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1. Introduction

Let G be a reductive Lie group, and let π be an irreducible, admissible representa-
tion of G with character Θπ . By results of [2] and [18], the leading term of Θπ at
one is an integral linear combination of Fourier transforms of canonical measures
on nilpotent coadjoint orbits. Further, every orbit which occurs in this sum has
the same complexification. In particular, if G = GL(n,R), then the leading term
of any irreducible character of G is a positive integer times the Fourier transform
of the canonical measure on a nilpotent coadjoint orbit.

The main result of this paper is an explicit formula for the Fourier trans-
form of the canonical measure on a nilpotent coadjoint orbit for GL(n,R). Given
a conjugacy class of Levi subgroups, L , for GL(n,R), fix a conjugacy class of
parabolics P with Levi factor L . Then we define

OL ⊂ µ(T ∗P)

to be the unique open orbit. Here µ is the moment map (defined in section four).
In the next statement, we also denote the canonical measure on this orbit (defined
in section two) by OL . Moreover, whenever G is a reductive Lie group and H is
a Cartan subgroup, then W (G,H) = NG(H)/H denotes the real Weyl group of
G with respect to H . Here is our main result.
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Theorem 1.1. Fix a Cartan subgroup H ⊂ G = GL(n,R), let h = Lie(H),
and let C be a connected component of the regular set h′ of h. Choose positive
roots ∆+ of gC with respect to hC satisfying:
(i) If α is a positive real root and X ∈ C , then α(X) > 0.
(ii) If α is a complex root, then α is positive iff α is positive.
Then

ÔL|C =
∑

L∈L, L⊃H

∣∣∣∣W (G,H)L
W (L,H)

∣∣∣∣ πLπ .
Here π =

∏
α∈∆+ α, ∆+

L denotes the roots of L that lie in ∆+ , πL =
∏

α∈∆+
L
α,

and W (G,H)L = {w ∈ W (G,H)| wL = L}.

In the process of proving this result, we will write down a number of limit
formulas for reductive Lie groups. First, we have a limit formula for semisimple
orbits.

If G is a reductive Lie group, we will write r(G) (or simply r) for one half
the number of roots of G with respect to any Cartan H . If we fix a Cartan H ,
then q(G,H) will denote one half the number of non-compact, imaginary roots of
G with respect to H . If H is a fundamental Cartan, then we will write q(G) (or
simply q ) instead of q(G,H).

Theorem 1.2 (Harish-Chandra). Let G be a reductive Lie group, let ξ ∈ g∗ =
Lie(G)∗ be a semisimple element, and let L = ZG(ξ) ⊂ G be the corresponding
reductive subgroup. Choose positive roots ∆+

L ⊂ ∆L = ∆(lC, hC) such that a
complex root α is positive iff α is positive, and put

C = {λ ∈ (h∗)′| 〈iλ, α∨〉 > 0 for all imaginary roots α ∈ ∆+
L}.

Then
lim

λ→ξ, λ∈C
∂(πL)|λOλ = ir(L)(−1)q(L)|W (L,H)|Oξ.

Here πL is the product of the positive roots of L, and h∗ = Lie(H)∗ ⊂ g∗ = Lie(G)∗

is embedded in the usual way.

We give Harish-Chandra credit for this result because he proved a group
analogue of this theorem on pages 33-34 in [12]. The special case where ξ = 0 was
proved by Harish-Chandra in [7], [8], [9], and [13]. In [4], Bocizevic gives a proof
of the case ξ = 0 using techniques developed by Schmid and Vilonen. In sections
one and two, we write down a proof of this theorem using elementary, classical
methods. This simple proof is probably well-known to experts. However, we wish
to write it down since it does not appear in the literature.

Next, we have limit formulas for nilpotent orbits. Let ν ∈ g∗ , and let Oν
denote the canonical measure on the coadjoint orbit G · ν . Then the limit of
distributions

lim
t→0+
Otν =

∑
nG(O, ν)O

is a sum of canonical measures on nilpotent coadjoint orbits. Let OC denote the
IntgC -orbit IntgC · O ⊂ g∗C .
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Proposition 1.3. The coefficients nG(O, ν) are positive integers. Moreover,
we have the inequality nG(O, ν) ≤ nInt gC(OC, ν).

In [1], Dan Barbasch gives formulas for nInt gC(OC, ν). Hence, the above
theorem gives an upper bound for nG(O, ν). In section 4, we give a lower bound
for nG(O, ν) in the case where nG(O, ν) 6= 0. When the lower and upper bounds
coincide, we get a formula for nG(O, ν). We will show that this happens for certain
GL(n,R) limit formulas, and we use these formulas together with Theorem 1.2 to
explicitly compute the formulas in Theorem 1.1. These bounds also coincide when
OC is an even orbit. Rao proved but never published a limit formula for even
nilpotent orbits. Recently in [5], Bozicevic gave a deep, modern proof of Rao’s
result. In section five, we use the above results to give an elementary, classical
proof of Rao’s limit formula.

2. Harish-Chandra’s Limit Formula for the Zero Orbit

In this section, we prove Harish-Chandra’s limit formula for the zero orbit. It was
proven in [7], [8], [9], and [13], but with a different normalization of the measures
on coadjoint orbits than the one we use here. In [4], using methods of Schmid
and Vilonen, Bozicevic gave a proof of the formula, written in terms of canonical
measures on orbits. In this section, we show how to write down such a proof using
only well-known, classical methods. This proof may be well-known to experts, but
it has not appeared in the literature. Moreover, it is not a waste of space to write
it down here since many of the fundamental results we recall in this section will
be needed later in the article for other purposes.

First, we need a couple of definitions. A Lie group G is reductive if there
exists a real, reductive algebraic group G1 and a Lie group homomorphism G→ G1

with open image and finite kernel. Let O ⊂ g∗ be a coadjoint orbit for G . The
Kostant-Kirillov symplectic form ω is defined on O by the formula

ωλ(ad∗Xλ, ad∗Y λ) = λ([X, Y ]).

The top dimensional form
ωm

m!(2π)m

on O gives rise to the canonical measure on O . Here m = dimO
2

. We will often
abuse notation and write O for the orbit as well as the canonical measure on the
orbit. In what follows, we will denote the G-orbit through λ by OGλ (or sometimes
just Oλ ).

Theorem 2.1 (Harish-Chandra). Let G be a reductive Lie group, and let H ⊂
G be a fundamental Cartan subgroup. Choose positive roots ∆+ ⊂ ∆ = ∆(gC, hC)
such that a complex root α is positive iff α is positive, and put

C = {λ ∈ (h∗)′| 〈iλ, α∨〉 > 0 for all imaginary roots α ∈ ∆+}.

Then
lim

λ→0, λ∈C
∂(π)|λOλ = ir(−1)q|W (G,H)|δ0.
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Here π is the product of the positive roots of G and h∗ = Lie(H)∗ ⊂ g∗ = Lie(G)∗

is embedded in the usual way.

