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Introduction

The representation theory of a symmetric group Sr on r letters (see [7, 8]) starts
with the transitive permutation modules Mλ indexed by the partitions λ of r .
For any field k , tensor space (kn)⊗r , regarded as a kSr -module via the place
permutation action, admits a direct sum decomposition into a direct sum of the
Mλ . (If n < r then not all of the Mλ appear in the decomposition.) The
purpose of this paper is to give a similar characteristic-free decomposition of tensor
space (kn)⊗r , regarded as a module for the Brauer algebra. (Characteristic 2 is
excluded from some results, in order to avoid technicalities.) The main results are
summarized together in Section 1 below, for the convenience of the reader.

A different characteristic-free decomposition of (kn)⊗r as a module for the
Brauer algebra was previously obtained in [10], by working with the action defined
in terms of the standard bilinear form on kn . By choosing a different bilinear form,
we obtain a more refined decomposition than that of [10], in most cases, which
should give more information.

Our approach is motivated by Schur–Weyl duality (see [11, 5, 1, 4, 6]),
although its full generality is not used here. All we need is the fact that the action
of the Brauer algebra commutes with that of a suitable classical group.

Our results provide new characteristic-free representations N ξ of the Brauer
algebra, indexed by partitions ξ , which may be regarded as analogues of the
classical transitive permutation modules for symmetric groups. It is hoped that
these representations may be of some use in the study of the representation theory
of Brauer algebras, especially in the non-semisimple case, where little is known.
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The paper is organized as follows. After summarizing the main results in
Section 1, we recall the decomposition of tensor space regarded as a module for the
symmetric group in Section 2, define the Brauer algebra and its action on tensors
in Section 3, and prove our results in Sections 4, 5, and 6.

1. Main results

Fix a field k of characteristic different from 2. Tensor space (kn)⊗r is regarded as
a module for the Brauer algebra Br(n) via an action (see Section 3) defined by
the nondegenerate symmetric bilinear form ( , ) on kn such that (ei, ej′) = δij ,
where e1, . . . , en is the standard basis of kn and j′ = n + 1 − j . This choice of
bilinear form is important for our results.

We will need the set Λ(n, r) of n-part compositions of r , defined by

Λ(n, r) = {(λ1, . . . , λn) ∈ Zn : 0 ≤ λi (∀i), λ1 + · · ·+ λn = r}.

For a given positive integer l , let sets Λ1(l, r) and Λ2(l, r) be defined as follows:

Λ1(l, r) = {(ξ1, . . . , ξl) ∈ Zl : |ξ1|+ · · ·+ |ξl| = r − s, 0 ≤ s ≤ r}
Λ2(l, r) = {(ξ1, . . . , ξl) ∈ Zl : |ξ1|+ · · ·+ |ξl| = r − 2s, 0 ≤ 2s ≤ r}.

If n = 2l + 1, we have a surjective map π : Λ(n, r)→ Λ1(l, r) given by the rule

π(λ1, . . . , λn) = (λ1 − λ1′ , . . . , λl − λl′).

If n = 2l , the same rule defines a surjective map π : Λ(n, r) → Λ2(l, r). In either
case, the fibers of π determine the desired decomposition of tensor space. See
Sections 4, 5 for combinatorial descriptions of the fibers, depending on the parity
of n .

The well known characteristic-free decomposition of (kn)⊗r as a kSr -
module, where Sr is the symmetric group on r letters, is given by

(kn)⊗r =
⊕

λ∈Λ(n,r) M
λ,

where Mλ is a transitive permutation module for kSr , realized as the k -span of all
simple tensors ei1 ⊗· · ·⊗ eir of weight λ , with Sr acting by place permutation on
the simple tensors. Given ξ ∈ Λj(n, r) for j = 1, 2 we define N ξ :=

⊕
λ∈π−1(ξ) M

λ .
Then we prove the following:

Theorem 1. A characteristic-free decomposition (for characteristic k 6= 2) of
(kn)⊗r as a Br(n)-module is given by

(kn)⊗r =
⊕

ξ∈Λj(l,r) N
ξ (j = 1, 2),

where j = 1 if n = 2l + 1 and j = 2 if n = 2l .

This is nothing but a weight space decomposition of (kn)⊗r , regarded as a
module for the diagonal torus in the orthogonal group On(k), the group of matrices
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preserving the bilinear form ( , ) on kn . The proof, which is given in Sections 4
and 5, is almost trivial: the main idea is just the well known fact that the actions
of On(k) and Br(n) on kn commute.

The bilinear form is chosen so that the diagonal tori in GLn(k) and On(k)
are compatible upon restriction from GLn(k) to On(k), which is what makes
everything work. (It is well known that in Lie theory, our choice of defining
form for the orthogonal group, or one very similar to it, is more natural than the
standard defining form.)

