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Abstract. Recently certain twisted Lie algebras, so-called Hom-Lie algebras,
and their duals have been considered in the literature. In this paper we inves-
tigate boundary and quasi-triangular Hom-Lie bialgebras further. In particular,
we characterize the quasi-triangularity of boundary Hom-Lie bialgebras in terms
of both a certain Hom-Lie algebra morphism and a certain Hom-Lie coalgebra
morphism. We also give a necessary and sufficient condition for a given Hom-Lie
algebra and a given 2-tensor to admit a coboundary Hom-Lie bialgebra struc-
ture. Finally, we generalize the Drinfeld double of a Lie bialgebra to Hom-Lie
bialgebras and discuss the dual codouble.
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Introduction

As generalizations of Lie algebras, Hom-Lie algebras were motivated by appli-
cations to physics and to deformations of Lie algebras, especially Lie algebras of
vector fields. The notion of Hom-Lie algebras was firstly introduced by Hartwig,
Larsson and Silvestrov in [10] to describe the structure of certain q -deformations
of the Witt and the Virasoro algebras. Indeed, Hom-Lie algebras are different from
Lie algebras as the Jacobi identity is replaced by a twisted form using a morphism.
This twisted Jacobi identity is called Hom-Jacobi identity given by

[α(x), [y, z]] + [α(y), [z, x]] + [α(z), [x, y]] = 0.

Recently, Hom-Lie structures have been studied extensively in a series of
papers [1, 2, 3, 11, 12, 13, 17, 21, 23, 24, 25] by many scholars, including Hom-
Lie bialgebras, quasi-Hom-Lie algebras, Hom-Lie superalgebras, Hom-Lie color
algebras, Hom-Lie admissible Hom-algebras, Hom-Nambu-Lie algebras and so on.

The twisting of parts of the defining identities was transfered to other
algebraic structures. In this way many Hom-structures were introduced, such
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as Hom-associative algebras, Hom-Hopf algebras, Hom-alternative algebras, Hom-
Jordan algebras, Hom-Poisson algebras, Hom-Leibniz algebras, infinitesimal Hom-
bialgebras, Hom-power associative algebras, quasi-triangular Hom-bialgebras in [6,
7, 8, 9, 14, 15, 16, 22, 23].

In [23] Yau generalized the Yang-Baxter equation (YBE) to a Hom-type
identity, the so-called Hom-Yang-Baxter equation (HYBE). The HYBE states

(α⊗B) ◦ (B ⊗ α) ◦ (α⊗B) = (B ⊗ α) ◦ (α⊗B) ◦ (B ⊗ α),

where α is an endomorphism of the vector space V , and B : V ⊗2 → V ⊗2 is a
bilinear map that commutes with α⊗2 . Meanwhile, Yau defined the classical Hom-
Yang-Baxter equation (abbreviated to CHYBE) in the same manner and studied
Hom-Lie bialgebras in [25]. In fact, the quasi-element of quasi-triangular Hom-Lie
bialgebras is a solution of CHYBE.

In [4], Drinfel’d showed that a Lie algebra L with a comultiplication is a
Lie bialgebra if and only if the double space D(L) = L∗ ⊕ L is a Lie algebra.
Majid introduced the classical double Lie bialgebra and proved that it is a quasi-
triangular Lie bialgebra in [18].

Motivated by these results, we prove related results for Hom-Lie bialgebras.
This paper is organized as follows. In Section 1, we recall some basic definitions
for Hom-Lie (co)algebras. In Section 2, we recall some concepts and results about
Hom-Lie bialgebras and show that Hom-Lie bialgebras are self-dual. Meanwhile,
we investigate boundary and quasi-triangular Hom-Lie bialgebras further. We also
give a necessary and sufficient condition for a given Hom-Lie algebra and a given
2-tensor to admit a coboundary Hom-Lie bialgebra structure. In Section 3 we
introduce the concept of a double Hom-Lie bialgebra, which generalizes double
Lie bialgebras in [18], and prove that the double is indeed a quasi-triangular
Hom-Lie bialgebra. As an immediate application, by example, we investigate the
quasi-triangular structure on the double Hom-Lie bialgebra D(sl(2)α). Finally,
we discuss the co-quasi-triangular structure on the codouble Hom-Lie bialgebra
D(L)∗ .

Throughout this paper, let k be a field of characteristic zero. Unless
otherwise specified, vector spaces, algebras, linearity, modules and ⊗ are all meant
over k . Sum symbols are always omitted and we write ∆(x) = x1 ⊗ x2 in which
∆ is a comultiplication. Let ξ be the cyclic permutation (1 2 3). Then we denote
the sum over id, ξ and ξ2 applied to a 3-tensor by the symbol 	 . Namely, we
denote the Hom-Jacobi identity by 	 [α(x), [y, z]] = 0 in place of

[α(x), [y, z]] + [α(y), [z, x]] + [α(z), [x, y]] = 0.

1. Preliminaries

In this section we recall some concepts and notations that will be useful in the rest
of the paper.

Definition 1.1. A multiplicative Hom-Lie algebra is a triple (L, [−,−], α) con-
sisting of a vector space L , a linear map [−,−] : L⊗2 → L , and a linear endomor-
phism α : L→ L satisfying the following conditions:
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(1.1.1) [x, y] + [y, x] = 0 (anti-symmetry),

(1.1.2) 	 [α(x), [y, z]] = 0 (Hom-Jacobi identity),

(1.1.3) α[x, y] = [α(x), α(y)] (multiplicativity),

for all x, y, z ∈ L .

For convenience we will use in this paper the term Hom-Lie algebra instead
of multiplicative Hom-Lie algebra. This should not lead to any confusion as we
only consider the latter. A Hom-Lie algebra L with twist α is called involutive if
α2 = idL .