We will actually prove the Fourier transform of the above theorem. Recall
the definition of the Fourier transform. Let V be a finite dimensional, real vector
space, and let µ be a smooth, rapidly decreasing measure (that is, a Schwartz
function multiplied by a Lebesgue measure) on V . Then the Fourier transform
of µ is defined to be

µ̂(l) =

∫
V

ei〈l,X〉dµ(X).

Note µ̂ is a Schwartz function on V ∗ . Given a tempered distribution D on V ∗ ,
its Fourier transform D̂ is a tempered, generalized function on V defined by

〈D̂, µ〉 := 〈D, µ̂〉.

Next, we recall Harish-Chandra’s result on Fourier transforms of regular,
semisimple orbits. If h ⊂ g is a Cartan subalgebra, define

h′′ = {X ∈ h| α(X) 6= 0 ∀α ∈ ∆real}.

Here ∆real denotes the real roots of g with respect to h .

Lemma 2.2 (Harish-Chandra). Let h ⊂ g be a Cartan, let C ⊂ (h∗)′ ⊂ g∗ be a
connected component of the set of regular elements in h∗ , and let λ ∈ C be regular,
semisimple. Suppose h1 ⊂ g is a Cartan subalgebra, and C1 ⊂ h′′1 is a connected
component. Identify λ ∈ h∗C

∼= (h1)∗C via an inner automorphism of IntgC . Then

Ôλ|C1 =

∑
w∈WC

awe
iwλ

π

for aw ∈ C constants. Here WC is the Weyl group of the roots of gC with respect
to (h1)C , and π is a product of positive roots of gC with respect to (h1)C . Further,
the constants aw are independent of the choice of λ ∈ C .

This is essentially Lemma 24 of [7]. Differentiating the above formula with
respect to λ yields

lim
λ∈C, λ→0

∂(π)|λÔλ|C1 = ir
(∑

ε(w)aw

) π
π
.

Observe that the coefficients aw depend on a component C ⊂ (h∗)′ as well as a
component C1 ⊂ (h1)′′ . For the remainder of the section, we fix C ⊂ (h∗)′ and
we assume that h is a fundamental Cartan subalgebra. To prove Theorem 2.1, we
need only show the following lemma.

Lemma 2.3. Assume h is a fundamental Cartan. Then∑
ε(w)aw = (−1)q|W (G,H)|.
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Again, these coefficients aw depend on a component C1 ⊂ (h1)′′ . In order
to prove Lemma 2.3, we first prove it in the case where h1 = h using a result of
Rossmann and Harish-Chandra descent. For our applications, it is important to
give Berline-Vergne’s formulation [3] of Rossmann’s result [15] (we recommend the
proof of Berline-Vergne as well).

Theorem 2.4 (Rossmann). Let G be a reductive Lie group, and let H be a
Cartan subgroup such that H/Z(G) is compact. Let λ ∈ C ⊂ (h∗)′ = (Lie(H)∗)′

be regular, semisimple, and choose positive roots ∆+ ⊂ ∆ satisfying 〈iλ, α∨〉 > 0
for all α∨ ∈ (∆+)∨ . Then

Ôλ|h′ = (−1)q
∑

w∈W (G,H) ε(w)eiwλ

π

where π is the product of the positive roots.

This theorem implies Lemma 2.3 when h1 = h when G is of equal rank.
Now, let G be an arbitrary reductive Lie group, and let h ⊂ g = Lie(G) be a
fundamental Cartan. Choose a Cartan involution θ such that h is θ stable with
decomposition h = t⊕a . Then M = ZG(a) is a reductive Lie group of equal rank.
Harish-Chandra gave continuous maps [7]

φ : S(g∗)→ S(m∗), ψ : SM(g)→ SM(m)

well-defined up to a constant, where S(V ) is the space of smooth, rapidly decreas-
ing functions on a vector space V and SM(V ) is the space of smooth, rapidly
decreasing measures on a vector space V . Dualizing, we obtain maps

φ∗ : TD(m∗)→ TD(g∗), ψ∗ = HC : TGF(m)→ TGF(g)

on tempered distributions and tempered generalized functions. We call the map
on the right HC because it is Harish-Chandra’s descent map. Thus far, these maps
are only well-defined up to a constant; however, there is a nice way to normalize
this constant. It follows from results of Rossmann [16] that one can fix the constant
on φ∗ so that φ∗(OMλ ) = OGλ takes canonical measures on G-regular, semisimple
coadjoint orbits to canonical measures on regular, semisimple coadjoint orbits. In
[7], Harish-Chandra observes that ψ is (up to a constant) the Fourier transform
of φ . Thus, we may require

HC(D̂) = ψ̂∗(D)

for all D ∈ TD(m∗) and this precisely defines the map HC.

We fix this normalization. Arguments similar to the ones in [16] imply the
following explicit formula for computing HC.

Lemma 2.5 (Harish-Chandra, Rossmann). Let F be an M -invariant general-
ized function on m that is given by integration against an analytic function on the
set of regular, semisimple elements m′ ⊂ m, which we also denote by F . Given
X ∈ g′ , let {Yi}ki=1 be a set of representatives for the finite number of M -orbits in
OGX ∩m. Then HC(F ) is a G-invariant generalized function on g that is given by
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integration against an analytic function on the set of regular, semisimple elements
g′ ⊂ g, which we also denote by HC(F ). Explicitly, we have

HC(F )(X) =
k∑
i=1

F (Yi)
∣∣πG/M(Yi)

∣∣−1
.

To define |πG/M(Y )|, choose a Cartan Y ∈ h ⊂ m, let ∆G (resp. ∆M ) be the
roots of g (resp. m) with respect to h, let ∆+

G be a choice of positive roots of ∆G ,
and let ∆+

M = ∆+
G ∩∆M . Then |πG/M(Y )| = |

∏
α∈∆+

G\∆
+
M
α(Y )|. This definition

is independent of the above choices.

Combining Theorem 2.4 and Lemma 2.5, we get the following corollary.

Corollary 2.6 (Rossmann). Let G be a reductive Lie group with Cartan sub-
group H , and let q(G,H) be half the number of non-compact imaginary roots of
G with respect to H . Let λ ∈ h∗ = Lie(H)∗ be a regular element, and let C1 ⊂ h′

be a connected component. Choose positive roots ∆+ ⊂ ∆ satisfying
(i) If α∨ ∈ (∆+)∨imag. , then 〈iλ, α∨〉 > 0.
(ii) If α ∈ ∆+

real and X ∈ C1 , then α(X) > 0.
(iii) If α a complex root, then α ∈ ∆+ iff α ∈ ∆+ .

Then

ÔGλ |C1 = (−1)q(G,H)

∑
w∈W (G,H) εI(w)eiwλ

π

where W (G,H) = NG(H)/H , π is the product of the positive roots, and εI is
defined by

w · πI = εI(w)πI , πI =
∏

α∈∆+
imag

α.

Moreover, ÔGλ is zero on Cartan subalgebras h which are not conjugate to a Cartan
subalgebra of Zg(λ).

A version of this result containing a few typos can be found in [17]. Since εI = ε
on a fundamental Cartan h , this verifies Lemma 2.3 on h′ . To finish the proof of
Lemma 2.3, we use Harish-Chandra’s matching conditions.

