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Abstract. To give a criterion for the integrability of Banach-Lie triple
systems, we follow the construction of the period group of a Lie algebra and
define the period group of a Lie triple system as an analogous concept. We show
that a Lie triple system is integrable if and only if its period group is discrete.
Along the way, we see how to turn the path and the loop space of a pointed
symmetric space into pointed symmetric spaces.

Mathematics Subject Classification 2000: 53C35, 22E65.

Key Words and Phrases: Banach symmetric space, Lie triple system, period
group, path space.

1. Introduction

A symmetric space in the sense of O. Loos (cf. [Loo69]) is a smooth manifold M
endowed with a smooth multiplication map pu: M x M — M such that each left
multiplication map p, := p(z,-) (with x € M) is an involutive automorphism of
(M, i) with isolated fixed point x.

Some basic material on infinite-dimensional symmetric spaces can be found
in [Nee02a] and [Ber08]. In [Klolla] and [Klo11b], the author started working to-
wards a Lie theory of symmetric spaces modelled on Banach spaces. In particular,
in [Klolla], one finds an integrability theorem for morphisms of Lie triple sys-
tems and the result that the automorphism group of a connected symmetric space
M is a Banach-Lie group acting smoothly and transitively on M. Moreover, in
[Klo11b], the author deals with the different kinds of reflection subspaces and their
Lie triple systems and gives a quotient theorem. The purpose of this paper is to
continue on this path, giving an integrability criterion for Lie triple systems.

In the finite-dimensional case, every Lie triple system is integrable to a
pointed symmetric space, i.e., arises as the Lie triple system of a pointed symmetric
space. Indeed, given a Lie triple system m, it can be embedded into a symmetric
Lie algebra S(m) = S(m); @m called the standard embedding, which is integrable
to a l-connected symmetric Lie group (G,o), with the consequence that the
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Lie triple system of the pointed 1-connected symmetric space M = G/(G7)
is isomorphic to m (cf. [Loo69, p. 116]).

Since infinite-dimensional Lie algebras are not always integrable, we also
expect obstructions concerning the integrability of infinite-dimensional Lie triple
systems. In the Banach context, it is a well-known result that a Banach-Lie
algebra g is integrable if and only if its period group II(g) (which is a subgroup of
the center 3(g) of g) is discrete (cf. [EK64] and [GNO3]). In this work, we give a
similar integrability criterion for Lie triple systems. To this end, we prove that a Lie
triple system m is integrable if and only if its standard embedding is integrable to a
(symmetric) Lie group. Then we define a period group II(m) (which is a subgroup
of the center 3(m) of m) by following closely the corresponding construction of
a period group given in [GN03]. We show that m is integrable if and only if its
period group II(m) is discrete.

The idea for defining the period group II(m) is to refine, in a first step, the
process leading to the period group II(g) of a Banach—Lie algebra g by considering
additional involutive automorphisms and secondly to apply this refinement to the
standard embedding of m. By turning the arising symmetric Lie groups into
suitable symmetric pairs, we obtain morphisms of symmetric pairs that induce
morphisms of symmetric spaces. More generally, we show that this works not only
for the standard embedding, but also for every symmetric Lie algebra g = g, ©g_
with g = m and 3(g) = 3(m). We observe that II(g) C II(m). One of our main
results is then the equivalence of four conditions, namely the integrability of m,
the integrability of g, the discreteness of II(m) and the discreteness of II(g).

Given a pointed 1-connected symmetric space (M, b) with Lie triple system
m, the period group II(m) can also be computed by a more explicit formula:
The exponential map Exp(,; restricts to a morphism Exp |sm) of pointed
symmetric spaces and we obtain II(m) = ker(Exp /) |3m))-

By means of our results, we explain how examples of non-integrable Lie
triple systems can be obtained: One source of examples are suitable quotients of
integrable Lie triple systems with non-trivial period group. Other examples are
obtained from non-integrable Banach—Lie algebras. Further, we apply our results
to characterize the integrability of complexifications of real Lie algebras: Given a
real Banach—Lie algebra g, its complexification gc := g @ ¢g is integrable if and
only if the Lie algebra g and the Lie triple system ¢g both are integrable.

Since the approach of [GNO03] is quite geometric, we prepare the required
analogous concepts for Banach symmetric spaces: We provide the basic facts on
universal covering spaces and see how to turn the path and the loop space of a
pointed symmetric space into pointed symmetric spaces.

To state this more precisely, let (M,b) be a pointed symmetric space. The
set P(M,b) := {y € C(]0,1], M): v(0) = b} carries a natural structure of a
pointed reflection space, where the multiplication on P(M,b) is defined pointwise
and where the base point is given by the constant curve const, with value b. We
observe that it carries a unique structure of a Banach manifold making it a pointed
symmetric space with Lie triple system P(m) := {y € C([0,1],m): v(0) = 0}
(where the Lie bracket is defined pointwise) such that

P(EXP(M,I;))3 P(m) — P(M,b), v+~ EXP(M,b) oy
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is its exponential map. The topology of this path (symmetric) space P(M,Db)
coincides with the compact-open topology, so that P(M,b) is contractible.

