
Journal of Lie Theory
Volume 22 (2012) 741–756
c© 2012 Heldermann Verlag

Abelian Ideals of Maximal Dimension
for Solvable Lie Algebras

Dietrich Burde and Manuel Ceballos

Communicated by W. A. F. Ruppert

Abstract. We compare the maximal dimension of abelian subalgebras and
the maximal dimension of abelian ideals for finite-dimensional Lie algebras. We
show that these dimensions coincide for solvable Lie algebras over an algebraically
closed field of characteristic zero. We compute this invariant for all complex
nilpotent Lie algebras of dimension n ≤ 7. Furthermore we study the case
where there exists an abelian subalgebra of codimension 2. Here we explicitly
construct an abelian ideal of codimension 2 in case of nilpotent Lie algebras.
Mathematics Subject Classification 2000: MSC classification 17B30, 17D25.
Key Words and Phrases: Abelian ideals, abelian subalgebras, degenerations.

1. Introduction

Let g be a finite-dimensional Lie algebra. Denote by α(g) the maximal dimension
of an abelian subalgebra of g , and by β(g) the maximal dimension of an abelian
ideal of g . Both invariants are important for many subjects. First of all they are
very useful invariants in the study of Lie algebra contractions and degenerations.
There is a large literature, in particular for low-dimensional Lie algebras, see
[11, 5, 17, 21, 10], and the references given therein.
Secondly, there are several results concerning the question of how big or small these
maximal dimensions can be, compared to the dimension of the Lie algebra. For
references see [20, 19, 15]. The results show, roughly speaking, that a Lie algebra
of large dimension contains abelian subalgebras of large dimension. For example,
the dimension of a nilpotent Lie algebra g satisfying α(g) = ` is bounded by

dim(g) ≤ `(`+1)
2

[20, 19]. There is a better bound for 2-step nilpotent Lie algebras,
see [16]. If g is a complex solvable Lie algebra with α(g) = ` , then we have

dim(g) ≤ `(`+3)
2

, see [15]. In general, dim(g) ≤ `(`+17)
2

for any complex Lie algebra
g with α(g) = ` , see [15].
For semisimple Lie algebras s the invariant α(s) has been completely determined
by Malcev [9]. Since there are no nontrivial abelian ideals in s , we have β(s) = 0.
Recently the study of abelian ideals in a Borel subalgebra b of a simple complex
Lie algebra s has drawn considerable attention. We have indeed α(s) = β(b), and
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this number can be computed purely in terms of certain root system invariants,
see [22]. The result is reproduced for the interested reader in table 1. Furthermore

Table 1: The invariant α for simple Lie algebras

s dim(s) α(s)

An, n ≥ 1 n(n+ 2) b(n+1
2

)2c

B3 21 5

Bn, n ≥ 4 n(2n+ 1) n(n−1)
2

+ 1

Cn, n ≥ 2 n(2n+ 1) n(n+1)
2

Dn, n ≥ 4 n(2n− 1) n(n−1)
2

G2 14 3

F4 52 9

E6 78 16

E7 133 27

E8 248 36

Kostant found a relation of these invariants to discrete series representations of
the corresponding Lie group, and to powers of the Euler product [12, 13]. In fact,
there are many more results concerning the invariants α and β for simple Lie
algebras and their Borel subalgebras.
In this paper, we want to point out the following interesting result: if g is a solvable
Lie algebra over an algebraically closed field of characteristic zero, then we have
α(g) = β(g). This means, given an abelian subalgebra of maximal dimension m
there exists also an abelian ideal of dimension m .
For a given value of α(g) the dimension of g is bounded in terms of this value,
as we have mentioned before. Hence it is natural to ask what we can say on
n-dimensional Lie algebras g where the value of α(g) is close to n . Indeed, if
α(g) = n , then g is abelian, α(g) = β(g), and we are done. If α(g) = n− 1, then
also β(g) = n− 1. This means that g has an abelian ideal of codimension 1 and
is almost abelian. In particular, g is 2-step solvable. In this case the structure of
g , and even all its degenerations are quite well understood, see [10].
After these two easy cases it is reasonable to consider Lie algebras g satisfying
α(g) = n − 2. Here we can classify all such non-solvable complex Lie algebras.
However, for solvable Lie algebras we cannot expect to obtain a classification, not
even in the nilpotent case. In fact, there exist even characteristically nilpotent Lie
algebras g with α(g) = n− 2. On the other hand we know that α(g) = β(g), so
that there is an abelian ideal of codimension 2. For many problems concerning
the cohomology of nilpotent Lie algebras the subclass of those having an abelian
ideal of codimension 1 or 2 is very important, see [1, 18] and the references given
therein.
The structure of the paper is as follows. In section 2 we prove basic results



