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Abstract. Let S% be the set of unit quaternions, let H be the algebra of
quaternions, and let H* be the space of pure quaternions. It is an elementary fact
that S® and H* U {oo} are homeomorphic spaces by a stereographic projection.
We show that a reflection in S® induces a linear fractional transformation on
H* U {oo} that is defined by a matrix in a symplectic group Sp(2). In addition,
we identify the left eigenvalues of such a matrix, and show the subgroup G
generated by these matrices satisfies G/(£12) ~ O(4).
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1. Brief Review and Main Result

The noncommutativity of the quaternions is one of the biggest obstacles in solving
the left eigenvalues of a quaternionic matrix [11]. This paper applies rigid motions
of the 3-sphere to find the left eigenvalues of certain 2-by-2 quaternionic matrices
in (1) . These matrices are elements of the compact symplectic group Sp(2)
[4]. The solution we present exploits a connection between the fixed points of
a quaternionic linear fractional transformation and the right eigenvalues of a
corresponding quaternionic matrix [9]. However, the solution depends on a short
technical theorem that correlates the reflections of a 3-sphere, a stereographic
projection, and quaternionic Mobius transformations. The presentation in this
paper relates to previous work on quaternionic Mobius geometry and Vahlen
matrices [3, 7].

A quaternion z = a + bt + c¢j + dk € H is a unit quaternion if N|z] =
a?+ b+t +d*>=1,and a,b,c,d € R. Let S® be the set of unit quaternions. If
a =0, x is a pure quaternion. Let H* be the space of pure quaternions, and we
denote H:, = H*U{oo}. Let IT: S — H*_ be the stereographic projection given
by II(z) = (1 —d)"'(at + bj +ck) if v # k, and II(k) = co.

The conjugate of z is denoted by T = a — bt — c¢j — dk. A reflection in
S3 about a hyperplane in H perpendicular to a unit quaternion y is given by
the mapping f,(z) = —yTy, for x € S* [5]. To each reflection f,, we associate a
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Mobius transformation F' = ITo f,oII™* of H’ . A good reference on the geometry
of Mébius transformations is [2].

Let Sp(2) be the group of 2-by-2 quaternion matrices A such that AA* =
I5, where I, is the identity 2-by-2 matrix and A* is the conjugate transpose of
A. We construct a matrix Y € Sp(2) such that F' is the quaternionic linear
fractional transformation corresponding to Y. To be specific, let p,q,r,yo € R. If
y=ptqi+rjt+yk €53, weset y; = pi+qj +rk and associate a quaternionic
matrix

Y = [yl yQ] (1)

—Y2 Ui
The corresponding quaternionic linear fractional transformation Fy is defined by

Fy(z) = (1@ + yo) (—yaz +71) (2)

For the remainder of this paper, we write Fy for the restriction of the mapping in
(2) to H?, . The matrices Y belong to a class of matrices classified in [6] for which
the corresponding linear fractional transformations map H_ bijectively onto itself.

For example, if y = ¢ and x € H*, then F(z) = jzj € H*, F(o0) = 00,
and ' = Fy. Before proving the general case in Theorem 1.2, we begin with a
lemma but whose proof we omit.

Lemma 1.1. Ifzxy=ap+ bg+ cr + dys, then

fy@) = fa—=2(x*xy)p]+[b—2@*y)gli+[c—2x*y)r]g+[d—2(x *y)y] k

= x—2(zx*xy)y.

In particular, we have

yi1(at + 03 + ck)y, = Hy1|]2 (ai +b3 +ck — [(at 4+ b7 + ck) * y] y1>

[y

Theorem 1.2. Fy =1lo f,oIl"!