A subspace M is a sub-Hom-Lie algebra of L if M is also a Hom-Lie algebra
with the restriction maps [−,−]|M : M ⊗M → M,α|M : M → M . A morphism
of Hom-Lie algebras f : (L, [−,−], α)→ (L′, [−,−]′, α′) is a linear map such that
α′ ◦ f = f ◦ α and f([−,−]) = [−,−]′ ◦ f⊗2 .

For every Lie algebra (L, [−,−]), we can construct a Hom-Lie algebra
Lα := (L, [−,−]α := α◦ [−,−], α) via twisting with any Lie algebra endomorphism
α : L → L . In fact, this result can be found in [22, Corollary 2.6]. Then, some
well-known examples of Hom-Lie algebras can be obtained in this way.

Example 1.2. Consider the one-sided Witt Lie algebra W1 (see for example
[19] or [20]) on the vector space with basis {xi}∞i=−1 , whose Lie bracket is defined
by

[xi, xj] = (j − i)xi+j,

for all integers i, j ≥ −1. W1 may be identified with Der(k[x]), the Lie algebra
of k -derivations of the polynomial algebra k[x] in the indeterminate x with coef-
ficients in k , where xi can be identified with the differential operator xi+1(d/dx).

Define a linear map

α : {xi}∞i=−1 → {xi}∞i=−2, α(xi) 7→
1

2
x2i,

where x−2 := 0.

In fact, α is a Lie algebra homomorphism. Then we obtain a Hom-Lie
algebra (W1, [−,−]α, α) called one-sided Witt Hom-Lie algebra.

In the following, let τ denote the twist isomorphism given by τ(x ⊗ y) =
y ⊗ x . The next Definition is due to Yau [25, Definition 3.2].

Definition 1.3. A Hom-Lie coalgebra is a triple (Γ,∆, α) consisting of a vec-
tor space Γ, a linear map ∆ : Γ → Γ⊗2 and a linear endomorphism α : Γ → Γ
satisfying the following conditions:

(1.3.1) ∆ + τ ◦∆ = 0 (anti-symmetry),

(1.3.2) 	 (α⊗∆) ◦∆ = 0 (Hom-coJacobi identity),

(1.3.3) ∆ ◦ α = α⊗2 ◦∆ (co-multiplicativity).
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The definition of sub-Hom-Lie coalgebras is analogous to sub-Hom-Lie al-
gebras. A morphism of Hom-Lie coalgebras f : (Γ,∆, α) → (Γ′,∆′, α′) is a linear
map such that α′ ◦ f = f ◦ α and ∆′ ◦ f = f⊗2 ◦∆.

Let (L, [−,−], α) be a Hom-Lie algebra. For any x ∈ L and any integer
n ≥ 2, we define the adjoint diagonal action adx : L⊗n → L⊗n by

adx(y1 ⊗ · · · ⊗ yn) =
n∑
i=1

α(y1)⊗ · · · ⊗ α(yi−1)⊗ [x, yi]⊗ α(yi+1) · · · ⊗ α(yn).

In particular, for n = 2, we have

adx(y1 ⊗ y2) = [x, y1]⊗ α(y2) + α(y1)⊗ [x, y2].

2. Hom-Lie bialgebras

In this section, we investigate boundary and quasi-triangular Hom-Lie bialgebras
further. We also give a necessary and sufficient condition for a given Hom-Lie
algebra and a given 2-tensor to admit a coboundary Hom-Lie bialgebra structure.

We begin this section by recalling the definition of a Hom-Lie bialgebra as
introduced by Yau in [25, Definition 3.3]:

Definition 2.1. A Hom-Lie bialgebra is a quadruple (L, [−,−],∆, α) in which
(L, [−,−], α) is a Hom-Lie algebra and (L,∆, α) is a Hom-Lie coalgebra such that
the following compatibility condition holds for all x, y ∈ L :

∆([x, y]) = adα(x)(∆(y))− adα(y)(∆(x)). (2.1)

Explicitly, the compatibility condition can be restated as

∆([x, y]) = [α(x), y1]⊗ α(y2) + α(y1)⊗ [α(x), y2]
−[α(y), x1]⊗ α(x2)− α(x1)⊗ [α(y), x2].

A Lie bialgebra is a Hom-Lie bialgebra with the trivial twist α =id. Sim-
ilarly to Lie bialgebras, the compatibility condition for Hom-Lie bialgebras states
exactly that ∆ ∈ C1(L,L⊗L) is a 1-cocycle in Hom-Lie algebra cohomology (see
[25, Remark 3.4]).

Let (Γ,∆, α) be a Hom-Lie coalgebra. Then, by a straightforward com-
putation, it can be seen that the dual space Γ∗ := Hom(Γ, k) of Γ is a Hom-Lie
algebra via the bracket [−,−]◦ and twist α∗ defined by

[φ, ϕ]◦ := (φ⊗ ϕ) ◦∆, α∗(φ) := φ ◦ α,

for all φ, ϕ ∈ Γ∗.

Conversely, we consider the restricted or continuous dual of a Hom-Lie
algebra. Let (L, [−,−], α) be a Hom-Lie algebra. Then consider the linear maps
[−,−]∗ : L∗ → (L ⊗ L)∗ defined by [−,−]∗(φ) := φ ◦ [−,−] and α∗ : L∗ → L∗

defined by α∗(φ) := φ ◦ α for every φ ∈ L∗ . A subspace M of L∗ is called good if
[−,−]∗(M) ⊆M⊗M and α∗(M) ⊆M , where M⊗M ⊆ L∗⊗L∗ ⊆ (L⊗L)∗ . Let
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L◦ denote the sum of all good subspaces of L∗ . Then [−,−]∗(L◦) ⊆ L◦ ⊗ L◦ and
α∗(L◦) ⊆ L◦ and the triple (L◦,∆◦, α◦) is a Hom-Lie coalgebra, where ∆◦ is the
restriction map of [−,−]∗ to L◦ and α◦ is the restriction map of α∗ to L◦ . We
obtain the following generalization of [25, Theorem 3.9] from finite dimensional
Hom-Lie bialgebras to arbitrary dimensions:

Theorem 2.2. If (L, [−,−],∆, α) is a Hom-Lie bialgebra, then the quadruple
(L◦, [−,−]◦,∆◦, α◦) defined as above is again a Hom-Lie bialgebra.