In case n = 2l , we obtain another characteristic-free decomposition of
(kn)⊗r , with no restriction on the characteristic of k , by replacing the role of
the orthogonal group in the above by the symplectic group Spn(k), defined as the
set of matrices preserving the skew-symmetric bilinear form ( , ) on kn given by
(ei, ej′) = εiδi,j , where εj = 1 if j < j′ and −1 otherwise. There is an action of
Br(−n) on tensor space (kn)⊗r , defined in terms of the bilinear form.

Theorem 2. If n = 2l , a characteristic-free decomposition of (kn)⊗r as a
Br(−n)-module is given by

(kn)⊗r =
⊕

ξ∈Λ2(l,r) N
ξ.

Again, this is just a weight space decomposition for the torus of diagonal
matrices in Spn(k). The proof in this case is quite similar to the even orthogonal
case, and is sketched in Section 6.

These results provide a new family {N ξ} of characteristic free representa-
tions of the Brauer algebra, indexed by ξ ∈ Λ1(l, r) or Λ2(l, r). Actually, we show
that the hyperoctahedral group (Z/2Z)l oSl acts naturally on either of the sets
Λ1(l, r) or Λ2(l, r) through signed permutations of the entries of a weight, and
modules N ξ indexed by weights in the same orbit are all isomorphic, so it suffices
to restrict one’s attention to the modules N ξ indexed by the dominant weights ξ ,
which are partitions. So, up to isomorphism, the Brauer algebra direct summands
of tensor space are indexed by the subsets Λ+

1 (l, r) or Λ+
2 (l, r) of partitions in

Λ1(l, r) or Λ2(l, r), respectively.

The modules N ξ are defined by gluing various permutation modules Mλ

together. The analysis in Sections 4 and 6 reveal that when n = 2l and ξ =
(ξ1, . . . , ξl) is a partition of r− 2s into not more than l parts, for 0 ≤ 2s ≤ r , the
various λ in the fiber π−1(ξ) are precisely the weights of the form

(ξ + ν) ‖ ν∗ for ν ∈ Λ(l, s)

where ν∗ = (νs, . . . , ν1) is the reverse of ν = (ν1, . . . , νs) and where ‖ denotes
concatenation of finite sequences:

(a1, . . . , ai) ‖ (b1, . . . , bj) := (a1, . . . , ai, b1, . . . bj).

Hence, in this case N ξ is the direct sum of |Λ(l, s)| permutation modules. In
particular, if s = 0 there is just one permutation module in N ξ .
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In case n = 2l + 1 the analysis in Section 5 reveals that if ξ = (ξ1, . . . , ξl)
is a given partition of r − s into not more than l parts, where 0 ≤ s ≤ r , the
various λ in the fiber π−1(ξ) are precisely the weights of the form

(ξ + ν) ‖ (s− 2t) ‖ ν∗ for ν ∈ Λ(l, t)

as t varies over all possibilities in the range 0 ≤ 2t ≤ s . Hence, in this case N ξ is
the direct sum of

∑
0≤2t≤s |Λ(l, t)| permutation modules.

2. Symmetric group decomposition of (kn)⊗r

Let k be an arbitrary field. Consider an n-dimensional vector space kn and its
associated group GLn(k) of linear automorphisms. The group acts naturally on
the space, and thus also acts naturally on the r -fold tensor product (kn)⊗r , via
the ‘diagonal’ action:

g · (v1 ⊗ · · · ⊗ vr) = (g · v1)⊗ · · · ⊗ (g · vr). (2.1)

The symmetric group Sr also acts on the right on (kn)⊗r , via the so-called ‘place
permutation’ action, which satisfies

(v1 ⊗ · · · ⊗ vr) · π = v(1)π−1 ⊗ · · · ⊗ v(r)π−1 . (2.2)

Notice that we adopt the convention that elements of Sr act on the right of their
arguments. Now it is clear from the definitions that the actions of these two groups
commute:

g ·
(
(v1 ⊗ · · · ⊗ vr) · π

)
=
(
g · (v1 ⊗ · · · ⊗ vr)

)
· π,

for all g ∈ GLn(k), π ∈ Sr .

In order to simplify the notation, we put V := kn . We more or less follow
Section 3 of [9]. The group GLn(k) contains an abelian subgroup T consisting
of the diagonal matrices in GLn(k), and this subgroup (being abelian) must act
semisimply on V ⊗r = (kn)⊗r . This leads in the usual way to a ‘weight space’
decomposition

V ⊗r =
⊕

λ∈X(T ) V
⊗r
λ , (2.3)

where λ varies over the group X(T ) of characters λ : T → k× , and where the
weight space V ⊗rλ is the linear span of the tensors v = v1 ⊗ · · · ⊗ vr such that
t · v = λ(t)v , for all t ∈ T .

Clearly T is isomorphic to the direct product (k×)n of n copies of the
multiplicative group k× of the field. Let εi ∈ X(T ) be evaluation at the ith
diagonal entry of an element of T . Regarding the abelian group X(T ) as an
additive group as usual, observe that ε1, . . . , εn is a basis for X(T ), and thus
the map Zn → X(T ) given by (λ1, . . . , λn) 7→

∑
i λiεi is an isomorphism. So we

identify X(T ) with Zn by means of this isomorphism.

