization of Lorentzian flat
Lie algebras (eventually complete) is an open problem. It is a well-known result
that a Lorentzian flat Lie algebra must be solvable (see [4]). On the other hand,
in [1], Aubert and Medina showed that nilpotent Lorentzian flat Lie algebras are
obtained by a double extension process from Riemannian abelian Lie algebras. In
[3], a general method to build examples of Lorentzian flat Lie algebras is given.
In this paper, we reduce the problem of finding Lorentzian flat Lie algebras to
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the determination of Lorentzian flat Lie algebras with degenerate center and those
with trivial center. We show that the double extension process can be used to
construct all Lorentzian flat Lie algebras with degenerate center from Riemannian
flat Lie algebras and the Lie algebras obtained are unimodular and hence com-
plete (see Theorem 2.1). This result generalizes Aubert-Medina’s result. We give
the list of Lorentzian flat Lie algebras with degenerate center up to dimension 6.
The paper is organized as follows. In Section 2, we recall the double extension
process and state our main result (Theorem 2.1). In Section 3, we revisit Milnor’s
theorem and give a new formulation and a new proof of this theorem using the
Lie algebra of left invariant Killing vector fields on a pseudo-Riemannian flat Lie
group (See Theorem 3.1). This Lie algebra will play a crucial role in the proof
of our main result. Indeed, we will establish a key Lemma (See Lemma 3.1) in-
volving this Lie algebra and, as a consequence, we reduce the problem of finding
Lorentzian flat Lie algebras to the determination of Lorentzian flat Lie algebras
with degenerate center and those with trivial center, we recover the keystone in
the proof of Aubert-Medina’s result (see [1] Lemma 1.1) and prove Theorem 2.1.
In Section 4, we give some indications on how one can construct the tools used in
the double extension process and we give the list of Lorentzian flat Lie algebras
with degenerate center up to dimension 6.

2. Statement of the main result

A Lie group G together with a left-invariant pseudo-Riemannian metric is called
pseudo-Riemannian Lie group. The left-invariant pseudo-Riemannian metric de-
fines an inner product 〈 , 〉 on the Lie algebra g of G , and conversely, any inner
product on g gives rise to an unique left-invariant metric on G . The couple
(g, 〈 , 〉) is called pseudo-Riemannian Lie algebra. We use the adjective Rieman-
nian (resp. Lorentzian) instead of pseudo-Riemannian when the metric is definite
positive (resp. of signature (−,+ . . .+)). For any endomorphism D : g −→ g we
denote by D∗ : g −→ g its adjoint with respect to 〈 , 〉 .
Let (g, 〈 , 〉) be a pseudo-Riemannian Lie algebra of dimension n . The Levi-Civita
connection defines a product (u, v) 7→ uv on g called Levi-Civita product given by
Koszul’s formula

2〈uv, w〉 = 〈[u, v], w〉+ 〈[w, u], v〉+ 〈[w, v], u〉. (1)

For any u ∈ g , we denote by Lu : g −→ g and Ru : g −→ g , respectively, the left
multiplication and the right multiplication by u given by

Luv = uv and Ruv = vu.

For any u ∈ g , Lu is skew-symmetric with respect to 〈 , 〉 and

adu = Lu − Ru, (2)

where adu : g −→ g is given by aduv = [u, v] . The mean curvature vector on g is
the vector given by

〈H, u〉 = tr(adu), ∀u ∈ g. (3)



Ait Ben Haddou, Boucetta and Lebzioui 271

The Lie algebra g is unimodular if and only if H = 0. The curvature of 〈 , 〉 is
given by

K(u, v) = L[u,v] − [Lu,Lv].

The (g, 〈 , 〉) is called pseudo-Riemannian flat Lie algebra if K vanishes identically.
This is equivalent to the fact that g endowed with the Levi-Civita product is a
left symmetric algebra, i.e., for any u, v, w ∈ g ,

ass(u, v, w) = ass(v, u, w),

where ass(u, v, w) = (uv)w − u(vw). This relation is equivalent to

Ruv − Rv ◦ Ru = [Lu,Rv], (4)

for any u, v ∈ g .

Let us recall now the double extension process and some related results as
elaborated in [1]. In particular, Propositions 3.1-3.2 of the paper [1] are essential
in the double extension process.
Let (B, [ , ]0, 〈 , 〉0) be a pseudo-Riemannian flat Lie algebra, ξ,D : B −→ B two
endomorphisms of B , b0 ∈ B and µ ∈ R such that:

1. ξ is a 1-cocycle of (B, [ , ]0) with respect to the representation L : B −→
End(B) defined by the left multiplication associated to the Levi-Civita prod-
uct, i.e., for any a, b ∈ B ,

ξ([a, b]) = Laξ(b)− Lbξ(a), (5)

2. D is a derivation of (B, [ , ]0),

3. D − ξ is skew-symmetric with respect to 〈 , 〉0 ,

[D, ξ] = ξ2 − µξ − Rb0 , (6)

and for any a, b ∈ B

aξ(b)− ξ(ab) = D(a)b+ aD(b)−D(ab). (7)

We call (ξ,D, µ, b0) satisfying the three conditions above admissible.
Given (ξ,D, µ, b0) admissible, we endow the vector space g = Rz ⊕ B ⊕ Rz̄ with
the inner product 〈 , 〉 which extends 〈 , 〉0 , for which span{z, z̄} and B are
orthogonal, 〈z, z〉 = 〈z̄, z̄〉 = 0 and 〈z, z̄〉 = 1. We define also on g the bracket

[z̄, z] = µz, [z̄, a] = D(a)− 〈b0, a〉0z and [a, b] = [a, b]0 + 〈(ξ− ξ∗)(a), b〉0z, (8)

where a, b ∈ B and ξ∗ is the adjoint of ξ with respect to 〈 , 〉0 . Then (g, [ , ], 〈 , 〉)
is a pseudo-Riemannian flat Lie algebra called double extension of (B, [ , ]0, 〈 , 〉0)
according to (ξ,D, µ, b0). Moreover, any nilpotent Lorentzian flat Lie algebra is
a double extension of a Riemannian abelian Lie algebra according to (ξ,D, µ, b0)
with ξ = D , D2 = 0 and µ = 0.
We can now state our main result.
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Theorem 2.1. A Lorentzian Lie algebra with degenerate center is flat if and
only if it is a double extension of a Riemannian flat Lie algebra (B, [ , ]0, 〈 , 〉0)
according to (ξ,D, 0, b0) with (D, b0) 6= (0, 0). Moreover, a Lorentzian flat Lie
algebra with degenerate center is unimodular and hence complete.