Proof. Since L◦ is a good subspace of L∗ , L◦ is both a Hom-Lie algebra and
a Hom-Lie coalgebra. And the compatibility condition (2.1) for L◦ is exactly the
same as the one for L∗ in the proof of Theorem 3.9 in [25].

Note that Theorem 2.2 shows that the concept of a Hom-Lie bialgebra is
self-dual generalizing the self-duality of Lie bialgebras (see [18, Proposition 8.1.2]).
If the underlying vector space is finite dimensional, the concept of a Hom-Lie
bialgebra can be dualized in the usual way without using the concept of good
subspaces.

Now we recall the definition of the classical Hom-Yang-Baxter equation
(CHYBE) for a Hom-Lie algebra (L, [−,−], α) introduced by Yau [25, (1.0.3)].
For any 2-tensor r = r1 ⊗ r2 in L⊗ L we set

[r12, r13] := [r1, r
′
1]⊗ α(r2)⊗ α(r′2),

[r12, r23] := α(r1)⊗ [r2, r
′
1]⊗ α(r′2),

[r13, r23] := α(r1)⊗ α(r′1)⊗ [r2, r
′
2],

where r′ = r′1 ⊗ r′2 is a copy of r . Then

CHYB(r) := [r12, r13] + [r12, r23] + [r13, r23] = 0

is called the classical Hom-Yang-Baxter equation. Now we are ready to intro-
duce coboundary Hom-Lie bialgebras and quasi-triangular Hom-Lie bialgebras as
defined by Yau in [25, Definition 4.1].

Definition 2.3. A Hom-Lie bialgebra (L, [−,−],∆, α) is a coboundary Hom-
Lie bialgebra if there exists an element r ∈ L ⊗ L such that α⊗2(r) = r and
∆(x) = adx(r) for every x ∈ L . A quasi-triangular Hom-Lie bialgebra is a
coboundary Hom-Lie bialgebra such that CHYB(r) = 0.

Note that for a coboundary Hom-Lie bialgebra (L, [−,−],∆, α, r), the sym-
metric part r + τ(r) of r is adjoint invariant, that is, adx(r + τ(r)) = 0 for every
x ∈ L . This is equivalent to ∆ being anti-symmetric.

In the following result we characterize the quasi-triangularity of boundary
Hom-Lie bialgebras in terms of both a certain Hom-Lie algebra morphism and
a certain Hom-Lie coalgebra morphism. The dual pairing of L∗ and L will be
denoted by 〈−,−〉 .
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Proposition 2.4. Let (L, [−,−],∆, α, r) be an involutive coboundary Hom-Lie
bialgebra with r = r1 ⊗ r2 . Then L is a quasi-triangular Hom-Lie bialgebra if
and only if s1 : L∗ → L defined by s1(φ) = 〈φ, α(r1)〉r2 is a Hom-Lie algebra
morphism. Likewise, if and only if s2 : L∗ → L defined by s2(φ) = r1〈φ, α(r2)〉 is
a Hom-Lie coalgebra morphism.

Proof. Since we are given an involutive coboundary Hom-Lie bialgebra, we
know that

α ◦ s1(φ) = 〈φ, α(r1)〉α(r2) = 〈φ, r1〉r2
= 〈α∗(φ), α(r1)〉r2 = s1 ◦ α∗(φ),

for all φ ∈ L∗ .
From the fact α(r1)⊗ α(r2) = r1 ⊗ r2 and L is involutive, we have

α(r1)⊗ r2 = r1 ⊗ α(r2), (2.2)

which is used in the following proof.

To show that L is quasi-triangular if and only if s1 is a Hom-Lie algebra
morphism, we are equivalent to show that CHYB(r) = 0 if and only if s1([φ, ϕ]) =
[s1(φ), s1(ϕ)], for all φ, ϕ ∈ L∗ . Indeed,

s1([φ, ϕ])− [s1(φ), s1(ϕ)]
= 〈[φ, ϕ], α(r1)〉r2 − 〈φ, α(r1)〉〈φ, α(r′1)〉[r2, r′2]
= 〈φ⊗ ϕ⊗ id,∆(α(r1))⊗ r2 − α(r1)⊗ α(r′1)⊗ [r2, r

′
2]〉

= 〈φ⊗ ϕ⊗ id, [α(r1), r
′
1]⊗ α(r′2)⊗ r2 + α(r′1)⊗ [α(r1), r

′
2]⊗ r2

−α(r1)⊗ α(r′1)⊗ [r2, r
′
2]〉

= 〈φ⊗ ϕ⊗ id, [r1, r
′
1]⊗ α(r′2)⊗ α(r2) + α(r′1)⊗ [r1, r

′
2]⊗ α(r2)

−α(r1)⊗ α(r′1)⊗ [r2, r
′
2]〉

= 〈φ⊗ ϕ⊗ id,−CHYB(r)〉,

where r′ is another copy of r .

The proof for s2 is strictly analogous.

Proposition 2.5. Let (L, [−,−], α) be an involutive Hom-Lie algebra and r =
r1 ⊗ r2 ∈ L⊗ L such that α⊗2(r) = r, r = −τ(r). Set

∆(x) = adx(r) = [x, r1]⊗ α(r2) + α(r1)⊗ [x, r2].

Then, for all x ∈ L,

	 (α⊗∆) ◦∆(x) = adα(x)(CHYB(r)).