The direct sum in (2.3) is formally taken over X(T ); however, many of the
summands are actually zero. It is easy to check that the weight space decompo-
sition of V , regarded as a T -module, is given by V = Vε1 ⊕ · · · ⊕ Vεn . It follows
immediately that the set of weights of V ⊗r is the set

Λ(n, r) = {(λ1, . . . λn) ∈ Zn : λi ≥ 0, λ1 + · · ·+ λn = r}
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of n-part compositions of r , under the isomorphism of X(T ) with Zn . Thus we
may write (2.3) in the better form

V ⊗r =
⊕

λ∈Λ(n,r) M
λ (2.4)

where we have, partly to simplify notation but also to serve tradition, put Mλ :=
V ⊗rλ . Since the actions of Sr and GLn(k) commute, each Mλ is a kSr -module,
so (2.4) gives a decomposition of V ⊗r as kSr -modules.

Let us describe the vector space Mλ in greater detail. Let e1, . . . , en be
the standard basis of V = kn . Then Mλ , for any λ ∈ Λ(n, r), has a basis given
by the set of simple tensors ei1 ⊗ · · · ⊗ eir such that in the multi-index (i1, . . . , ir)
there are exactly λ1 occurrences of 1, λ2 occurrences of 2, and so forth. Evidently
the action of the symmetric group Sr permutes such simple tensors transitively,
so Mλ is in fact a transitive permutation module. The representation theory of
Sr over k starts with these permutation modules (see e.g. [7, 8]) usually defined
rather differently. At this point we could introduce row standard tableaux of shape
λ (or, equivalently, the “tabloids” of [7]) to label our basis elements of Mλ , but
we shall have no need of such combinatorial gadgets.

The symmetric group Sn can be identified with the Weyl group W of
GLn(k). (Recall that the theory of BN-pairs (due to J. Tits) can be used to define
W in any GLn(k) by a uniform method, including the case when k is finite.) The
group W may be identified with the subgroup of permutation matrices of GLn(k),
so it acts naturally (on the left) on V ⊗r by restriction of the action of GLn(k).
Moreover, W = Sn acts on the set Zn by

w−1(λ1, . . . , λn) = (λw(1), . . . , λw(n)). (2.5)

This action stabilizes the set Λ(n, r), so we have also an action of W on Λ(n, r).
Each W -orbit of Λ(n, r) contains exactly one dominant weight: a weight λ =
(λ1, . . . , λn) such that λ1 ≥ λ2 ≥ · · · ≥ λn . Denote the set of dominant weights in
Λ(n, r) by Λ+(n, r). This set may be identified with the set of partitions of r into
not more than n parts. The following is immediate from Proposition (3.3a) of [9].

Proposition 1. For any w ∈ W , the right kSr -modules Mλ and Mw(λ) are
isomorphic.

Proof. The isomorphism is given on basis elements by mapping a simple tensor
ei1⊗· · ·⊗eir of weight λ to the simple tensor ew(i1)⊗· · ·⊗ew(ir) of weight w(λ).

Thus, when considering the Mλ , we may as well confine our attention to
the ones labeled by dominant weights (i.e. partitions) λ ∈ Λ+(n, r).

3. The Brauer algebra

A Brauer r -diagram (introduced in [2]) is an undirected graph with 2r vertices and
r edges, such that each vertex is the endpoint of precisely one edge. By convention,
such a graph is usually drawn in a rectangle with r vertices each equally spaced
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along the top and bottom edges of the rectangle. For example, the picture below

depicts a Brauer 8-diagram. Let k be an arbitrary field. Let Br(±n) be the
vector space over k with basis the r -diagrams, where we assume that n is even in
the negative case. Brauer defined a natural multiplication of r -diagrams such that
Br(±n) becomes an associative algebra. In order to describe the multiplication
rule, it is convenient to introduce the notations τ(d) and β(d) for the sets of
vertices along the top and bottom edges of a diagram d . Then the multiplication
rule works as follows. Given r -diagrams d1 and d2 , place d1 above d2 and identify
the vertices in β(d1) in order with those in τ(d2). The resulting graph consists of
r paths whose endpoints are in τ(d1)∪β(d2), along with a certain number, say s ,
of cycles which involve only vertices in the middle row. Let d be the r -diagram
whose edges are obtained from the paths in this graph. Then the product of d1

and d2 in Br(±n) is given by d1d2 = (±n · 1k)sd .

Now we describe a right action of Br(±n) on V ⊗r , which depends on the
defining bilinear form ( , ). This is the symmetric form defined in Section 1 in
the positive case and the skew-symmetric form defined in Section 1 in the negative
case. We always assume characteristic k 6= 2 in the symmetric case. We let
e∗1, . . . , e

∗
n be the basis dual to the standard basis e1, . . . , en of kn with respect to

the bilinear form, in either case, so that (ei, e
∗
j) = δij . Given any r -diagram d ,

let (d)ϕ be the matrix whose (i, j)-entry, for i = (i1, . . . , ir), j = (j1, . . . , jr) is
determined by the following procedure:

1. Label the vertices along the top edge of d from left to right by ei1 , . . . , eir
and label the vertices along the bottom edge from left to right by e∗j1 , . . . , e

∗
jr .