Burde, Ceballos 743

concerning the invariants α(g) and β(g). For a Levi decomposition g = s n r of
g we show that α(s n r) ≤ α(s) + α(r). The main result of this section is, as
mentioned above, that α(g) = β(g) for solvable Lie algebras over an algebraically
closed field of characteristic zero. An example is given that the statement is not
true in general for the field of real numbers.
In section 3 we construct an abelian ideal of codimension 1 for a Lie algebra g
satisfying α(g) = n−1. In section 4 we show that Lie algebras g with α(g) = n−2
are solvable or isomorphic to sl2(C) ⊕ C` for some ` ≥ 0. In section 5 we study
nilpotent Lie algebras g with α(g) = n−2 and explicitly construct an abelian ideal
of codimension 2. Finally the invariants are computed for all complex nilpotent
Lie algebras of dimension n ≤ 7. This is accompanied by a remark on Lie algebra
degenerations, where these invariants are really useful.

2. The invariants α(g) and β(g)

Definition 2.1. Let g be a Lie algebra of dimension n over a field K . If not
stated otherwise we assume that K is the field of complex numbers. Some results
will also hold for other fields, but we are mainly interested in the case of complex
numbers. Consider the following invariants of g :

α(g) = max{dim(a) | a is an abelian subalgebra of g},
β(g) = max{dim(b) | b is an abelian ideal of g}.

An abelian subalgebra of maximal dimension is maximal abelian with re-
spect to inclusion. However, a maximal abelian subalgebra need not be of maximal
dimension:
Example 2.2. Let fn be the standard graded filiform nilpotent Lie algebra of
dimension n. Let (e1, . . . , en) be a standard basis, such that [e1, ei] = ei+1 for
2 ≤ i ≤ n− 1. Then a = 〈e1, en〉 is a maximal abelian subalgebra of dimension 2,
but α(fn) = β(fn) = n− 1.

Clearly we have β(g) ≤ α(g). In general, the two invariants are different.
A complex semisimple Lie algebra s has no abelian ideals, hence β(s) = 0. We
already saw in table 1 that this is not true for the invariant α(s). As mentioned
before the following result holds, see [22]:

Proposition 2.3. Let s be a complex simple Lie algebra and b be a Borel sub-
algebra of s. Then the maximal dimension of an abelian ideal in b coincides
with the maximal dimension of a commutative subalgebra of s, i.e., α(s) = β(b).
Furthermore the number of abelian ideals in b is 2rank(s) .

This implies α(b) = β(b), because we have α(b) ≤ α(s) = β(b), since α is
monotone:
Lemma 2.4. The invariant α is monotone and additive: for a subalgebra h ≤ g
of g we have α(h) ≤ α(g), and for two Lie algebras a and b we have α(a⊕ b) =
α(a) + α(b).

The invariant β need not be monotone. For example, consider a Cartan
subalgebra h in g = sl2(C). Then β(h) = 1 > 0 = β(g). We also have the
following result:
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Lemma 2.5. Let g be a complex Lie algebra with Levi decomposition g = s n r.
Then α(sn r) ≤ α(s) + α(r).

Proof. Let a be an abelian subalgebra in g of maximal dimension and
π : s n r → s , (x, a) → (x, 0) be the projection. Restricting this homomorphism
of Lie algebras to a yields

dim(a) = dim(ker(πa)) + dim(im(πa)).

Since im(πa) is the homomorphic image of a subalgebra of sn r , we may assume
that im(πa) is an abelian subalgebra of s . In particular we have dim(im(πa)) ≤
α(s). Furthermore we have ker(πa) = a∩r . Hence ker(πa) is an abelian subalgebra
of r and we have dim(ker(πa)) ≤ α(r). Finally we obtain

α(sn r) = dim(a)

= dim(ker(πa)) + dim(im(πa))

≤ α(s) + α(r).