The guiding philosophy of our work is that a connected symmetric space
actually is a Banach homogeneous space: It can be identified with the quotient of
its automorphism group by a stabilizer subgroup (cf. [Klol1a]). This is based on
the theorem that its automorphism group is a Banach—Lie group. Therefore, we
recall symmetric Lie groups, symmetric pairs and the functor Sym that assigns to
a symmetric pair its quotient symmetric space (cf. [Klo11b]). Since this functor
preserves the exactness of short exact sequences, it constitutes a useful tool to
translate between symmetric Lie groups and symmetric spaces.

2. Basic Concepts and Notation

2.1. Terminology for submanifolds and Lie subgroups. A subset N of a
smooth Banach manifold M is called a local submanifold at x € N if there exists
a chart p: U — V C FE of M at z and a closed subspace F' of E such that
e(UNN)=VnNF.If N is a local submanifold at each = € N, then it is called
a submanifold and we obtain charts |15 for N that define on N the structure
of a manifold, which is compatible with the subspace topology. If each F' can be
chosen as a split subspace of E, then N is called a split submanifold. Note that,
for each x € N, the tangent map T).¢ of the inclusion map ¢: N < M is a (closed)
topological embedding. A submanifold N splits if and only if the inclusion map
¢ is an immersion, i.e., if for each = € N, the image of the topological embedding
T,. splits as a Banach space.

A subgroup H of a Banach—Lie group G is called a Lie subgroup if it is a
submanifold of G. It is called a split Lie subgroup if it is even a split submanifold.
Every Lie subgroup is closed. Given a Lie subgroup H < G with inclusion map
t: H — @, the Lie algebra L(H) of H can be identified with b := L(¢)(L(H)),
which is given by h = {z € L(G): exps(Rz) C H}. There exists an open 0-
neighborhood V' C L(G) such that expg |y is a local diffecomorphism onto an
open subset of M and exps(V Nbh) = exps(V) N H (cf. [Nee06, Th. IV.3.3] or
[Hof75, Prop. 3.4]).

An integral subgroup of G is a subgroup H < G endowed with a Banach—
Lie group structure such that the inclusion map ¢: H — G is smooth and L(¢) is
a topological embedding. Given some closed subalgebra § of the Lie algebra L(G)
of G, then the subgroup H := (expq(h)) carries a unique structure of a connected
integral subgroup of G with Lie algebra b (cf. [Mai62, Satz 12.3]). More generally,
every Lie algebra b that admits an injective smooth homomorphism h — L(G) is
integrable (cf. [EK64, (***) in §3] or [Nee06, Cor. IV.4.10]). Note that an integral
subgroup H < G that is compatible with the subspace topology is a Lie subgroup.

2.2. Lie triple systems and symmetric spaces. A Lie triple system (cf.
[Loo69]) is a Banach space m endowed with a continuous trilinear map
[-,-,-]: m® — m that satisfies [z,z,y] = 0 and [z,y, 2] + [y, 2, 2] + [2,2,y] = 0
as well as

[z, y, [u,v,w]] = [[z,y,u],v,w] + [u, [z, y,v],w] + [u, v, [z, y, w]]
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for all z,y, z,u,v,w € m. Continuous linear maps between Lie triple systems that
are compatible with the Lie brackets are called morphisms. A subspace n of m is
called a triple subsystem (denoted by n < m) if it is stable under the Lie bracket.
If it satisfies the stronger condition [n,m, m| C n, then it is called an ideal and we
write n<dm. An ideal n<dm automatically satisfies also the conditions [m,n,m| Cn
and [m,m,n] C n. The closed ideal 3(m) := Ny, .em ker([-, y, 2]) I m is called the
center of m. It also satisfies [m,3(m), m] =0 and [m, m,3(m)] = 0.

A reflection space (cf. [Loo67a, Loo67b]) is a set M endowed with a multi-
plication map pu: M x M — M, (z,y) — x -y, such that each left multiplication
map (i, = p(z,-) (with x € M) is an involutive automorphism of (M, u) with
fixed point x. A subset of M that is stable under p is called a reflection sub-
space. Given a subset S C M, we denote by (S) < M the generated reflection
subspace, i.e., the smallest reflection subspace of M that contains S. A symmetric
space is a smooth Banach manifold M endowed with a smooth multiplication map
p: M x M — M such that (M, u) is a reflection space for which each x € M is an
isolated fixed point of the symmetry pu,. Maps between reflection spaces that are
compatible with multiplication are called homomorphisms. Concerning symmetric
spaces, we refer to smooth homomorphisms as morphisms. If there is no confusion,
we usually denote a reflection space (resp., symmetric space) simply by M instead
by (M, ).