Proof. According to (2.2) and α⊗2(r) = r , for any x ∈ L , we have

adα(x)(CHYB(r)) = [α(x), [r1, r
′
1]]⊗ r2 ⊗ r′2 + α([r1, r

′
1])⊗ [α(x), α(r2)]⊗ r′2

+α([r1, r
′
1])⊗ r2 ⊗ [α(x), α(r′2)] + [α(x), α(r1)]⊗ α([r2, r

′
1])⊗ r′2

+r1 ⊗ [α(x), [r2, r
′
1]]⊗ r′2 + r1 ⊗ α([r2, r

′
1])⊗ [α(x), α(r′2)]

+[α(x), α(r1)]⊗ r′1 ⊗ α([r2, r
′
2]) + r1 ⊗ [α(x), α(r′1)⊗ α([r2, r

′
2])

+r1 ⊗ r′1 ⊗ [α(x), [r2, r
′
2]]
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= [α(x), [r1, r
′
1]]⊗ r2 ⊗ r′2︸ ︷︷ ︸
(1)

+ [r1, α(r′1)]⊗ [α(x), r2]⊗ r′2︸ ︷︷ ︸
(2)

+ [α(r1), r
′
1]⊗ r2 ⊗ [α(x), r′2]︸ ︷︷ ︸

(3)

+ [α(x), r1]⊗ [r2, α(r′1)]⊗ r′2︸ ︷︷ ︸
(4)

+ r1 ⊗ [α(x), [r2, r
′
1]]⊗ r′2︸ ︷︷ ︸

(5)

+ r1 ⊗ [α(r2), r
′
1]⊗ [α(x), r′2]︸ ︷︷ ︸

(6)

+ [α(x), r1]⊗ r′1 ⊗ [r2, α(r′2)]︸ ︷︷ ︸
(7)

+ r1 ⊗ [α(x), r′1]⊗ [α(r2), r
′
2]︸ ︷︷ ︸

(8)

+ r1 ⊗ r′1 ⊗ [α(x), [r2, r
′
2]]︸ ︷︷ ︸

(9)

.

Meanwhile,

	 (α⊗∆) ◦∆(x) =	 (α⊗∆)([x, r1]⊗ α(r2) + α(r1)⊗ [x, r2])
=	 (α([x, r1])⊗ [α(r2), r

′
1]⊗ α(r′2) + α([x, r1])⊗ α(r′1)⊗ [α(r2), r

′
2]

+r1 ⊗ [[x, r2], r
′
1]⊗ α(r′2) + r1 ⊗ α(r′1)⊗ [[x, r2], r

′
2])

=	 ([α(x), r1]⊗ [r2, r
′
1]⊗ α(r′2) + [α(x), r1]⊗ α(r′1)⊗ [r2, r

′
2]

+r1 ⊗ [[x, r2], r
′
1]⊗ α(r′2) + r1 ⊗ α(r′1)⊗ [[x, r2], r

′
2])

= [α(x), r1]⊗ [r2, r
′
1]⊗ α(r′2)︸ ︷︷ ︸

(4)

+ [α(x), r1]⊗ α(r′1)⊗ [r2, r
′
2]︸ ︷︷ ︸

(7)

+ r1 ⊗ [[x, r2], r
′
1]⊗ α(r′2)︸ ︷︷ ︸

(5a)

+ r1 ⊗ α(r′1)⊗ [[x, r2], r
′
2]︸ ︷︷ ︸

(9a)

+ [r2, r
′
1]⊗ α(r′2)⊗ [α(x), r1]︸ ︷︷ ︸

(3)

+α(r′1)⊗ [r2, r
′
2]⊗ [α(x), r1]︸ ︷︷ ︸

(6)

+ [[x, r2], r
′
1]⊗ α(r′2)⊗ r1︸ ︷︷ ︸

(1a)

+α(r′1)⊗ [[x, r2], r
′
2]⊗ r1︸ ︷︷ ︸

(5b)

+α(r′2)⊗ [α(x), r1]⊗ [r2, r
′
1]︸ ︷︷ ︸

(8)

+ [r2, r
′
2]⊗ [α(x), r1]⊗ α(r′1)︸ ︷︷ ︸

(2)

+α(r′2)⊗ r1 ⊗ [[x, r2], r
′
1]︸ ︷︷ ︸

(9b)

+ [[x, r2], r
′
2]⊗ r1 ⊗ α(r′1)︸ ︷︷ ︸

(1b)

= [α(x), r1]⊗ [r2, r
′
1]⊗ α(r′2)︸ ︷︷ ︸

(4)

+ [α(x), r1]⊗ α(r′1)⊗ [r2, r
′
2]︸ ︷︷ ︸

(7)

+ r1 ⊗ [α(x), [r2, r
′
1]]⊗ r′2︸ ︷︷ ︸

(5)

+ r1 ⊗ r′1 ⊗ [α(x), [r2, r
′
2]]︸ ︷︷ ︸

(9)

+ [r2, r
′
1]⊗ α(r′2)⊗ [α(x), r1]︸ ︷︷ ︸

(3)

+α(r′1)⊗ [r2, r
′
2]⊗ [α(x), r1]︸ ︷︷ ︸

(6)

+ [α(x), [r1, r
′
1]]⊗ r2 ⊗ r′2︸ ︷︷ ︸
(1)

+α(r′2)⊗ [α(x), r1]⊗ [r2, r
′
1]︸ ︷︷ ︸

(8)

+ [r2, r
′
2]⊗ [α(x), r1]⊗ α(r′1)︸ ︷︷ ︸

(2)

.

We break these twelve terms into nine groups, which is equal to the nine
terms of adα(x)(CHYB(r)) respectively.