3. The Lie algebra of left invariant Killing vector fields on a
pseudo-Riemannian flat Lie group

The Riemannian case: Milnor’s theorem revisited In this paragraph, we
give a new formulation and a new proof of Milnor’s theorem using the Lie algebra
of left invariant Killing vector fields of a Riemannian flat Lie group. This Lie
algebra will play a crucial role in the proof of our main result.

Let (g, [ , ], 〈 , 〉) be a pseudo-Riemannian Lie algebra. The Lie subalgebra

L(g) = {u ∈ g, adu + ad∗u = 0} = {u ∈ g,Ru + R∗u = 0} (9)

is called Killing subalgebra of g . Indeed, if g is the Lie algebra of left invariant
vector fields of a pseudo-Riemannian Lie group then L(g) is the Lie algebra of
left invariant Killing vector fields. On the other hand, one can see easily that the
orthogonal of the derived ideal of g is given by

D(g)⊥ = {u ∈ g,Ru = R∗u}. (10)

Finally, we put

N`(g) = {u ∈ g,Lu = 0} and Nr(g) = {u ∈ g,Ru = 0} .

We have obviously
Nr(g) = (gg)⊥. (11)

Proposition 3.1. Let (g, [ , ], 〈 , 〉) be a pseudo-Riemannian flat Lie algebra.
Then:

1. For any u ∈ L(g), R2
u = 0 and [Ru,Lu] = 0.

2. For any u ∈ D(g)⊥ , Ru is nilpotent and [Ru,Lu] = R2
u.

3. The mean curvature vector satisfies H ∈ D(g) ∩D(g)⊥ . In particular, if g
is non unimodular then D(g) is degenerate.

Proof. By using (1) one can see easily that, for any u ∈ L(g)∪D(g)⊥ , u.u = 0
and deduce from (4) that

[Ru,Lu] = R2
u.

If u ∈ L(g) then Ru is skew-symmetric and, since Lu is always skew-symmetric,
[Ru,Lu] is skew-symmetric. But R2

u is symmetric which implies 1.
On the other hand, one can deduce by induction that for any k ∈ N∗

[Rk
u,Lu] = kRk+1

u .
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and hence tr(Rk
u) = 0 for any k ≥ 2 which implies that Ru is nilpotent.

Since, for any u, v ∈ g , tr(ad[u,v]) = 0, we deduce that H ∈ D(g)⊥ . Now, for any
u ∈ D(g)⊥ , Ru is nilpotent and hence

tr(adu) = tr(Ru) = 〈H, u〉 = 0,

which implies H ∈ D(g).

Remark 1. If g is a Lorentzian flat Lie algebra, one can deduce from Propo-
sition 3.1 that for any u ∈ D(g)⊥ , R3

u = 0. Moreover, if g is non unimodular
then

D(g) ∩D(g)⊥ = RH.

We can give now a new formulation and a new proof of Milnor’s theorem
(see [6]). This new formulation appeared first in [2]. Recall that Milnor showed
that a Lie group is a Riemannian flat Lie group if and only if its Lie algebra is a
semi-direct product of an abelian algebra b with an abelian ideal u and, for any
u ∈ b , adu is skew-symmetric.

Theorem 3.1. Let G be a Riemannian Lie group. Then the curvature of
G vanishes if and only if L(g) is abelian, D(g) is abelian and L(g)⊥ = D(g).
Moreover, in this case the dimension of D(g) is even and the Levi-Civita product
is given by

La =

{
ada if a ∈ L(g),
0 if a ∈ D(g).

(12)

Proof. Suppose that G is a Riemannian flat Lie group and g its Lie algebra.
Let (D(g)k)k∈N denote the commutator series of g defined recursively by

D(g)0 = g, D(g)1 = [g, g] and D(g)k+1 = [D(g)k,D(g)k].

Since in positive definite context skew-symmetric or symmetric nilpotent endo-
morphism must vanish, we deduce from Proposition 3.1 that

L(g) = D(g)⊥ = Nr(g) = (gg)⊥. (13)

These relations imply that L(g) is abelian, D(g) = gg and hence D(g) is a two-
sided ideal of the Levi-Civita product so D(g) endowed with the restricted metric
is a Riemannian flat Lie algebra and, by induction, for any k ∈ N , D(g)k is a
Riemannian flat Lie algebra. On the other hand, it is known that a non null left
symmetric algebra cannot be equal to its derived ideal (see [5] pp.31). So g must
be solvable and hence D(g) is nilpotent. If D(g) is non abelian then the splitting

D(g) = L(D(g))⊕D2(g)

is non trivial. But the center of D(g) is contained in L(D(g)) and it intersects
non trivially D2(g) (D(g) is nilpotent) so D(g) must be abelian. This achieves
the direct part of the theorem. The equation (12) is easy to establish and the
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converse follows immediately from this equation.
Suppose that G is flat. Hence L(g) is abelian, D(g) is abelian and

g = L(g)⊕D(g).

If L(g) = {0} then g = [g, g] = {0} and the result follows trivially. Suppose now
that L(g) 6= {0} . Let (s1, ..., sp) be a basis of L(g). The restriction of ads1 to D(g)
is a skew-symmetric endomorphism, thus its kernel K1 is of even codimension in
D(g). Now, ads2 commutes with ads1 and K1 is invariant by ads2 . By using the
same argument as above, we deduce that K2 = K1∩ker ads2 is of even codimension
in K1 . Finally K2 is of even codimension in D(g). Thus, by induction, we show
that

Kp = D(g) ∩ (∩pi=1 ker adsi)

is an even codimensional subspace of D(g). Now from its definition Kp is contained
in the center of g which is contained in L(g) and then Kp = {0} and the second
part of the theorem follows.

The Lorentzian case It is known that a left invariant affine structure on a Lie
group G is complete if and only if for any u ∈ g , Ru is nilpotent (see [8] for
instance). If G is a Riemannian flat Lie group then the underlying left invariant
affine structure is complete and one can deduce (13) immediately. We have avoided
to use this argument in the proof of Theorem 3.1 and we have used arguments which
are not specific to the Riemannian case. Unfortunately, in the Lorentzian case the
argument used to prove (13) cannot be used since in the Lorentzian context there
are non trivial skew-symmetric or symmetric nilpotent endomorphisms. However,
in the following lemma, we show that a part of(13) is still valid in the Lorentzian
case.