The following facts about symmetric spaces can be essentially found in
[Klol1la], which is partially due to [Ber08] and [Nee02a], and are presented in
nearly this form also in [Klol1lb]. The tangent bundle T'M endowed with the
multiplication Ty is a symmetric space. In each tangent space T, M (with z € M),
the product satisfies v -w = 2v — w. A smooth vector field on M is called a
derivation if it is a morphism of symmetric spaces. Note that every derivation is a
complete vector field. The set Der(M) of all derivations is a Lie subalgebra of the
Lie algebra of all smooth vector fields on M.} Given a distinguished point b € M,
called the base point, the symmetry g, induces an involutive automorphism (1)
of Der(M) given by (up)«(€) := Tup o & o pp. The (41)-eigenspace Der(M), of
(1p)s is a subalgebra of Der(M) and coincides with the kernel of the evaluation
map evy: Der(M) — T,M, £ — £(b). The (-1)-eigenspace Der(M)_ of (up). is
stable under the triple bracket [-,-,-] :=[[-,+],:]. Via the evaluation isomorphism
eV [per(ary_ @ Der(M)_ — Ty M of vector spaces, the tangent space TpM can be
equipped with that triple bracket. It becomes a Lie triple system that we denote
by Lts(M,b). Assigning to each morphism of pointed symmetric spaces its tangent
map at the base point, we obtain a covariant functor Lts (called the Lie functor)
from the category of pointed symmetric spaces to the category of Lie triple systems.

A Banach space can be considered as a symmetric space with natural mul-
tiplication x -y := 2z — y. From this perspective, a smooth curve a: R — M is
called a one-parameter subspace of M if « is a morphism of symmetric spaces. For
each v € Lts(M,b), there is a unique one-parameter subspace «, with o/ (0) = v.
The map Exp )1 Lts(M,b) — M, v — a,(1) is called the ezponential map of
(M,b). It is a smooth map with Tj Exp ) = 1dLisarp), so that it is a local diffeo-
morphism at 0 and hence admits restrictions that are charts at b (called normal

Here, the term Lie algebra does not include a topological structure.
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charts). A morphism f: (My,by) — (Ms,by) of pointed symmetric spaces inter-
twines the exponential maps in the sense that foExp s, ;) = Exp(ay, 5,) 0 Lts(f).
For details concerning the exponential map, see [Klo11a], whose approach is based
on affine connections.?

Given a one-parameter subspace «, we call the automorphisms 7,, =
Ha(Ls)© Ha(0), § € R, of M translations along a.. They satisfy Tas((t)) = a(t+s)
for all t € R. If M is connected, then any two points can be joined by a sequence
of one-parameter subspaces, since we have normal charts. Therefore, in view of the
identities (1) = (7, 1)"((0)) for all n € N, it is easy to see that a connected M
is generated by each subset U C M with non-empty interior. As a consequence,
the basic connected component My of (M,b) is generated by the image of the
exponential map Exp ;).

The automorphism group Aut(M) of a reflection space M (resp., of a
symmetric space) has two important (normal) subgroups: The set of all symmetries
le, T € M, generates a subgroup which is denoted by Inn(M) and is called the
group of inner automorphisms. The subgroup G(M) generated by all products
Patly, T,y € M, is called the group of displacements (cf. [Loo69, p. 64]). For a
connected symmetric space M, these groups of automorphisms act transitively on
M, since there are translations along one-parameter subspaces.

Given a homomorphism f: M; — My, then for all ¢; € Inn(M;), there
exists a (not necessarily unique) go € Inn(M;) with

fog = gof, (1)

because considering a decomposition g3 = flg, ey - fz,, WE CAD PUt gy =
P f(zo) ** * Hf(zy) - AS a consequence, a homomorphism f: M; — M of reflec-
tion spaces that is locally smooth around some b € M, is automatically smooth
(and hence a morphism of symmetric spaces) if M is Inn(M;)-transitive. Thus,
given pointed symmetric space (My,b;) and (M, by) with Lie triple systems my
and my, respectively, then a homomorphism f: (Mj,b;) — (Ms,bs) of pointed
reflection spaces that satisfies f o Exp, 5,) = ExDy, p,) 0A for some continu-
ous linear map A: m; — my is a morphism of pointed symmetric spaces with
Lts(f) = A.

Morphisms of pointed symmetric spaces to which the Lie functor assigns
the same map coincide if the domain space is connected. If the domain space is
moreover 1-connected (i.e., connected and simply connected), then every morphism
of the Lie triple systems can be uniquely integrated to a morphism of pointed
symmetric spaces. We shall refer to this fact as the Integrability Theorem (cf.
[Klol1a, Th. 5.20]). Note that isomorphisms are integrated to isomorphisms.

A symmetric space M carries a torsionfree natural affine connection such
that all symmetries u,, x € M, are affine automorphisms. The geodesics are just
the one-parameter subspaces. We shall only briefly touch these aspects and refer
to [Klolla] for details on affine Banach manifolds.