Theorem 2.7 (Harish-Chandra). Let h ⊂ g be a fundamental Cartan sub-
algebra, and let h1 be another Cartan subalgebra. Let λ ∈ (h∗)′ , and identify
λ ∈ h∗C

∼= (h1)∗C via an inner automorphism of gC . Suppose h2 is a third Cartan
related to h1 by a Cayley transform cα via a noncompact, imaginary root α of
h1 . Let C1 ⊂ h′′1 be a connected component containing an open subset of ker(α),
and let C2 ⊂ h′′2 be a connected component such that C1 contains a wall of C2 .
Suppose

Ôλ|C1 =

∑
awe

iwλ

π
, Ôλ|C2 =

∑
bwe

iwλ

π
.

Then we have

ε(w)aw + ε(sαw)asαw = ε(w)bw + ε(sαw)bsαw.
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Here we identify the noncompact, imaginary root α of h1 with the corresponding
real root of h2 . We also identify λ ∈ (h1)∗C with the corresponding element
λ ∈ (h2)∗C via the pullback of the isomorphism cα : (h1)C → (h2)C .

This theorem is Lemma 26 of [11] where Harish-Chandra remarks that it
follows from Lemma 18 of [10]. Summing these relations over the entire Weyl
group, we get ∑

ε(w)aw =
∑

ε(w)bw.

Since any component of any Cartan can be related to a component of a fundamental
Cartan via successive Cayley transforms, we deduce∑

ε(w)aw = (−1)q|W (G,H)|

whenever Ôλ|C1 =
∑
awewλ

π
on any component C1 ⊂ h′′1 for any Cartan h1 . This is

the statement of Lemma 2.3. As we have already remarked, Theorem 2.1 follows.

3. Harish-Chandra’s Limit Formula for Semisimple Orbits

In this section, we prove Harish-Chandra’s limit formula for an arbitrary semisim-
ple orbit. A group analogue of this result was proved on pages 33-34 of [12].

Theorem 3.1. Let G be a reductive Lie group, let ξ ∈ g∗ = Lie(G)∗ be a
semisimple element, let L = ZG(ξ) ⊂ G be the corresponding reductive subgroup,
and fix a fundamental Cartan subgroup H ⊂ L. Choose positive roots ∆+

L ⊂ ∆L =
∆(lC, hC) such that a complex root α is positive iff α is positive, and put

C = {λ ∈ (h∗)′| 〈iλ, α〉 > 0 for all imaginary roots α ∈ ∆+}.

Then
lim

λ→ξ, λ∈C
∂(πL)|λOλ = ir(G)(−1)q(L)|W (L,H)|Oξ.

Here πL is the product of the positive roots of L and h∗ = Lie(H)∗ ⊂ g∗ = Lie(G)∗

is embedded in the usual way.

We prove the theorem by reducing to the case ξ = 0, which was proved in
the last section. Let dG/H be a Haar measure on G/H , let dG/L be a Haar measure
on G/L , and let dL/H be a Haar measure on L/H . Then it is a well-known fact
(see for instance page 95 of [14]) that there exists a constant c > 0 such that∫

G/H

f(g ·X)dG/Hg = c

∫
G/L

(∫
L/H

f(gl ·X)dL/H l

)
dG/Lg.

Choosing a Haar measure on G/H (resp. G/L , L/H ) is equivalent to choosing a
top-dimensional, alternating tensor ηG/H , well-defined up to sign, on (g/h)∗ (resp.
ηG/L , ηL/H on (g/l)∗ , (l/h)∗ ). The exact sequence

0→ (g/l)∗ → (g/h)∗ → (l/h)∗ → 0
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gives rise to maps on alternating tensors. Abusing notation, we also write ηG/L
for the image of ηG/L under the above map, and we also write ηL/H for a preimage
of ηL/H under the above map. Then

ηG/H = ±c(ηG/L ∧ ηL/H).

This can be proved by relating the multiplication gl on the group to addition on
the Lie algebra and then applying Fubini’s theorem.

To apply these remarks to our proof of the theorem, fix a Haar measure on
the homogeneous space G/L by identifying G/L ∼= Oξ and using the canonical
measure, fix a Haar measure on G/H by identifying G/H ∼= Oλ for a fixed λ ∈ C ,
and fix a Haar measure on L/H by identifying L/H ∼= OLλ . Then we get∫

G/H

f(g · λ)dg = cλ

∫
G/L

(∫
L/H

f(gl · λ)dl

)
dg.

Lemma 3.2. Let ∆G (resp. ∆L ) denote the roots of g (resp. l) with respect
to h. Let ∆+

G ⊂ ∆G be a choice of positive roots, and let ∆+
L = ∆+

G ∩∆L . Then

cλ =

∏
α∈∆+

G\∆
+
L
〈λ, α∨〉∏

α∈∆+
G\∆

+
L
〈ξ, α∨〉

for λ ∈ C . In particular, lim
λ∈C, λ→ξ

cλ = 1.

Proof. Recall that the forms ηG/H , ηG/L , and ηL/H yield top-dimensional
alternating tensors on (g/h)∗ , (g/l)∗ , and (l/h)∗ , well-defined up to a choice of sign.
Extend these tensors complex linearly to (gC/hC)∗ , (gC/lC)∗ , (lC/hC)∗ and denote
them by ηGλ , ηGξ , and ηLλ . Note that we still have the identity ηGλ = ±cλ(ηGξ ∧ ηLλ ).
Consider the root space decomposition

gC = hC
⊕(∑

α∈∆G

(gC)α

)
.

For each α ∈ ∆+
G , choose elements Xα ∈ (gC)α , X−α ∈ (gC)−α , and Hα ∈ hC such

that {Xα, Hα, X−α} is an sl2 -triple. Then

[
(2π)mηGλ ({Xα}α∈∆G

)
]2

=

(
ωmλ
m!

({Xα}α∈∆G
)

)2

= det (ωλ(Xα, Xβ)) .

Here m = 1
2
(dim g − dim h) and ωλ is the Kostant-Kirillov symplectic form on

OGλ . Note that we need not order the tangent vectors {Xα} before applying
the square of the top dimensional alternating tensor ηGλ to them since the value
of ηGλ ({Xα}α∈∆G

)2 is independent of this ordering. The second equality follows
from explicitly expanding out ωmλ ({Xα}) into a sum with signs, squaring it, and
identifying the result as the corresponding 2m by 2m determinant. Finally, we
have

det(ωλ(Xα, Xβ) =
∏
α∈∆+

G

λ(Hα)2.
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This follows from the fact that ωλ(Xα, Xβ) = λ[Xα, Xβ] 6= 0 only if β = −α in
which case we obtain λ(Hα). If k = 1

2
(dim g − dim l) and l = 1

2
(dim l − dim h),

then we similarly have[
(2π)kηGξ ({Xα}α∈∆G\∆L

)
]2

=
∏

α∈∆+
G\∆

+
L

ξ(Hα)2

and [
(2π)lηGλ ({Xα}α∈∆L

)
]2

=
∏
α∈∆+

L

λ(Hα)2.