Lemma 3.1. Let (g, [ , ], 〈 , 〉) be a Lorentzian flat Lie algebra. Then

L(g) = Nr(g) = (gg)⊥.

Proof. Note first that we have always Nr(g) ⊂ L(g). Let u ∈ L(g). According
to Proposition 3.1 1, R2

u = 0 and since Ru is skew-symmetric we get that ImRu

is a totally isotropic subspace and hence there exists an isotropic vector e ∈ g
and a covector α ∈ g∗ such that Ru(v) = α(v)e for any v ∈ g . Choose a
basis {e, ē, f1, . . . , fn−2} of g such that span{e, ē} and span{f1, . . . , fn−2} are
orthogonal, {f1, . . . , fn−2} is orthonormal, ē is isotropic and 〈e, ē〉 = 1. We have,
for any i = 1, . . . , n− 2,

〈Ru(e), ē〉 = α(e) = −〈e,Ru(ē)〉 = 0,

〈Ru(ē), ē〉 = 0 = α(ē),

〈Ru(fi), ē〉 = α(fi) = −〈fi,Ru(ē)〉 = 0,

hence α = 0 and then u ∈ Nr(g) which achieves the proof of the lemma.

Let (g, [ , ], 〈 , 〉) be a Lorentzian flat Lie algebra. There are some
interesting consequences of Lemma 3.1:
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1. We have
Z(g) = N`(g) ∩Nr(g) ⊂ L(g) = (gg)⊥ ⊂ D(g)⊥. (14)

Thus Z(g) and Z(g)⊥ are ideals of g and are two-sided ideals of g endowed
with the Levi-Civita product, so if Z(g) is non degenerate we have

g = Z(g)⊕ Z(g)⊥

and both Z(g) and Z(g)⊥ are flat when endowed with the restricted metric.

2. If Z(g) is degenerate, we have

Z(g) ∩D(g) ⊂ Z(g) ∩ Z(g)⊥ ⊂ N`(g) ∩Nr(g), (15)

and hence Z(g)∩Z(g)⊥ is a one dimensional two-sided ideal and its orthog-
onal is also a two-sided ideal, so we can use the double extension process.

3. If g is nilpotent then Z(g) ∩ D(g) 6= {0} and hence Z(g) ∩ Z(g)⊥ is one
dimensional ideal contained in N`(g) and Lemma 1.1 of [1] follows. Note
that this lemma played a crucial role in the proof of Aubert-Medina’s result
and we give here a generalization and a new proof of this lemma.

In conclusion, we have shown that the problem of finding Lorentzian flat Lie
algebras reduces to the determination of solvable Lorentzian flat Lie algebras with
degenerate center and those with trivial center.

Proof of Theorem 2.1

Proof. Suppose that (g, [ , ], 〈 , 〉) is a Lorentzian flat Lie algebra and Z(g)
is degenerate. Then I = Z(g) ∩ Z(g)⊥ = Rz where z is an isotropic vector. Now
from (14) we deduce that Lz = Rz = 0 and hence I is a two-sided ideal for the
Levi-Civita product. Moreover, the orthogonal I⊥ is also a two-sided ideal. So,
according to Proposition 3.1 of [1], g = Rz ⊕ B ⊕ Rz̄ and it is a double extension
of B according to (ξ,D, µ, b0). The Lie bracket is given by

[z̄, z] = µz, [z̄, a] = D(a)− 〈b0, a〉0z and [a, b] = [a, b]0 + 〈(ξ − ξ∗)(a), b〉0z.

Since z ∈ Z(g) then µ = 0. The converse is obviously true.
On the other hand, according to the brackets above and the fact that B is
unimodular, g is unimodular if and only if tr(D) = 0. In Section 4, we will show
that if (ξ,D, 0, b0) is admissible and B abelian then D− ξ is skew-symmetric and
ξ is nilpotent so tr(D) = 0. When B is non abelian the relation tr(D) = 0 follows
from Proposition 4.2. This achieves the proof.

Remark 2. Let g be a Lorentzian flat non unimodular Lie algebra. According
to Theorem 2.1, Z(g) is non degenerate and hence g = Z(g)⊕ Z(g)⊥ . Moreover,
we have seen that Z(g)⊥ is a two-sided ideal with respect to Levi-Civita product so
the restriction of the metric to Z(g)⊥ is Lorentzian and flat. Thus we reduce the
study of Lorentzian flat non unimodular Lie algebras to those with trivial center.
Moreover, if g is such a Lie algebra then D(g) ∩D(g)⊥ = RH.



276 Ait Ben Haddou, Boucetta and Lebzioui

4. Lorentzian flat Lie algebras with degenerate center up to
dimension six

According to Theorem 2.1, one can determine entirely all Lorentzian flat Lie
algebras with degenerate center if one can find all admissible (ξ,D, 0, b0) on
Riemannian flat Lie algebras. In this section, we will give a general method to
solve the equations satisfied by admissible (ξ,D, 0, b0) and we will use this method
to give explicitly the solutions on Riemannian flat Lie algebras of dimension 2, 3
or 4. This will permit us to establish the list of all Lorentzian flat Lie algebras
with degenerate center up to dimension six.

The abelian case Let B be a Riemannian flat abelian Lie algebra of dimension
n . One can see easily that (ξ,D, 0, b0) is admissible if and only if A = D − ξ is
skew-symmetric and

[A, ξ] = ξ2. (16)

Let (A, ξ) be a solution of (16) with A is skew-symmetric. One can deduce by
induction that, for any k ∈ N∗ ,

[A, ξk] = kξk+1, (17)

and hence, for any k ≥ 2,
tr(ξk) = 0. (18)

This implies that ξ is nilpotent. Thus there exists q ≤ dimB such that

{0} 6= ker ξ $ ker ξ2 $ . . . $ ker ξq = B.

Then we have the orthogonal splitting of B

B =

q−1⊕
k=0

Fk, (19)

where F0 = ker ξ and, for any k = 1, . . . , q − 1, Fk = ker ξk+1 ∩
(
ker ξk

)⊥
. The

key point is that (17) implies that A(ker ξk) ⊂ ker ξk for any k ∈ N and since A is
skew-symmetric, A(Fk) ⊂ Fk . By using an orthonormal basis which respect to the
splitting (19), the matrix of A and ξ are simple and one can solve (16) easily. The
following remarks can be used to simplify the computations when solving (16).

Remark 3. Let (A, ξ) be a solution of (16) with A is skew-symmetric.