2.3. Reflection subspaces and quotients of symmetric spaces. An integral
subspace of a symmetric space M is a reflection subspace N < M endowed with

’In [Klolla], one-parameter subspaces are not dealt with, but it is easy to check that they
coincide with geodesics. Cf. [Loo69, p. 87] for the finite-dimensional case.
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a symmetric space structure such that the inclusion map ¢: N — M is smooth
and for each b € N, the induced morphism Ltsy(¢): Lts(N,b) — Lts(M,b) of Lie
triple systems is a (closed) topological embedding. In the light of (1), we know for
Inn(N)-transitive (e.g. connected) N that, for each by,by € N, the map Ltsy, (¢)
is a topological embedding if and only if Lts,(¢) is one.

We shall frequently identify Lts(NN,b) with its image n C Lts(M,b) under
Ltsy(¢). Thus, the exponential map Exp y ) of (IV,b) is the restriction Exp ) [n
of the exponential map Exp,, of (M,b). The basic connected component Ny
of IV is given by No = (Exp ;) (n)) (cf. Section 2.2).

Proposition 2.1 (cf. [Klol1b, Prop. 3.14]).  Let (M,b) be a pointed symmetric
space and n a closed triple subsystem of Lts(M,b). Then N := (Exp(,;,(n)) < M
can be uniquely made an integral subspace of M with Lts(N,b) = n. Note that N
s connected.

A symmetric subspace of a symmetric space M is a reflection subspace
N < M that is a submanifold of M. It is clear that such N itself is a symmetric
space. Let t: N — M be the inclusion map. Then, for each b € N, the induced
morphism Lts,(¢) is a topological embedding, N being a submanifold. Therefore,
a symmetric subspace is an integral subspace and we shall frequently identify
Lts(N,b) with its image n in Lts(M,b) under Ltsy(¢). It is given by

n={z € Lts(M,b): Exp ) (Rx) C N} (cf. [Klollb, Prop. 3.17]).
Every open reflection subspace of a symmetric space is a symmetric subspace and
is automatically closed (cf. [Klol1lb, Prop. 3.16]). In particular, the connected
components of a symmetric space are symmetric subspaces.

Proposition 2.2 (cf. [Klol1b, Prop. 3.18]).  Let (M,b) be a pointed symmetric
space and (N,b) be a symmetric subspace with Lie triple system n < Lts(M,b).
Then there exists an open 0-neighborhood V' C Lts(M,b) such that Exp ) v is
a diffeomorphism onto an open subset of M and

Proposition 2.3 (cf. [Klol1b, Prop. 3.23]).  Let (M,b) be a pointed symmetric
space and (N,b) < (M,b) be an Inn(N)-transitive (e.g. connected) integral sub-
space with Lie triple system n < Lts(M,b) that splits as a Banach space. Let F
be a complement of n, i.e., Lts(M,b) =n@ F. Then the following are equivalent:

(a) N is a symmetric subspace of M .

(b) There exists a 0-neighborhood W C F with N N Expy (W) = {b}.
Proposition 2.4 (cf. [Klol1lb, Cor. 3.26]).  Let f: (M, by) — (Ms,be) be a
morphism of pointed symmetric spaces. Then its kernel ker(f) := f=1(by) is

a closed symmetric subspace of (My,by) with Lie triple system Lts(ker(f)) =
ker(Lts(f)).

An equivalence relation R C M x M on a reflection space M that is
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a reflection subspace of M x M is called a congruence relation. A congruence
relation R is just an equivalence relation for which the multiplication map on M
induces a multiplication map on the quotient M/R (cf. quotient laws for magmas
in [Bou89a, 1.1.6]). It can be easily checked that M /R becomes a reflection space.
Given a congruence relation R on M, every inner automorphism g € Inn(M)
maps equivalence classes onto equivalence classes (cf. [Klol1b, Sec. 3.5]). Thus, if
the group Inn(M) of inner automorphisms of M acts transitively on M (e.g. if
M is a connected symmetric space), then a congruence relation is determined by
each of its equivalence classes, which we then call normal reflection subspaces of
M, denoted by N < M. We denote the pointed reflection space (M/R, N) also
by M/N.

The Lie triple system n < Lts(M, b) of a closed normal symmetric subspace
N < M is a closed ideal (cf. [Klo11b, Prop. 3.32]), and conversely, the connected
integral subspace N := (Exp(;;;(n)) < M corresponding to a closed ideal n <
Lts(M,b) is normal (cf. [Klo11b, Prop. 3.38]).

Theorem 2.5 (cf. [Klol1lb, Th. 3.44 and Rem. 3.45]).  Let (M,b) be a pointed
connected symmetric space with Lie triple system m and let (N,b) < (M,b) be a
closed connected normal symmetric subspace with Lie triple system n < m. Then
M/N can be made a symmetric space with Lie triple system m/n such that the
quotient map m: (M,b) — M/N is a morphism of pointed symmetric spaces and
Lts(m): m — m/n is the natural quotient map.

