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Introduction

The Poincaré-Birkhoff-Witt theorem is a classical theorem in Lie theory that spec-
ifies a special basis for the enveloping algebra of a Lie algebra. To my knowledge,
extensions of this theorem to other classes of algebras depend upon more or less
explicit knowledge of the nature of the generators and relations describing the
algebras in question, with the notable exception of [7, Theorem 2].

Let k be a field, A a k -algebra, B a commutative k -algebra, and B → A
a B -algebra structure on A (i.e. the image of B inside A is central). For a
well-ordered set Λ and AΛ = {aλ}λ∈Λ a subset of A we call

PΛ :=
{
ak1
λ1
. . . aknλn

∣∣∣ n, k1, . . . , kn ≥ 0, λ1 < · · · < λn

}
the PBW set associated to the generating set AΛ . We say that A has a PBW
basis over B if there exist a well-ordered set Λ and a generating set AΛ such that
the PBW set associated to AΛ is a basis, called PBW basis, of A as a B -module.

We will be concerned with Hopf k -algebras H with central Hopf algebra
coradical H0 . Note that if such an algebra is finite dimensional then it is, according
to Corollary 2.3, automatically equal to its coradical. For Hopf algebras with
proper coradical, that are necessarily infinite dimensional, PBW bases start playing
an important role. Our main result is the following.

Main Theorem. Let k be a field of characteristic zero and let H be a Hopf
k -algebra such that its coradical H0 is a central Hopf subalgebra. Then H has a
PBW basis over H0 .

ISSN 0949–5932 / $2.50 c© Heldermann Verlag



292 Ion

The strategy for the proof, as in [7, Theorem 2], is to show that grH ,
the associated graded algebra of H with respect to the coradical filtration, is a
polynomial algebra with coefficients in H0 . For an extension of these results to
symmetrically braided Hopf algebras we refer to [4].

Before proceeding to the proof of these results let us comment on the nature
of the constraints present in the hypothesis as well as the relationship of our result
with other PBW theorems in the literature.
Remark 1. The notion of PBW basis in this paper is stronger than the one
generally used in the literature. The restricted PBW bases are those for which
the exponents k1, . . . , kn from the definition are non-negative integers that satisfy
explicitly specified upper bounds (possibly infinite). As such, it is possible for
finite dimensional algebras to have restricted PBW bases and this is indeed the
case for many important examples such as enveloping algebras of restricted Lie
algebras and Lusztig’s small quantum groups [8] and their deformations (see, e.g.,
[2]).
Remark 2. If one allows restricted PBW bases then the condition that H0 is a
central Hopf subalgebra of H can be weakened, at least for some classes of Hopf
algebras. The most general results of this type currently in the literature are due to
Kharchenko [5, 6] and they cover the class of the so-called character Hopf algebras:
Hopf algebras generated by an abelian subgroup of group-like elements and a finite
set of skew-primitive elements for which the adjoint action of this abelian group
on the skew-primitive generators is given by multiplication with a character. It
seems that most if not all finite dimensional pointed Hopf algebras with abelian
coradical fall within this class [2].
Remark 3. Other algebras for which PBW theorems are of interest are Hopf
algebras in braided categories. Again, there are numerous examples of pointed
irreducible Hopf algebras (hence having a central coradical) in categories of Yetter–
Drinfel’d modules that are finite dimensional and therefore do not admit a PBW
basis in our sense but have a restricted PBW basis. One possible reformulation of
the result in [5] is that braided tensor algebra quotients of the tensor algebra of
a Yetter–Drinfel’d module (over an abelian group) with diagonal braiding admit
restricted PBW bases. This result was extended to cover also triangular braidings
[11].
Remark 4. The combinatorial arguments in [5, 6, 11] require fairly explicit knowl-
edge of the generators and relations describing the algebras in question especially
when it comes to the description of the generating set of the PBW basis. On the
other hand, as it will become clear from the proof, the core ingredient underpin-
ning our approach is smoothness, and the generating set of our PBW set acquires
a fairly simple conceptual characterization.
Remark 5. The ideas used here can be also employed to prove the corresponding
result over a field k of characteristic p > 0. The necessary modifications of the
statements are the following: the exponents k1, . . . , kn from the definition of PΛ

have to be strictly less than p ; the algebra grH is the quotient of a polynomial
algebra with coefficients in H0 by the ideal generated by the pth powers of the
variables. The only additional technical observation is the fact that the affine
group scheme corresponding to the coinvariants R (see Section 2) is of height one
[12, § 11.4].
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1. Preliminaries

Throughout the paper k will denote a field of characteristic zero and k̄ will de-
note its algebraic closure. Unless otherwise noted all tensor products are over k .
When referring to a Hopf algebra, we use ∆, ε , and S to denote its comultipli-
cation, counit, and antipode, respectively. We will use capital letters to denote
Hopf algebras and will use the corresponding small case gothic letters to denote
the corresponding augmentation ideals; e.g., the augmentation ideal of the Hopf
algebra A is denoted by a . All the results in Section 1 are well-known.