2. The (i, j)-entry of (d)ϕ is the product of the values (u, v) over the edges
ε of d , where for each edge, u and v are the labels on its vertices, ordered
so that a vertex in τ(d) precedes one in β(d), and from left to right within
τ(d) and β(d).

This determines the desired action: let d act on V ⊗r as the linear endomorphism
determined by the matrix (d)ϕ . Then ϕ extends linearly to a representation
ϕ : Br(±n)opp → Endk(V

⊗r).

It will be useful to have a better understanding of the action of Br(±n).
For this, observe that the r -diagrams in which every edge connects a vertex in
the top row to a vertex in the bottom row correspond to permutations in Sr , and
their action on V ⊗r is the same as that defined by (2.2). Let us agree to call
such diagrams permutation diagrams. Since we write maps in Sr on the right
of their arguments, the multiplication of diagrams defined above corresponds to
composition of permutations, when restricted to such diagrams. Thus we have
a subalgebra of Br(±n), namely the subalgebra spanned by the permutation
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diagrams, isomorphic to kSr , and this subalgebra acts on V ⊗r via the usual
place-permutation action, independently of the choice of defining bilinear form
( , ).

Now let c0 be the unique r -diagram in which the first two vertices in τ(c0)
are joined by an edge, and similarly for the first two vertices in β(c0), with the j th
vertex in τ(c0) joined to the j th vertex in β(c0) for j = 3, . . . , r . For instance, in
case r = 8 the diagram c0

is the diagram pictured above. It is well known (see [3]) that Br(±n) is generated
by the permutation diagrams together with the diagram c0 . This may be argued
as follows. Call an edge in a diagram d horizontal if its endpoints both lie in
τ(d), or both lie in β(d). The number of horizontal edges in the top edge of the
enclosing rectangle must equal the number in the bottom edge. Put Bj equal to
the span of the diagrams with exactly 2j horizontal edges. Then, as a vector space,
Br(±n) = B0⊕B1⊕· · ·⊕Bm , where m = br/2c , the integer part of r/2. Clearly
B0 = kSr . By acting on c0 on the left or right by permutations, one can generate
B1 . Then by picking diagrams in B1 appropriately, one may obtain a diagram in
B2 , and thus obtain all diagrams in B2 by again acting by permutations on the
left and right. Continuing in this way, one eventually generates all diagrams in the
algebra.

Thus, in order to unambiguously specify the action of the full algebra
Br(±n) on V ⊗r , we only need to see how the diagram c0 acts. This depends
on the choice of the defining bilinear form ( , ), and by direct computation we see
that in the symmetric case c0 acts by the rule

(ei1 ⊗ · · · ⊗ eir) · c0 = δi1,i′2
∑n

j=1 ej ⊗ ej′ ⊗ ei3 ⊗ · · · ⊗ eir . (3.1)

In the skew-symmetric case c0 acts by the rule

(ei1 ⊗ · · · ⊗ eir) · c0 = δi1,i′2
∑n

j=1 εj ej ⊗ ej′ ⊗ ei3 ⊗ · · · ⊗ eir . (3.2)

These actions are closely related to Weyl’s contraction operators in [12].

4. The Br(n) decomposition of (kn)⊗r in the
symmetric case, where n = 2l

From now on, until further notice, we assume that the field k has characteristic
not 2. This avoids technicalities pertaining to the definition of orthogonal groups
over fields of characteristic 2. We define On(k) to be the group of isometries of V
with respect to the symmetric form ( , ) given in Section 1. Then the action of
Br(n) on tensor space V ⊗r = (kn)⊗r , defined in the preceding section, commutes
with the natural action of On(k) (given by restricting the action of GLn(k)).
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Let Ṫ be the abelian subgroup of On(k) consisting of the diagonal matrices
in On(k). Thus, a diagonal matrix diag(t1, . . . , tn) ∈ GLn(k) belongs to Ṫ if and
only if

titi′ = 1 for all i = 1, . . . , n . (4.1)

It will be useful to separate the consideration of the cases where n is even and
odd, so we assume that n = 2l for the remainder of this section, and consider the
odd case in the next section.

The description of Ṫ in (4.1) shows in this case that Ṫ is isomorphic to the
direct product (k×)l of l = n/2 copies of the multiplicative group k× of the field
k . So the character group X(Ṫ ) is isomorphic to Zl , so we identify X(Ṫ ) with
Zl .

There is a group homomorphism π : X(T ) → X(Ṫ ) given by restriction:
π(λ) = λ|Ṫ for λ ∈ X(T ). Since Ṫ ⊂ T , given a character ξ ∈ X(Ṫ ), one can
extend it to a character λ ∈ X(T ) such that λ|Ṫ = ξ . It follows that the map π
is surjective.