2.4. Symmetric Lie algebras and Lie groups. A symmetric Lie algebra
is a Banach—Lie algebra g endowed with an involutive automorphism 6 of g,
Le, 6 = id,. Given two symmetric Lie algebras (gi,6;) and (ga,62), a con-
tinuous Lie algebra homomorphism A: g, — go is called a morphism of sym-
metric Lie algebras if it satisfies A o 6; = 05 o A. The kernel of a lfnoflg)hism
A: (g1,601) — (g2, 0-) satisfies 6 (ker(A)) C ker(A), so that (ker(A), 6, kZEA)) is a
symmetric Lie algebra. A symmetric Lie algebra (g, ) decomposes as the direct
sum of its (£1)-eigenspaces denoted by g = g, @ g_. The (+1)-eigenspace is a
subalgebra of g. The (—1)-eigenspace g_ becomes a Lie triple system by defining
[z,y, 2] = [[z,y],2] (cf. [Klolla, Prop. 5.9]). Assigning to each symmetric Lie
algebra (g,0) the Lie triple system g_ and to each morphism of symmetric Lie
algebras its restriction to the Lie triple systems, we obtain a covariant functor £ts.

Conversely, every Lie triple system m arises as the direct summand g_ of
a symmetric Lie algebra (g,0). Indeed, the direct sum S(m) := h @ m where

h:=span{[z,y,| € gl(m): z,y € m} < gl(m)

is the closure of the linear span of all continuous linear maps [z,y,-| becomes
a Banach-Lie algebra with the Lie bracket defined by [A, B] := AB — BA,
[A, 2] == —[z,A] := Az and [z,y] := [z,y,-] for all A,B € h and z,y € m.
It can obviously be considered as a symmetric Lie algebra (called the standard
embedding) with S(m), = b = [m,m] and S(m)_ = m. Cf. [Loo69, p. 79] for the

finite-dimensional case.
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The center 3(g) of a symmetric Lie algebra (g,0) is #-invariant, so that
it is itself a symmetric Lie algebra denoted by 3(g,0). It decomposes as a direct
sum 3(g)y @ 3(g)- with 3(g)y < g+ and 3(g)- < g_. Furthermore, we have
3(g)- C 3(g_). It is easy to check that the center 3(S(m)) of the standard
embedding of a Lie triple system m moreover coincides with the center 3(m).

A symmetric Lie group is a Banach—Lie group G together with an involutive
automorphism o of G. A morphism between symmetric Lie groups (Gi,01) and
(Gy,09) is a smooth group homomorphism f: G; — G such that f oo =
o9 o f. The Lie functor L assigns to each (G,o) the symmetric Lie algebra
L(G,0) := (L(G), L(0)) and to each morphism f the morphism L(f) of symmetric
Lie algebras. The kernel ker(f) < G; of a morphism f is a Lie subgroup (cf.
[GNO03, Th. I1.2]) that satisfies o (ker(f)) C ker(f), so that (ker(f), al\kergg) is a

ker
symmetric Lie group. Its Lie algebra is (ker(L(f)), L(o1) EZEEEE%)

Given a symmetric Lie group (G, o) with symmetric Lie algebra (g, 6), the
subgroup G? := {g € G: o(g9) = g} of o-fixed points is a split Lie subgroup
with Lie algebra g, (cf. [Nee02a, Ex. 3.9]). Open subgroups of G are given by
subgroups K < G satisfying (G7) € K € G7, where (G?), denotes the identity
component. For such a subgroup K, we call ((G,0),K) a symmetric pair and
shall rather write (G, 0, K).*> The quotient space Sym(G, o, K) := G/K carries
the structure of a pointed symmetric space with multiplication

gK - hK = go(g) 'o(h)K

and base point K such that the quotient map ¢: G — G/K is a submersion.
Note that ¢ is a principal bundle with structure group K that acts on G by right
translations (cf. [Bou89b, I11.1.5-6]). When we consider the underlying symmetric
space of G/K that is not pointed, then we shall frequently write U(G/K) to
prevent confusion. The Lie triple system Lts(G/K) can be identified with g_ via
the isomorphism (71¢)|,_. Then the exponential map of G/K is given by

Expg i = qoexpgly_: 9- = G/K, (2)

where exp. denotes the exponential map of the Lie group G. For further details,
cf. [Nee02a, Ex. 3.9].

Proposition 2.6.  Let (G,0,(G%)g) be a symmetric pair. If G is 1-connected,
then the quotient G/(G?)y is also 1-connected.

Proof. Let v be any loop in G/(G?)y. The quotient map q: G — G/(G7)g
being a (principal) fiber bundle, there is a path 7 in G that is a lift of ~. Its
endpoints belong to (G7) and can be joined by a path, since (G7), is connected.
In this way, we obtain a loop in G whose projection in G/(G?)y is homotopic to
~. The loop in G being null-homotopic, its projection is also null-homotopic. =

A morphism between symmetric pairs (Gy,01, K1) and (G, 09, K3) is a
morphism f: (G1,01) = (Gg, 02) of symmetric Lie groups satisfying f(K;) C K.