Assume A is a k -algebra, B ⊆ A a k -subalgebra, and S ⊆ A a subset. If
A is commutative then denote by

pB,S : B[Xs]s∈S → A (1.1)

the ring morphism acting as identity on B and sending each Xs to the element s .
We will drop the reference to B and S if it is unambiguous from the context.

Henceforward G will denote an affine algebraic group scheme over k and
A will denote the finitely generated commutative Hopf k -algebra representing it.
Let π◦A denote the largest separable k -subalgebra of A . It is a finite dimensional
Hopf subalgebra of A that represents the étale group scheme π◦G , the component
group of G .

The kernel G◦ of the canonical map G→ π◦G is the connected component
of the identity in G . It is itself an affine algebraic groups scheme; we denote by A◦

the finitely generated commutative Hopf k -algebra representing it (a Hopf algebra
quotient of A). The construction of π◦G and G◦ commutes with base change.

The algebra π◦A is a product of finite field extensions of k and π◦A ⊗ k̄
is isomorphic to k̄ × · · · × k̄ where the number of factors equals the number of
connected components of G(k̄). It is clear from this description that the k̄ -algebra
π◦A⊗ k̄ is spanned by the idempotents of A⊗ k̄ .

Using the factorization of π◦A into fields we can write A = ⊕si=0fiA , where
the fi are idempotents in A . The counit ε must vanish on all but one of these
idempotents; we may assume that f0 is the idempotent on which ε takes value 1.
With this notation, the canonical map G◦ → G corresponds to

πA : A→ A/(a ∩ π◦A)A = A/(1− f0)A = A◦ ' f0A (1.2)

The algebras fiA represent the connected components of G . They are generally
not isomorphic as algebras unless k = k̄ .

Let ΩA be the universal module of differentials of A and let dA : A→ ΩA be
the universal derivation. The pair (ΩA, dA) is unique up to isomorphism. Among
other things, the construction of ΩA commutes with base change and localization.
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Let π : A = k · 1⊕ a→ a→ a/a2 . With this notation,

(ΩA, dA) '
(
A⊗ a/a2, (idA ⊗ π) ◦∆

)
(1.3)

In particular, ΩA is a free A-module of rank equal to the k -dimension of a/a2 .

Since we work over fields of characteristic zero the following results are
available. For a proof of the first theorem, generally attributed to Cartier, see [12,
§ 11.4], and for a proof of the second theorem see [12, § 11.6].

Theorem 1.1. The Hopf algebra A is reduced.

One important consequence is the following.

Corollary 1.2. All finite group schemes over k are étale.

Theorem 1.3. The affine algebraic group scheme G is smooth.

If we apply Theorem 1.1 to G◦ , which is connected, we obtain that A◦ is an
integral domain; we denote by A◦(0) its field of fractions. Theorem 1.3 now reads

rankA ΩA = dimk π◦A · trdegk A
◦
(0) (1.4)

We can actually say more.

Theorem 1.4. Let x1, . . . , xn be elements of a whose classes modulo a2 form
a k -basis of a/a2 . Then the dA◦

(0)
(x1), . . . , dA◦

(0)
(xn) form a basis for ΩA◦

(0)
as a

A◦(0) -vector space.

The proof is contained in [12, § 13.5]. Using translation in G(k), which by
Theorem 1.3 is smooth, the same is true if we replace the identity element (i.e. the
augmentation ideal) with any other point of G(k) (i.e. the kernel of an algebra
morphism A→ k ). Another useful result is the following

Theorem 1.5. Let B be a Hopf subalgebra of A. Then B is finitely generated.

For the proof we refer the reader to [12, § 14.3].

Let k ⊆ L be a finitely generated field extension. Regard L as a finitely
generated commutative k -algebra; we use the notation Lk to stress this. Let
ΩLk

, and dLk
: L → ΩLk

, be the universal module of differentials of Lk , and the
universal derivation, respectively.