From Proposition 2.2 of [3] and Proposition 2.5, we have the main result of
this section, which generalizes the result in [4]. It gives a necessary and sufficient
condition under which a Hom-Lie algebra becomes a coboundary Hom-Lie algebra.
Indeed, it’s also a direct consequence of [25, Theorem 4.5], which gives a sufficient
condition only but the necessity follows from the equalities in the proof.
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Theorem 2.6. Let (L, [−,−], α) be an involutive multiplicative Hom-Lie alge-
bra over k and r ∈ L⊗L such that α⊗2(r) = r . Then the map ∆r(x) := adx(r) for
any x ∈ L yields a coboundary Hom-Lie bialgebra on L if and only if the following
conditions are satisfied:

(i) adx(r + τ(r)) = 0 for every x ∈ L,

(ii) adx(CHYB(r)) = 0 for every x ∈ L.

Remarks (1) It is enough to assume that the characteristic of k is not 2.

(2) According to [25, Theorem 4.5], it is also sufficient to assume that α is
injective (or even that only α⊗3 is injective) instead of α2 =id.

(3) Theorem 4.5 of [25] is a version of the above Theorem for triangular
Hom-Lie bialgebra structures on L (for the definition see the bottom of p. 20 in
[25]).

3. The double Hom-Lie bialgebra

In this section, we generalize the Drinfel’d double of a Lie bialgebra to Hom-Lie
bialgebras and show that the Drinfel’d double of a Hom-Lie bialgebra is indeed a
quasi-triangular Hom-Lie bialgebra.

Theorem 3.1. Let (L, [−,−],∆, α) be a finite dimensional involutive Hom-Lie
bialgebra with the dual L∗ given by the “∗” dual. Then, there is a quasi-triangular
Hom-Lie bialgera (D(L) = L∗ ⊕ L, [−,−]D,∆D, αD, r) called a Drinfel’d double
of Hom-Lie bialgebra, built on L∗op ⊕ L as a vector space, with the following
structures,

[φ⊕ x, ϕ⊕ y]D = [ϕ, φ] + ϕ1〈ϕ2, x〉 − φ1〈φ2, y〉
⊕[x, y] + x1〈ϕ, x2〉 − y1〈φ, y2〉,

∆D(φ⊕ x) = φ1 ⊗ φ2 + x1 ⊗ x2,

αD(φ⊕ x) = α∗(φ) + α(x),

r =
1

2

∑
a

(fa ⊗ α(ea) + α∗(fa)⊗ ea),

for all φ, ϕ ∈ L∗ and x, y ∈ L. Here L∗op, L are sub-Hom-Lie bialgebras of the
Drinfel’d double Hom-Lie bialgebra, where (−)op denotes the opposite Lie bracket.
The set {ea} is a basis of L and {fa} is the dual basis.

Proof. Noting that every element of direct sum has a unique decomposition
into a vector in L∗ and a vector in L , and from the definition of D(L) we know

[φ, ϕ]D = −[φ, ϕ], [x, y]D = [x, y],

[x, φ]D = φ1〈φ2, x〉+ x1〈φ, x2〉,

∆D(φ) = ∆(φ),∆D(x) = ∆(x),

αD(φ) = α∗(φ), αD(x) = α(x),
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for all φ, ϕ ∈ L∗ and x, y ∈ L, where the right hands of the above equalities are
in terms of the structures of L∗ and L .

By the definition, it is clear that [−,−]D is anti-symmetric and the Hom-
Jacobi identity holds when we restrict all the elements to L∗ or to L . So we need
to check the cross brackets. For all φ, ϕ ∈ L∗ and x ∈ L ,

[α(x), [φ, ϕ]D]D = −[φ, ϕ]1〈[φ, ϕ]2, α(x)〉 − α(x)1〈[φ, ϕ], α(x)2〉
(2.1)
= −[α∗(φ), ϕ1]〈α∗(ϕ2), α(x)〉 − α∗(ϕ)1〈[α∗(φ), ϕ2], α(x)〉
−(φ↔ ϕ)− α(x1)〈φ⊗ ϕ,∆(α(x2))〉

= −[α∗(φ), ϕ1]〈α∗(ϕ2), α(x)〉 − α∗(ϕ)1〈[α∗(φ), ϕ2], α(x)〉
−(φ↔ ϕ)− 〈id⊗ α∗(φ)⊗ α∗(ϕ), (α⊗∆) ◦∆(x)〉

= −[α∗(φ), ϕ1]〈ϕ2, x〉 − α∗(ϕ1)〈[φ, α∗(ϕ2)], x〉
−(φ↔ ϕ)− 〈id⊗ α∗(φ)⊗ α∗(ϕ), (α⊗∆) ◦∆(x)〉,

where φ ↔ ϕ means swapping φ for ϕ in the forward expression. On the other
hand,

[α∗(φ), [ϕ, x]D]D − [α∗(ϕ), [φ, x]D]D
= [α∗(φ), [ϕ, x]D]D − (φ↔ ϕ)
= [α∗(φ), ϕ1]〈ϕ2, x〉 − [α∗(φ), x1]D〈ϕ, x2〉 − (φ↔ ϕ)
= [α∗(φ), ϕ1]〈ϕ2, x〉+ α∗(φ1)〈α∗(φ2), x1〉〈ϕ, x2〉

+〈id⊗ α∗(φ)⊗ ϕ, (∆⊗ id) ◦∆(x)〉 − (φ↔ ϕ).

Then, from the above two equalities we have

	 [αD(x), [φ, ϕ]D]D
= −〈id⊗ α∗(φ)⊗ α∗(ϕ), (α⊗∆) ◦∆(x)〉+ 〈id⊗ α∗(φ)⊗ ϕ, (∆⊗ id) ◦∆(x)〉
−〈id⊗ α∗(ϕ)⊗ φ, (∆⊗ id) ◦∆(x)〉

= −〈id⊗α∗(φ)⊗α∗(ϕ), (α⊗∆) ◦∆(x)〉+ 〈id⊗α∗(φ)⊗α∗(ϕ), (∆⊗α) ◦∆(x)〉
−〈id⊗ α∗(ϕ)⊗ α∗(φ), (∆⊗ α) ◦∆(x)〉

= −〈id⊗ α∗(φ)⊗ α∗(ϕ),	 (α⊗∆) ◦∆(x)〉.