The fact that α(b) = β(b) for a Borel subalgebra b of a complex simple
Lie algebra can be generalized to all complex solvable Lie algebras.

Proposition 2.6. Let g be a solvable Lie algebra over an algebraically closed field
K of characteristic zero. Then β(g) = α(g).

Proof. The result follows easily from the proof of Theorem 4.1 of [8]. For
the convenience of the reader we give the details. Let G be the adjoint algebraic
group of g . This is the smallest algebraic subgroup of Aut(g) such that its Lie
algebra Lie(G) contains ad(g). Then Lie(G) is the algebraic hull of ad(g). Since
ad(g) is solvable, so is Lie(G). Therefore G is a connected solvable algebraic
group. Let m = α(g). Consider the set C of all commutative subalgebras of g of
dimension m . This is, by assumtion, a non-empty set, which can be considered as
a subset of the Grassmannian Gr(g,m), which is an irreducible complete algebraic
variety. Hence C is a non-empty complete variety, and G operates morphically on
it, mapping each commutative subalgebra h on g(h), for g ∈ G . By Borel’s fixed
point theorem, G has a fixed point I in C , i.e., a subalgebra I of g with g(I) = I
for all g ∈ G . In particular we have ad(x)(I) ⊆ I for all x ∈ g . Hence I is an
abelian ideal of dimension m of g .

Borel’s fixed point theorem relies on the closed orbit lemma. As a corollary
one can also obtain the theorem of Lie-Kolchin. We note that the assumptions
on K are really necessary. The next example shows that we need the field to be
algebraically closed.
Example 2.7. Let g be the solvable Lie algebra of dimension 4 over R defined by

[x1, x2] = x2 − x3, [x1, x4] = 2x4,

[x1, x3] = x2 + x3, [x2, x3] = x4

Then, over R, we have α(g) = 2, but β(g) = 1.
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Let K be equal to R or C . Obviously, 〈x3, x4〉 is an abelian subalgebra
of dimension 2 over K . Assume that α(g) = 3. Then g is almost abelian, hence
2-step solvable. This is impossible, as g is 3-step solvable. Hence α(g) = 2 over
K .
Assume that I is a 2-dimensional abelian ideal over K . It is easy to see that
we can represent I as 〈αx2 + βx3, x4〉 with α, β ∈ K . Obviously neither x2 nor
x3 can belong to I . Hence α 6= 0 and β 6= 0. We have αx2 + βx3 ∈ I and
[x1, αx2 + βx3] = (α+ β)x2 + (β − α)x3 ∈ I . This implies (α2 + β2)x3 ∈ I , hence
α2 +β2 = 0. This is a contradiction over R , so that β(g) = 1 in this case. Over C
we may take α = 1 and β = i , and I = 〈x2 + ix3, x4〉 is a 2-dimensional abelian
ideal.

The next two lemma’s are well known. We state them just for further
reference.
Lemma 2.8. Let g be a complex, non-abelian, nilpotent Lie algebra of dimension
n. Then √

8n+ 1− 1

2
≤ α(g) ≤ n− 1

Proof. The estimate is given in [8] for β(g). It also holds for α(g) since
α(g) ≥ β(g).

Lemma 2.9. The center Z(g) of g is contained in any abelian subalgebra of
maximal dimension.

Proof. An abelian subalgebra a of maximal dimension is self-centralizing, i.e.,
a = Zg(a) = {x ∈ g | [x, a] = 0} . Since Z(g) ⊂ Zg(a), the claim follows.

3. Abelian subalgebras of codimension 1

Let g be a Lie algebra satisfying α(g) = n − 1. Such a Lie algebra is 2-step
solvable, and their structure is well known (see [10], section 3). We will show that
β(g) = n − 1 without using proposition 2.6. Our proof will be constructive. We
do not only show the existence of an abelian ideal of dimension n− 1, but really
construct such an ideal from a given abelian subalgebra of dimension n− 1. Note
that Lie algebras g with β(g) = n− 1 are called almost abelian.

