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Abstract. Motivated by Dunkl operators theory, we consider a generating
series involving a modified Bessel function and a Gegenbauer polynomial, that
generalizes a known series already considered by L. Gegenbauer. We actually use
inversion formulas for Fourier and Radon transforms to derive a closed formula
for this series when the parameter of the Gegenbauer polynomial is a positive
integer. As a by-product, we get a relatively simple integral representation for
the generalized Bessel function associated with dihedral groups Dn , n ≥ 2 when
both multiplicities sum to an integer. In particular, we recover a previous result
obtained for D4 and we give a special interest to D6 . Finally, we derive similar
results for odd dihedral groups.
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Key Words and Phrases: Generalized Bessel function, dihedral groups, Jacobi
polynomials, Radon Transform.

1. Motivation

The dihedral group Dn of order n ≥ 2 is defined as the group of regular n-gone
preserving-symmetries ([8]). It figures among reflection groups associated with
irreducible root systems yet ceases to be crystallographic unless n = 2, 3, 4, 6.
Nevertheless the theory of rational Dunkl operators introduced in the late eighties
associates to reduced non necessarily crystallographic root systems generalized
Bessel functions that extend spherical functions on symmetric spaces of Euclidean
type from a discrete to a continuous range of multiplicities (see Ch.I in [3]).
In fact, the radial part of the Laplace-Beltrami operator on these symmetric
spaces fits the reflection group-invariant part of the Dunkl Laplacian with special
multiplicities (this fact holds for radial parts of a more general class of differential
operators). However, they are not easy to handle unlike spherical functions, except
possibly in lower ranks. In fact, they are expressed for the four infinite series of
irreducible root systems as multivariate hypergeometric series defined via Jack
polynomials ([4]). Nonetheless, Jack polynomials may be expressed by means
of Gegenbauer polynomials in ranks one and two ([13]). Moreover, probabilistic
considerations led to the following expression for the generalized Bessel function
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associated with dihedral systems ([5]). Let n = 2p, p ≥ 1 and let DW
k denote

the generalized Bessel function depending in this case on the two real variables
x = ρeiφ, y = reiθ, ρ, r ≥ 0, φ, θ ∈ [0, π/2p] . Then

DW
k (ρ, φ, r, θ) = cp,k

(
2

rρ

)γ∑
j≥0

I2jp+γ(ρr)p
l1,l0
j (cos(2pφ))pl1,l0j (cos(2pθ)) (1)

where

• k = (k0, k1) is a positive-valued multiplicity function, li = ki−1/2, i ∈ {1, 2} ,
γ = p(k0 + k1).

• I2jp+γ, p
l1,l0
j are the modified Bessel function of index 2jp + γ and the j -

th orthonormal Jacobi polynomial of parameters l1, l0 respectively (the or-
thogonality (Beta) measure need not to be normalized here. In fact, the
normalization only alters the constant cp,k below).

• The constant cp,k depends on p, k and is such that DW
k (0, y) = 1 for all

y = (r, θ) ∈ [0,∞)× [0, π/2p] (see [6])

cp,k = 2k0+k1
Γ(p(k1 + k0) + 1)Γ(k1 + 1/2)Γ(k0 + 1/2)

Γ(k0 + k1 + 1)
.

• A similar formula holds for odd dihedral systems (see the fourth section).

Once this relatively simple formula was obtained, the special case p = 2 was the
main object of a subsequent paper ([6]), aiming to work out the series displayed
in (1). The main achievement was then realized when γ = 2(k0 + k1) is an even
integer and according to Corollary 1.2 in [6]

DW
k (ρ, φ, r, θ) =

∫ ∫
i(γ−1)/2

(
ρr

√
1 + z2φ,2θ(u, v)

2

)
µl1(du)µl0(dv)

where

iα(x) :=
∞∑
m=0

1

(α + 1)mm!