Let x1, . . . , xn be elements of L such that dLk
(x1), . . . , dLk

(xn) is an L-basis
of ΩLk

.

Theorem 1.6. With the notation above, the x1, . . . , xn are algebraically inde-
pendent over k and k(x1, . . . , xn) ⊆ L is a finite field extension.

For the proof see [12, § 11.5].

The following result is again well-known; see [12, § 3.3] for a proof.
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Theorem 1.7. Any commutative Hopf k -algebra is a directed union of finitely
generated Hopf subalgebras.

Consider now H an arbitrary Hopf k -algebra and let 0 =: H−1 ⊆ H0 ⊆
H1 ⊆ · · · ⊆ H be its coradical filtration. Denote by

grH = ⊕n≥0(grH)(n) = ⊕n≥0Hn/Hn−1 (1.5)

the associated graded coalgebra. If B ⊆ H is a Hopf subalgebra then the coradical
filtration of B is the one induced from the coradical filtration of H .

If the coradical H0 is a Hopf subalgebra of H then the coradical filtration
is a Hopf algebra filtration and grH is a graded Hopf algebra. Furthermore, in
such a case, the coradical filtration of grH is the filtration given by degree and
gr(grH) = grH .

The proof of the following result, see [9, Proposition 1.2].

Proposition 1.8. Let H be a Hopf algebra such the coradical H0 is a central
Hopf subalgebra. Then grH is a commutative Hopf algebra.

2. The main result

We start with a few observations on commutative Hopf k -algebras endowed with
a Hopf algebra grading.

Lemma 2.1. Let A =
⊕

i≥0A(i) be a finitely generated commutative Hopf k -
algebra endowed with a Hopf algebra grading. Then π◦A = π◦A(0).

Proof. First note that by Theorem 1.5 the Hopf algebra A(0) is also finitely
generated. Any separable subalgebra of A(0) is necessarily a separable subalgebra
of π◦A , so π◦A(0) ⊆ π◦A . Thus for a proofof the claim it is enough to show
dim(π◦A(0)) = dim(π◦A). Since the construction of both subalgebras commutes
with base change it is safe to assume that k = k̄ .

In such a case, π◦A is spanned by idempotents and it is therefore enough
to show that all idempotents in A are necessarily in A(0). Indeed, let

e = ei1 + · · ·+ eik (2.1)

be an idempotent and ei1 , . . . , eik , i1 < · · · < ik its non-zero homogeneous com-
ponents. Then, e2

ik
is the homogeneous component of degree 2ik of e2 = e . From

Theorem 1.1 we know that A is reduced. Hence we must have ik = 0. Therefore,
e is an element of A(0).

Corollary 2.2. Let A =
⊕

i≥0A(i) be a finite dimensional commutative Hopf
k -algebra endowed with a Hopf algebra grading. Then A = A(0).

Proof. From Corollary 1.2 we know that A = π◦A and A(0) = π◦A(0). The
desired statement then follows from the above Lemma.
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Corollary 2.3. Let H be a finite dimensional Hopf k -algebra with central Hopf
algebra coradical. Then H is cosemisimple.

Proof. According to Proposition 1.8 the ring A := grH is a commutative Hopf
k -algebra endowed with a Hopf algebra grading such that A(0) is the coradical of
H . But then A = A(0) which implies our claim.

As before, let A =
⊕

i≥0A(i) be a finitely generated commutative Hopf
k -algebra endowed with a Hopf algebra grading. The projection $ : A→ A(0) is
a Hopf algebra retraction of the inclusion ι : A(0) → A . In such a situation one
can define the subalgebra of coinvariants of $

R := {a ∈ A | (id⊗$) ◦∆(a) = a⊗ 1} =
{∑

a1S($(a2)) | a ∈ A
}

(2.2)

where we used Sweedler’s notation ∆(a) =
∑
a1⊗ a2 . Let R(i) := R∩A(i). It is

easy to verify (see, e.g., [1, Lemma 2.1]) that R =
⊕

i≥0R(i) is a graded algebra
and that the canonical map A(0) ⊗ R → A , a ⊗ r 7→ ar , which is an algebra
isomorphism by [10, Theorem 3], is a compatible with the grading.

Denote A+ := ⊕n≥1A(n) and R+ := ⊕n≥1R(n). The A(0)-module isomor-
phism A(0)⊗R+ ' A+ descends to a graded vector space isomorphism

R+ '
A+

a(0)A+

. (2.3)

The following result plays a crucial role in the proof of Proposition 2.6.

