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Abstract. Let G be a simply connected exponential solvable Lie group, H
a closed connected subgroup, and let τ be a representation of G induced from
a unitary character χf of H . The spectrum of τ corresponds via the orbit
method to the set G · Aτ/G of coadjoint orbits that meet the spectral variety
Aτ = f + h⊥ . We prove that the spectral measure of τ is absolutely continuous
with respect to the Plancherel measure if and only if H acts freely on some
point of Aτ . As a corollary we show that if G is nonunimodular, then τ has
admissible vectors if and only if the preceding orbital condition holds.
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1. Introduction

At the intersection of abstract harmonic analysis and wavelet theory lies the
fundamental notion of admissibility. Given a unitary representation τ of a locally
compact topological group G , a vector ψ ∈ Hτ is admissible if the mapping
φ 7→ 〈φ, τ(·)ψ〉 is an isometry of Hτ into L2(G). Which representations have
admissible vectors? This classical question is answered in a variety of contexts
and for various classes of representations, for example when G is type I and τ is
irreducible [6], or when τ is the left regular representation of G [9]. The monograph
[10], in addition to containing numerous other references for admissibility, describes
the relation between this question and Plancherel theory.

In this paper we consider the following class of representations. Let G
be an exponential solvable Lie group, and let τ be the unitary representation
of G induced from a unitary character of H . A description of the irreducible
decomposition of τ is given in terms of the coadjoint orbit picture in [11]. On the
other hand an explicit Plancherel formula for G is given in [4] using coadjoint orbit
parameters. Using these results, we give a simple necessary and sufficient condition
that τ be a subrepresentation of the left regular representation of G in terms of
the orbit picture. Specifically, let τ be induced from the character χ of H , let
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f be the linear functional on h corresponding to χ , so that χ(expY ) = eif(Y ) .
Let Aτ be the real affine variety of all ` ∈ g∗ whose restriction to h is f . Then
Aτ is an Ad∗H -space, and we show (Theorem 3.4) that τ is contained in the left
regular representation if and only if H acts freely on some ` ∈ Aτ (and hence on
a Zariski open subset of Aτ .) Combining this result with the methods of [10], it
follows that if G is nonunimodular, then the preceding condition is both necessary
and sufficient in order that τ have admissible vectors (Corollary 3.6). If G is
unimodular, then the situation for admissibility is still murky.

2. Preliminaries

Let G be a connected, simply connected exponential solvable Lie group with Lie
algebra g . Given s ∈ G , Z ∈ g , and ` ∈ g∗ , we denote both the adjoint and
coadjoint actions multiplicatively: Ad(s)Z = s · Z and Ad∗(s)` = s · ` . Given
` ∈ g∗ , let G(`) be the stabilizer of ` in G ; then G is connected and its Lie algebra
is g(`) = {X ∈ g : `[X,Z] = 0 holds for all Z ∈ g} .

For the remainder of this paper, we fix a closed connected subgroup H of
G with Lie algebra h , a unitary character χ of H , and a monomial representation
τ = indGH(χ). Let f ∈ h∗ satisfy χ(expY ) = eif(Y ) so that [h, h] ⊂ ker f ; we also
use the notation τ = τ(f, h). In our notation, we will identify representations that
are unitarily equivalent. Let Ĝ denote the Borel space of equivalence classes of
irreducible representations of G .

Since G is type I, a monomial representation τ determines a unique measure
class on Ĝ such that

τ =

∫ ⊕
Ĝ

mτ (π)πdν(π).

In particular, the Plancherel measure class µ is the measure class determined by
the regular representation L . Since the multiplicity mL(π) =∞ µ-a.e., then τ is
a subrepresentation of L if and only if ν is absolutely continuous with respect to
µ .

The measure class ν is described on g∗/G as follows: for τ = τ(f, h), we
put Aτ = f + h⊥ = {` ∈ g∗ : `|h = f} . Let ξ be the canonical Lebesgue measure
class on Aτ extended to g∗ : for any Borel subset B of g∗ , ξ(B) = ξ(B ∩Aτ ). By
[11], ν is the pushforward of ξ to g∗/G . Though ξ is singular with respect to the
Lebesgue measure class on g∗ (unless H is the trivial subgroup), its pushforward
ν may be absolutely continuous with respect to the Plancherel measure. In the
next section, we will determine when this is the case.

3. Absolute continuity of the spectral measure.

Consider the action of H on g∗ by the restriction of the coadjoint action. Given
` ∈ g∗ , the Lie algebra of the stabilizer of ` in H is h(`) = h ∩ g(`). If s ∈ G ,
then one observes that h(s · `) = s · h(`). If U(d) = {` ∈ g∗ : dimH · ` = d} , then
the preceding observation shows that each U(d) is G-invariant. Put

dτ = max{d : U(d) ∩ Aτ 6= ∅} and V := U(dτ ) ∩ Aτ .

We claim that V is a Zariski open subset of Aτ . Indeed, fix a basis {Y1, Y2, · · · , Ym}
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for h and a basis {Z1, Z2, · · · , Zn} for g . For ` ∈ g∗ let M(`) be the m×n matrix

M(`) =


`[Y1, Z1] `[Y1, Z2] · · · `[Y1, Zn]
`[Y2, Z1] `[Y2, Z2] · · · `[Y2, Zn]

...
... · · · ...