Proof.  Since 27! = Nl[Z}E = ﬁz when 2 #0, 2 € H, we find
1
Fyoll = 1— N[II + I + 311
(Fr o)) = gy (1= NI g + T+ 410) )

provided y,II(x) +y; # 0 and = # k. The right-hand side is a pure quaternion
because y; and II(z) are pure quaternions.
To indicate the components of a quaternion x, let x *1 =a, x*x 1 = b,

z#j = c,and xxk = d. Since yoIl(x)+y; is a pure quaternion and N[II(z)] = ¢,
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we find
Nlyll(z) + 3] = —(yIl(z) +y1)?
1+d
= v T—g ~ 2vell(@)y] * 1+ Ny
_ 2d 2 290
= 1+ Tt 1_d(ap+bq—|—c7°)
1 2
= 13 [1 — (d — 2dy5 — 2ys (ap + bg + cr)}
1
NlypIl(z) + 1] = 14 [1 = fy(z) = K]
via Lemma 1.1. Consequently,
1—d 2d ,
(Fy oIl)(z) = 1= f,(0) * k (‘ 1= g% + yill(z)ys + y2H(a:)>

1 . . . .
W (—2dy2y1 + y1(as + bj + ck)ys + y5(ai + b + ck:))

1 . .\ :
= W((fy(x)*l)lﬂfy(w)*m+(fy($)*3)k> (3)

(Fy oll)(z) = Ilo f,(z)

where (3) is a result of an application of Lemma 1.1. Since Fy, II, and f, are
homeomorphisms, Fy =1l o f, o II"". [

2. Left Eigenvalues

Let Q be the set of all matrices Y of the form (1), and let v = [ vy, v, ]T be a
column vector of quaternions, where v; or v, is nonzero. If Yv = Av, we say that
A is a left eigenvalue of Y. The set of all left eigenvalues of Y is the left spectrum
of Y. We discuss a few examples. The left spectrum of

0 1
=]

is the set S? of pure unit quaternions because if A € S? and v = [ V1, AUp }T,
then Yiv = Av. In (1), if yo = 0 then the left spectrum of Y is {£y;}.

We find the left spectrum of the remaining Y’s in (1). We adopt the same
notation, and we assume yy # 0, £1. If Fy(v1) = vy, v; € H*, and vy = 1, then
Yv = vA where A = —(yov1 +11). If, additionally, v1y; = yyv1, then v\ = Av and
A is a left eigenvalue. We prove that such v; exists. For a € R, we motivate and
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analyze the solutions [ e, f,9,h }T of

P g o e 0
1 0 0 ap f _ | o (4)
01 0 agq g aq
001 ar h ar

If M, denotes the 4-by-4 coefficient matrix of (4), then
Det(M,) = ally > — p2.

If Det(M,) # 0, the following solution of (4) is unique:

[ e?fagah :| |: —Y2D, —Y24, —Y2r, ||y1||2 ] :

~allwl? -

In particular, the locus of points [e, f, g, h] € R* parametrized by a € R, where
o # H;ﬁ’ lies on a line through the origin. We choose a such that

Q B 1
12—y wll

O‘Hyl

and consequently w = e + fi + gj + hk is a unit quaternion. In (4), the first
equation implies that w lies in the hyperplane that is perpendicular to y. Since
fy fixes each point in the hyperplane and by applying Theorem 1.2, we obtain
Fy(II(w)) = II(w). Thus, we have

yill(w) + yo = —yoll(w)® — H(w)y.

Also, the last three equations in (4) imply II(w) = ay;. Thus, H(w)y; = y111(w)
and
o Yy IT(w) II(w)
Y2 — —(yoll(w) + .
e ] = gty |

Conversely, let A = y; + 1ol be a left eigenvalue of Y where [ € H. Then [ satisfies
a quadratic equation [10], namely,

P42y tyl +1=0.

Combined with the identity 22 —2(2%1)z2+ N[z] =0, z € H, we find [ € H*. The
left eigenvalues of Y are necessarily pure quaternions. Hence, —(y2Il(w) +y;) are
the only left eigenvalues of Y.