(x
2

)2m
, α > −1,

is the normalized modified Bessel function ([8]). In this paper, we shall see that
this achievement is not specific to the value p = 2 but rather extends to all
p ≥ 1 provided that k0 +k1 is a positive integer and is even related to geometrical
considerations on spheres that considerably avoid tedious computations performed
in [6]. This is seen as follows: start with Dijksma-Koornwinder product formula
for Jacobi polynomials ([7]) which may be written in the following way ([6]):

c(α, β)pα,βj (cos 2φ)pα,βj (cos 2θ)=(2j+α+β+1)

∫ ∫
Cα+β+1

2j (zφ,θ(u, v))µα(du)µβ(dv)

where α, β > −1/2,

c(α, β) = 2α+β+1Γ(α + 1)Γ(β + 1)

Γ(α + β + 1)
,
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zφ,θ(u, v) = u cos θ cosφ+ v sin θ sinφ,

and µα is the symmetric Beta probability measure whose density is given by

µα(du) =
Γ(α + 1)√
πΓ(α + 1/2)

(1− u2)α−1/21[−1,1](u)du, α > −1/2.

Next, invert the order of integration in (1) to see that

DW
k (ρ, φ, r, θ) ∝

∫ ∫ (
2

rρ

)γ∑
j≥0

(2j + k0 + k1)I2jp+γ(ρr)C
k0+k1
2j (zpφ,pθ(u, v))

µα(du)µβ(dv) (2)

where the notation ∝ means that equality holds up to a constant factor. Now,
the integrand in (2) is obviously the sum of the following series

f±ν,p(R, cos ζ) :=

(
2

R

)pν∑
j≥0

(±1)j(j + ν)Ip(j+ν)(R)Cν
j (cos ζ) (3)

where we set ν := k0 + k1, R := ρr and cos ζ := cos ζ(u, v) = zpφ,pθ(u, v).

Note actually that closed formulas for f±ν,1 are due to L. Gegenbauer (equa-
tions (4), (5), p.369 in [14])(

2

rρ

)γ∑
j≥0

(±1)j(j + γ)Ij+γ(ρr)C
γ
j (cos ζ) =

1

Γ(γ)
e±ρr cos ζ

and were used in [6]. For general p ≥ 1, we shall interpret the sequence

(±1)jIp(j+ν)(R), j ≥ 0

for fixed R as the Gegenbauer-Fourier coefficients of ζ 7→ f±ν,p(R, cos ζ) corre-
sponding to the Gegenbauer-Fourier transform studied in [1]. When ν = (d−1)/2
for some integer d ≥ 1, this is in fact the Fourier transform on the sphere Sd

considered as a homogenous space SO(d+ 1)/SO(d) since spherical functions are
expressed through Gegenbauer polynomials ([1] p.356). Thus, deriving closed for-
mulas for f±ν,p when ν is a positive integer amounts to appropriately use inversion
formulas for Fourier and Radon transforms. Our main result is then stated as

Theorem 1.1. Assume ν is an integer and ν ≥ 1, then(
R

2

)pν
f±ν,p(R, cos ζ) =

1

2ν(ν − 1)!

[
− 1

sin ζ

d

dζ

]ν
1

p

p∑
s=1

e±R cos[(ζ+2πs)/p].

When p = 2, we shall use

cos(ζ/2) =

√
1 + cos ζ

2
, ζ ∈ [0, π].

together with appropriate formulas for modified Bessel functions in order to recover
Corollary 1.2. in [6], while when p = 3 we shall solve a special cubic equation
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relying on results from analytic function theory rather than Cardan formulas. The
required solution is then expressed by means of Gauss hypergeometric functions
([11]) yielding therefore a somehow explicit formula for the series (2), though much
more complicated than the one derived for p = 2. For general p ≥ 3, one can use
the expansion proved in Lemma 2.1 below which plays a key role in the proof of
our main result. The paper is closed with adapting our method to odd dihedral
groups, in particular to D3 thereby exhausting the list of dihedral groups that are
Weyl groups (p = 1 corresponds to the product group Z2

2 for which DW
k is namely

a product of normalized modified Bessel functions).