`[Ym, Z1] `[Ym, Z2] · · · `[Ym, Zn]

 .
Lemma 3.1. Let ` ∈ g∗ . Then dimH · ` = rank M(`). Hence V is Zariski-
open in Aτ .

Proof. We have dimH · ` = h/h(`), where h(`) is the Lie algebra of the
stabilizer of ` in H . Now h(`) = g` ∩ h = {Y ∈ h : `[Y,X] = 0 for all X ∈ g} . It
is easily seen that dim h/h(`) = rankM(`).

We are especially interested in the case where dτ = dimH .

Corollary 3.2. Suppose that there is some ` ∈ Aτ such that H acts freely on
`. Then H acts freely on a Zariski open subset of Aτ .

Define the smooth map φ : G×Aτ → g∗ by φ (s, `) = s·` . We must compute
the rank of the mapping φ at a point (e, `), where e is the identity element in H .
Choose a basis {Z1, Z2, . . . , Zn} for g with the following properties.

• For each j, 1 ≤ j < n , set gj = span{Z1, Z2, . . . , Zj} . If gj is not an ideal in
g , then gj+1 and gj−1 are ideals.

• If gj is not an ideal in g , then the module gj+1/gj−1 is not R-split.

Then (t1, t2, . . . , tn) 7→ exp t1Z1 · · · exp tnZn is a global diffeomorphism of Rn onto
G . Recall the basis Y1, Y2, . . . , Ym of h and put fj = f(Yj), 1 ≤ j ≤ m . Choose
X1, X2, . . . , Xn−m so that Y1, Y2, . . . , Ym, X1, X2, . . . , Xn−m is an ordered basis of
g . Let β be the natural global chart for g∗ determined by the ordered dual basis
Y ∗1 , Y

∗
2 , . . . Y

∗
m, X

∗
1 , X

∗
2 , . . . , X

∗
n−m . Now define α : Rn × Rn−m → G× Aτ by

α(t, x) =
(

exp t1Z1 · · · exp tnZn, f1Y
∗

1 + · · ·+ fmY
∗
m + x1X

∗
1 + · · ·+ xn−mX

∗
n−m

)
Note that for t = 0, α(0, ·) : Rn−m → {e} × Aτ ' Aτ defines a global diffeo-
morphism from Rn−m onto Aτ . Moreover α−1 is a global chart for G × Aτ and
β ◦ φ ◦ α is a coordinatization of the map φ . For simplicity of notation we set
φ̃ = φ ◦ α ; observe that the coordinate functions for the map β ◦ φ ◦ α are given
by

(β ◦ φ ◦ α)j(t, x) = φ̃(t, x)(Yj) = φ
(
α(t, x)

)
(Yj), 1 ≤ j ≤ m,

and

(β ◦ φ ◦ α)j(t, x) = φ̃(t, x)(Xj−m) = φ
(
α(t, x)

)
(Xj−m), m+ 1 ≤ j ≤ n.
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Lemma 3.3. For each ` ∈ Aτ ,

rank dφ(e, `) = dimH · `+ n−m = n− dimH(`).

Proof. Let ` ∈ Aτ and x the corresponding point in Rn−m such that α(0, x) =
(e, `). We compute the Jacobian matrix Jφ of the coordinatization β ◦ φ ◦ α of φ
at (0, x):

Jφ (0, x) =



∂φ̃(0,x)(Y1)
∂t1

· · · ∂φ̃(0,x)(Y1)
∂tn

∂φ̃(0,x)
∂x1

· · · ∂φ̃(0,x)(Y1)
∂xn−m

...
. . .

...
...

. . .
...

∂φ̃(0,x)(Ym)
∂t1

· · · ∂φ̃(0,x)(Ym)
∂tn

∂φ̃(0,x)
∂x1

· · · ∂φ̃(0,x)(Ym)
∂xn−m

∂φ̃(0,x)(X1)
∂t1

· · · ∂φ̃(0,x)(X1)
∂tn

∂φ̃(0,x)
∂x1

· · · ∂φ̃(0,x)(X1)
∂xn−m

...
. . .

...
...

. . .
...

∂φ̃(0,x)(Xn−m)
∂t1

· · · ∂φ̃(0,x)(Xn−m)
∂tn

∂φ̃(0,x)
∂x1

· · · ∂φ̃(0,x)(Xn−m)
∂xn−m



Now for each 1 ≤ j ≤ m , we have

∂φ̃ (0, x) (Yj)

∂tk
=

d

du

∣∣∣∣
u=0

`

(
Yj + u[Yj, Zk] +

u2

2!
[[Yj, Zk], Zk] + · · ·

)
= `[Yj, Zk]

holds for each 1 ≤ k ≤ n , while

∂φ̃ (0, x) (Yj)

∂xr
= 0, 1 ≤ r ≤ n−m

since ` 7→ φ̃(0, x)(Yj) is constant. On the other hand,

∂φ̃ (0, x) (Xs)

∂xr
= δrs.