3Note that other authors do not include the involution ¢ in their definition, but require its
existence (cf. [Hel01]).
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Note that f(GT') C G3* and f((G7')o) C (G9?)o are always satisfied and that,
moreover, we have f((G7')o) = (G5?)o if L(f)((g1)+) = (g2)4+.* Every morphism
f induces a unique map

Sym(f) = fi: G1/Ky — G/ K,

with Sym(f)oq = gz o f that is automatically a morphism of pointed symmetric
spaces. The assignment Sym is a covariant functor from the category of symmetric
pairs to the category of pointed symmetric spaces. Denoting by F' the forgetful
functor from the category of symmetric pairs to the category of symmetric Lie
groups, we have

LtsoSym = Ltso Lo F, (3)

where we read L as the Lie functor applied to symmetric Lie groups (cf. [Klol11b,
Sec. 2.3]).

Proposition 2.7 (The functor Sym applied to surjective and injective mor-
phisms).  We have:

(1) Given a surjective morphism f: (Gy,01, K1) — (Ga, 09, Ks) of symmetric
pairs, the morphism Sym(f): G1/K1 — Gy/ Ky is also surjective.

(2) Let f: (Gh,01) — (Ga,02) be an injective morphism of a symmetric Lie
group (Gq,01) to the underlying symmetric Lie group of a symmetric pair
(Ga,09,K3). Then (Gi,01, K1) with Ky := f~1(Ky) is a symmetric pair
turning f into a morphism of symmetric pairs such that the morphism
Sym(f): Gi1/K, — G2/ K, is also injective. (Note that G{* = f~YG3?).)

Proof.  The assertion (1) ist trivial and the assertion (2) is due to [Klol1b,
Lem. 2.1]. [

Example 2.8. Let (G, 0q, Kg) be a symmetric pair and ¢: (H, o) — (G, 0¢)
be an injective morphism of symmetric Lie groups such that :: H — G is an
integral subgroup. With Ky := :7*(Kg), the map ¢: (H,oy, Ky) — (G, 00, Kg)
is a morphism of symmetric pairs and Sym(:): H/Ky — G/Kg is an injective
morphism of pointed symmetric spaces (cf. Proposition 2.7). The induced map
Lts(Sym(¢)): Lts(H/Kg) — Lts(G/Kg) is given by £ts(L(c)) (cf. (3)), i.e., by
the topological embedding h_ < g_, where g and h denote the Lie algebras of G
and H, respectively.

Therefore Sym(¢) is an integral subspace if H/Ky is Inn(U(H/Ky))-
transitive, but this additional assumption is not necessary (cf. [Klo11b, Ex. 3.7]).
Furthermore, there is no other integral subspace structure on (the reflection sub-
space) H/Kjy with Lie triple system h_ < g_ if we require, in addition, that
the natural action 7: H x H/Kyg — H/Kpyg, (9,hKg) — ghKpg is smooth (cf.
[Klo11b, Rem. 3.9]). (Actually, it suffices to require that it induces smooth maps
Th: H/KH — H/KH for all h € H)

‘Indeed, we have f((G7")o) = (f(expg,((g1)+))) = (expg,((82)+)) = (G3*)o.
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Definition 2.9. A sequence
(G17 01, Kl) — (G27 09, KQ) — (G’na On, Kn)

of morphisms of symmetric pairs is called ezact, if the sequences
G, > Gy —» -+ —- G, and K1 - Ky — -+ — K, of group homomorphisms
are exact.

Remark 2.10. Given a sequence
1— (Glao_laKl) i) (G27027K2) £> (G370-37K3) —1

for which 1 - G; - Gy = G3 — 1 isexact. Then 1 - K; — Ky — K3 — 1 is
exact if and only if fo(Ks) = K3 and K; = f; '(K3).

Indeed, exactness at Ky means that fi(K7) = ker(fo) N Ky (= im(f;) NKy)
and is hence equivalent to K| = f; *(K3) by the injectivity of f;.

Example 2.11.  Starting with a surjective morphism
[ (Ga, 02, K3) = (G3, 03, K3)
that satisfies f(K,) = K3, we automatically obtain an exact sequence
1 = (ker(f), oalker(s), K2 Nker(f)) = (Ga, 02, K3) = (G3,03, K3) = 1

(cf. Proposition 2.7(2) to see that KyNker(f) turns (ker(f), oalker()) actually into
a symmetric pair).

For homomorphisms of pointed reflection spaces (resp., morphisms of
pointed symmetric spaces), we define exact sequences as for pointed sets.
We shall denote a singleton space simply by o. Note that a homomorphism
[ (My,by) — (My,by) with trivial kernel ker(f) := f~'(by) is not necessarily
injective, but it is so if its domain space (Mjy,b;) is Inn(M;)-transitive (cf. (1)).

Proposition 2.12 (Exactness of the functor Sym).  Let
1— (Gl,O'l,Kl) i) (GQ,O'Q,KQ) £> (G3,0'3,K3) —1
be an exact sequence of symmetric pairs. Then the sequence
(f1)x (f2)y
o — Gl/Kl — GQ/K2 — Gg/Kg —> 0

of pointed symmetric spaces is exact and (f1)« is actually injective. If fi is a
topological embedding, then (f1). also is a topological embeding.