Proposition 3.1. Let g be a n-dimensional Lie algebra over a field of character-
istic zero satisfying α(g) = n − 1. Then we have β(g) = n − 1 and an ideal of
codimension 1 can be constructed explicitly.

Proof. Let a be an abelian subalgebra of dimension n−1. If [g, g] ⊆ a , then a
is also an abelian ideal, and we are done. Otherwise we choose a basis (e1, . . . , en)
for g such that a = 〈e2, . . . , en〉 . We have [ej, e`] = 0 for all j, ` ≥ 2. There exists
a k ≥ 2 such that [e1, ek] is not contained in a . We may assume that k = 2 by
relabelling e2 and ek . For j ≥ 2 let

[e1, ej] = αj1e1 + αj2e2 + · · ·+ αjnen.
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We have α21 6= 0. Rescaling e1 we may assume that α21 = 1. Using the Jacobi
identity we have for all j ≥ 2

0 = [e1, [e2, ej]]

= −[e2, [ej, e1]]− [ej, [e1, e2]]

= −αj1[e1, e2] + [e1, ej]

This implies [e1, ej] = αj1[e1, e2] and [e1, αj1e2 − ej] = 0 for all j ≥ 2. Let
vj = αj1e2 − ej . Note that all vj lie in the center of g , and that the derived
subalgebra [g, g] is 1-dimensional, generated by [e1, e2] . Now define

I := 〈[e1, e2], v3, . . . , vn〉.

This is an abelian subalgebra of dimension n − 1 which contains the derived
subalgebra [g, g] . Hence I is an abelian ideal of maximal dimension n − 1, and
we have β(g) = n− 1.

4. Abelian subalgebras of codimension 2

Let g be a complex Lie algebra of dimension n satisfying α(g) = n− 2. We will
show that g must be solvable except for the cases sl2(C)⊕C` , for ` = n− 3 ≥ 0.
We use the convention that the Lie algebra sl2(C) is included in this family, for
` = 0.

Proposition 4.1. Let g be a complex Lie algebra with dim(g) = n and α(g) =
n − 2. Then either g is isomorphic to one of the Lie algebras sl2(C) ⊕ C` , or g
is a solvable Lie algebra.

Proof. Let g = s n r be a Levi decomposition, where r denotes the solvable
radical of g . For a semisimple Levi subalgebra s we have

α(s) ≤ dim(s)− 2,

where equality holds if and only if s is sl2(C). This follows from table 1 and
lemma 2.4. By lemma 2.5 we have α(s n r) ≤ α(s) + α(r). Assume that s 6= 0.
Then it follows that

α(g) ≤ α(s) + α(r)

≤ dim(s)− 2 + dim(r)

= n− 2.

Since we must have equality, it follows that s is isomorphic to sl2(C), and
α(r) = dim(r). Therefore r is abelian and g ' sl2(C) nϕ C` with a homomor-
phism ϕ : sl2(C) → Der(C`). This Lie algebra contains an abelian subalgebra
of codimension 2 if and only if ϕ is trivial. Indeed, the Lie bracket is given by
[(x, a), (y, b)] = ([x, y], ϕ(x)b−ϕ(y)a), for x, y ∈ sl2(C) and a, b ∈ C` . Since there
is an abelian subalgebra of codimension 2, there must be a nonzero element (x, 0)
commuting with all elements (0, b), i.e., (0, 0) = [(x, 0), (0, b)] = (0, ϕ(x)b) for all
b ∈ C` . It follows that ker(ϕ) is non-trivial. Since sl2(C) is simple, ϕ = 0.
In the other remaining case we have s = 0. In that case, g is solvable.
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It is easy to classify such Lie algebras in low dimensions.

Proposition 4.2. Let g be a complex Lie algebra of dimension n and α(g) = n−2.

(1) For n = 3 it follows g ' sl2(C).

(2) For n = 4, g is isomorphic to one of the following Lie algebras:

g Lie brackets

g1 = r2(C)⊕ r2(C) [e1, e2] = e2, [e3, e4] = e4

g2 = sl2(C)⊕ C [e1, e2] = e2, [e1, e3] = −e3, [e2, e3] = e1

g3 [e1, e2] = e2, [e1, e3] = e3, [e1, e4] = 2e4, [e2, e3] = e4

g4(α), α ∈ C [e1, e2] = e2, [e1, e3] = e2 + αe3, [e1, e4] = (α + 1)e4,
[e2, e3] = e4.