Combining the above formulas and the identity ηGλ = ±cλ(ηGξ ∧ ηLλ ) yields

c2
λ

∏
α∈∆+

G\∆
+
L

ξ(Hα)2
∏
α∈∆+

L

λ(Hα)2 =
∏
α∈∆+

G

λ(Hα)2.

Solving for c2
λ , taking the positive square root, and observing Hα = α∨ is the

coroot, the lemma follows.

In the last lemma, we observed that cλ is a constant multiple of the poly-
nomial π∨G/L =

∏
α∈∆+

G\∆
+
L
α∨ in a neighborhood of ξ . Let D(h∗) denote the Weyl

algebra of polynomial coefficient differential operators on h∗ . Given D ∈ D(h∗), we
may evaluate D at λ ∈ h∗ and get a distribution D(λ) (ie. D(λ)(f) := (Df)(λ)).
We write D(λ) = 0 if D(λ) is the zero distribution.

Lemma 3.3. The elements ∂(πL), π∨G/L ∈ D(h∗) commute at the point ξ . More
precisely,

[∂(πL), π∨G/L](ξ) = 0.

Proof. Suppose S ⊂ ∆+
L is a subset, define πS =

∏
α∈S α , and let w ∈ Auth

be a linear automorphism. Then for purely formal reasons,

〈∂(wπS), wπ∨G/L〉(wξ) = 〈∂(πS), π∨G/L〉(ξ).

(If D ∈ S(h∗) is a differential operator on h∗ , p ∈ S(h) is a polynomial on
h∗ , and ζ ∈ h∗ is a point, then 〈D, p〉(ζ) := (Dp)(ζ) denotes differentiating the
polynomials p by D and evaluating at ζ ). Now suppose w ∈ WL where WL is
the Weyl group of root system ∆L . Then wξ = ξ and wπ∨G/L = π∨G/L . Hence,

〈∂(wπS), π∨G/L〉(ξ) = 〈∂(πS), π∨G/L〉(ξ) (∗)

for all S ⊂ ∆+
L and all w ∈ WL . Now define

wS := {α ∈ ∆+
L | α = ±wβ and β ∈ S}.

This defines an action of WL on the set of subsets of ∆+
L . Let WS be the stabilizer

of S in WL . Then

∂(πL)π∨G/L =
∑

W−orbits of
subsets S⊂∆+

L

|WS|
|WL|

∑
w∈WL

εL(w)〈∂(wπS), π∨G/L〉∂(wπSc).
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Here εL is the sign representation of WL and Sc is the compliment of S in ∆+
L .

Moreover, the notation 〈∂(wπS), π∨G/L〉 simply means that we differentiate the

polynomial π∨G/L by ∂(wπS). Evaluating at ξ and applying (*), our sum becomes

∑
W−orbits of

subsets S⊂∆+
L

|WS|
|WL|

〈∂(πS), π∨G/L〉(ξ) ∂

( ∑
w∈WL

εL(w)wπSc

)∣∣∣
ξ
.

Note that the polynomial
∑
εL(w)wπSc is skew with respect to WL . Thus, πL

must divide this polynomial. However, if S 6= ∅ , then the degree of
∑
εL(w)wπSc

is less than the degree of πL . Thus, our polynomial must be the zero polynomial
if S 6= ∅ . If S = ∅ , then

∑
εL(w)wπSc = |WL|πL . Plugging this back into the

above expression, we end up with π∨G/L(ξ)∂(πL)|ξ as desired.

Now, we prove Theorem 3.1. If f ∈ C∞c (g), then applying Lemmas 3.2 and
3.3 yields

lim
λ∈C, λ→ξ

∂(πL)|λ〈OGλ , f〉 = lim
λ∈C, λ→ξ

∂(πL)|λcλ
∫
G/L

〈OLλ , g · f〉dg

= lim
λ∈C, λ→ξ

∂(πL)|λ
∫
G/L

〈OLλ , g · f〉dg =

∫
G/L

lim
λ∈C, λ→ξ

∂(πL)|λ〈OLλ , g · f〉dg.

Applying theorem 2.1, we have

lim
λ∈C, λ→ξ

∂(πL)|λ〈OLλ , g · f〉 = ir(L)(−1)q(L)|W (L,H)|f(g · ξ).

Since we normalized the measure on G/L ∼= OGξ to be the canonical one, when we
integrate both sides over G/L , we get

lim
λ∈C, λ→ξ

∂(πL)|λ〈OGλ , f〉 = ir(L)(−1)q(L)|W (L,H)|〈OGξ , f〉

as desired.

4. Applications of a Lemma of Rao and a Limit Formula of Barbasch

Identify g ∼= g∗ via a G-equivariant isomorphism. Let OX be a nilpotent orbit
in g∗ ∼= g , and let {X,H, Y } be an sl2 -triple with nilpositive element X . Put
SX = X + Zg(Y ).

Proposition 4.1. Let ν ∈ g∗ be semisimple. Then

lim
t→0+
Otν =

∑
OX nilpotent
Oν∩SX finite

#(Oν ∩ SX)OX .

The fact that the limit of distributions on the left hand side exists was known
to Harish-Chandra. It follows from Lemma 22 of [9] together with Theorem 3.1
above. Further, the limit on the left hand side is easily seen to be a non-negative,
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homogeneous distribution supported on the nilcone. It is well-known that every
non-negative distribution is a Radon measure. Thus, it follows that the limit must
be a linear combination of canonical invariant measures on nilpotent coadjoint
orbits.
To verify the precise nature of the sum, we recall an unpublished lemma of Rao.
Nothing we say is particularly deep; hence, we leave the verifications of these well-
known facts to the reader.

Observe that the map

φ : G× SX → g∗

given by φ : (g, ξ) 7→ g · ξ is a submersion. In particular, every orbit Oν ⊂ G · SX
is transverse to SX , and G · SX ⊂ g∗ is open.

Fix a Haar measure on G . This choice determines a Lebesgue measure on
g ∼= g∗ . The direct sum decomposition g = [g, X] ⊕ Zg(Y ) and the canonical
measure on OX determine a Lebesgue measure on SX . Further, given ν ∈ g∗ ,
denote by Fν the fiber over ν under the map φ . If g · ξ = ν , then we have an
exact sequence

0→ T ∗ν (G · SX)→ T ∗(g,ξ)(G× SX)→ T ∗(g,ξ)Fν → 0.

This exact sequence together with the above remarks and our choice of Haar
measure on G determine a smooth measure on Fν . Moreover, integration against
these measures on the fibers of φ yields a continuous surjective map

φ∗ : C∞c (G× SX) −→ C∞c (G · SX).

Dualizing, we get an injective pullback map on distributions

φ∗ : D(G · SX)→ D(G× SX).

Now, we are ready to state Rao’s lemma.

Lemma 4.2 (Rao). If ν ∈ SX , then there exists a smooth measure mν,X on
Oν ∩ SX such that

φ∗(Oν) = mG ⊗mν,X .

Here mG denotes the fixed choice of Haar measure on G. Although φ∗ depends
on this choice of Haar measure, mν,X does not.