1. If q = dimB then for any k = 0, . . . , n − 1, dimFk = 1 and hence A = 0
so ξ2 = 0 and then dimB = 2. So if dimB ≥ 3 then q < dimB .

2. One can deduce easily from (17) that kerA ⊂ ker ξ2 . Indeed, if x ∈ kerA
then by (17), for any k ∈ N, Aξk(x) = kξk+1(x) and since ξ is nilpotent
there exists p > 0 such that Apξ(x) = 0. If p = 1 we get Aξ(x) = ξ2(x) = 0
and hence x ∈ ker ξ2 . If p ≥ 2, then A2p−2ξ(x) = 0 and, since A is skew-
symmetric, 〈Ap−1ξ(x), Ap−1ξ(x)〉 = 0. Thus Ap−1ξ(x) = 0. By repeating the
argument above we get finally that Aξ(x) = ξ2(x) = 0 and hence x ∈ ker ξ2 .
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3. For any 1 ≤ k ≤ q − 1, we have

dimFk ≤ dim ker ξj, j = 1, . . . , k + 1.

We can now use what we observed above to find all admissible (ξ,D, 0, b0)
when dimB ≤ 4.

Proposition 4.1. Let B be a Riemannian flat abelian Lie algebra. Then:

1. If dimB = 2 then (ξ,D, 0, b0) is admissible if and only if ξ = D = 0 or
there exists an orthonormal basis {e1, e2} of B such that the matrices of ξ
and D in this basis are(

M(ξ) = M(D) =

(
0 a
0 0

) )
or

(
ξ = 0, M(D) =

(
0 λ
−λ 0

) )
,

with a 6= 0 and λ > 0.

2. If dimB = 3 then (ξ,D, 0, b0) is admissible if and only if ξ = D = 0 or
there exists an orthonormal basis {e1, e2, e3} of B such that the matrices of
ξ and D in this basis areM(ξ) = M(D) =

0 0 a
0 0 0
0 0 0

 or

ξ = 0, M(D) =

 0 λ 0
−λ 0 0
0 0 0

 ,

with a 6= 0 and λ > 0.

3. If dimB = 4 then (ξ,D, 0, b0) is admissible if and only if ξ = D = 0 or
there exists an orthonormal basis {e1, e2, e3, e4} of B such that the matrices
of ξ and D in this basis have one of the following forms:

(f1) M(ξ) = M(D) =


0 0 a b
0 0 0 c
0 0 0 0
0 0 0 0

 , ac 6= 0,

(f2) M(ξ) = M(D) =


0 0 0 a
0 0 0 0
0 0 0 0
0 0 0 0

 , a 6= 0,

(f3) M(D) =


0 a 0 0
−a 0 0 0
0 0 0 b
0 0 −b 0

 , ξ = 0, (a, b) 6= (0, 0),

(f4) M(D) =


0 a b 0
−a 0 0 b
0 0 0 a
0 0 −a 0

 , M(ξ) =


0 0 b 0
0 0 0 b
0 0 0 0
0 0 0 0

 , ab 6= 0,

(f5) M(D) =


0 a 0 0
−a 0 0 0
0 0 0 b
0 0 0 0

 , M(ξ) =


0 0 0 0
0 0 0 0
0 0 0 b
0 0 0 0

 a 6= 0, b 6= 0.
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Proof. Note first that (ξ,D, 0, b0) is admissible if and only if A = D − ξ is
skew-symmetric and (A, ξ) is a solution of (16). If it is the case, we will use
repeatedly the fact that A leaves invariant the splitting (19) and Remark 3. Let
(ξ,D, 0, b0) be admissible such that (ξ,D) 6= (0, 0). We consider the integer q
defined in (19).

1. When dimB = 2, there are two possibilities of q . If q = 2 then, according
to (19), B = ker ξ⊕F1 and hence A = 0. Thus D = ξ and ξ2 = 0. If q = 1
then ξ = 0 and D is skew-symmetric.

2. When dimB = 3 then, according to Remark 3, there are also two possibilities
of q . If q = 1 then ξ = 0 and D is skew-symmetric.
If q = 2 then, according to (19) and Remark 3, B = ker ξ ⊕ F1 with
dim ker ξ ≥ dimF1 . Thus dim ker ξ = 2 and dimF1 = 1. So there exists an
orthonormal basis (e1, e2, e3) of B such that

M(A) =

 0 a 0
−a 0 0
0 0 0

 and M(ξ) =

0 0 b
0 0 c
0 0 0

 ,

where a ∈ R and (b, c) 6= (0, 0). A direct computation shows that (16) is
equivalent to A = 0 and hence D = ξ . To get the desired form, one need to
consider the orthonormal basis ( be1+ce2√

b2+c2
, be2−ce1√

b2+c2
, e3).

3. When dimB = 4 then, according to Remark 3, q ≤ 3.

• If q = 1 then ξ = 0 and D is skew-symmetric, this gives (f3).

• If q = 2 then ξ 6= 0, B = ker ξ ⊕ F1 and dim ker ξ ≥ dimF1 . We
distinguish two cases.
First case: dim ker ξ = 2 and dimF1 = 2. Then there exists an
orthonormal basis (e1, e2, e3, e4) such that

M(A) =


0 a 0 0
−a 0 0 0
0 0 0 b
0 0 −b 0

 and M(ξ) =


0 0 c d
0 0 e f
0 0 0 0
0 0 0 0

 ,

where a, b ∈ R and cf − ed 6= 0. A direct computation shows that (16)
is equivalent to 

ae+ bd = 0,
be+ ad = 0,
af − bc = 0,
bf − ac = 0.

If (a, b) = (0, 0), we recover (f1) after the change of orthonormal basis

(
ce1 + ee2√
c2 + e2

,
ee1 − ce2√
c2 + e2

, e3, e4).
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If (a, b) 6= (0, 0) then, since ξ 6= 0, we get a = b or a = −b . If a = b ,
we recover (f4) after the change of orthonormal basis

(
ce1 + ee2√
c2 + e2

,
−ee1 + ce2√
c2 + e2

, e3, e4).

If a = −b we recover also (f4) after the change of orthonormal basis

(
ee1 − ce2√
c2 + e2

,
ce1 + ee2√
c2 + e2

, e4, e3).