Proof. The proof is straightforward, using a classification of low-dimensional
Lie algebras, e.g., the one given in [4]. Note that g4(α) ' g4(β) if and only if
αβ = 1 or α = β .

5. Nilpotent Lie algebras

In a nilpotent Lie algebra g any subalgebra of codimension 1 is automatically an
ideal. Hence given an abelian subalgebra of maximal dimension n − 1 we obtain
an abelian ideal of dimension n − 1. In particular, α(g) = n − 1 for a nilpotent
Lie algebra implies β(g) = α(g), and we can explicitly provide such ideals. We are
able to extend this result to the case α(g) = n− 2. Given an abelian subalgebra
of dimension n− 2 we can construct an abelian ideal of dimension n− 2. This is
non-trivial, since the abelian subalgebra of maximal dimension n− 2 need not be
an ideal in general. Of course, the existence of such an ideal follows already from
proposition 2.6, as does the equality α(g) = β(g). However, the existence proof
is not constructive. Our proof will be constructive and elementary, which might
be more appropriate to our special situation.

Proposition 5.1. Let g be a nilpotent Lie algebra of dimension n over a field
of characteristic zero satisfying α(g) = n − 2. Then there exists an algorithm
to construct an abelian ideal of dimension n − 2 from an abelian subalgebra of
dimension n− 2. In particular we have β(g) = α(g).

Proof. Let a be an abelian subalgebra of g of maximal dimension n − 2.
Choose a basis (e3, . . . , en) for a . The normalizer of a ,

Ng(a) = {x ∈ g | [x, a] ⊆ a}

is a subalgebra strictly containing a . We may assume that Ng(a) has dimension
n − 1, because otherwise Ng(a) = g , implying that a is already an abelian ideal
of maximal dimension n− 2.
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We may extend the basis of a to a basis (e1, . . . , en) of g , such that Ng(a) =
〈e2, . . . , en〉 . Because Ng(a) has codimension 1, it is an ideal in g . In particular
we have

[e1, Ng(a)] ⊆ Ng(a).

On the other hand, [e1, a] is not contained in a , since e1 is not in Ng(a). Hence
there exists a vector ek such that [e1, ek] is not in a . By relabelling e3 and ek we
may assume that k = 3. Hence writing

[e1, ej] = αj2e2 + · · ·+ αjnen

for j ≥ 2, we may assume that α32 = 1, i.e., [e1, e3] = e2 + α33e3 + · · ·+ α3nen .

Lemma 5.2. The following holds:

(1) We have [e2, ej] = αj2[e2, e3] for all j ≥ 3.

(2) The element [e2, e3] is nonzero and contained in the center of g.

(3) The normalizer Ng(a) is two-step nilpotent.

(4) We have [Ng(a), vj] = 0 for all j ≥ 3, where vj = αj2e3 − ej .

Proof. The first statement follows from the Jacobi identity. We have, for all
j ≥ 3,

0 = [e1, [e3, ej]]

= −[e3, [ej, e1]]− [ej, [e1, e3]]

= −αj2[e2, e3] + [e2, ej].

Concerning (2), assume first that [e2, e3] = 0. Then the subalgebra given by
〈e2, e3, v4, . . . , vn〉 would be an abelian subalgebra of dimension n − 1, with the
vj defined as in (4). This is a contradiction to α(g) = n − 2. Hence [e2, e3] is
non-zero. Since e2 ∈ Ng(a), we have that [e2, e3] ∈ a . We write

[e2, e3] = β33e3 + · · ·+ β3nen.

We have [e3, [e2, e3]] = 0. Now we have

[e2, [e2, e3]] = (β33α32 + · · ·+ β3nαn2)[e2, e3].

Since ad(e2) is nilpotent, it follows [e2, [e2, e3]] = 0. In the same way, [e1, [e2, e3]] =
[e2, [e1, e3]] − [e3, [e1, e2]] = λ[e2, e3] , so that [e1, [e2, e3]] = 0, because ad(e1) is
nilpotent. Finally, [ej, [e2, e3]] = 0 for all j ≥ 3, since [e2, e3] ∈ a . It follows that
[e2, e3] lies in the center of g .
To show (3), note that [Ng(a), Ng(a)] is generated by [e2, e3] , so that

[Ng(a), Ng(a)] ⊆ Z(g).