One can write down mν,X by giving a top dimensional form on Oν ∩ SX ,
well-defined up to sign. Essentially, we just divide the canonical measure on Oν
by the canonical measure on OX . More precisely, the composition of the inclusion
[g, ν] ↪→ g and the projection defined by the decomposition g = [g, X] ⊕ Zg(Y )
yields a map

TνOν ∼= [g, ν]→ [g, X] ∼= TXOX .

This surjection pulls back to an exact sequence

0→ T ∗XOX → T ∗νOν → T ∗ν (Oν ∩ SX)→ 0.
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The canonical measures on Oν and OX determine top dimensional alternating
tensors up to sign on T ∗νOν and T ∗XOX . Hence, our exact sequence gives a top
dimensional, alternating tensor on T ∗ν (Oν ∩ SX), well-defined up to sign.

Next, we need a proposition of Barbasch and Vogan. If ν ∈ g∗ , then define

Nν = ∪t>0Otν ∩N .

Proposition 4.3 (Barbasch and Vogan). Suppose ν ∈ g∗ . If OX is a nilpotent
orbit, then OX ⊂ Nν if, and only if Oν ∩ SX 6= ∅. Further, OX ∩ SX = {X} for
any nilpotent orbit OX .

A proof of the last sentence can be found on the top half of page 48 of [2].
We recall the proof of the first part of the proposition because it gives us an excuse
to introduce some notation we will use later. Recall G ·SX ⊂ g∗ is an open subset
containing OX ; thus, OX ⊂ Nν iff Otν ∩ SX 6= ∅ for sufficiently small t > 0.
However, if γt = exp(−1

2
(log(t))H), then

Otν ∩ SX = tγt(Oν ∩ SX).

In particular, Oν ∩ SX 6= ∅ iff Otν ∩ SX 6= ∅ for any t > 0.
Now, back to the proof of Proposition 4.1. We know that the limit

limt→0+ Otν exists and is a linear combination of nilpotent coadjoint orbits. Ob-
serve that the support of the distribution must be contained in Nν . Hence,
by Proposition 4.3, we are summing over orbits OX such that Oν ∩ SX 6= ∅ .
Checking the homogeneity degree, we observe that these orbits OX must satisfy
dimOX = dimOν . Finally, since every orbit intersecting SX is transverse to SX ,
the condition dimOX = dimOν is equivalent to Oν ∩ SX being finite. Thus, we
realize that only the orbits satisfying #(Oν ∩ SX) < ∞ can occur in the limit
limt→0+ Otν .

Now, to compute the coefficients of these orbits, we use Rao’s lemma. To
finish the proof, it is enough to show

lim
t→0+
Otν = #(Oν ∩ SX)OX on G · SX .

To do this, we apply the injective map φ∗ and Rao’s lemma to reduce the question
to proving

lim
t→0+

mtν,X = #(Oν ∩ SX)δX .

Observe that the measure mtν,X is supported on the finite set Otν ∩ SX . If
Oν∩SX = {ν1, . . . , νk} , then Otν∩SX = {tγtν1, . . . , tγtνk} . We observe tγtνj → X
as t→ 0+ and mtν,X |tγtνj → δX as t→ 0+ . These facts together imply the desired
relation limt→0mtν,X = #(Oν ∩ SX)δX . This completes the proof of Proposition
4.1.

Next, we record a couple of useful corollaries to Proposition 4.1. Suppose ν ∈ g∗

is semisimple, and write

lim
t→0+
Otν =

∑
nG(O, ν)O.
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If O is an orbit occuring in the sum, then we let OC = IntgC · O denote its com-
plexification, and we denote by nInt gC(OC, ν) the coefficient in the corresponding
limit formula of IntgC -orbits.

Corollary 4.4. The coefficients nG(O, ν) are non-negative integers. Moreover,
nG(O, ν) ≤ nInt gC(OC, ν).

The coefficient nG(O, ν) is a non-negative integer because it is the car-
dinality of a finite set by Proposition 4.1. Note nG(O, ν) is the cardinality of
the finite set Oν ∩ (X + Zg(Y )) while nInt gC(OC, ν) is the cardinality of the set
(IntgC · Oν) ∩ (X + ZgC(Y )). Since the former set is contained in the later set, we
deduce nG(O, ν) ≤ nInt gC(OC, ν).

Corollary 4.5. Let ν ∈ g∗ , let L = ZG(ν), and suppose O is a nilpotent orbit
with nG(O, ν) 6= 0. After conjugating by G, we may assume ν ∈ SX . There exists
a maximal compact subgroup K ⊂ G such that ZK{X,H, Y } ⊂ ZG{X,H, Y } and
K ∩ L ⊂ L are maximal compact subgroups. If K is such a group, then

|ZK(X)/ZK∩L(X)| ≤ nG(O, ν).

First, if nG(O, ν) 6= 0, then ZG{X,H, Y }/ZL{X,H, Y } acts faithfully on
the finite set Oν∩SX by Corollary 3.1.5. In particular, we have a chain of reductive
groups

G ⊃ L ⊃ ZG{X,H, Y }0

where ZG{X,H, Y }0 is the identity component of ZG{X,H, Y } . Recall that any
compact subroup of a reductive Lie group is contained in a maximal compact
subgroup of a reductive Lie group. It follows from this fact that there exists a
maximal compact subgroup K ⊂ G such that

K ∩ L ⊂ L, K ∩ ZG{X,H, Y }0 ⊂ ZG{X,H, Y }0

are maximally compact subgroups. But, it is not difficult to see that whenever K ⊂
G is a maximally compact subgroup, we have K ∩ ZG{X,H, Y } ⊂ ZG{X,H, Y }
is maximally compact. This proves the first statement of the proposition.

Note that ZK{X,H, Y } acts on the finite set Oν∩SX with stabilizer ZK∩L{X,H, Y } .
Thus, we deduce |ZK{X,H, Y }/ZK∩L{X,H, Y }| ≤ nG(O, ν). Hence, to prove the
corollary, it is enough to show that the injection

ZK{X,H, Y }/ZK∩L{X, Y,H} ↪→ ZK(X)/ZK∩L(X)

is in fact a surjection.
To do this, we use two commutative diagrams. First, we have

ZK{X,H, Y }/ZK∩L{X,H, Y } −−−→ ZG{X,H, Y }/ZL{X,H, Y }y y
ZK(X)/ZK∩L(X) −−−→ ZG(X)/ < ZG(X)0, ZL(X) >
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where ZG(X)0 denotes the identity component of ZG(X) and < ZG(X)0, ZL(X) >
denotes the group generated by ZG(X)0 and ZL(X). The top arrow is a surjection
because the maximal compact subgroup ZK{X,H, Y } meets every component of
the reductive Lie group ZG{X,H, Y } . The arrow on the right is a surjection be-
cause every component of ZG(X) meets the Levi factor ZG{X,H, Y } . Hence, to
show that the arrow on the left is a surjection, it is enough to show that the botton
arrow is an injection.

To verify this last statement, we need some notation and a second commu-
tative diagram. Find a real, reductive algebraic group GR and a map p : G→ GR
with open image and finite kernel. Choose a maximal compact subgroup KR ⊂ GR
such that p(K) ⊂ KR , and choose a Levi subgroup LR ⊂ GR such that p : L→ LR
has open image and finite kernel. Let LC be the complexification of LR , and let
U ⊂ GC be a maximal compact subgroup with KR = U ∩GR . Choose a parabolic
subgroup PC ⊂ GC with Levi factor LC . Then we have the following commutative
diagram.