So 	 [αD(x), [φ, ϕ]D]D = 0 from the Hom-Jacobi identity for L . Similarly,
	 [αD(x), [y, φ]D]D = 0 from the Hom-coJacobi identity for L∗ .
Thus, (D(L), [−,−]D, αD) is a Hom-Lie algebra.

In addition, from the definition of ∆D , we know that it satisfies the anti-
symmetry and the Hom-coJacobi identity, so (D(L),∆D, αD) is a Hom-Lie coal-
gebra.

In the following proof, we need two very useful identities:

α∗(fa)⊗ α(ea1)〈φ, α(ea2)〉 = [fa, φ]⊗ ea, (3.1)

fa1 〈fa2 , x〉 ⊗ ea = α∗(fa)⊗ [α(ea), x], (3.2)

for all φ ∈ L∗, x ∈ L. These are true by using the duality pairing fa〈φ, ea〉 = φ
and 〈fa, x〉ea = x . In fact, for any ϕ ∈ L∗ ,

[fa, φ]〈ϕ, ea〉 = [ϕ, φ] = fa〈[ϕ, φ], ea〉
= α∗(fa)〈α∗[ϕ, φ], ea〉
= α∗(fa)〈ϕ, α(ea1)〉〈φ, α(ea2)〉.
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So
α∗(fa)⊗ α(ea1)〈φ, α(ea2)〉 = [fa, φ]⊗ ea.

In the same way, (3.2) holds too.

By identity (3.1), we have adφ(r) =

= 1
2
adφ(fa ⊗ α(ea) + α∗(fa)⊗ ea)

= 1
2
([φ, fa]D⊗ea+α∗(fa)⊗[φ, α(ea)]D+[φ, α∗(fa)]D⊗α(ea)+f

a ⊗ [φ, ea]D)
= 1

2
([fa, φ]⊗ ea − α∗(fa)⊗ φ1〈φ2, α(ea)〉 − α∗(fa)⊗ α(ea1)〈φ, α(ea2)〉

+[α∗(fa), φ]⊗ α(ea)− fa ⊗ φ1〈φ2, ea〉 − fa ⊗ ea1〈φ, ea2〉)
= 1

2
([fa, φ]⊗ ea − α∗(fa)⊗ α(ea1)〈φ, α(ea2)〉︸ ︷︷ ︸−α∗(fa)〈φ2, α(ea)〉 ⊗ φ1

+ [α∗(fa), φ]⊗ α(ea)− fa ⊗ ea1〈φ, ea2〉︸ ︷︷ ︸−fa〈φ2, ea〉 ⊗ φ1)

= 1
2
(−φ2 ⊗ φ1 − φ2 ⊗ φ1)

= ∆D(φ),

for any φ ∈ L∗ . Meanwhile, by identity (3.2), we get adx(r) =

= 1
2
adx(f

a ⊗ α(ea) + α∗(fa)⊗ ea)
= 1

2
([x, fa]D⊗ea+α∗(fa)⊗[x, α(ea)]D + [x, α∗(fa)]D⊗α(ea) + fa⊗[x, ea]D)

= 1
2
(fa1 〈fa2 , x〉 ⊗ ea + x1〈fa, x2〉 ⊗ ea + α∗(fa)⊗ [x, α(ea)]

+α∗(fa1 )〈α∗(fa2 ), x〉 ⊗ α(ea) + x1〈α∗(fa), x2〉 ⊗ α(ea) + fa ⊗ [x, ea])
= 1

2
(x1 ⊗ x2 + x1 ⊗ x2)

= 1
2
(fa1 〈fa2 , x〉 ⊗ ea + α∗(fa)⊗ [x, α(ea)]︸ ︷︷ ︸+x1 ⊗ 〈fa, x2〉ea

+α∗(fa1 )〈α∗(fa2 ), x〉 ⊗ α(ea)f
a ⊗ [x, ea]︸ ︷︷ ︸+x1 ⊗ 〈α∗(fa), x2〉α(ea))

= 1
2
(x1 ⊗ x2 + x1 ⊗ x2)

= ∆D(x),

for any x ∈ L . So ∆D(d) = add(r), for any d ∈ D(L).

In addition,

α⊗2D (r) = α⊗2D (fa ⊗ α(ea) + α∗(fa)⊗ ea) = r,

so the compatibility of the Hom-Lie bialgebra holds from [3, Proposition 2.2].
Hence, (D(L), [−,−]D,∆D, αD, r) is a coboundary Hom-Lie bialgebra.

Finally, r obeys the CHYBE. Since r = 1
2
(fa ⊗ α(ea) + α∗(fa) ⊗ ea), we

have

CHYB(r) = 1
4
([fa, f b]D ⊗ ea ⊗ eb︸ ︷︷ ︸

(1a)

+ [fa, α∗(f b)]D ⊗ ea ⊗ α(eb)︸ ︷︷ ︸
(2a)

+ [α∗(fa), f b]D ⊗ α(ea)⊗ eb︸ ︷︷ ︸
(3a)

+ [α∗(fa), α∗(f b)]D ⊗ α(ea)⊗ α(eb)︸ ︷︷ ︸
(4a)

+α∗(fa)⊗ [α(ea), f
b]D ⊗ eb︸ ︷︷ ︸

(1b)

+α∗(fa)⊗ [α(ea), α
∗(f b)]D ⊗ α(eb)︸ ︷︷ ︸

(2b)

+ fa ⊗ [ea, f
b]D ⊗ eb︸ ︷︷ ︸

(3b)

+ fa ⊗ [ea, α
∗(f b)]D ⊗ α(eb)︸ ︷︷ ︸
(4b)

+α∗(fa)⊗ α∗(f b)⊗ [α(ea), α(eb)]D︸ ︷︷ ︸
(1c)