Hence the differential dφ(e, `) is given by the matrix

Jφ (0, x) =

[
M(`) 0
∗ I

]
where 0 denotes the m×(n−m) zero matrix and I denotes the (n−m)×(n−m)
identity matrix. Now by Lemma 3.1, we have rank of M(`) = dimH · ` , and the
result follows.

We can now state the main result.

Theorem 3.4. Let H be a closed connected subgroup of G with Lie algebra h
and let τ = τ(f, h). If H acts freely on some point of Aτ then ν is absolutely
continuous with respect to µ. Otherwise, ν is singular with respect to µ.
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Proof. Suppose that there is ` ∈ Aτ such that H(`) = {e} . By Lemmas 3.1
and 3.3, V = {` ∈ Aτ : rank dφ(e, `) = n} is a non-empty Zariski open subset
of Aτ . For each ` ∈ V there exists a rectangular open neighbourhood J` × V` of
(e, `) such that the restriction of φ to J` × V` is a submersion, and hence that
W` = φ(J` × V`) is open. Now

W =
⋃
`∈V

W`

is open and satisfies V ⊂ W ⊂ G ·V . Hence G ·V/G = G ·W/G is open in g∗/G .

Next we invoke results concerning the stratification and parametrization
of coadjoint orbits [5, 4] : there is a G invariant Zariski-open subset Ω of g∗ ,
such that Ω/G has the structure of a smooth manifold (with underlying quotient
topology) and such that the quotient mapping σ : Ω→ Ω/G is real analytic. Now
since Ω is dense in g∗ , then Ω ∩W 6= ∅ . Since W ⊂ G · V and Ω is G-invariant,
then Ω ∩ V is a non-empty Zariski-open subset of Aτ , and the Lebesgue measure
ξ on Aτ is supported on Ω ∩ V . Since G · (Ω ∩ V ) is included in the G-invariant
set Ω ∩ U(dτ ), then G · (Ω ∩ V ) is disjoint from the set G · (Aτ \ (Ω ∩ V )), and
hence ν is supported on G · (Ω ∩ V )/G . Put α = σ|Ω∩V ; since σ is real analytic,
then so is α . Moreover, G · (Ω ∩ V )/G is open in g∗/G and ν = α∗ξ . Since
α is real analytic on Aτ , its set of singular points in Aτ has ξ -measure zero,
and α is a submersion on the set of regular points in Aτ . Since the pushforward
of Lebesgue measure by a submersion is absolutely continuous with respect to
Lebesgue measure, then ν is absolutely continuous with respect to the Lebesgue
measure class on G · (Ω ∩ V )/G . Since Plancherel measure µ on Ω/G belongs to
the Lebesgue measure class on Ω/G [4] and G · (Ω ∩ V )/G is an open subset of
Ω/G , then ν is absolutely continuous with respect to µ .

Now suppose that for all ` ∈ Aτ , H(`) is non-trivial. Then for all points
` ∈ Aτ , the rank of φ at (e, `) is less than n . It follows that the Lebesgue measure
of G · V is zero, and hence µ(G · V/G) = 0. But since V is a Zariski-open subset
of Aτ , then the measure ν is supported on G · V/G , and hence ν is singular with
respect to µ .

We now turn to the question of admissibility. Let π be any representation
of G acting in Hπ . For η ∈ H define Wη : Hπ → C(G) by Wη(f) = 〈f, π(·)η〉 .
The vector η is said to be admissible (or a continuous wavelet) if Wη is an isometry
of H into L2(G). In this case, Wη intertwines the representation π with the left
regular representation L of G , so that H = Wη(Hπ) is a closed left invariant
subspace of L2(G) and π is equivalent with L acting in H .

Let H be a closed left invariant subspace of L2(G), and let P : L2(G)→ H
be the orthogonal projection onto H . Then there is a unique (up to µ-a.e.
equality) measurable field {P̂λ}λ∈Ĝ of orthogonal projections where P̂λ is defined
on Lλ , and so that

(̂Pφ)(λ) = φ̂(λ)P̂λ

holds for µ-a.e. λ ∈ Ĝ . Set mH(λ) = rank(P̂λ). We recall [10, Theorem 4.22].
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Proposition 3.5. Let H be a closed left invariant subspace of L2(G). If G is
nonunimodular, then H has an admissible vector. If G is unimodular, then H
has an admissible vector if and only if mH is integrable over Ĝ with respect to the
Plancherel measure µ.

In light of the preceding and Theorem 3.4, the following is immediate.

Corollary 3.6. Suppose that G is nonunimodular. Then τ has an admissible
vector if and only if H acts freely on some ` ∈ Aτ .

Suppose that G is unimodular. Though it is clear that the condition that
H acts freely on points of Aτ is still necessary for admissibility, examples indicate
that the multiplicity function is never integrable, and hence that τ never has
admissible vectors in this case. Thus we make the following.

Conjecture 3.7. A monomial representation of a unimodular exponential solv-
able Lie group G never has admissible vectors.

A resolution of this conjecture would require a more precise understanding
of the image of the set G · (Ω ∩ V )/G in g∗/G .
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