Second case: dim ker ξ = 3 and dimF1 = 1. Then there exists an
orthonormal basis (e1, e2, e3, e4) such that

M(A) =


0 a 0 0
−a 0 0 0
0 0 0 0
0 0 0 0

 and M(ξ) =


0 0 0 b
0 0 0 c
0 0 0 d
0 0 0 0

 ,

where a ∈ R and (b, c, d) 6= (0, 0, 0). A direct computation shows that
(16) is equivalent to ab = 0 and ac = 0. If a = 0 we recover (f2) after
the change of basis ( be1+ce2+de3√

b2+c2+d2
, f1, f2, e4) where ( be1+ce2+de3√

b2+c2+d2
, f1, f2) is

any orthonormal basis of span{e1, e2, e3} . If b = c = 0 we recover (f5).

• If q = 3 then ξ2 6= 0, B = ker ξ ⊕ F1 ⊕ F2 with

dimF2 ≤ dim(ker ξ ⊕ F1) and dimF2 ≤ dim ker ξ.

Hence dim ker ξ = 2 and dim kerF1 = dim kerF2 = 1 then there exists
an orthonormal basis such that

M(A) =


0 a 0 0
−a 0 0 0
0 0 0 0
0 0 0 0

 , M(ξ) =


0 0 b c
0 0 d e
0 0 0 f
0 0 0 0

 and

M(ξ2) =


0 0 0 fb
0 0 0 df
0 0 0 0
0 0 0 0

 ,

where f 6= 0. This case is impossible since e4 ∈ kerA and e4 /∈ ker ξ2

which is in contradiction with Remark 3.

The non abelian case Let B be a Riemannian flat non abelian Lie algebra of
dimension n . According to Theorem 3.1, L(B) and D(B) are abelian and

B = L(B)⊕D(B).

Moreover,

La =

{
ada if a ∈ L(B),
0 if a ∈ D(B).
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Since L(B) is abelian and acts on D(B) by skew-symmetric endomorphisms, there
exists a family of non vanishing vectors u1, . . . , ur ∈ L(B) and an orthonormal
basis (f1, . . . , f2r) of D(B) such that, for any j = 1, . . . , r and any s ∈ L(B),

[s, f2j−1] = 〈s, uj〉f2j and [s, f2j] = −〈s, uj〉f2j−1. (20)

If F is an endomorphism of B , we put, for any u ∈ B , F (u) = F1(u) + F2(u)
where F1(u) ∈ L(B) and F2(u) ∈ D(B), and we denote by F 1 ∈ End(L(B)) and
F 2 ∈ End(D(B)), respectively, the restriction of F1 to L(B) and the restriction
of F2 to D(B).

Proposition 4.2. With the notations and hypothesis above, (ξ,D, 0, b0) is ad-
missible if and only if D1 − ξ1 and D2 − ξ2 are skew-symmetric and, for any
a, b ∈ L(B) and any c ∈ D(B),

D1|D(B) = ξ1|D(B) = 0, (ξ2 −D2)|L(B) = 0, (21)

0 = [D2(a), b] + [a,D2(b)], (22)

D2([a, c]) = [D1(a), c] + [a,D2(c)], (23)

ξ2([a, c]) = [a, ξ2(c)], (24)

[D1, ξ1] = ξ1
2
, (25)

[D2, ξ2] = ξ2
2
, (26)

[D2, ξ2](a) = ξ22(a) + ξ2 ◦D1(a) + [b0, a]. (27)

Moreover, if (ξ,D, 0, b0) is admissible then tr(D) = 0.

Proof. Recall that (ξ,D, 0, b0) is admissible if and only if D is a derivation of
B , D − ξ is skew-symmetric and (ξ,D, b0) satisfy (5)-(7).
Now D is a derivation and (ξ,D) satisfy (5) and (7) if and only if, for any
a, b ∈ L(B) and any c, d ∈ D(B),

0 = [D2(a), b] + [a,D2(b)],

0 = [D1(c), d] + [c,D1(d)],

D2([a, c]) = [D1(a), c] + [a,D2(c)], D1([a, c]) = 0,

[a, ξ2(b)] = [b, ξ2(a)],

ξ2([a, c]) = [a, ξ2(c)], ξ1([a, c]) = 0,

[a, ξ2(b)] = [a,D2(b)], (∗)
[a, ξ(c)]− ξ([a, c]) = [D(a), c] + [a,D(c)]−D([a, c]),

[D1(c), d] = 0.

We get obviously that D1|D(B) = ξ1|D(B) = 0. Moreover, from (∗) we deduce that,
for any b ∈ L(B), ξ2(b)−D2(b) is a central element and since the center of B is
contained in L(B), we deduce that (ξ2 − D2)|L(B) = 0. On the other hand, one
can see easily that if D1|D(B) = ξ1|D(B) = 0 and (ξ2−D2)|L(B) = 0 then (ξ,D, 0, b0)
satisfies (6) if and only if

[D1, ξ1] = ξ21 and [D2, ξ2] = ξ22 + ξ2D1 − Rb0 .
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By evaluating the second equation respectively on L(B) and D(B) one can con-
clude. Moreover, if (ξ,D, 0, b0) is admissible then one can deduce easily from what
above that tr(D) = tr(ξ1) + tr(ξ2) = 0 (ξ1 and ξ2 are nilpotent by virtue of (25)
and (26)).

Let us use this proposition to find (D, ξ, 0, b0) admissible when dimB = 3
or 4.

Proposition 4.3. Let B be a Riemannian flat non abelian Lie algebra of
dimension 3. Then there exists an orthonormal basis {e1, e2, e3} of B such that
L(B) = span{e1}, D(B) = span{e2, e3} and

[e1, e2] = λe3 and [e1, e3] = −λe2,

where λ > 0. Moreover, (D, ξ, 0, b0) is admissible if and only if

M(ξ) =

0 0 0
a 0 0
b 0 0

 , M(D) =

0 0 0
a 0 c
b −c 0

 and b0 = b1e1 +
ca

λ
e2 +

cb

λ
e3.

Proof. The existence of the orthonormal basis B = {e1, e2, e3} in which the
Lie bracket is given by the relations above is a consequence of Theorem 3.1.
Suppose now that (D, ξ, 0, b0) is admissible. Since L(B) is a line, the equation
(22) holds and we deduce from (25) and the fact ξ1 −D1 is skew-symmetric that
ξ1 = D1 = 0 and hence ξ1 = D1 = 0. So D2 and ξ2 satisfy the same equation,
namely (24). This equation is equivalent to

ξ2([e1, e2]) = [e1, ξ2(e2)],

λξ2(e3) = λ〈ξ2(e2), e2〉e3 − λ〈ξ2(e2), e3〉e2,
ξ2([e1, e3]) = [e1, ξ2(e3)],

−λξ2(e2) = λ〈ξ2(e3), e2〉e3 − λ〈ξ2(e3), e3〉e2.