+α∗(fa)⊗ f b ⊗ [α(ea), eb]D︸ ︷︷ ︸
(2c)

+fa ⊗ α∗(f b)⊗ [ea, α(eb)]D︸ ︷︷ ︸
(3c)

+ fa ⊗ f b ⊗ [ea, eb]D︸ ︷︷ ︸
(4c)

),
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which can be divided into four groups as above. In the group (1), from (3.1) and
(3.2), we get

[fa, f b]D⊗ea⊗eb + α∗(fa)⊗[α(ea), f
b]D⊗eb + α∗(fa)⊗α∗(f b)⊗[α(ea), α(eb)]D

= − [fa, f b]⊗ ea ⊗ eb + α∗(fa)⊗ α(ea1)〈f b, α(ea2)〉 ⊗ eb︸ ︷︷ ︸
+α∗(fa)⊗ f b1〈f b2 , α(ea)〉 ⊗ eb + α∗(fa)⊗ α∗(f b)⊗ [α(ea), α(eb)]︸ ︷︷ ︸

= 0.

In the same way, the other three groups are all zero too. So CHYB(r) = 0 and
D(L) is a quasi-triangular Hom-Lie bialgebra.

The double of Hom-Lie bialgebras is different from Drinfel’d’s original con-
struction (see [18, Proposition 8.2.1]) in the quasi-triangular structure.

Example 3.2. Let sl(2)α be the Hom-Lie bialgebra introduced in [25, Propo-
sition 3.10] and sl(2)∗α the dual Hom-Lie bialgebra, where α(H) = H , α(X±) =
−X± . In this situation, the structure maps of sl(2)α are given by

[H,X±]α = ∓2X±, [X+, X−]α = H;

∆α(H) = 0, ∆α(X±) = −1

2
(X± ⊗H −H ⊗X±).

And respectively, the structures of sl(2)∗α are as follows

α∗(H∗) = H∗, α∗(X∗±) = −X∗±;

[X∗±, H
∗]α = −1

2
X∗±, [X∗+, X

∗
−]α = 0;

∆α(X∗±) = ∓2(H∗ ⊗X∗± −X∗± ⊗H∗),∆α(H∗) = X∗+ ⊗X∗− −X∗− ⊗X∗+.

From direct computation, we obtain the double Hom-Lie bialgebra D(sl(2)α) built
on the vector space sl(2)∗α⊕sl(2)α with the structures [−,−]D,∆D, αD defined by

[X∗±, H
∗]D = 1

2
X∗± , [X∗+, X

∗
−]D = 0, [H,X±]D = ∓2X± , [X+, X−]D = H ,

[H,H∗]D = 0, [X+, X
∗
+]D = −2H∗ + 1

2
H , [X−, X

∗
−]D = 2H∗ + 1

2
H , [X+, X

∗
−]D =

[X−, X
∗
+]D = 0, [H,X∗±]D = ±2X∗± ,

[X±, H
∗]D = −1

2
X± ∓X∗∓ ;

∆D(X∗±) = ∓2(H∗ ⊗X∗± −X∗± ⊗H∗), ∆D(H∗) = X∗+ ⊗X∗− −X∗− ⊗X∗+,

∆D(H) = 0, ∆D(X±) = −1

2
(X± ⊗H −H ⊗X±);

αD(H∗) = H∗, αD(X∗±) = −X∗±, αD(H) = H, αD(X±) = −X±.

In addition,

r = 1
2
(H∗ ⊗ α(H) + α∗(H∗)⊗H +X∗+ ⊗ α(X+)

+α∗(X∗+)⊗X+ +X∗− ⊗ α(X−) + α∗(X∗−)⊗X−)
= H∗ ⊗H −X∗+ ⊗X+ −X∗− ⊗X−.
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Then, we have the double Hom-Lie bialgebra (D(sl(2)α), [−,−]D,∆D, αD, r) which
is quasi-triangular.

Furthermore, working over the complex number field, we note that sl(2)α
and sl(2)∗α have another pair of dual bases

e1 = − i
2

(X+ +X−), e2 = −1

2
(X+ −X−), e3 = − i

2
H,

f 1 = i(X∗+ +X∗−), f 2 = −(X∗+ −X∗−), f 3 = 2iH∗.

We can check easily that 〈fa, eb〉 = δab given the duality pairing relation. Then
we construct another quasi-triangular Hom-Lie bialgebra on D(sl(2)α) with
[−,−]D,∆D, αD defined as above and r′ given by r′ =

= 1
2

∑
a(f

a ⊗ α(ea) + α∗(fa)⊗ ea)
= 1

2
(f 1⊗α(e1) + α∗(f 1)⊗e1 + f 2⊗α(e2) + α∗(f 2)⊗e2 + f 3⊗α(e3) + α∗(f 3)⊗e3)

= −1
2
((X∗+ +X∗−)⊗ (X+ +X−) + (X∗+ −X∗−)⊗ (X+ −X−)− 2H∗ ⊗H)

= H∗ ⊗H −X∗+ ⊗X+ −X∗− ⊗X−.

Obviously, r = r′ . So we find that though sl(2)α and sl(2)∗α have different dual
bases, there is the same quasi-triangular structure on D(sl(2)α).

Definition 3.3. A Hom-Lie bialgebra (L, [−,−],∆, α) is a co-quasi-triangular
Hom-Lie bialgebra if there exists a linear map σ : L ⊗ L → k such that the Lie
bracket has a special form

[x, y] = x1σ(x2, α(y)) + y1σ(α(x), y2),

and obeys the CHYBE in the dual form

σ(x1, α(y))σ(x2, α(z)) + σ(α(x), y1)σ(y2, α(z)) + σ(α(x), z1)σ(α(y), z2) = 0,

for all x, y, z ∈ L .