Lemma 2.4. With the notation above, there exists a canonical vector space
isomorphism

R+

R2
+

' A+

a(0)A+ + A2
+

.

Proof. Consider the canonical k -linear map

γ : R+ '
A+

a(0)A+

→ A+/a(0)A+

(a(0)A+ + A2
+)/a(0)A+

' A+

a(0)A+ + A2
+

.

We argue that R2
+ = ker γ . The direct inclusion is obvious. For the reverse

inclusion, let r be in ker γ . Since a(0)A+ + A2
+ = a(0)R+ + A(0)R2

+ there exist
elements ai ∈ A(0), rj, sk ∈ R+ such that

r −
∑

airjsk ∈ a(0)A+

Keeping in mind that ai − ε(ai) ∈ a(0) we deduce that

r −
∑

ε(ai)rjsk ∈ a(0)A+

from which our claim follows immediately.

Let A = ⊕si=0fiA be the decomposition discussed in Section 1. The elements
fi are idempotents so, according to Lemma 2.1, they are elements of A(0). Recall
that ε(f0) = 1 and ε(fi) = 0 for i 6= 0.
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Lemma 2.5. With the notation above, kerπA ∩R = 0.

Proof. We will show that fiA∩R = 0 for any i 6= 0. Let a ∈ fiA∩R . Then,
a = fia and a =

∑
a1S($(a2)). Therefore,

a =
∑

fi,1a1S($(a2))S($(fi,2))

= ε(fi)
∑

a1S($(a2))

= 0

which is our claim.

We now prove a first version of our main result.

Proposition 2.6. Let A = ⊕i≥0A(i) be a finitely generated commutative Hopf
k -algebra endowed with a Hopf algebra grading. Assume that A is an integral do-
main. Then there exist a finite set AΛ of A(0)-coinvariant homogeneous elements
of positive degree such that pA(0),AΛ

is an algebra isomorphism.

Proof. The subspace
m := a(0)⊕ A+ (2.4)

is a graded maximal ideal of A . We can also write A = k · 1⊕m . Of course,

m

m2
' a(0)

a(0)2
⊕ A+

a(0)A+ + A2
+

, (2.5)

so we may chose elements x1, . . . , xm , of m such that xi , 1 ≤ i ≤ n , are
homogeneous elements of A+ and the xi , n < i ≤ m , are elements of a(0) that
their classes modulo m2 form a k -basis of m/m2 . In addition, as a consequence
of Lemma 2.4, we can arrange that the elements xi , 1 ≤ i ≤ n are homogeneous
elements of R+ whose classes form a basis of the vector space R+/R

2
+ .

Keeping in mind that R is a graded algebra with R(0) = k · 1 we deduce
that it is generated as a k -algebra by xi , 1 ≤ i ≤ n . Therefore, A is generated as
a A(0)-algebra by xi , 1 ≤ i ≤ n . Let us denote by

p : A(0)[X1, . . . , Xn]→ A (2.6)

the canonical morphism that acts identically on A(0) and sends each Xi to xi .
We will show that p is an isomorphism.

The fact that p is surjective implies that

A(0) = A(0)(0)(x1, . . . , xn). (2.7)

Theorem 1.5 guarantees that A(0) is itself finitely generated. Theorem 1.4 applied,
on one hand, to A(0) and a(0), and on the other hand to A and m , implies
that dA(0)(0)

(xi), n < i ≤ m , is a A(0)(0) -basis of ΩA(0)(0)
, and that dA(0)

(xi),
1 ≤ i ≤ m , is a A(0) -basis of ΩA(0)

. Now applying Theorem 1.6 we obtain, on the
one hand, that the xi , n < i ≤ m , are algebraically independent over k and that

K := k(xn+1, . . . , xm) ⊆ A(0)(0) (2.8)
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is a finite extension, and on the other hand that the xi , 1 ≤ i ≤ m , are
algebraically independent over k and that

E := k(x1, . . . , xm) ⊆ A(0) (2.9)

is a finite extension.

Therefore, we have that K ⊆ E is a purely transcendental extension with
transcendence basis xi , 1 ≤ i ≤ n , and that it is a finite extension K ⊆ A(0)(0) .
Also, from (2.7) the field A(0) is the compositum of E and A(0)(0) . It is easily
proved (by induction on n) that in such a case, the extension A(0)(0) ⊆ A(0) is
purely transcendental with transcendence basis xi , 1 ≤ i ≤ n .