In terms of the identifications X(T ) = Zn and X(Ṫ ) = Zl , the map π is
given by the rule

(λ1, . . . , λn) 7→ (λ1 − λ1′ , . . . , λl − λl′).

We next consider how to characterize the image Λ2(l, r) of the set Λ(n, r) under
the map π .

Proposition 2. When n = 2l , the image Λ2(l, r) of the set Λ(n, r) under π
is the set of all ξ = (ξ1, . . . , ξl) ∈ Zl such that |ξ1| + · · · + |ξl| = r − 2s, where
0 ≤ 2s ≤ r .

Proof. If ξ = π(λ) for λ ∈ Λ(n, r) then |ξ1|+ · · ·+ |ξl| satisfies the condition

|ξ1|+ · · ·+ |ξl| = ε1(λ1 − λ1′) + · · ·+ εl(λl − λl′)

where for each i = 1, . . . , l the sign εi is defined to be 1 if λi ≥ λi′ and −1
otherwise. This is just a signed sum of the parts of λ , so is congruent modulo 2 to
the sum of the parts of λ . Thus |ξ1|+ · · ·+ |ξl| = r − 2s for some s ∈ Z . Clearly
0 ≤ 2s ≤ r . This proves the necessity of the condition for membership in Λ2(l, r).

It remains to prove the sufficiency of the condition. Given ξ ∈ Zl satisfying
the condition |ξ1|+ · · ·+ |ξl| = r−2s , where 0 ≤ 2s ≤ r , we define a corresponding
µ ∈ Λ(n, r− 2s) as follows: put µi = ξi if ξi > 0, put µi′ = −ξi if ξi < 0, and put
all the other entries of µ = (µ1, . . . , µn) to zero. Now pick ν ∈ Λ(l, s) arbitrarily.
Then let λ be obtained from µ and ν by adding the parts of ν in order to
(µ1, . . . , µl) and by adding the parts of ν in reverse order to (µl+1, . . . , µ2l), so
that

λ = (µ1 + ν1, . . . , µl + νl, µl+1 + νl, . . . , µ2l + ν1).

Then it easily checked that π(λ) = ξ .

For each ξ ∈ Λ2(l, r), the proof of the preceding proposition reveals an
algorithm for writing down the members of the fiber π−1(ξ), and in particular
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shows that the cardinality of the fiber is |Λ(l, s)| , where s is as above. By grouping
terms in the direct sum decomposition (2.4) according to the fibers we obtain

(kn)⊗r = V ⊗r =
⊕

ξ∈Λ2(l,r)

(⊕
λ∈π−1(ξ) M

λ
)

=
⊕

ξ∈Λ2(l,r) N
ξ (4.2)

where we define N ξ for any ξ ∈ Λ2(l, r) by N ξ :=
⊕

λ∈π−1(ξ) M
λ .

The N ξ are just the weight spaces under the action of the abelian group
Ṫ , so (4.2) gives the weight space decomposition of tensor space as a Ṫ -module.

Since the actions of On(k) and Br(n) commute, it is clear that each weight
space N ξ for ξ ∈ Λ2(l, r) is a right Br(n)-module. Hence (4.2) is a decomposition
of tensor space (kn)⊗r as a Br(n)-module, and we have achieved our goal in the
case n = 2l .

It remains to notice some isomorphisms existing among the Br(n)-modules
N ξ .

As we already pointed out, the Weyl group W associated to GLn(k) acts
on {Mλ : λ ∈ Λ(n, r)} , and the orbits are isomorphism classes. It can be expected
that the Weyl group associated to On(k) similarly acts on {N ξ : ξ ∈ Λ2(l, r))} ,
and again the orbits will be isomorphism classes.

The Weyl group Ẇ of On(k) is isomorphic to the semidirect product
{±1}l oSl , the group of signed permutations on l letters. We can realize Ẇ as
a subgroup of On(k), simply by taking the intersection of W (the Weyl group of
GLn(k), realized as the n×n permutation matrices) with On(k). A given w ∈ W
lies within this intersection if and only if the condition (ew−1(i), ew−1(j)) = (ei, ej)

holds for all i, j . Thus, Ẇ is the set of w ∈ W such that

δw−1(i),w−1(j)′ = δi,j′ for all i, j = 1, . . . , n. (4.3)

It is easy to check by direct calculation that for any given σ ∈ Sl , if we define a
corresponding wσ ∈ W such that

wσ(i) =

{
σ(i) if 1 ≤ i ≤ l

σ(i′) if l + 1 ≤ i ≤ 2l

then σ satisfies the condition (4.3). Furthermore, the transposition τi that in-
terchanges i with i′ also satisfies (4.3), and thus Ẇ may be identified with the
subgroup of W generated by the wσ (σ ∈ Sl ) and the τi (i = 1, . . . , l).