This proves (3).
The statement (4) follows from (1).
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Now let a1 = 〈v4, . . . vn〉 . This is an abelian subalgebra a1 ⊆ a ⊆ g of
dimension n− 3. There exists an integer ` ≥ 1 satisfying

ad(e1)
`−1(e2) 6∈ a1,

ad(e1)
`(e2) ∈ a1,

because ad(e1) is nilpotent. We define

I := 〈ad(e1)
`−1(e2), v4, . . . , vn〉

We will show that I is an abelian ideal of maximal dimension n− 2. First of all,
I is a subalgebra of dimension n− 2. It is also abelian: because Ng(a) is an ideal,
ad(e1)

k(e2) ∈ Ng(a) for all k ≥ 0. Then

[ad(e1)
k(e2), vj] = [λ2e2 + · · ·λnen, αj2e3 − ej]

= λ2αj2[e2, e3]− λ2[e2, ej]
= 0.

It remains to show that I is an ideal, i.e., that ad(ei)(I) ⊆ I for all i ≥ 1. We
have

[e1, ad(e1)
`−1(e2)] = ad(e1)

`(e2) ∈ a1 ⊆ I,

[ek, ad(e1)
`−1(e2)] ∈ [Ng(a), Ng(a)] ⊆ Z(g) ⊆ I,

for all k ≥ 2. Here we have used lemma 2.9 to conclude that Z(g) ⊆ I . Also,
[ek, vj] = 0 ∈ I for all k ≥ 2 and j ≥ 4. It remains to show that

[e1, vj] ∈ I for all j ≥ 4.

We have

[e2, [e1, vj]] = [e1, [e2, vj]] + [vj, [e1, e2]]

= 0.

This implies that [e1, vj] commutes with all elements from I . If it were not in
I , then 〈[e1, vj], I〉 would be an abelian subalgebra of dimension n − 1, which is
impossible. It follows that [e1, vj] ∈ I .

Remark 5.3. There is also an algorithm to compute α(g) for an arbitrary complex
Lie algebra of finite dimension, see [6].

In connection with the toral rank conjecture (TRC), which asserts that

dimH∗(g,C) ≥ 2dimZ(g)

for any finite-dimensional, complex nilpotent Lie algebra, there are interesting
examples of nilpotent Lie algebras g given, with β(g) = n − 2, of dimension
n ≥ 10, see [18]. These algebras also have the property that all its derivations
are singular. An obvious question here is whether there exist characteristically
nilpotent Lie algebras (CNLAs) g of dimension n with α(g) = n − 2. This is
indeed the case.
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Example 5.4. The Lie algebra of dimension n = 7 defined by [x1, xi] = xi+1, 2 ≤
i ≤ 6 and [x2, x3] = x6 +x7, [x2, x4] = x7 is characteristically nilpotent, i.e., all of
its derivations are nilpotent, see [14]. Furthermore it satisfies α(g) = n− 2 = 5.

We can find such examples in all dimensions n ≥ 7. This suggests that
nilpotent Lie algebras g with α(g) = n − 2 are not so easy to understand. The
algebra in this example is filiform nilpotent, i.e., has maximal nilpotency class with
respect to its dimension. In this case we can say something more on α(g).

Definition 5.5. Let g be a nilpotent Lie algebra, and C1(g) = g , Ci(g) =
[g, Ci−1(g)]. Then g is called k -abelian, if k is the smallest positive integer such
that the ideal Ck(g) is abelian.

For a nilpotent k -abelian Lie algebra g we have dim(Ck(g)) ≤ β(g). In
general equality does not hold. However, if g is filiform nilpotent of dimension
n ≥ 6 with k ≥ 3, then we do have equality:

Proposition 5.6. Let g be a k -abelian filiform Lie algebra of dimension n ≥
k + 3 ≥ 6. Then β(g) = α(g) = dim(Ck(g)) = n − k , and Ck(g) is the unique
abelian ideal of maximal dimension. We have⌈n

2

⌉
≤ β(g) ≤ n− 3.