Theorem 2.1. A matriz Y of the form (1) where yo # 0,41 has exactly two
distinct left eigenvalues N = —(yoIl(w) + y1) where

1 . .
w = im (yg]H—yzC]z +Yarg — ||yl||2k) :
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3. The Group generated by (2

Let Dety denote the Dieudonné determinant [1, 3]. If M, N are quaternionic ma-
trices, then Dety (M N) = Dety, (M)Dety(N). For matrices Y in (1), Dety(Y) =
1 and is the same as the ordinary determinant of Y. Also, if A € Sp(2) then

Let y® be a unit quaternion, let Y; be the corresponding quaternionic
matrix from (1) for ¢ = 1,--- ,k, and let ¥V = HLYQ be a matrix product.

Note, Y = —I, and the quaternionic linear fractional transformations satisfy

FY:FYlo"'OFYk‘
Let Id denote the identity mapping on S® or H* . We omit the proof of
the next lemma.

Lemma 3.1.  The following statements are equivalent:

a) fy(l)O"'Ofy(k) =1Id
b) Fy =1Id
C) Y::l:IQ

Let G be the subgroup of Sp(2) that is generated by €2 as defined in Section
2, and let O(4) be the orthogonal group of 4-by-4 matrices.

Theorem 3.2. G/(+1l;) ~ O(4), an isomorphism of groups

Proof.  Let G(X) denote the group of bijections of a set X onto itself with
composition as the group operation. The bijection IT: S® — H*_  induces a group
isomorphism Il : G (S?) — G (H2,) where Hg(h) = ITohoIl~!. In particular,
Theorem 1.2 shows that Ilg(f,) = Fy. Since any member of O(4) is a product
of reflections by a theorem of Elie Cartan, O(4) is isomorphic to the group G,
generated by {Fy :y € S3}.

By invoking Lemma 3.1, we obtain a well-defined group homomorphism
from G onto Gy such that Y € €2 maps to Fy. Since +1, are the only elements

in the kernel of the homomorphism, we find G/{£1I,} is group isomorphic to Gj.
Thus, G/(£1;) ~ O(4). ]

Finally, the authors are grateful to the referee for helpful suggestions on the
exposition of the paper.

References

[1] Aslaksen, H., Quaternionic determinants, Math. Intelligencer 18 (1996), 57—
65.

[2] Beardon, A. F., “The Geometry of Discrete Groups,” Springer-Verlag, Grad-
uate Texts in Mathematics 91, 1983.



844

CANLUBO AND REYES

Bisi, C., and G. Gentilli, Mobius transformations and the Poincaré distance
in the quaternionic setting, Indiana Univ. Math. J. 58 (2009), 2729-2764.

[4] Brocker, T., and T. Dieck, “Representations of Compact Lie Groups,”
Springer-Verlag, Graduate Texts in Mathematics 98, 1985.

[5] Coxeter, H. S. M., Quaternions and reflections, Amer. Math. Monthly 53
(1946), 136-146.

[6] Jakobs, W., and A. Krieg, Mébius transformations on R3, Complex Var.
Elliptic Equ. 55 (2010), 375-383.

[7] Lawson, J., Clifford algebras, Mébius transformations, Vahlen matrices, and
B-loops, Comment. Math. Univ. Carolin. 51 (2010), 319-331.

[8] Lyons, D.W., An elementary introduction to the Hopf fibration, Math. Mag.
76 (2003), 87-98.

9] Parker, J. R., and I. Short, Conjugacy classification of quaternionic Mdbius
transformations, Comput. Methods Funct. Theory 9 (2009), 13-25.

[10] So, W., Quaternionic left eigenvalue problem, Southeast Asian Bull. Math.
29 (2005), 555-565.

[11] Zhang, F., Gersgorin type theorems for quaternionic matrices, Linear Algebra
and Its Applications 424 (2007), 139-153.

Clarisson Canlubo Edgar Reyes

Institute of Mathematics Department of Mathematics

University of the Philippines Southeastern Louisiana University

Diliman, 1101, Philippines Hammond, Louisiana 70402, USA

crpcanlubo@math.upd.edu.ph ereyes@selu.edu

Received August 15, 2011
and in final form February 19, 2012



