Reflections on S^3 and Quaternionic Möbius Transformations

Clarisson Canlubo and Edgar Reyes

Communicated by G. 'Olafson

Abstract. Let S^3 be the set of unit quaternions, let \mathcal{H} be the algebra of quaternions, and let \mathcal{H}^* be the space of pure quaternions. It is an elementary fact that S^3 and $\mathcal{H}^* \cup \{\infty\}$ are homeomorphic spaces by a stereographic projection. We show that a reflection in S^3 induces a linear fractional transformation on $\mathcal{H}^* \cup \{\infty\}$ that is defined by a matrix in a symplectic group Sp(2). In addition, we identify the left eigenvalues of such a matrix, and show the subgroup G generated by these matrices satisfies $G/(\pm I_2) \simeq O(4)$.

Mathematics Subject Classification 2000: 51B10, 15B33.

Key Words and Phrases: Möbius transformation, quaternion.

1. Brief Review and Main Result

The noncommutativity of the quaternions is one of the biggest obstacles in solving the left eigenvalues of a quaternionic matrix [11]. This paper applies rigid motions of the 3-sphere to find the left eigenvalues of certain 2-by-2 quaternionic matrices in (1) . These matrices are elements of the compact symplectic group Sp(2)[4]. The solution we present exploits a connection between the fixed points of a quaternionic linear fractional transformation and the right eigenvalues of a corresponding quaternionic matrix [9]. However, the solution depends on a short technical theorem that correlates the reflections of a 3-sphere, a stereographic projection, and quaternionic Möbius transformations. The presentation in this paper relates to previous work on quaternionic Mobius geometry and Vahlen matrices [3, 7].

A quaternion $x = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} \in \mathcal{H}$ is a unit quaternion if $N[x] \equiv a^2 + b^2 + c^2 + d^2 = 1$, and $a, b, c, d \in \mathbb{R}$. Let S^3 be the set of unit quaternions. If a = 0, x is a pure quaternion. Let \mathcal{H}^* be the space of pure quaternions, and we denote $\mathcal{H}^*_{\infty} = \mathcal{H}^* \cup \{\infty\}$. Let $\Pi : S^3 \to \mathcal{H}^*_{\infty}$ be the stereographic projection given by $\Pi(x) = (1 - d)^{-1}(a\mathbf{i} + b\mathbf{j} + c\mathbf{k})$ if $x \neq \mathbf{k}$, and $\Pi(\mathbf{k}) = \infty$.

The conjugate of x is denoted by $\overline{x} = a - b\mathbf{i} - c\mathbf{j} - d\mathbf{k}$. A reflection in S^3 about a hyperplane in \mathcal{H} perpendicular to a unit quaternion y is given by the mapping $f_y(x) = -y\overline{x}y$, for $x \in S^3$ [5]. To each reflection f_y , we associate a

Möbius transformation $F \equiv \Pi \circ f_y \circ \Pi^{-1}$ of \mathcal{H}^*_{∞} . A good reference on the geometry of Möbius transformations is [2].

Let Sp(2) be the group of 2-by-2 quaternion matrices A such that $AA^* = I_2$, where I_2 is the identity 2-by-2 matrix and A^* is the conjugate transpose of A. We construct a matrix $Y \in Sp(2)$ such that F is the quaternionic linear fractional transformation corresponding to Y. To be specific, let $p, q, r, y_2 \in \mathbb{R}$. If $y = p+q\mathbf{i}+r\mathbf{j}+y_2\mathbf{k} \in S^3$, we set $y_1 = p\mathbf{i}+q\mathbf{j}+r\mathbf{k}$ and associate a quaternionic matrix

$$Y \equiv \begin{bmatrix} y_1 & y_2 \\ -y_2 & \overline{y_1} \end{bmatrix}.$$
 (1)

The corresponding quaternionic linear fractional transformation F_Y is defined by

$$F_Y(x) = (y_1 x + y_2)(-y_2 x + \overline{y_1})^{-1}.$$
(2)

For the remainder of this paper, we write F_Y for the restriction of the mapping in (2) to \mathcal{H}^*_{∞} . The matrices Y belong to a class of matrices classified in [6] for which the corresponding linear fractional transformations map \mathcal{H}^*_{∞} bijectively onto itself.