Proof. We may choose an adapted basis (e1, . . . , en) for g , see [3]. Then
[e1, ei] = ei+1 for all 2 ≤ i ≤ n− 1, and Cj(g) = 〈ej+1, . . . , en〉 with dim(Cj(g)) =
n − j for all j ≥ 2. By assumption Ck(g) is abelian, but Ck−1(g) is not. We
claim that every abelian ideal I in g is contained in Ck(g). This will finish
the proof. Suppose that there is an abelian ideal I which is not contained in
Ck(g). We will show that this implies Ck−1(g) ⊆ I , so that I cannot be abelian,
a contradiction. Let x = α1e1 + · · · + αnen be a nontrivial element of I not
lying in Ck(g), i.e., with αi 6= 0 for some i < k + 1. If α1 6= 0, then for all
2 ≤ j ≤ n − 1 we have [ej, x] = −α1ej+1 + α2[ej, e2] + · · · + αn[ej, en] ∈ I . It
follows that 〈e3, · · · , en〉 = C2(g) ⊆ I . Since k > 2 this implies that I is not
abelian, a contradiction. Let 1 < i < k + 1 be minimal such that αi 6= 0. Then
for all 0 ≤ j ≤ n − i we have ad(e1)

j(x) = αiei+j + · · · + αn−jen ∈ I . It follows
that 〈ei, . . . , en〉 ⊆ I . Indeed, for j = n − i we have αien ∈ I , then αien−1 ∈ I ,
and so on until αiei ∈ I . Since i ≤ k we have Ck−1(g) ⊆ I and we are finished.
Finally, we have 3 ≤ k ≤ bn

2
c , so that we obtain the estimate on β(g).

Remark 5.7. If g is filiform with k = 2, then g is 2-step solvable and we have
β(g) = n − 1 or β(g) = n − 2. Indeed, if g is the standard graded filiform fn
of dimension n ≥ 3, then β(g) = n − 1 and I = 〈e2, . . . , en〉 is an abelian ideal
of dimension n − 1. Otherwise C2(g) = [g, g] is an abelian ideal of maximal
dimension, so that β(g) = n− 2.

The invariant α(g) for complex nilpotent Lie algebras has been determined
up to dimension 6 in connection with degenerations [5],[21], and for real Lie
algebras of dimension 6 in [14], appendix 4.4.

We want to give a list here, thereby correcting a few typos in [21]. In
dimension 7 there is no list for α(g), as far as we know. We use the classification
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of nilpotent Lie algebras up to dimension 7 by Magnin [14], and for dimension 6
also by de Graaf [7] and Seeley [21], to give tables for α(g). The result for the
indecomposable algebras in dimension n ≤ 5 is as follows:

g dim(g) Lie brackets α(g)
n3 3 [e1, e2] = e3 2
n4 4 [e1, e2] = e3, [e1, e3] = e4 3
g5,6 5 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5 3
g5,5 5 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5 4
g5,3 5 [e1, e2] = e4, [e1, e4] = e5, [e2, e3] = e5 3
g5,4 5 [e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5 3
g5,2 5 [e1, e2] = e4, [e1, e3] = e5 4
g5,1 5 [e1, e3] = e5, [e2, e4] = e5 3

The Hasse diagram for the degenerations of nilpotent Lie algebras in dimen-
sion n = 6 is given in the end of the paper. For more details on degenerations see
[4]. There are some typos in [21] which we found by computing all degenerations
again. This is not part of this paper, but will be published elsewhere. The Hasse
diagram is only listed for the interested reader as an appendix, to demonstrate that
the computation of α(g) has interesting applications. The diagram also gives a
good control for the computation of α(g), since it is well known that α(g) ≤ α(h)
if g→deg h , see [4]. For dimension n = 6 the α-invariants are given as follows:
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Magnin de Graaf Seeley α(g)
g6,20 L6,14 12346E 3
g6,18 L6,16 12346C 3
g6,19 L6,15 12346D 4
g6,17 L6,17 12346B 4
g6,15 L6,21(1) 1346C 4
g6,13 L6,13 1246 4
g6,16 L6,18 12346A 5
g6,14 L6,21(0) 2346 4
g6,9 L6,19(1) 136A 4
g6,12 L6,11 1346B 4