Remark 1.2. We have a strong belief that the assumption ν = k0 + k1 is an
integer is an optimal restriction. Indeed, Proposition 1.1 in [6] shows that even for
the simplest case corresponding to p = 2, one gets a highly complicated expression
for DW

k as soon as ν fails to be an integer.

2. Proof of the main result

Recall the orthogonality relation for Gegenbauer polynomials ([8]):∫ π

0

Cν
j (cos ζ)Cν

m(cos ζ)(sin ζ)2νdζ = δjm
πΓ(j + 2ν)21−2ν

Γ2(ν)(j + ν)j!

= δjm
π21−2νΓ(2ν)

(j + ν)Γ2(ν)
Cν
j (1)

= δjmν

√
πΓ(ν + 1/2)

Γ(ν + 1)

Cν
j (1)

(j + ν)

where we used Gauss duplication formula ([8])
√
πΓ(2ν) = 22ν−1Γ(ν)Γ(ν + 1/2),

and the special value ([8])

Cν
j (1) =

(2ν)j
j!

.

Equivalently, if µν(d cos ζ) is the image of µν(dζ) under the map ζ 7→ cos ζ , then

(j + ν)

∫
Cν
j (cos ζ)Cν

m(cos ζ)µν(d cos ζ) = νCν
j (1)δjm

so that (3) yields

ν(±1)j
(

2

R

)pν
Ip(j+ν)(R) =

∫
P ν
j (cos ζ)f±ν,p(R, cos ζ)µν(d cos ζ) (4)

where
P ν
j (cos ζ) := Cν

j (cos ζ)/Cν
j (1)

is the j -th normalized Gegenbauer polynomial. Thus, the j -th Gegenbauer-Fourier
coefficients of ζ 7→ f±ν,p(R, cos ζ) are given by

ν(±1)j
(

2

R

)pν
Ip(j+ν)(R), p ≥ 1.
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Following [1] p.356, the Mehler integral ([9], p.177)

P ν
j (cos ζ) = 2ν

Γ(ν + 1/2)

Γ(ν)
√
π

(sin ζ)1−2ν
∫ ζ

0

cos[(j + ν)t](cos t− cos ζ)ν−1dt

valid for real ν > 0, transforms (4) to
(
2
R

)pν
(±1)jIp(j+ν)(R)

=
2ν

π

∫ π

0

f±ν,p(R, cos ζ) sin ζ

∫ ζ

0

cos[(j + ν)t](cos t− cos ζ)ν−1dtdζ

=
2ν

π

∫ π

0

cos[(j + ν)t]

∫ π

t

f±ν,p(R, cos ζ) sin ζ(cos t− cos ζ)ν−1dζdt. (5)

The second integral displayed in the RHS of the second equality is known as the
Radon transform of ζ 7→ f±ν,p(R, cos ζ) and inversion formulas already exist ([1]).
As a matter of fact, we firstly need to express (±1)j+νIp(j+ν) , when ν ≥ 1 is an
integer, as the Fourier-cosine coefficient of order j + ν of some function. This is a
consequence of the Lemma below. Secondly, we shall use the appropriate inversion
formula for the Radon transform derived in [1]).

Lemma 2.1. For any integer p ≥ 1 and any t ∈ [0, π]:

2
∑
j≥0

(±1)jIpj(R) cos(jt) = I0(R) +
1

p

p∑
s=1

e±R cos[(t+2πs)/p].