These equations are equivalent to

〈ξ2(e3), e2〉 = −〈ξ2(e2), e3〉 and 〈ξ2(e3), e3〉 = 〈ξ2(e2), e2〉.

Thus, since D− ξ is skew-symmetric, the matrices of D and ξ in the basis B are
of the following form

M(ξ) =

0 0 0
a e d
b −d e

 and M(D) =

0 0 0
a e c
b −c e

 .

On the other hand, according to Proposition 4.1 1, the equation (26) and the fact
that ξ2 −D2 is skew-symmetric is equivalent to(
M(ξ2)=0 and M(D2)

∗=−M(D2)
)

or
(
M(ξ2)=M(D2) and M(ξ2)

2 = 0
)
. (∗)
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Since M(ξ2) =

(
e d
−d e

)
and M(D2) =

(
e c
−c e

)
. We deduce that (∗) is

equivalent to e = d = 0. Now, the equation (27) is equivalent to

b0 = b1e1 +
ca

λ
e2 +

cb

λ
e3.

This achieves the proof.

Proposition 4.4. Let B be a Riemannian flat non abelian Lie algebra of
dimension 4. Then there exists an orthonormal basis {e1, e2, f1, f2} of B such
that L(B) = span{e1, e2}, D(B) = span{f1, f2} and

[e1, f1] = λf2, [e1, f2] = −λf1 and [e2, f1] = [e2, f2] = 0,

where λ > 0. Moreover, (ξ,D, 0, b0) is admissible if and only if

M(D) =


0 0 0 0
a 0 0 0
b 0 0 d
c 0 −d 0

 , M(ξ) =


0 0 0 0
a 0 0 0
b 0 0 0
c 0 0 0

 ,

b0 = b1e1 + b2e2 +
bd

λ
f1 +

cd

λ
f2.

Proof. According to Theorem 3.1 there exists a basis {e′1, e′2, f1, f2} and
(λ1, λ2) 6= (0, 0) such that

[e′i, f1] = λif2 and [e′i, f2] = −λif1.

Put λ =
√
λ21 + λ22 , e1 = λ−1(λ1e

′
1 + λ2e

′
2) and e2 = λ−1(λ2e

′
1 − λ1e′2). The Lie

brackets of the elements of the orthonormal basis B = {e1, e2, f1, f2} satisfy the
relations above.
Suppose now that (D, ξ, 0, b0) is admissible. The equation (22) is equivalent to

0 = [D2(e1), e2] + [e1, D2(e2)] = λ〈D2(e2), f1〉f2 − λ〈D2(e2), f2〉f1.

This is equivalent to existence of (c, d) ∈ R2 such that

D2(e1) = cf1 + df2 and D2(e2) = 0.

The equation (23) is equivalent to

λD2(f2) = [D1(e1), f1] + [e1, D2(f1)]

= λ〈D1(e1), e1〉f2 + λ〈D2(f1), f1〉f2 − λ〈D2(f1), f2〉f1,
0 = [D1(e2), f1] + [e2, D2(f1)]

= λ〈D1(e2), e1〉f2,
−λD2(f1) = [D1(e1), f2] + [e1, D2(f2)]

= −λ〈D1(e1), e1〉f1 + λ〈D2(f2), f1〉f2 − λ〈D2(f2), f2〉f1,
0 = [D1(e2), f2] + [e2, D2(f2)]

= −λ〈D1(e2), e1〉f1.
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This is equivalent to

〈D2(f1), f2〉 = −〈D2(f2), f1〉,
〈D2(f2), f2〉 = 〈D1(e1), e1〉+ 〈D2(f1), f1〉,

0 = 〈D1(e2), e1〉,
〈D2(f1), f1〉 = 〈D1(e1), e1〉+ 〈D2(f2), f2〉.

Which is equivalent to the existence of (a, b) ∈ R2 such that

〈D2(f1), f2〉 = −〈D2(f2), f1〉, 〈D2(f2), f2〉 = 〈D2(f1), f1〉,
D1(e1) = ae2 and D1(e2) = be2.

The equation (24) is equivalent to

λξ2(f2) = [e1, ξ2(f1)] = λ〈ξ2(f1), f1〉f2 − λ〈ξ2(f1), f2〉f1,
−λξ2(f1) = [e1, ξ2(f2)] = λ〈ξ2(f2), f1〉f2 − λ〈ξ2(f2), f2〉f1.

This is equivalent to

〈ξ2(f2), f1〉 = −〈ξ2(f1), f2〉 and 〈ξ2(f2), f2〉 = 〈ξ2(f1), f1〉.

In conclusion, and since D − ξ is skew-symmetric, we get that the matrices of D
and ξ in the basis B have the following form

M(D) =


0 0 0 0
a b 0 0
c 0 α −β
d 0 β α

 and M(ξ) =


0 e 0 0

a− e b 0 0
c 0 α −f − β
d 0 β + f α

 .

On the other hand, according to Proposition 4.1 1, the equation (26) and the fact
that ξ2 −D2 is skew-symmetric is equivalent to(
M(ξ2)=0 and M(D2)

∗=−M(D2)
)

or
(
M(ξ2)=M(D2) and M(ξ2)

2 = 0
)
.(∗)

Or M(ξ2) =

(
α −f − β

f + β α

)
and M(D2) =

(
α −β
β α

)
. We deduce that (∗) is

equivalent to α = f +β = 0. In a similar way, the equation (25) and the fact that
ξ1 −D1 is skew-symmetric is equivalent to(
M(ξ1) = 0 and M(D1)

∗ = −M(D1)
)

or
(
M(ξ1) = M(D1) and M(ξ1)

2 = 0
)
.

(∗∗)

Or M(ξ1) =

(
0 e

a− e b

)
and M(D1) =

(
0 0
a b

)
. A careful checking shows that

(∗∗) is equivalent to e = b = 0. In conclusion

M(D) =


0 0 0 0
a 0 0 0
c 0 0 f
d 0 −f 0

 and M(ξ) =


0 0 0 0
a 0 0 0
c 0 0 0
d 0 0 0

 .