g5,6 ⊕ C L6,6 1 + 1235B 4
g6,5 L6,24(1) 246E 4
g6,10 L6,20 136B 4
g6,11 L6,12 1346A 4

g5,5 ⊕ C L6,7 1 + 1235A 5
g6,8 L6,24(0) 246D 4
g6,4 L6,19(0) 246B 4
g6,7 L6,23 246C 4
g6,2 L6,10 146 4
g6,6 L6,25 246A 5

g5,4 ⊕ C L6,9 1 + 235 4
g5,3 ⊕ C L6,5 1 + 135 4
n3 ⊕ n3 L6,22(1) 13 + 13 4
n4 ⊕ C2 L6,3 2 + 124 5
g6,1 L6,22(0) 26 4
g6,3 L6,26 36 4

g5,2 ⊕ C L6,8 1 + 25 5
g5,1 ⊕ C L6,4 1 + 15 4
n3 ⊕ C3 L6,2 3 + 13 5

C6 L6,1 0 6

In dimension 7 we use the classification of Magnin to compute α(g) for all inde-
composable, complex nilpotent Lie algebras of dimension 7, using an algorithm
of [6]. Note that 4 ≤ α(g) ≤ 6 in this case, see lemma 2.8. The result is as follows:

α(g) = 4 : g = g7,0.1, g7,0.4(λ), g7,0.5, g7,0.6, g7,0.7, g7,0.8, g7,1.02, g7,1.03, g7,1.1(iλ),λ 6=1,

g7,1.1(ii), g7,1.1(iii), g7,1.1(iv), g7,1.1(v), g7,1.1(vi), g7,1.2(iλ),λ 6=1, g7,1.2(ii),

g7,1.2(iii), g7,1.2(iv), g7,1.3(iλ),λ 6=0, g7,1.3(ii), g7,1.3(iii), g7,1.3(iv), g7,1.3(v),

g7,1.5, g7,1.8, g7,1.11, g7,1.14, g7,1.17, g7,1.19, g7,1.20, g7,1.21, g7,2.1(iλ),λ 6=0,1,

g7,2.1(ii), g7,2.1(iii), g7,2.1(iv), g7,2.1(v), g7,2.2, g7,2.4, g7,2.5, g7,2.6, g7,2.10,

g7,2.12, g7,2.13, g7,2.17, g7,2.23, g7,2.26, g7,2.28, g7,2.29, g7,2.30, g7,2.34,

g7,2.35, g7,2.37, g7,3.1(iλ),λ 6=0,1, g7,3.1(iii), g7,3.13, g7,3.18, g7,3.22, g7,4.4.



Burde, Ceballos 753

α(g) = 5 : g = g7,0.2, g7,0.3, g7,1.01(i), g7,1.01(ii), g7,1.1(iλ),λ=1, g7,1.2(iλ),λ=1,

g7,1.3(iλ),λ=0, g7,1.4, g7,1.6, g7,1.7, g7,1.9, g7,1.10, g7,1.12, g7,1.13,

g7,1.15, g7,1.16, g7,1.18, g7,2.1(iλ),λ=0,1, g7,2.7, g7,2.8, g7,2.9, g7,2.11,

g7,2.14, g7,2.15, g7,2.16, g7,2.18, g7,2.19, g7,2.20, g7,2.21, g7,2.22, g7,2.24,

g7,2.25, g7,2.27, g7,2.31, g7,2.32, g7,2.33, g7,2.36, g7,2.38, g7,2.39, g7,2.40,

g7,2.41, g7,2.42, g7,2.43, g7,2.44, g7,2.45, g7,3.1(iλ),λ=0,1, g7,3.3, g7,3.4,

g7,3.5, g7,3.6, g7,3.7, g7,3.8, g7,3.9, g7,3.10, g7,3.11, g7,3.12, g7,3.14,

g7,3.15, g7,3.16, g7,3.17, g7,3.19, g7,3.21, g7,3.23 g7,3.24, g7,4.1, g7,4.3.

α(g) = 6 : g = g7,2.3, g7,3.2, g7,3.20, g7,4.2.
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7. Appendix: Hasse diagram for dimension six
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