Proof. We will prove the (+) part, the proof of the (−) part follows the same
lines with minor modifications. Write

2
∑
j≥0

Ipj(R) cos(jt) =
∑
j≥0

Ipj(R)[eijt + e−ijt]

= I0(R) +
∑
j∈Z

Ipj(R)eijt

where we used the fact that Ij(r) = I−j(r), j ≥ 0. Using the identity

1

m

m∑
s=1

e2iπsj/m =

{
1 if j ≡ 0[m],
0 otherwise,

(6)

valid for any integer m ≥ 1, one obviously gets

∑
j∈Z

Ipj(R)eijt =
1

p

p∑
s=1

∑
j∈Z

Ij(R)eij(t+2πs)/p.

The (+) part of the Lemma then follows from the generating series for modified
Bessel functions ([14]):

e(z+1/z)R/2 =
∑
j∈Z

Ij(R)zj, z ∈ C.
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Now, we use the Lemma to get

Ipj(R) = I0(R)δj0 +
1

π

∫ π

0

cos(jt)
1

p

p∑
s=1

e±R cos[(t+2πs)/p]dt

for any integer j ≥ 0. Assuming that ν is a stricltly positive integer, one then
recovers

Ip(j+ν)(R) =
1

π

∫ π

0

cos[(j + ν)t]
1

p

p∑
s=1

e±R cos[(t+2πs)/p]dt. (7)

Note that

t 7→
∫ π

t

f(R, cos ζ) sin ζ(cos t− cos ζ)ν−1dζ

as well as

t 7→ 1

p

p∑
s=1

e±R cos[(t+2πs)/p]

are even functions. This is true since

ζ 7→ f(R, cos ζ)(sin ζ)(cos t− cos ζ)ν−1

is an odd function so that∫ t

−t
f(R, cos ζ) sin ζ(cos t− cos ζ)ν−1dζ = 0,

and since

cos[(−t+ 2sπ)/p] = cos[(t+ 2(p− s)π)/p]

so that one performs the index change s → p − s and notes that the terms
corresponding to s = 0 and s = p are equal. Similar arguments yield the
2π -periodicity of these functions, therefore the Fourier-cosine transforms of their
restrictions on (−π, π) coincide with their Fourier transforms on that interval. As
a matter of fact,(

R

2

)pν ∫ π

t

fν,p(R, cos ζ) sin ζ(cos t− cos ζ)ν−1dζ =
1

2νp

p∑
s=1

e±R cos[(t+2πs)/p]

for all t since both functions are continuous and our main result follows from
Theorem 3.1. p.363 in [1].

Corollary 2.2. For any integer ν≥1 we have
∑

j≥0(2j+ν)Ip(2j+ν)(R)Cν
2j(cos ζ)

=
1

2νΓ(ν)

[
− 1

sin ζ

d

dζ

]ν
1

p

p∑
s=1

cosh (R cos[(ζ + 2πs)/p]) .
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3. Dihdral groups D4, D6

3.1. p=2. Letting p = 2 and using the fact that cosh is an even function, our
main result yields

(
4
R2

)ν∑
j≥0(2j + ν)I2(2j+ν)(R)Cν

2j(cos ζ)

=
1

2νΓ(ν)

[
− 4

R2 sin ζ

d

dζ

]ν
cosh (R cos(·/2)) (ζ).

Noting that for a function f

− 4

R2 sin ζ

d

dζ
f

(
R cos

ζ

2

)
(ζ) =

[
1

u

d

du
f(u)

]
|u=R cos(ζ/2)

,

and using the classical formula (see for instance (5.8.3) in [12])(
1

z

d

dz

)ν−1
sin z

z
= (−1)ν−1

√
π

2

1

zν−1/2
Jν−1/2(z),

one obtains(
4

R2

)ν∑
j≥0

(2j + ν)I2(2j+ν)(R)Cν
2j(cos ζ) =

1

2Γ(2ν)
iν−1/2

(
R cos

ζ

2

)
,

and finally recovers Corollary 1.2 in [6] since c2,k/c(k1−1/2, k0−1/2) = Γ(2ν+1)/ν .