Finally, the equation (27) is equivalent to b0 = b1e1 + b2e2 + fc
λ
f1 + fd

λ
f2 .
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By using Theorem 2.1 and Propositions 4.1, 4.3 and 4.4, let us give the list
of non abelian Lorentzian flat Lie algebras with degenerate center up to dimension
six. We proceed as follows:

1. We pick an admissible solution (ξ,D, 0, b0) found in Propositions 4.1, 4.3
and 4.4,

2. by using (8), we compute the Lie brackets and we make an appropriate
change of basis to get a simple form of these brackets,

3. finally, we give the metric in the coordinates {z, z̄, x1, . . . , xn} associated
to the new basis which we continue to denote by {z, z̄, e1, . . . , en} (n =
1, . . . , 4). We change the parameters if it is necessary to get a simple form
of the brackets and the metric.

1. Dimension 3:

(a) • Admissible solution: ξ = D = 0, b0 ∈ R \ {0} .
• New basis: (|b0|z, z̄,−εe1) where ε is the sign of b0 .

• Final non vanishing brackets and metric:

[z̄, e1] = z, 〈 , 〉 = 2αdzdz̄ + (dx1)
2, α > 0.

The Lie algebra obtained is the 3-dimensional Heisenberg Lie alge-
bra.

2. Dimension 4:

(a) • Admissible solution: ξ = D = 0, b0 = (b1, b2) and b1 6= 0.

• New basis: (|b1|z, z̄,−εe1, e2 − b2b−11 e1) where ε is the sign of b1 .

• Final non vanishing brackets and metric:

[z̄, e1] = z, 〈 , 〉 = 2αdzdz̄ + 2adx1dx2 + (dx1)
2 + (1 + a2)(dx2)

2,

α > 0, a ∈ R.
The Lie algebra obtained is a trivial extension of the 3-dimensional
Heisenberg Lie algebra.

(b) • Admissible solution: Proposition 4.1 1, first case with b0 =
(b1, b2).

• New basis: (a2z, z̄, ae1 − b2z, e2).

• Final non vanishing brackets and metric:

[z̄, e1] = az, [z̄, e2] = e1, [e1, e2] = −z,
〈 , 〉 = 2αdzdz̄ + 2βdz̄dx1 + α(dx1)

2 + (dx2)
2,

a, β ∈ R , α > 0.
The Lie algebra obtained is 3-nilpotent.

(c) • Admissible solution: Proposition 4.1 1, second case with b0 =
(b1, b2).
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• New basis: (z, λ−1z̄, λe1 − b2z,−λe2 − b1z).

• Final non vanishing brackets and metric:

[z̄, e1] = e2, [z̄, e2] = −e1,

〈 , 〉 = 2α−1dzdz̄ + 2dz̄(βdx1 + γdx2) + α2
(
(dx1)

2 + (dx2)
2
)
,

β, γ ∈ R , α 6= 0.
The Lie algebra obtained is 2-solvable and unimodular.

3. Dimension 5:

(a) • Admissible solution: ξ = D = 0, b0 = (b1, b2, b3) with b1 6= 0.

• New basis: (|b1|z, z̄,−εe1, e2 − b2b
−1
1 e1, e3 − b3b

−1
1 e1) where ε is

the sign of b1 .

• Final non vanishing brackets and metric:

[z̄, e1] = z,

〈 , 〉 = 2αdzdz̄ + 2adx1dx2 + 2bdx1dx3 + 2abdx2dx3

+(dx1)
2 + (1 + a2)(dx2)

2 + (1 + b2)(dx3)
2,

a, b ∈ R , α > 0.
The Lie algebra obtained is a trivial extension of the 3-dimensional
Heisenberg Lie algebra.

(b) • Admissible solution: Proposition 4.1 2, first case with b0 =
(b1, b2, b3).

• New basis: (a2z, z̄, ae1 − b3z, e2, e3).

• Final non vanishing brackets and metric:

[z̄, e1] = az, [z̄, e2] = bz, [z̄, e3] = e1, [e1, e3] = −z,

〈 , 〉 = 2αdzdz̄ + 2βdz̄dx1 + α(dx1)
2 + (dx2)

2 + (dx3)
2,

α > 0, a, b, β,∈ R .
The Lie algebra obtained is 3-nilpotent.

(c) • Admissible solution: Proposition 4.1 2, second case with b0 =
(b1, b2, b3).

• New basis: (z, λ−1z̄, λe1 − b2z,−λe2 − b1z, e3).

• Final non vanishing brackets and metric:

[z̄, e1] = e2, [z̄, e2] = −e1, [z̄, e3] = az,

〈 , 〉 = 2α−1dzdz̄+2dz̄(βdx1+γdx2)+α2
(
(dx1)

2 + (dx2)
2
)
+(dx3)

2,

α > 0, a, β, γ ∈ R .
The Lie algebra obtained is 2-solvable and unimodular.

(d) • Admissible solution: Proposition 4.3.

• New basis: (z, z̄, λ−1e1, λe2 − bz, λe3 + az).
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• Non vanishing brackets and metric:

[z̄, e1] = ae2 + be3 + cz, [z̄, e2] = de3, [z̄, e3] = −de2
[e1, e2] = e3, [e1, e3] = −e2,
〈 , 〉 = 2dzdz̄ + 2αdz̄(−bdx2 + adx3) + α−1(dx1)

2

+α
(
(dx2)

2 + (dx3)
2
)
,

(a, b, c, d) 6= 0, α > 0.
The Lie algebra obtained is 2-solvable and unimodular.

4. Dimension 6:

(a) • Admissible solution: ξ = D = 0, b0 = (b1, b2, b3, b4) with b1 6= 0.

• New basis: (|b1|z, z̄,−εe1, e2 − b2b−11 e1, e3 − b3b−11 e1, e4 − b4b−11 e1)
where ε is the sign of b1 .

• Final non vanishing brackets and metric:

[z̄, e1] = z,

〈 , 〉 = 2αdzdz̄ + 2adx1dx2 + 2bdx1dx3 + 2cdx1dx4

+2abdx2dx3 + 2acdx2dx4 + 2bcdx3dx4 + (dx1)
2

+(1 + a2)(dx2)
2 + (1 + b2)(dx3)

2 + (1 + c2)(dx4)
2,

a, b, c ∈ R , α > 0.
The Lie algebra obtained is a trivial extension of the 3-dimensional
Heisenberg Lie algebra.

(b) • Admissible solution: Proposition 4.1 3, (f1) with
b0 = (b1, b2, b3, b4).

• New basis: (z, z̄, ae1 − b3z, be1 + ce2 − b4z, e3, e4). Put (b, c) =
ρ(cosω, sinω). The condition ac 6= 0 is equivalent to ω 6= kπ, k ∈ Z
and a 6= 0.