ZK(X)/ZK∩L(X) −−−→ ZG(X)/ < ZG(X)0, ZL(X) >y y
ZU(X)/ZU∩LC(X) −−−→ ZGC(X)/ZPC(X)

The left and bottom maps are easily seen to be injective; hence the top map
also must be injective. The corollary follows.

Next, we recall a proposition of Dan Barbasch [1], which provides an explicit
formula for nInt gC(OC, ν). Let ν ∈ g∗C be a semisimple element, let L = ZIntgC(ν),
and let l ⊂ p be a parabolic containing l = Lie(L). Suppose X ∈ (g/p)∗ is a
nilpotent element such that OIntgC

X ∩ (g/p)∗ ⊂ (g/p)∗ is open.

Proposition 4.6 (Barbasch). We have the limit formula

lim
t→0+
OIntgC
tν = |ZIntgC(X)/ZPC(X)| OIntgC

X

where PC = NIntgC(pC).

In particular, if ZIntgC(X) is connected, then limt→0+ OIntgC
tν = OIntgC

X . By a
computation of Springer-Steinberg explained on page 88 of [6], this is true when
gC ∼= gl(n,C). Moreover, every nilpotent coadjoint orbit for GL(n,C) can be
written as such a limit by a result of Ozeki and Wakimoto explained in section
7.2 of [6]. Further, it also follows from results in 7.2 and Barbasch’s limit formula
that two limit formulas

lim
t→0+
OGL(n,C)
tξ1

, lim
t→0+
OGL(n,C)
tξ2

yield the same nilpotent orbit if and only if ZGL(n,C)(ξ1) and ZGL(n,C)(ξ2) are
conjugate. In the next corollary, we observe that these results also hold for
GL(n,R).
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To state it, we define the moment map. Let G be a reductive Lie group and let
P be a conjugacy class of parabolic subgroups of G . Then

T ∗P = {(p, ξ)| p ∈ P , ξ ∈ (g/p)∗ ⊂ g∗}

and the moment map is defined by µ(p, ξ) = ξ . (Of course, the moment map can
be defined for any Hamiltonian action of a Lie group; however, we do not need the
more general definition here).

Proposition 4.7. There exists a bijection between conjugacy classes of Levi fac-
tors of parabolic subgroups of GL(n,R) and nilpotent coadjoint orbits for GL(n,R).
Suppose L is a conjugacy class of Levi factors, and let P be the conjugacy class
of parabolics containing L. Then the orbit OL is the unique open, dense orbit in
the image of the moment map of the real generalized flag variety

OL ⊂ µ(T ∗P).

Alternately, we may choose ξ ∈ gl(n,R)∗ such that ZGL(n,R)(ξ) = L. Then OL is
also characterized by the limit formula

lim
t→0+
Otξ = OL.

The first GL(n,R) statement follows immediately from the correspond-
ing GL(n,C) statement together with the fact that every nilpotent coadjoint
GL(n,C)-orbit has an unique real form and the fact that O ∩ (gl(n,R))/p)∗ is
dense if and only if (GL(n,C) · O) ∩ (gl(n,C))/pC)∗ is dense. It follows from
Corollary 4.4 and the above GL(n,C) remarks that limt→0+ Otξ is either zero or
OL . In the last two sections of this article, we will use the results of the first two
sections to explicitly compute limt→0+ Ôtξ . We will observe that the answer is
non-zero. This will complete the proof of the proposition and compute the Fourier
transform of the nilpotent orbit OL .

5. Limit Formulas for Even Nilpotent Orbits

In [4], Bozicevic proves the following limit formula for an even nilpotent orbit.

Proposition 5.1 (Rao, Bozicevic). Suppose OX is an even nilpotent orbit, let
{X,H, Y } be an sl2 -triple containing X , and let Z = X − Y . Then

lim
t→0+
OtZ = OX .

This formula was first proved by Rao in an unpublished paper. Bozicevic’s
formula has a coefficient in front of the OX . In fact, this coefficient is one. Bozice-
vic’s proof involves deep results of Schmid and Vilonen. In this section, we show
how this formula follows easily from the far more elementary results of the last
section.

First, let pC be the sum of non-negative eigenspaces for adH on gC . Then
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OIntgC
X ∩ (gC/pC)∗ ⊂ (gC/pC)∗ is open and we may apply Barbasch’s result, propo-

sition 4.6. Further, a result of Barbasch-Vogan and Kostant explained on page 50
of [6] implies

ZIntgC(X)/ZPC(X) ∼= ZIntgC{X,H, Y }/ZPC{X,H, Y }.

But, ZIntgC{X,H, Y } ⊂ ZIntgC(Z) ⊂ PC . Hence, our coefficient is one and we have

lim
t→0+
OIntgC
tZ = OIntgC

X .

Now, we need to prove a real version of this limit formula. By Corollary
4.4, we know that we must have limt→0+ OtZ =

∑
OX′ where the sum is over

some subset of real forms of OIntgC
X . We know OX must occur by proposition

4.1 and the observation Z = X − Y ∈ X + Zg(Y ). Now suppose OX′ is
some other real form of OIntgC

X occuring in our limit formula. Given an sl2 -
triple {X ′, H ′, Y ′} containing X ′ , we must have OZ ∩ (X ′ + Zg(Y

′)) 6= ∅ . But,
Z ′ = X ′ − Y ′ ∈ X ′ + Zg(Y

′) and OIntgC
Z′ ∩ (X ′ + ZgC(Y ′)) has one element by

proposition 4.1 and the above IntgC -limit formula. Further, it was proven by Rao
(unpublished) that Z ′ = X ′ − Y ′ = X − Y = Z only if X and X ′ are conjugate
(details of his elementary argument can be found on page 146 of [6]). Thus, we
cannot have Z ∈ X ′ + Zg(Y

′) and no other real forms can occur in our limit
formula. The proposition follows.

6. Fourier Transforms of Semisimple Coadjoint Orbits for GL(n,R)

Let G = GL(n,R) = GL(2m+ δ,R) where δ = 0 or 1, and let g = Lie(G). Fix a
fundamental Cartan h0 ⊂ g , and enumerate its imaginary roots

{α1, . . . , αm,−α1, . . . ,−αm}.

Let hk be the Cartan obtained by applying Cayley transforms through the roots
α1, . . . , αk . Then h0, . . . , hm is a set of representatives of the conjugacy classes of
Cartan subgalebras of g . In what follows, we will use these fixed Cayley transforms
to identify (hk)C ∼= (hl)C (and all roots, coroots of hk with roots, coroots of hl )
without further comment.