Next we discuss the dual codouble Hom-Lie bialgebra D(L)∗ built on the
vector space Lcop⊕L∗ . D(L)∗ has the direct sum Hom-Lie algebra structure and a
complicated Lie cobracket, which is analogous to the codouble Lie bialgebra in [18,
Section 8, p. 370]. In addition, the twist of the dual codouble Hom-Lie bialgebra
D(L)∗ is α + α∗ . Then we have the following result.

Proposition 3.4. Let (L, [−,−],∆, α) be a finite dimensional involutive Hom-
Lie bialgebra. From the Lie cobracket of direct sum Hom-Lie bialgebra Lcop⊕L∗ , we
define a perturbed Lie cobracket ∆Lcop⊕L∗ +ad(t) which is exactly the Lie cobracket
∆D(L)∗ of codouble Hom-Lie bialgebra D(L)∗ , where

t =
1

2

∑
a

(α∗(fa)⊗ ea − ea ⊗ α∗(fa) + fa ⊗ α(ea)− α(ea)⊗ fa).

Here {ea} is a basis of L and {fa} is the dual basis, and Lcop denotes the opposite
cobracket.

In particular, the codouble Hom-Lie bialgebra D(L)∗ is a co-quasi-triangular
Hom-Lie bialgera.
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Proof. With the twist αLcop⊕L∗(x⊕φ) = α(x)⊕α∗(φ), the direct sum Hom-Lie
algebra structure on Lcop ⊕ L∗ means that

[x⊕ φ, y ⊕ ϕ] = [x, y]⊕ [φ, ϕ],

for all x, y ∈ L and φ, ϕ ∈ L∗ , or equivalently that L,L∗ are sub-Hom-Lie algebras
with [x, φ] = 0 for the Lie bracket between them. Dually, the direct sum Hom-Lie
coalgebra structure on Lcop ⊕ L∗ means that αLcop⊕L∗(x ⊕ φ) = α(x) ⊕ α∗(φ),
∆Lcop⊕L∗(x) = −∆(x), and ∆Lcop⊕L∗(φ) = ∆(φ).

The duality pairing between D(L)∗ and D(L) is given by

〈x⊕ φ, ϕ⊕ y〉 = 〈x, ϕ〉+ 〈φ, y〉.
And using this, we can obtain the Lie cobracket of the codouble as follows

〈∆D(L)∗(x⊕ φ), (ϕ⊕ y)⊗ (ψ ⊕ z)〉 = 〈x⊕ φ, [ϕ⊕ y, ψ ⊕ z]D(L)〉
= 〈x⊕ φ, (−[ϕ, ψ] + ψ1〈ψ2, y〉 − ϕ1〈ϕ2, z〉)
⊕([y, z] + y1〈ψ, y2〉 − z1〈ϕ, z2〉)〉

= 〈x,−[ϕ, ψ]〉+ 〈x, ψ1〈ψ2, y〉〉 − 〈x, ϕ1〈ϕ2, z〉〉
+〈φ, [y, z]〉+ 〈φ, y1〈ψ, y2〉〉 − 〈φ, z1〈ϕ, z2〉〉

= 〈−∆(x), ϕ⊗ ψ〉+ 〈[x, y], ψ〉 − 〈[x, z], ϕ〉
+〈∆(φ), y ⊗ z〉+ 〈[φ, ψ], y〉 − 〈[φ, ϕ], z〉,

and,

〈∆Lcop⊕L∗(x⊕ φ) + adx⊕φ(t), (ϕ⊕ y)⊗ (ψ ⊕ z)〉
= 〈∆Lcop⊕L∗(x⊕ φ), (ϕ⊕ y)⊗ (ψ ⊕ z)〉+ 〈adx⊕φ(t), (ϕ⊕ y)⊗ (ψ ⊕ z)〉
= 〈−∆(x) + ∆(φ), (ϕ⊕ y)⊗ (ψ ⊕ z)〉

+〈1
2
([φ, α∗(fa)]⊗α(ea) + fa⊗[x, ea]− [x, ea]⊗fa − α(ea)⊗[φ, α∗(fa)]

+[φ, fa]⊗ ea + α∗(fa)⊗ [x, α(ea)]− [x, α(ea)]⊗ α∗(fa)
−ea ⊗ [φ, fa]), (ϕ⊕ y)⊗ (ψ ⊕ z)〉

= 〈−∆(x), ϕ⊗ ψ〉+ 〈∆(φ), y ⊗ z〉
+1

2
(〈[φ, α∗(fa)]⊗ α(ea) + [φ, fa]⊗ ea, y ⊗ ψ〉

+〈fa ⊗ [x, ea] + α∗(fa)⊗ [x, α(ea)], y ⊗ ψ〉
−〈[x, ea]⊗ fa + [x, α(ea)]⊗ α∗(fa), ϕ⊗ z〉
−〈α(ea)⊗ [φ, α∗(fa)] + ea ⊗ [φ, fa], ϕ⊗ z〉)

= 〈−∆(x), ϕ⊗ ψ〉+ 〈∆(φ), y ⊗ z〉
+〈[φ, ψ], y〉+ 〈[x, y], ψ〉 − 〈[x, z], ϕ〉 − 〈[φ, ϕ], z〉,

for all x, y, z ∈ L and φ, ϕ, ψ ∈ L∗ . So ∆D(L)∗ = ∆Lcop⊕L∗ + ad(t).

From direct computation,

CHYB(t)+ 	 (αLcop⊕L∗ ⊗∆Lcop⊕L∗)(t) = 0,

then the codouble Hom-Lie bialgebra D(L)∗ is a Hom-Lie bialgebra from Theorem
5.1 in [25].

Since the linear dual of any finite dimensional quasi-triangular Hom-Lie bial-
gebra is a co-quasi-triangular Hom-Lie bialgebra, D(L)∗ is a co-quasi-triangular
Hom-Lie bialgebra by Theorem 3.1, which completes the proof.
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