• Non vanishing brackets and metric:

[z̄, e1] = az, ; [z̄, e2] = bz, [z̄, e3] = e1,
[z̄, e4] = e2, [e1, e3] = −c2z, [e2, e4] = −ρ2z,
[e1, e4] = −cρ cos(ω)z, [e2, e3] = −cρ cos(ω)z,
〈 , 〉 = 2dzdz̄ + 2dz̄ (βdx1 + γdx2) + 2cρ cos(ω)dx1dx2
+c2(dx1)

2 + ρ2(dx2)
2 + (dx3)

2 + (dx4)
2,

a, b, c, β, γ ∈ R , c 6= 0, ρ > 0, ω 6= kπ, k ∈ Z .
The Lie algebra obtained is 3-nilpotent.

(c) • Admissible solution: Proposition 4.1 3, (f2) with
b0 = (b1, b2, b3, b4) and a 6= 0.

• New basis: (a2z, z̄, ae1 − b4z, e2, e3, e4).
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• Final non vanishing brackets and metric:

[z̄, e1] = az, ; [z̄, e2] = bz, [z̄, e3] = cz,
[z̄, e4] = e1, [e1, e4] = −z, ,
〈 , 〉 = 2αdzdz̄ + 2βdz̄dx1
+α(dx1)

2 + (dx2)
2 + (dx3)

2 + (dx4)
2,

α > 0, a, b, c, β ∈ R .
The Lie algebra obtained is 3-nilpotent.

(d) • Admissible solution: Proposition 4.1 3, (f3) b0 = (b1, b2, b3, b4),
a 6= 0 and b 6= 0.

• New basis: (z, a−1z̄, ae1 − b2z,−ae1 − b1z, be3 − b4z,−be4 − b3z).

• Final non vanishing brackets and metric:

[z̄, e1] = e2, [z̄, e2] = −e1, [z̄, e3] = ae4, [z̄, e4] = −ae3,
〈 , 〉 = 2α−1dzdz̄ + 2dz̄ (βdx1 + γdx2 + µdx3 + νdx4)
+α2 ((dx1)

2 + (dx2)
2 + a2(dx3)

2 + a2(dx4)
2) ,

α 6= 0, a 6= 0, β, γ, µ, ν ∈ R .
The Lie algebra obtained is 2-solvable and unimodular.

(e) • Admissible solution: Proposition 4.1 3, (f3) b0 = (b1, b2, b3, b4),
a 6= 0 and b = 0.

• New basis: (z, a−1z̄, ae1 − b2z,−ae2 − b1z, e3, e4).

• Final non vanishing brackets and metric:

[z̄, e1] = e2, [z̄, e2] = −e1, [z̄, e3] = cz, [z̄, e4] = dz,
〈 , 〉 = 2α−1dzdz̄ + 2dz̄ (βdx1 + γdx2)
+α2 ((dx1)

2 + (dx2)
2) + (dx3)

2 + (dx4)
2,

α 6= 0, c, d, β, γ ∈ R .
The Lie algebra obtained is 2-solvable and unimodular.

(f) • Admissible solution: Proposition 4.1 3, (f4) with
b0 = (b1, b2, b3, b4).

• New basis: (a3z, a−1z̄, ae1− b2z,−ae2− b1z, be2 + ae3− b4z, be1−
ae4 − b3z).

• Final non vanishing brackets and metric:

[z̄, e1] = e2, [z̄, e2] = −e1, [z̄, e3] = ae1 + e4,
[z̄, e4] = ae2 − e3, [e1, e3] = −az, [e2, e4] = −az, [e3, e4] = 2a2z,
〈 , 〉 = 2dzdz̄ + 2dz̄ (αdx1 + βdx2 + γdx3 + µdx4)
−2adx2dx3 + 2adx1dx4 + (dx1)

2 + (dx2)
2

+(1 + a2) ((dx3)
2 + (dx4)

2) ,

a 6= 0, α, β, γ, µ ∈ R .
The Lie algebra obtained is 3-solvable and unimodular.

(g) • Admissible solution: Proposition 4.1 3, (f5) with
b0 = (b1, b2, b3, b4).
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• New basis:

(ab2z, a−1z̄, ae1 − b2z,−ae2 − b1z, be3 − b4z, ae4).

• Final non vanishing brackets and metric:

[z̄, e1] = e2, ; [z̄, e2] = −e1, [z̄, e3] = az,
[z̄, e4] = e3, [e3, e4] = −z,
〈 , 〉 = 2αdzdz̄ + 2dz̄ (γdx1 + µdx2 + νdx3)
+β(dx1)

2 + β(dx2)
2 + α(dx3)

2 + β(dx4)
2,

α, β > 0, a, γ, µ, ν ∈ R .
The Lie algebra obtained is 2-solvable and unimodular.

(h) • Admissible solution: Proposition 4.4.

• New basis: (z, z̄, λ−1e1, e2, f1 − c
λ
z, f2 + b

λ
z).

• Final non vanishing brackets and metric:

[z̄, e1] = ae2 + bf1 + cf2 + dz, [z̄, e2] = ez, [z̄, f1] = gf2,
[z̄, f2] = −gf1, [e1, e2] = az, [e1, f1] = f2, [e1, f2] = −f1,
〈 , 〉 = 2dzdz̄ + 2dz̄ (−cdx3 + bdx4)
+α2(dx1)

2 + (dx2)
2 + (dx3)

2 + (dx4)
2,

α > 0, a, b, c, d, e, g ∈ R .
The Lie algebra obtained is 2-solvable and unimodular.

Remark 4. Two flat Lorentzian flat Lie algebras g1 and g2 are called isomor-
phic if there exists an isomorphism of Lie algebras between g1 and g2 which is also
an isometry. To complete the study of Lorentzian flat Lie algebras with degener-
ate center up to dimension 6, one needs to study the isomorphism classes of the
Lorentzian flat Lie algebras listed above. This can be done in two steps:

1. in a given dimension, identify in the list the Lie algebras which are isomor-
phic as Lie algebras,

2. from the first step, one will get a list of non isomorphic Lie algebras and
each one is endowed with a family of Lorentzian flat metrics and one must
distinguish in this family which metrics are isomorphic.

The first step is easy and one can deduce easily from the list above all the models of
the Lie algebras up to dimension 6 which carry Lorentzian flat metrics. However,
the second step seems difficult and needs material which is beyond the purpose of
this paper.
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