Proof. By Remark 2.10, we have K, = f;'(K,), so that the injectivity
of (f1)« and the surjectivity of (f2). follow by Proposition 2.7. The assertion
im((f1)«) C ker((f2)«) follows immediately from im(f;) C ker(f;). To see that
ker((f2)«) € im((f1)«), we consider any gKy € Go/ K5 satistying (f2)«(9K2) = K3,
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ie., fo(g) € K3, and shall show that gK, € im((f1).). By the surjectivity of
Ky — Ks, there is a ¢’ € Ky with fo(g') = fa(g), so that fo(g(¢’)"') = 1. By
the exactness of G; — Gy — (3, this entails the existence of some ¢” € G7 with
fi(g") = g(g")~". Hence, we obtain (f1).(¢g"K1) = g(g) ™ Kz = gK>.

Assume now that f; is a topological embedding. We consider G as a
subgroup of G5 and note that it is a Lie subgroup, since it is the kernel of
fo. By Example 2.8, the morphism f; induces an integral subspace (fi). =
Sym(fi): Gi/K; — G3/K,. On the other hand, N := im((f1).) = ker((f2)«)
(cf. Proposition 2.12) is a symmetric subspace of Go/Ky (cf. Proposition 2.4).
The smooth action 7: Gy X Gy/Ky — Gy/Ks, (g9, hK3) — ghKy restricts to a
smooth action G; x N — N, since, for all ¢ € G; and hKy; € N, we have

(f2)«(T(g,hK2)) = fa(gh) Ky = fo(9)fo(M) Ky = fo(h) Ky = (f2).(hK3) = Ks.

Therefore, by Example 2.8, the manifold structure on N coincides with the one
given by the integral subspace (f1)., so that (fi). is a topological embedding. =

2.5. The automorphism group of a connected symmetric space. Let M
be a connected symmetric space. The Lie algebra Der(M) of derivations can be
uniquely turned into a Banach—Lie algebra such that for each frame p in the frame
bundle Fr(M) over M, the map

Der(M) — T,(Fr(M)), € — 4 Fr(F15)(p)

dt{,_,

is an embedding of Banach spaces, where FI5 is the time-¢-flow of ¢ and Fr(FI)
is its induced automorphism of the frame bundle (cf. [Klol1la, Cor. 5.18]). With
regard to the natural affine connection on M , the Banach space structure can also
be obtained by the requirement that

Der(M) — T,M x g(T,M), & — (f(b); s Vvﬁ)

is an embedding of Banach spaces (cf. [Klol1a, Prop. 2.2 and Prop. 5.17]). Given a
base point b € M, the involutive automorphism (). of the Lie algebra Der(M)
is actually continuous and hence an automorphism of the Banach-Lie algebra
Der(M), so that (Der(M), (up).) is a symmetric (Banach-)Lie algebra and the
evaluation map ev,: Der(M)_ — Lts(M,b) is an isomorphism of Lie triple systems
(cf. [Klol1a, Prop. 5.23]).

The automorphism group Aut(M) can be turned into a Banach—Lie group
such that

exp: Der(M) — Aut(M), & FI¢

is its exponential map. The natural map 7: Aut(M) x M — M is a transitive
smooth action. Together with the conjugation map c,,: Aut(M) — Aut(M),
g — [y © g o [y, the automorphism group Aut(M) becomes a symmetric Lie
group with Lie algebra L(Aut(M),c,,) = (Der(M), ()). The stabilizer sub-
group Aut(M), < Aut(M) leads to the symmetric pair (Aut(M), c,,, Aut(M)y).
The induced symmetric space Aut(M)/ Aut(M), is isomorphic to M via the iso-
morphism ®: Aut(M)/Aut(M), — M given by ®(g Aut(M),) := g(b). We refer
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to this fact as the homogeneity of connected symmetric spaces. For further details,
see [Klolla, Sec. 5.5].

For some purposes, the automorphism group of a connected symmetric
space M is too large and it is useful to consider the group G(M) of displacements.
In the finite-dimensional setting, this group is an integral subgroup of Aut(M)
and leads to a further identification M = G(M)/G(M), (cf. [Loo69]). In [Klol1b,
Sec. 3.4], the author deals with the Banach case:

Let (M,b) be a pointed connected symmetric space. Considering the sym-
metric Lie group (Aut(M),c,,) with Lie algebra (Der(M), (1).), we denote by
G'(M,b) := (exp(g'(M,b))) the connected integral subgroup of Aut(M) that be-
longs to the closed subalgebra

g'(M,b) := [Der(M)_, Der(M)_] & Der(M)_

of Der(M). It satisfies G(M) < G'(M,b) < G(M), where the closure is taken
in Aut(M) (cf. [Klollb, Rem. 3.30]). Further, G'(M,b) is c,,-invariant and
(G"(M,b),0") with o' := ¢, |cmp) is a symmetric Lie group. The symmetric
pair (G'(M,b),0',G'(M,b),) where G'(M,b), < G'(M,b) denotes the stabilizer
subgroup of b leads to an isomorphism

®': G'(M,b)/G'(M,b), — M, gG'(M,b), — g(b)

of symmetric spaces (cf. [Klo11b, Prop. 3.28]).