Let ∆(hl) (resp. ∆imag.(hl), ∆real(hl), ∆cx.(hl)) denote the set of all (resp.
imaginary, real, complex) roots of g with respect to hl . Choose a component
Cm ⊂ h′m , and define ∆+ to be the set of roots α such that α(X) > 0 for all
X ∈ Cm . This fixes a choice of positive roots for g with respect to hl for every
l . Denote by ∆+(hl) (resp. ∆+

imag.(hl), ∆+
real(hl), ∆+

cx.(hl )) the set of all (resp.
imaginary, real, complex) positive roots of g with respect to hl . Now, choose a
regular element λ ∈ h∗k satisfying:

(a) If α ∈ ∆+
imag.(hk) is a positive, imaginary root of hk , then

〈λ, iα∨〉 < 0.

(b) If β ∈ ∆+
real(hk) is a real, positive root of hk , then

〈λ, β∨〉 < 0.
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Moreover, define

Cl(e) = {X ∈ h′l|α(X) > 0 ∀α ∈ ∆+
real(hk)},

and for every u ∈ Wreal(hl), define

Cl(u) = u · Cl(e).

Here Wreal(hl) denotes the Weyl group of the real roots of g with respect to hl .
Note Cm(e) = Cm .

Let WC denote the complex Weyl group of gC with respect to (hl)C . Define a
subset Wk,l ⊂ WC to be the set of w ∈ WC satisfying:
(i) If α ∈ ∆imag.(hl), then w−1α ∈ ∆imag.(hk).
(ii) If α ∈ ∆cx.(hl), then w−1α ∈ ∆cx.(hk).
(iii) If α ∈ ∆+

imag.(hk) and wα /∈ ∆imag.(hl), then wα ∈ ∆+
real(hl).

For each w ∈ Wk,l , let Nk,l(w) be the number of α ∈ ∆+
imag.(hl) such that

w−1α /∈ ∆+
imag.(hk). Define

εk,l(w) = (−1)Nk,l(w)

for every w ∈ Wk,l .

Proposition 6.1. If l ≥ k , then

Ôλ|Cl(e) =
2l−k

∑
w∈Wk,l

εk,l(w)eiwλ

π
.

If l < k , then Ôλ vanishes on h′l . Here π =
∏

α∈∆+(hl)
α as usual.

In the above discussion, we chose positive roots and components, and then we
chose the regular, semisimple element λ in a compatible way. One can also choose
λ ∈ h∗k regular, semisimple and then choose roots and components compatibly so
that the proposition holds.

Proof. Let θ be a Cartan involution fixing hk , and decompose hk = t⊕a where
t is the +1 eigenspace of θ and a is the −1 eigenspace of θ . Set M = ZG(a),
and note

M ∼= GL(2,R)m−k × (R×)2k+δ.

The identity component of M is M0
∼= GL+(2,R)m−k×(R×+)2k+δ. We will compute

ÔGλ by first computing ÔMλ and then applying Harish-Chandra descent.

Let ∆M(hl) be the set of roots of M with respect to hl , and let πM be the
product of the roots of M with respect to hl that are positive for G . Let WM

R (hk)
be the real Weyl group of M with respect to hk , and fix w ∈ WM

R (hk). Note that
wπM is the product of the roots α of M satisfying

〈iwλ, α∨〉 < 0.
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Then by Theorem 2.4, we have

ÔM0
wλ |h′k =

eiwλ

wπM
.

Observe hl ⊂ m , and put

Cl(e)M = {X ∈ h′l| α(X) > 0 ∀ real roots α ∈ ∆M(hl) ∩∆+
G(hl)}.

If u ∈ WM
real(hl), define

Cl(u)M = u · Cl(e)M .

Now, decompose w = wrwi into its components in the Weyl group of the real roots
of hl and the Weyl group of the imaginary roots of hl . Checking Harish-Chandra’s

matching conditions (Theorem 2.7) and using that ÔM0
wλ is tempered, we observe

ÔM0
wλ |Cl(wr)M =

eiwλ

wπM
.

Since wr is in the real Weyl group of hl with respect to M0 and the generalized
function we are computing is M0 -invariant, we get

ÔM0
wλ |Cl(e)M =

ε(wi)e
iwiλ

πM
.

Note that OMλ is the finite union of the orbits OM0
wλ where w ranges over the real

Weyl group WM
R (hk). Hence,

ÔMλ |Cl(e)M =
2l−k

∑
w∈WM

imag.(hl)
ε(w)eiwλ

πM

where WM
imag.(hl) is the Weyl group of the imaginary roots of m with respect to

hl .

Now, we can use Harish-Chandra descent (Lemma 2.5) to compute ÔGλ .
Given X ∈ Cl(e)M , we must enumerate the M -orbits in OX ∩ m . First, we
choose representatives of the M -conjugacy classes of Cartans in m . For each
multi-index J = (j1, . . . , jm−l) with 1 ≤ j1 < j2 < · · · < jm−l ≤ m − k , define
J c = (r1, . . . , rl−k) to be the complementary indices among 1, . . . ,m − k . Define
hJl to be the Cartan obtained from hk ⊂ m by applying the Cartan involutions
associated to the roots αm−rs for s = 1, . . . , l − k . One sees that the collection
{hJl } is a set of representatives for all M conjugacy classes of Cartans in m of
imaginary rank m− l .

Now, every M orbit in OX ∩m must meet at least one of the Cartans hJl .
Thus, we have

(OX ∩m)/M =
⋃
J

(OX ∩ hJl )/WM
R (hJl )
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where WM
R (hJl ) is the real Weyl group of M with respect to hJl . Moreover, for

each Cartan hJl , the WM
R (hJl ) orbits on OX ∩ hJl are in bijection with the cosets

WM
R (hJl )\WG

R (hJl ). Thus, we have the formula

ÔGλ (X) =
∑
J

∑
u∈WM

R (hJl )\WG
R (hJl )

ÔMλ (uwJX)|πG/M(uwJX)|−1.

Here wJ is an element of G taking hl to hJl .
Note that we get isomorphisms (hk)C ∼= (hl)C and (hk)C ∼= (hJl )C by

applying successive Cayley transforms to hk . Composing these isomorphisms with
a complex Weyl group element that takes positive, non-compact imaginary (resp.
real) roots of hl with respect to g to the positive, non-compact imaginary (resp.
real) roots of hJl , we get a candidate for wJ . We will fix such a candidate for each
J from now on.
Now, we have the formula

ÔMλ |Cl,J (e)M =
2l−k

∑
w∈WM

imag.(h
J
l ) ε(w)eiwλ

πJM

for every J . Here πJM is the product of the positive roots of hJl with respect to
m , and WM

imag.(h
J
l ) is the Weyl group of the imaginary roots of hJl with respect to

m . We define

Cl,J(e)M = {X ∈ (hJl )′|α(X) > 0 ∀ real roots α ∈ ∆M(hJl ) ∩∆+
G(hl)}

and more generally

Cl,J(u)M = u · Cl,J(e).

This formula is proved in the same way as the special case of hJl = hl , which is
proved above.