This subgroup acts on Λ(n, r) by restriction of the action of W . This
induces a corresponding action of Ẇ on the set Λ2(l, r), such that ẇ(ξ) = π(w(λ))
if w ∈ W corresponds to ẇ ∈ Ẇ and ξ = π(λ). Since τi sends ξ = (ξ1, . . . , ξl)
to (ξ1, . . . , ξi−1,−ξi, ξi+1, . . . , ξl), and wσ sends ξ to σ(ξ) = (ξσ−1(1), . . . , ξσ−1(l)),

it follows that Ẇ acts on the set Λ2(l, r) by signed permutations.

Thus, a fundamental domain for this action is the set Λ+
2 (l, r) consisting

of all ξ ∈ Λ2(l, r) such that ξ1 ≥ ξ2 ≥ · · · ≥ ξl ≥ 0. We call elements of this set
dominant orthogonal weights. So, in other words, each orbit of Λ2(l, r) contains
a unique dominant orthogonal weight. Notice that a dominant orthogonal weight
is the same as a partition of not more than l parts.
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Proposition 3. For any ẇ ∈ Ẇ , ξ ∈ Λ2(l, r), the right Br(n)-modules N ξ

and N ẇ(ξ) are isomorphic.

Proof. This is similar to the proof of Proposition 1. The isomorphism is given
on basis elements by mapping a simple tensor ei1 ⊗ · · · ⊗ eir of weight λ ∈ π−1(ξ)
to the simple tensor ew(i1)⊗· · ·⊗ew(ir) of weight w(λ), where w ∈ W corresponds
to ẇ . Since π(w(λ)) = ẇ(π(λ)) and the above holds for every λ ∈ π−1(ξ), the
result follows.

Hence, when studying properties of the modules N ξ , we may as well confine
our attention to the ones indexed by dominant orthogonal weights; i.e., partitions.
In the decomposition (4.2) each summand is isomorphic to some N ξ for some ξ
such that ξ is a partition of r − 2s into not more than l parts, for some non-
negative integer s ≤ r/2. It is easy to see that all such possibilities actually occur
as direct summands in (4.2).

5. The Br(n) decomposition of (kn)⊗r in the
symmetric case, where n = 2l + 1

Now we consider the case where n = 2l+1, still with the symmetric bilinear form.
In this case, we have (l+ 1)′ = l+ 1. Thus, if a diagonal matrix diag(t1, . . . , tn) ∈
GLn(k) belongs to Ṫ then we necessarily have t2l+1 = 1, and ti′ = t−1

i for all

i 6= l + 1. Hence, the description of Ṫ in (4.1) shows in this case that Ṫ is
isomorphic to the direct product (k×)l × {±1} , where by {±1} we mean the
multiplicative group of square roots of unity. So the character group X(Ṫ ) is
isomorphic to Zl × (Z/2Z), and thus we will identify X(Ṫ ) with Zl × (Z/2Z).

There is a group homomorphism π : X(T ) → X(Ṫ ) given by restriction:
π(λ) = λ|Ṫ for λ ∈ X(T ). One easily checks that in this case, given a character

ξ ∈ X(Ṫ ), one can extend it to a character λ ∈ X(T ) such that λ|Ṫ = ξ . It
follows that the map π is surjective.

In terms of the identifications X(T ) = Zn and X(Ṫ ) = Zl × (Z/2Z), the
map π is given by the rule

(λ1, . . . , λn) 7→ (λ1 − λ1′ , . . . , λl − λl′ , λl+1)

where m denotes the image of an integer m under the natural quotient map
Z→ Z/2Z .

We next consider how to characterize the image of the set Λ(n, r) under
the map π . This case is a bit different from the even orthogonal case, because
of the presence of the Z/2Z term in the image of π . Note, however, that for
any λ ∈ Λ(n, r), the last component λl+1 of π(λ) is uniquely determined by the
preceding entries in π(λ), as follows.

Lemma. When n = 2l+ 1, suppose that λ ∈ Λ(n, r) and put t := (λ1 − λ1′) +
· · ·+ (λl − λl′). Then r − t ≡ λl+1 (mod 2).

Proof. Since λ1 + · · ·+ λn = r , it follows by a simple calculation that r− t =
2(λ1′ + · · ·+ λl′) + λl+1 , and the result follows.



Doty 879

Thanks to the lemma, we may as well pay attention only to the first l
parts of the image of some λ ∈ Λ(n, r) under π . Let us write Λ1(l, r) for
the set of all (ξ1, . . . , ξl) such that (ξ1, . . . , ξl, ε) ∈ π(Λ(n, r)). Then we have a
bijection π(Λ(n, r))→ Λ1(l, r), given by (ξ1, . . . , ξl, ε) 7→ (ξ1, . . . , ξl). The inverse
map is given by (ξ1, . . . , ξl) 7→ (ξ1, . . . , ξl, ε), where ε is the mod 2 residue of
r − ξ1 − · · · − ξl . This leads to the following characterization of Λ1(l, r).