3.2. p=3. The corresponding dihedral group D6 is a two dimensional represen-
tation of the exceptional Weyl group G2 ([2]). Let ζ ∈]0, π[ and start with the
linearization formula:

4 cos3(ζ/3) = cos ζ + 3 cos(ζ/3).

Thus, we are led to find a root lying in [−1, 1] of the cubic equation

Z3 − (3/4)Z − (cos ζ)/4 = 0

for |Z| < 1. Set Z = (
√
−1/2)T, |T | < 2, the above cubic equation transforms to

T 3 + 3T − 2
√
−1 cos ζ = 0.

The obtained cubic equation already showed up in analytic function theory in
relation to the local inversion Theorem ([11] p.265-266). Amazingly (compared
to Cardan formulas), its real and both complex roots are expressed through the
Gauss hypergeometric function 2F1 . Since we are looking for real Z = (

√
−1/2)T ,

we shall only consider the complex roots (see the bottom of p. 266 in [11]):

T± = ±
√
−1

[√
3 2F1

(
−1

6
,
1

6
,
1

2
; cos2 ζ

)
− 1

3
cos ζ 2F1

(
1

3
,
2

3
,
3

2
; cos2 ζ

)]
so that

Z± = ±

[√
3

2
2F1

(
−1

6
,
1

6
,
1

2
; cos2 ζ

)
− 1

6
cos ζ 2F1

(
1

3
,
2

3
,
3

2
; cos2 ζ

)]
.
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Since for ζ = π/2, cos ζ/3 = cos π/6 =
√

3/2, it follows that

cos(ζ/3) =

[√
3

2
2F1

(
−1

6
,
1

6
,
1

2
; cos2 ζ

)
− 1

6
cos ζ 2F1

(
1

3
,
2

3
,
3

2
; cos2 ζ

)]

for all ζ ∈ (0, π). Now, write Z = Z(cos ζ) so that

cos[(ζ + 2sπ)/3] = cos(2sπ/3) cos(ζ/3)− sin(2sπ/3)
√

1− cos2(ζ/3)

= cos(2sπ/3)Z(cos ζ)− sin(2sπ/3)
√

1− Z2(cos ζ)

for any 1 ≤ s ≤ 3. It follows that

fν,3(R, cos ζ) =
1

3Γ(ν)

[
− 4

R3 sin ζ

d

dζ

]ν 3∑
s=1

gs(RZ(cos ζ))

where

gs(u) = cosh
[(

cos(2sπ/3)u− sin(2sπ/3)
√
R2 − u2

)]
, u ∈ (−1, 1).

Finally,

fν,3(R, cos ζ) =
1

3Γ(ν)

[
4

R3

d

du

]ν 3∑
s=1

hs(u)|u=cos ζ

where hs(u) := gs(RZ(u)), 1 ≤ s ≤ 3. For instance, let ν = 1, then it is not
difficult to see that

d

du
hs(u)|u=cos ζ =

R

sin ζ/3

dZ

du |u=cos ζ
sin

(
ξ + 2πs

3

)
sinh

[
sin

(
ξ + 2πs

3

)]
for any s ∈ {1, 2, 3} and the derivative of u 7→ Z(u) is computed using the
differentiation formula for 2F1 :

d

du
2F1(a, b, c;u) =

ab

c
2F1(a+ 1, b+ 1, c+ 1;u), |u| < 1, c 6= 0.

As the reader may conclude, formulas are cumbersome compared to the ones
derived for p = 2.