For example, if y = i and $x \in \mathcal{H}^*$, then $F(x) = jxj \in \mathcal{H}^*$, $F(\infty) = \infty$, and $F = F_Y$. Before proving the general case in Theorem 1.2, we begin with a lemma but whose proof we omit.

Lemma 1.1. If $x * y \equiv ap + bq + cr + dy_2$, then

$$f_y(x) = [a - 2(x * y)p] + [b - 2(x * y)q] \mathbf{i} + [c - 2(x * y)r] \mathbf{j} + [d - 2(x * y)y_2] \mathbf{k}$$

= $x - 2(x * y)y$.

In particular, we have

$$y_1(a i + b j + c k)y_1 = ||y_1||^2 \left(a i + b j + c k - \frac{2}{||y_1||^2} \left[(a i + b j + c k) * y_1\right]y_1\right)$$

Theorem 1.2. $F_Y = \Pi \circ f_y \circ \Pi^{-1}$

Proof. Since $z^{-1} = \frac{1}{N[z]}\overline{z} = \frac{1}{N[\overline{z}]}\overline{z}$ when $z \neq 0, z \in \mathcal{H}$, we find

$$(F_Y \circ \Pi)(x) = \frac{1}{N[y_2\Pi(x) + y_1]} \left((1 - N[\Pi(x)]) y_2 y_1 + y_1 \Pi(x) y_1 + y_2^2 \Pi(x) \right)$$

provided $y_2\Pi(x) + y_1 \neq 0$ and $x \neq k$. The right-hand side is a pure quaternion because y_1 and $\Pi(x)$ are pure quaternions.

To indicate the components of a quaternion x, let x * 1 = a, x * i = b, x*j = c, and x*k = d. Since $y_2\Pi(x)+y_1$ is a pure quaternion and $N[\Pi(x)] = \frac{1+d}{1-d}$,

we find

$$N[y_2\Pi(x) + y_1] = -(y_2\Pi(x) + y_1)^2$$

= $y_2^2 \cdot \frac{1+d}{1-d} - 2y_2[\Pi(x)y_1] * 1 + N[y_1]$
= $1 + \frac{2d}{1-d}y_2^2 + \frac{2y_2}{1-d}(ap + bq + cr)$
= $\frac{1}{1-d}[1 - (d - 2dy_2^2 - 2y_2(ap + bq + cr)]]$
 $N[y_2\Pi(x) + y_1] = \frac{1}{1-d}[1 - f_y(x) * \mathbf{k}]$

via Lemma 1.1. Consequently,

$$(F_{Y} \circ \Pi)(x) = \frac{1-d}{1-f_{y}(x) * \mathbf{k}} \left(-\frac{2d}{1-d} y_{2}y_{1} + y_{1}\Pi(x)y_{1} + y_{2}^{2}\Pi(x) \right)$$

$$= \frac{1}{1-f_{y}(x) * \mathbf{k}} \left(-2dy_{2}y_{1} + y_{1}(a\mathbf{i} + b\mathbf{j} + c\mathbf{k})y_{1} + y_{2}^{2}(a\mathbf{i} + b\mathbf{j} + c\mathbf{k}) \right)$$

$$= \frac{1}{1-f_{y}(x) * \mathbf{k}} \left((f_{y}(x) * 1)\mathbf{i} + (f_{y}(x) * \mathbf{i})\mathbf{j} + (f_{y}(x) * \mathbf{j})\mathbf{k} \right)$$
(3)

$$(F_Y \circ \Pi)(x) = \Pi \circ f_y(x)$$

where (3) is a result of an application of Lemma 1.1. Since F_Y , Π , and f_y are homeomorphisms, $F_Y = \Pi \circ f_y \circ \Pi^{-1}$.

2. Left Eigenvalues

Let Ω be the set of all matrices Y of the form (1), and let $v = \begin{bmatrix} v_1, v_2 \end{bmatrix}^T$ be a column vector of quaternions, where v_1 or v_2 is nonzero. If $Yv = \lambda v$, we say that λ is a *left eigenvalue* of Y. The set of all left eigenvalues of Y is the *left spectrum* of Y. We discuss a few examples. The left spectrum of

$$Y_1 = \left[\begin{array}{cc} 0 & 1\\ -1 & 0 \end{array} \right]$$

is the set S^2 of pure unit quaternions because if $\lambda \in S^2$ and $v = \begin{bmatrix} v_1, \lambda v_1 \end{bmatrix}^T$, then $Y_1 v = \lambda v$. In (1), if $y_2 = 0$ then the left spectrum of Y is $\{\pm y_1\}$.