Proposition 4. When n = 2l + 1, the image of the set Λ(n, r) under the map
π may be identified with the set Λ1(l, r) consisting of all ξ = (ξ1, . . . , ξl) ∈ Zl such
that |ξ1|+ · · ·+ |ξl| = r − s, where 0 ≤ s ≤ r .

Proof. If (ξ1, . . . , ξl, ε) = π(λ) for λ ∈ Λ(n, r) then |ξ1|+ · · ·+ |ξl| satisfies the
condition

|ξ1|+ · · ·+ |ξl| = ε1(λ1 − λ1′) + · · ·+ εl(λl − λl′)
where for each i = 1, . . . , l the sign εi is defined to be 1 if λi ≥ λi′ and −1
otherwise. This is just a signed sum of the parts of λ , excluding the (l+ 1)st part
λl+1 . Thus |ξ1|+ · · ·+ |ξl| = r − s where 0 ≤ s ≤ r . This proves the necessity of
the condition for membership in Λ2(l, r).

It remains to prove the sufficiency of the condition. Given ξ ∈ Zl satisfying
the condition |ξ1|+ · · ·+ |ξl| = r− s , where 0 ≤ s ≤ r , we define a corresponding
λ ∈ Λ(n, r − s) as follows: put λi = ξi if ξi > 0, put λi′ = −ξi if ξi < 0, put
λl+1 = s , and put all the other entries of λ = (λ1, . . . , λn) to zero. Then it easily
checked that π(λ) identifies with ξ under the correspondence (ξ1, . . . , ξl, ε) →
(ξ1, . . . , ξl).

For each ξ ∈ Λ1(l, r), the fiber π−1(ξ) may be computed as follows. Let
|ξ1|+ · · ·+ |ξl| = r− s , where 0 ≤ s ≤ r , and let λ be defined in terms of ξ as in
the second paragraph of the proof of the proposition. For each integer t such that
0 ≤ 2t ≤ s , let µ be the same as λ except that λl+1 = s is replaced by s − 2t .
Then for any ν ∈ Λ(l, t) we get a member

(µ1 + ν1, . . . , µl + νl, s− 2t, µl′ + νl, . . . , µ1′ + ν1)

of the fiber π−1(ξ). Thus, the fiber in this case has cardinality given by the
sum

∑
0≤2t≤s |Λ(l, t)| . By grouping terms in the direct sum decomposition (2.4)

according to the fibers we obtain

(kn)⊗r = V ⊗r =
⊕

ξ∈Λ1(l,r)

(⊕
λ∈π−1(ξ) M

λ
)

=
⊕

ξ∈Λ1(l,r) N
ξ (5.1)

where we define N ξ for any ξ ∈ Λ1(l, r) by N ξ :=
⊕

λ∈π−1(ξ) M
λ .

The N ξ are just the weight spaces under the action of the abelian group
Ṫ , so (5.1) gives the weight space decomposition of tensor space as a Ṫ -module.

Since the actions of On(k) and Br(n) commute, it is clear that each weight
space N ξ for ξ ∈ Λ1(l, r) is a right Br(n)-module. Hence (5.1) is a decomposition
of tensor space (kn)⊗r as a Br(n)-module, and we have achieved our goal in the
case n = 2l + 1.

The Weyl group Ẇ of On(k) in the case n = 2l + 1 is the same as in the
case n = 2l ; it is isomorphic to the semidirect product {±1}l oSl , the group of



880 Doty

signed permutations on l letters. We can realize Ẇ as a subgroup of On(k) in
this case as well, by taking the intersection of W with On(k). A given w ∈ W
lies within this intersection if and only if the condition (ew−1(i), ew−1(j)) = (ei, ej)

holds for all i, j . Thus, Ẇ is the set of w ∈ W such that

δw−1(i),w−1(j)′ = δi,j′ for all i, j = 1, . . . , n. (5.2)

Thus, for w ∈ W to belong to Ẇ , it is necessary that w−1(l + 1) = l + 1, or,
equivalently, w(l + 1) = l + 1. Then it is easy to check by direct calculation that
for any given σ ∈ Sl , if we define a corresponding wσ ∈ W such that

wσ(i) =

{
σ(i) if 1 ≤ i ≤ l

σ(i′) if l + 1 ≤ i ≤ 2l

then σ satisfies the condition (5.2). Furthermore, the transposition τi that in-
terchanges i with i′ also satisfies (5.2), and thus Ẇ may be identified with the
subgroup of W generated by the wσ (σ ∈ Sl ) and the τi (i = 1, . . . , l).

This subgroup acts on Λ(n, r) by restriction of the action of W . This
induces a corresponding action of Ẇ on the set Λ1(l, r), such that ẇ(ξ) = π(w(λ))
if w ∈ W corresponds to ẇ ∈ Ẇ and ξ = π(λ). Since τi sends ξ = (ξ1, . . . , ξl)
to (ξ1, . . . , ξi−1,−ξi, ξi+1, . . . , ξl), and wσ sends ξ to σ(ξ) = (ξσ−1(1), . . . , ξσ−1(l)),

it follows that Ẇ acts on the set Λ1(l, r) by signed permutations.