4. Odd Dihedral groups

Let n ≥ 3 be an odd integer and consider odd dihedral groups Dn , then ([5] p.157)

DW
k (ρ, φ, r, θ) = cn,k

(
2

rρ

)nk∑
j≥0

In(2j+k)(ρr)p
−1/2,l0
j (cos(2nφ))p

−1/2,l0
j (cos(2nθ))

(8)
where k ≥ 0, ρ, r ≥ 0, θ, φ ∈ [0, π/n] , and

cn,k = 2kΓ(nk + 1)

√
πΓ(k + 1/2)

Γ(k + 1)
.
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In order to adapt our method to these groups, we need to write down the product
formula for orthonormal Jacobi polynomials in the limiting case α = −1/2 or
equivalently k = 0. This task was achieved in [7] p.194 using implicitly the fact
that the Beta distribution µα converges weakly to the Dirac mass δ1 as α→ −1/2.
In order to fit it into our normalizations, we proceed as follows: use the well-known
quadratic transformation ([8]):

P
−1/2,k−1/2
j (1− 2 sin2(nθ)) = (−1)jP

k−1/2,−1/2
j (2 sin2(nθ)− 1)

= (−1)j
(1/2)j
(k)j

Ck
2j(sin(nθ))

where Pα,β
j is the (non orthonormal) j -th Jacobi polynomial, together with

cos(2nθ) = 1− 2 sin2(nθ) to obtain

P
−1/2,k−1/2
j (cos(2nθ))P

−1/2,k−1/2
j (cos(2nφ)) =

[
(1/2)j
(k)j

]2
Ck

2j(sin(nθ))Ck
2j(sin(nφ)).

Now, let k > 0 and recall that the squared L2 -norm of P
−1/2,k−1/2
j is given by

([8])

2k

2j + k

Γ(j + 1/2)Γ(j + k + 1/2)

j!Γ(j + k)
=

2k
√
πΓ(k + 1/2)

Γ(k)

(1/2)j
(k)j

(k + 1/2)j
(2j + k)j!

.

Recall also the special value

Ck
2j(1) =

(2k)2j
(2j)!

= 2
(k)j(k + 1/2)j

(1/2)jj!
.

It follows that c(k)p
−1/2,k−1/2
j (cos(2nθ))p

−1/2,k−1/2
j (cos(2nφ))

=
(1/2)j
(k)j

(2j + k)j!

(k + 1/2)j
Ck

2j(sin(nθ))Ck
2j(sin(nφ))

=
(2j + k)

Ck
2j(1)

Ck
2j(sin(nθ))Ck

2j(sin(nφ))

= (2j + k)

∫
Ck

2j (znφ,nθ(u, 1))µk(du),

according to [7] p.194, where

c(k) :=
2k+1
√
πΓ(k + 1/2)

Γ(k)
.

As a matter of fact, we are led again to(
2

R

)nk∑
j≥0

(2j + k)In(2j+k)(R)Ck
2j(cos ζ) =

1

2
[f+
k,n + f−k,n](R, cos ζ).
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5. A Concluding Remark

The occurrence of the Radon transform on spheres in higher dimensions in rela-
tion to generalized Bessel functions associated with dihedral groups is somehow
intriguing and unexplained only analytically. Below is another yet similar occur-
rence: recall that DW

k (·, y) is an eigenfunction of the Dunkl Laplacian ∆k associ-
ated with the eigenvalue |y|2 ([3], Ch. I). When acting on Dn -invariant functions,
this operator, denoted ∆W

k , reads ([5]):

∆W
k = ∂2r +

2nk + 1

r
∂r +

1

r2
[
∂2θ + 2nk cot(nθ)∂θ

]
for odd integers n while

∆W
k = ∂2r +

2p(k0 + k1) + 1

r
∂r +

1

r2
[
∂2θ + 2p(k0 cot(pθ)− k1 tan(pθ))∂θ

]
for even n = 2p . But for odd values of n , Proposition 2.3 p.197 in [10] shows
that ∆W

k coincides with the Euclidean Laplacian in dimension 2nk + 2 acting on
SO(2nk + 1)-invariant functions. Besides, a similar interpretation holds for even
values of n and equal multiplicities k0 = k1 after one notices that

cot(θ)− tan(θ) = 2 cot(2θ).

Acknowledgment. The author is grateful to Professor C. F. Dunkl who made
him aware of the hypergeometric formulas for the roots of the cubic equation.
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