We find the left spectrum of the remaining Y's in (1). We adopt the same notation, and we assume $y_2 \neq 0, \pm 1$. If $F_Y(v_1) = v_1, v_1 \in \mathcal{H}^*$, and $v_2 = 1$, then $Yv = v\lambda$ where $\lambda = -(y_2v_1 + y_1)$. If, additionally, $v_1y_1 = y_1v_1$, then $v\lambda = \lambda v$ and λ is a left eigenvalue. We prove that such v_1 exists. For $\alpha \in \mathbb{R}$, we motivate and analyze the solutions $\begin{bmatrix} e, f, g, h \end{bmatrix}^T$ of

$$\begin{bmatrix} p & q & r & y_2 \\ 1 & 0 & 0 & \alpha p \\ 0 & 1 & 0 & \alpha q \\ 0 & 0 & 1 & \alpha r \end{bmatrix} \begin{bmatrix} e \\ f \\ g \\ h \end{bmatrix} = \begin{bmatrix} 0 \\ \alpha p \\ \alpha q \\ \alpha r \end{bmatrix}.$$
 (4)

If M_{α} denotes the 4-by-4 coefficient matrix of (4), then

$$\operatorname{Det}(M_{\alpha}) = \alpha \|y_1\|^2 - y_2$$

If $Det(M_{\alpha}) \neq 0$, the following solution of (4) is unique:

$$[e, f, g, h] = \frac{\alpha}{\alpha \|y_1\|^2 - y_2} [-y_2 p, -y_2 q, -y_2 r, \|y_1\|^2].$$

In particular, the locus of points $[e, f, g, h] \in \mathbb{R}^4$ parametrized by $\alpha \in \mathbb{R}$, where $\alpha \neq \frac{y_2}{\|y_1\|^2}$, lies on a line through the origin. We choose α such that

$$\frac{\alpha}{\alpha \|y_1\|^2 - y_2} = \frac{1}{\|y_1\|}$$

and consequently $w = e + f \mathbf{i} + g \mathbf{j} + h \mathbf{k}$ is a unit quaternion. In (4), the first equation implies that w lies in the hyperplane that is perpendicular to y. Since f_y fixes each point in the hyperplane and by applying Theorem 1.2, we obtain $F_Y(\Pi(w)) = \Pi(w)$. Thus, we have

$$y_1 \Pi(w) + y_2 = -y_2 \Pi(w)^2 - \Pi(w) y_1.$$

Also, the last three equations in (4) imply $\Pi(w) = \alpha y_1$. Thus, $\Pi(w)y_1 = y_1\Pi(w)$ and

$$\begin{bmatrix} y_1 & y_2 \\ -y_2 & \overline{y_1} \end{bmatrix} \begin{bmatrix} \Pi(w) \\ 1 \end{bmatrix} = -(y_2 \Pi(w) + y_1) \begin{bmatrix} \Pi(w) \\ 1 \end{bmatrix}.$$

Conversely, let $\lambda = y_1 + y_2 l$ be a left eigenvalue of Y where $l \in \mathcal{H}$. Then l satisfies a quadratic equation [10], namely,

$$l^2 + 2y_2^{-1}y_1l + 1 = 0.$$

Combined with the identity $z^2 - 2(z*1)z + N[z] = 0$, $z \in \mathcal{H}$, we find $l \in \mathcal{H}^*$. The left eigenvalues of Y are necessarily pure quaternions. Hence, $-(y_2\Pi(w) + y_1)$ are the only left eigenvalues of Y.

Theorem 2.1. A matrix Y of the form (1) where $y_2 \neq 0, \pm 1$ has exactly two distinct left eigenvalues $\lambda = -(y_2 \Pi(w) + y_1)$ where

$$w=\pmrac{1}{\left\Vert y_{1}
ight\Vert }\left(y_{2}p+y_{2}q\,oldsymbol{i}+y_{2}r\,oldsymbol{j}-\left\Vert y_{1}
ight\Vert ^{2}oldsymbol{k}
ight) .$$

842

3. The Group generated by Ω

Let $\operatorname{Det}_{\mathcal{H}}$ denote the Dieudonné determinant [1, 3]. If M, N are quaternionic matrices, then $\operatorname{Det}_{\mathcal{H}}(MN) = \operatorname{Det}_{\mathcal{H}}(M)\operatorname{Det}_{\mathcal{H}}(N)$. For matrices Y in (1), $\operatorname{Det}_{\mathcal{H}}(Y) = 1$ and is the same as the ordinary determinant of Y. Also, if $A \in Sp(2)$ then $\operatorname{Det}_{\mathcal{H}}(A) = 1$.