Denote by β the canonical inclusion of A into its field of fractions. The
algebra morphism

A(0)[X1, . . . , Xn]
p−−−→ A

β−−−→ A(0) = A(0)(0)(x1, . . . , xn) (2.10)

acts as identity on A(0) and sends each Xi to xi , 1 ≤ i ≤ n . Since the xi ,
1 ≤ i ≤ n , are transcendental over A(0)(0) we obtain that β ◦ p must be injective
and, as a consequence, that p must be injective. But, from (2.6) we know that p
is surjective. Therefore, p is an algebra isomorphism.

Remark 2.7. In the above proof, if we assign to each variable Xi the degree of the
element xi in A then p becomes an isomorphism of graded rings.
Remark 2.8. In the statement of Proposition 2.6 we can replace the augmentation
ideal with any maximal ideal of A(0).

We now remove the integral domain condition in Proposition 2.6.

Theorem 2.9. Let A = ⊕i≥0A(i) be a finitely generated commutative Hopf k -
algebra endowed with a Hopf algebra grading. Then there exist a finite set AΛ of
A(0)-coinvariant homogeneous elements of positive degree such that pA(0),AΛ

is an
algebra isomorphism.

Proof. Let A = ⊕si=0fiA be the decomposition discussed in Section 1. Note
first that π◦A = π◦A(0) implies that

(a ∩ π◦A)A = (a(0) ∩ π◦A(0))A (2.11)

and that,
((a ∩ π◦A)A) ∩ A(0) = (a(0) ∩ π◦A(0))A(0) (2.12)

or, equivalently, that A◦(0) and A(0)◦ are canonically isomorphic, and which we
will tacitly identify henceforth. Denote by R◦ the coinvariant algebra of A◦ with
respect to A(0)◦ . From (2.2) we obtain that πA(R) = R◦ . Furthermore, from
Lemma 2.5 we know that πA is injective on R ; hence R and R◦ are canonically
identified.

From the proof of Proposition 2.6 we know that R◦ is a polynomial k -
algebra. Our claim now follows from the fact that the algebras A and A(0) ⊗ R
are canonically isomorphic.
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Remark 2.10. In the above proof, if we assign to each variable Xi the degree of
the element xi in A then p becomes an isomorphism of graded rings.

The hypothesis in Theorem 2.9 that A is finitely generated can be removed
under certain conditions. We only include here the statements; all the claims follow
from the fact that all constructions in the proof of Proposition 2.6 and Theorem
2.9 are compatible with direct limits.

Theorem 2.11. Let A = ⊕i≥0A(i) be a commutative Hopf k -algebra endowed
with a Hopf algebra grading such that there exist finitely generated graded Hopf
algebras Aα such that A = lim−→Aα as graded Hopf algebras. Then there exist a set
AΛ of A(0)-coinvariant homogeneous elements of positive degree such that pA(0),AΛ

is an algebra isomorphism.

Remark 2.12. If we assign to each variable Xλ the degree of the element xλ in A
then p becomes an isomorphism of graded rings.

We are now ready to complete the proof of our main result.

Proof. [Proof of Main Theorem] According to Proposition 1.8 the ring A :=
grH is a commutative Hopf k -algebra endowed with a Hopf algebra grading whose
associated filtration is the coradical filtration of grH . Let us argue that A satisfies
the hypothesis of Theorem 2.11. By Theorem 1.7 A is a directed union of finitely
generated Hopf k -algebras Bα . Since the coradical filtration on each Bα is the
filtration induced by the coradical filtration of A it follows that grA (which is
in fact isomorphic to A) is the directed union (as graded algebras) of the graded
finitely generated Hopf k -algebras Aα := grBα , proving our claim.

We can now invoke Theorem 2.11 and its proof to find homogeneous ele-
ments {x̄λ}λ∈Λ ⊂ A of positive degree with the specified properties. Now fix a
well-ordering ≤ of the set Λ and choose representatives {xλ}λ∈Λ =: AΛ in H for
the elements {x̄λ}λ∈Λ . Denote the PBW set associated to AΛ by

PΛ =
{
xk1
λ1
. . . xknλn

∣∣∣ n, k1, . . . , kn ≥ 0, λ1 < · · · < λn

}
(2.13)

All the required properties of PΛ then follow directly from the corresponding facts
in Theorem 2.11.
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