Partition Wk,l =
⊔
JW

J
k,l where w ∈ Wk,l is in W J

k,l if w · hl = hJl . Every
coset in WM

R (hJl )\WG
R (hJl ) contains a unique representative u such that u−1 takes

the positive real roots of hJl with respect to m to positive roots of hJl with respect
to g and u−1 fixes the imaginary roots of hJl with respect to m . When we sum
over WM

R \WG
R , we will really be summing over this set of representatives. Then∑

u∈WM
R (hJl )\WG

R (hJl )

ÔMλ (uwJX)|πJG/M(uwJX)|−1 =

= 2l−k
∑

u∈WM
R (hJl )\WG

R (hJl )

∑
w∈WM

imag.(h
J
l )

ε(w)eiwλ(uwJX)

πJM(uwJX)|πJG/M(uwJX)|

= 2l−k
∑

w∈WJ
k,l

εk,l(w)eiwλ(X)

πG(X)
.

The last equality follows from noticing that {w−1
J u−1w} is really W J

k,l if w varies
over
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WM
imag.(h

J
l ) and u varies over our chosen set of representatives of WM

R (hJl )\WG
R (hJl ).

Further, we used

ε(w) = εk,l(w
−1
J u−1w) and πJM(uwJX)|πJG/M(uwJX)| = πG(X).

Summing over all possible J , we get

Ôλ|Cl(e) = 2l−k
∑
J

∑
w∈WJ

k,l

εk,l(w)eiwλ

π
=

2l−k
∑

w∈Wk,l
εk,l(w)eiwλ

π
.

The vanishing of Ôλ on the other Cartans follows from Harish-Chandra descent.

7. Fourier Transforms of Nilpotent Coadjoint Orbits for GL(n,R)

Let G = GL(n,R), let g = gl(n,R), and let OL be as in Proposition 4.7. Let
h ⊂ g be a Cartan subalgebra, and let H be the corresponding Cartan subgroup.
Put

h′′ = {X ∈ h| α(X) 6= 0 ∀ real roots α},
suppose C ⊂ h′′ is a connected component, and put C ′ = C ∩ h′ . Choose positive
roots of (gC, hC) satisfying:
(i) α(X) > 0 for all positive real roots α and all X ∈ C
(ii) If α is a complex root, then α is positive iff α is positive.

Suppose L ∈ L with L ⊃ H . Let W (G,H)L be the stabilizer of L in the
real Weyl group of G with respect to H , and let W (L,H) be the real Weyl group
of L with respect to H . Note that the cardinality of the quotient∣∣∣∣W (G,H)L

W (L,H)

∣∣∣∣
is independent of the choice of L ∈ L with L ⊃ H . Thus, we will denote the
cardinality of this quotient by ∣∣∣∣W (G,H)L

W (L, H)

∣∣∣∣ .
Theorem 7.1. We have the formula

ÔL|C′ =

∣∣∣∣W (G,H)L
W (L, H)

∣∣∣∣ ∑
L⊃H, L∈L

πL
π
.

Proof. By Proposition 4.7, we know

lim
t→0+
OGtξ = OL or 0.

for any ξ ∈ g∗ such that ZG(ξ) ∈ L .
Fix such a ξ ∈ g∗ such that

L = ZG(ξ) ∼= GL(q1,R)× · · · ×GL(qr,R).
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Then we can choose a fundamental Cartan and a labelling of roots in the last
section so that hk ⊂ l is a fundamental Cartan and Lie(H) = hl with l ≥ k . Note

k =
∑⌊qi

2

⌋
.

Choose positive roots of g with respect to hl which satisfy the conditions (i) and
(ii) stated at the beginning of this section. This determines positive roots for g
with respect to hi for every i . Put

(C∗)′ = {λ ∈ (h∗)′| 〈iλ, α∨〉 < 0 for all α ∈ ∆+
L}.

Then by Theorem 3.1,

lim
λ→ξ, λ∈(C∗)′

∂(πL)|λOGλ = ir(L,H)|W (L,H)|OGξ .

And by Proposition 6.1,

ÔGλ |C′l(e) =
2l−k

∑
w∈Wk,l

εk,l(w)eiwλ

π
.

Plugging this into the previous formula, we get

ÔGξ |C′l(e) =
2l−k

|W (L,H)|

∑
w∈Wk,l

εk,l(w)(wπL)eiwξ

π
.

Then

lim
t→0+
Ôtξ|C′l(e) =

2l−k

|W (L,H)|

∑
w∈Wk,l

εk,l(w)(wπL)

π
.

Now, using parts (i) and (ii) of the definition of Wk,l , we deduce that if
w ∈ Wk,l , then wπL = ±πL′ for some Levi L′ ∈ L with L′ ⊃ H . Conversely, one
can deduce that whenever L′ ∈ L with L′ ⊃ H , there exists w ∈ Wk,l such that
wπL = ±πL′ from the definition of Wk,l . In fact, using part (iii) of the definition
of Wk,l together with condition (ii) for our choice of positive roots in Theorem 7.1,
we see that wπL = εk,l(w)πL′ .

Combining these considerations, we get

ÔL|C′l(e) =
2l−k

|W (L,H)|
∑

L′∈L, L′⊃H

#{w ∈ Wk,l| wL = L′}πL
′

π
.

Finally, we use part (i) of the condition on our choice of positive roots, given at the
beginning of this section together with the definitions of C ′ and C ′l(e) to realize
C ′ = C ′l(e). And a simple counting argument shows

2l−k

#{w ∈ Wk,l| wL = L′}
= |W (G,H)L|.

The theorem follows.
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8. A Corollary and a Conjecture

An immediate corollary of our formula for ÔL is that the support of ÔL contains
every Cartan H ⊂ L . This follows from the fact that the numerator in our formula
is a positive linear combination of products of positive roots; hence, it is a non-zero
analytic function. Thus, we get the following corollary.

Corollary 8.1. Let OL be the nilpotent coadjoint orbit associated to the conju-
gacy class of Levi factors L. Then

supp(ÔL) =
⋃
L∈L

Lie(L).

In general, if π is an irreducible, admissible representation of a reductive
Lie group G , it is an interesting problem to determine the support its character,
Θπ . As noted in the introduction, in the case G = GL(n,R), the leading term
of Θπ at the identity is always a positive multiple of a the Fourier transform of a
nilpotent coadjoint orbit [2]. Thus, this corollary gives the support of the leading
term of an irreducible GL(n,R) character.

Another observation about Theorem 7.1 is that the numerator is an in-
teger linear combination of products of roots. Using results of [19], it was proven
in [18] that the leading term of an irreducible character Θπ is a nonnegative lin-
ear combination of Fourier transforms of nilpotent coadjoint orbits. The author
thinks that it is an interesting question to ask whether the Fourier transforms of
nilpotent coadjoint orbits also satisfy an integrality condition. Here is the author’s
conjecture.

Conjecture 8.2. Suppose O ⊂ g∗ is a nilpotent coadjoint orbit for a reductive
Lie group G , suppose H ⊂ G is a Cartan subgroup, and suppose C ⊂ h′ = Lie(H)′

is a connected component of the regular set. Let ∆ be the roots of gC with respect
to hC , let ∆+ be a choice of positive roots, and let π denote the product of these
positive roots. Let Z[∆] denote the ring of polynomials on hC generated over Z
by the roots. Then

πÔ|C ∈ Z[∆].

Of course, this conjecture would imply the analogous fact for leading terms
of irreducible characters.
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