Let $y^{(i)}$ be a unit quaternion, let Y_i be the corresponding quaternionic matrix from (1) for $i = 1, \dots, k$, and let $Y = \prod_{i=1}^{k} Y_i$ be a matrix product. Note, $Y_i^2 = -I_2$ and the quaternionic linear fractional transformations satisfy $F_Y = F_{Y_1} \circ \cdots \circ F_{Y_k}$.

Let Id denote the identity mapping on S^3 or \mathcal{H}^*_{∞} . We omit the proof of the next lemma.

Lemma 3.1. The following statements are equivalent:

- a) $f_{u^{(1)}} \circ \cdots \circ f_{u^{(k)}} = Id$
- b) $F_Y = Id$
- c) $Y = \pm I_2$

Let G be the subgroup of Sp(2) that is generated by Ω as defined in Section 2, and let O(4) be the orthogonal group of 4-by-4 matrices.

Theorem 3.2. $G/(\pm I_2) \simeq O(4)$, an isomorphism of groups

Proof. Let G(X) denote the group of bijections of a set X onto itself with composition as the group operation. The bijection $\Pi : S^3 \to \mathcal{H}_{\infty}^*$ induces a group isomorphism $\Pi_G : G(S^3) \to G(\mathcal{H}_{\infty}^*)$ where $\Pi_H(h) = \Pi \circ h \circ \Pi^{-1}$. In particular, Theorem 1.2 shows that $\Pi_G(f_y) = F_Y$. Since any member of O(4) is a product of reflections by a theorem of Elie Cartan, O(4) is isomorphic to the group G_2 generated by $\{F_Y : y \in S^3\}$.

By invoking Lemma 3.1, we obtain a well-defined group homomorphism from G onto G_2 such that $Y \in \Omega$ maps to F_Y . Since $\pm I_2$ are the only elements in the kernel of the homomorphism, we find $G/\{\pm I_2\}$ is group isomorphic to G_2 . Thus, $G/(\pm I_2) \simeq O(4)$.

Finally, the authors are grateful to the referee for helpful suggestions on the exposition of the paper.

References

- Aslaksen, H., Quaternionic determinants, Math. Intelligencer 18 (1996), 57– 65.
- [2] Beardon, A. F., "The Geometry of Discrete Groups," Springer-Verlag, Graduate Texts in Mathematics 91, 1983.

- [3] Bisi, C., and G. Gentilli, *Möbius transformations and the Poincaré distance in the quaternionic setting*, Indiana Univ. Math. J. **58** (2009), 2729–2764.
- [4] Bröcker, T., and T. Dieck, "Representations of Compact Lie Groups," Springer-Verlag, Graduate Texts in Mathematics **98**, 1985.
- [5] Coxeter, H. S. M., Quaternions and reflections, Amer. Math. Monthly 53 (1946), 136–146.
- [6] Jakobs, W., and A. Krieg, Möbius transformations on ℝ³, Complex Var. Elliptic Equ. 55 (2010), 375–383.
- [7] Lawson, J., Clifford algebras, Möbius transformations, Vahlen matrices, and B-loops, Comment. Math. Univ. Carolin. 51 (2010), 319–331.
- [8] Lyons, D.W., An elementary introduction to the Hopf fibration, Math. Mag. 76 (2003), 87–98.
- [9] Parker, J. R., and I. Short, Conjugacy classification of quaternionic Möbius transformations, Comput. Methods Funct. Theory 9 (2009), 13–25.
- [10] So, W., Quaternionic left eigenvalue problem, Southeast Asian Bull. Math. 29 (2005), 555–565.
- [11] Zhang, F., Geršgorin type theorems for quaternionic matrices, Linear Algebra and Its Applications 424 (2007), 139–153.

Clarisson Canlubo Institute of Mathematics University of the Philippines Diliman, 1101, Philippines crpcanlubo@math.upd.edu.ph Edgar Reyes Department of Mathematics Southeastern Louisiana University Hammond, Louisiana 70402, USA ereyes@selu.edu

Received August 15, 2011 and in final form February 19, 2012