Thus, a fundamental domain for this action is the set Λ+
1 (l, r) consisting

of all ξ ∈ Λ1(l, r) such that ξ1 ≥ ξ2 ≥ · · · ≥ ξl ≥ 0. We call elements of this set
dominant orthogonal weights. So, in other words, each orbit of Λ1(l, r) contains a
unique dominant orthogonal weight. Notice that a dominant orthogonal weight is
the same as a partition of not more than l parts.

Proposition 5. For any ẇ ∈ Ẇ , ξ ∈ Λ1(l, r), the right Br(n)-modules N ξ

and N ẇ(ξ) are isomorphic.

The proof is similar to the proof of Proposition 3.

Hence, when studying properties of the modules N ξ , we may as well confine
our attention to the ones indexed by dominant orthogonal weights; i.e., partitions.
In the decomposition (5.1) each summand is isomorphic to some N ξ for some ξ
such that ξ is a partition of r−s into not more than l parts, for some non-negative
integer s ≤ r . It is easy to see that all such possibilities actually occur as direct
summands in the decomposition (5.1).

6. The Br(−n) decomposition of (kn)⊗r in the skew-symmetric case,
where n = 2l

In this case we assume throughout that n = 2l , and let the field k be arbitrary.
We define Spn(k) to be the group of isometries of V = kn with respect to the
skew-symmetric form ( , ) defined in Section 1. Then the action of Br(−n) on
tensor space V ⊗r = (kn)⊗r , defined in Section 3, commutes with the natural action
of Spn(k) (given by restricting the action of GLn(k)).
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Let Ṫ be the abelian subgroup of Spn(k) consisting of the diagonal matrices
in On(k). Thus, a diagonal matrix diag(t1, . . . , tn) ∈ GLn(k) belongs to Ṫ if and
only if

titi′ = 1 for all i = 1, . . . , n . (6.1)

As before, the description of Ṫ in (6.1) shows in this case that Ṫ is isomorphic to
(k×)l , and X(Ṫ ) is isomorphic to Zl , so we identify X(Ṫ ) with Zl .

The group homomorphism π : X(T )→ X(Ṫ ) given by restriction is surjec-
tive, for the same reason as before. In terms of the identifications X(T ) = Zn and
X(Ṫ ) = Zl , the map π is given by the rule

(λ1, . . . , λn) 7→ (λ1 − λ1′ , . . . , λl − λl′).

The imageΛ2(l, r) of the set Λ(n, r) under the map π has the same characterization
as in the even symmetric case.

Proposition 6. When n = 2l , the image of the set Λ(n, r) under the map π
is the set Λ2(l, r) of all ξ = (ξ1, . . . , ξl) ∈ Zl such that |ξ1| + · · · + |ξl| = r − 2s,
where 0 ≤ 2s ≤ r .

The proof is the same as in the even symmetric case; see the proof of
Proposition 2.

The fiber π−1(ξ) for ξ ∈ Λ2(l, r) has in this case the same description as
in the even symmetric case; see the remarks following the proof of Proposition 2.
By grouping terms in the direct sum decomposition (2.4) according to the fibers
we obtain

(kn)⊗r = V ⊗r =
⊕

ξ∈Λ2(l,r)

(⊕
λ∈π−1(ξ) M

λ
)

=
⊕

ξ∈Λ2(l,r) N
ξ (6.2)

where we define N ξ for any ξ ∈ Λ2(l, r) by N ξ :=
⊕

λ∈π−1(ξ) M
λ .

The N ξ are just the weight spaces under the action of the abelian group
Ṫ , so (6.2) gives the weight space decomposition of tensor space as a Ṫ -module.

Since the actions of Spn(k) and Br(−n) commute, it is clear that each
weight space N ξ for ξ ∈ Λ2(l, r) is a right Br(−n)-module. Hence (6.2) is a
decomposition of tensor space (kn)⊗r as a Br(n)-module.

The Weyl group Ẇ of Spn(k) is again isomorphic to the semidirect product
{±1}l oSl , the group of signed permutations on l letters. Again, the group Ẇ
acts on the set Λ2(l, r) by signed permutations. Thus, a fundamental domain for
this action is the set Λ+

2 (l, r).

Proposition 7. For any ẇ ∈ Ẇ , ξ ∈ Λ2(l, r), the right Br(n)-modules N ξ

and N ẇ(ξ) are isomorphic.

The proof is similar to the proof of Proposition 3.

Hence, when studying properties of the modules N ξ , we may as well confine
our attention to the ones indexed by dominant orthogonal weights; i.e., partitions.
In the decomposition (6.2) each summand is isomorphic to some N ξ for some ξ
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such that ξ is a partition of r − 2s into not more than l parts, for some non-
negative integer s ≤ r/2. As before, it is easy to see that all such possibilities
actually occur as direct summands in (6.2).
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