3. Integrability of Lie Triple Systems

The heart of this section is a characterization of integrable Lie triple systems.
Along the way to this goal, we provide material concerning path and loop spaces
and universal covering spaces of symmetric spaces.

3.1. Universal covering morphisms.

Proposition 3.1.  Let M be a connected symmetric space and qys: M— M a
universal covering map of topological spaces. Then M carries a unique structure
of a symmetric space for which qy; is a morphism of symmetric spaces.

Definition 3.2.  We call gy, a universal covering morphism (over M ).

Proof. By [AMRSS, Ex. 3.2Q(vii)], M can be uniquely turned into a smooth
Banach manifold making ¢y, a local diffeomorphism. Fixing base points be M
and b := qM(g) € M |, the multiplication map g on M can be uniquely lifted to
a continuous map fi: M x M — M with ﬁ(g,g) = b by the lifting property of
covering maps, i.e., we have gy o 1 = o (qa X qur). Since gy and gy X gy are
local diffeomorphisms, g is automatically smooth. It suffices to show that (M )
is a symmetric space.

For this, we must verify the identities z - x = z, z - (x -y) = y and
z-(y-z)=(z-y) (z-z) for all 7,5,z € M and must check that for each = € M,
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the fixed point x of fi, is an isolated fixed point. Exemplarily, we present the
verification of z - (z - y) = y: We observe that it holds for x := y := b and that

qu(z-(z-y) = qu(@) - (gu(@) - au () = qu(y),

so that it holds for all  and y by uniqueness of liftings. Given = € M , we have
qu O [l = [gy(z) © @ - Since gar is a local diffeomorphism (around ) and since
qu(z) is an isolated fixed point of fig,,(z), it is easy to see that z is an isolated
fixed point of /i, . [

Remark 3.3. A universal covering morphism g¢: (M,g) — (M, b) of pointed
symmetric spaces being a local diffecomorphism, it induces an isomorphism Lts(q)
of Lie triple systems. Thus, we shall frequently identify Lts(ﬂ , g) with Lts(M,b).
Conversely, given another morphism ¢': (M',b') — (M,b) over (M,b) with 1-
connected M’ such that Lts(q’) is an isomorphism, then ¢’ is a universal covering
morphism, since (M’, V) and (M ,g) are naturally isomorphic over (M,b) by the
Integrability Theorem.

Proposition 3.4. Let (G,0) be a connected symmetric Lie group and
q: G — G a universal covering morphism of Lie groups. Then there is a unique
involutive automorphism o: G — G making q: (G,0) — (G,0) a morphism of
symmetric Lie groups.

Definition 3.5.  We call ¢ a universal covering morphism over (G, o) and shall
frequently denote it by g(q,0)-

Proof. By the lifting property of covering morphisms of Lie groups, we can
lift the smooth group homomorphism o o ¢: G — G to a unique smooth group
homomorphism ¢: G — G with go & = 0 o q. Since o2 then satisfies ¢ o 02 =
0?0q =idgog, it is a lift of ¢ and is hence the identity map ids by uniqueness of

liftings. Therefore, ¢: (é, 0) — (G, o) is a morphism of symmetric Lie groups. ®

Remark 3.6.  As in Remark 3.3, the morphism ¢(¢ ) induces an isomorphism

L(qc,s)) of symmetric Lie algebras, so that we shall frequently identify L(é’, o)
with L(G, o). Conversely, given any morphism ¢': (G',0’") — (G,0) over (G,0)
with 1-connected G’ such that L(q’) is an isomorphism, then ¢ is a universal
covering morphism.

3.2. Path and loop spaces. Let (G,0) be a symmetric Lie group with Lie
algebra (g,6). The path group
P(G) :={y€C([0,1],G): v(0) =1}

of G, where the multiplication on P(G) is defined pointwise, is a contractible (and
hence 1-connected) Banach—Lie group with Lie algebra

P(g) := {7 € C([0,1],9): 7(0) = 0}
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and exponential map P(expy): P(g) — P(G), v — expg oy (cf. [GNO03]). Endow-
ing P(G) with the involutive automorphism P(o) of P(G) given by P(o)(y) :=
oovy, we make it a symmetric Lie group called the path group of (G, o) and denoted
by P(G,o). Its Lie algebra is P(g) endowed with the involutive automorphism
P(0) of P(g) that is given by P(0)(~y) := 60 o~. It is denoted by P(g,¥@).

The kernel Q(G) < P(G) of the evaluation morphism

(evy :=) eng’U): P(G,0) = (G,0), v— (1)
endowed with the involutive automorphism (o) := P(0) ggg; is called the loop
group of (G,o) and is denoted by Q(G, o). Its Lie algebra is the kernel Q(g) of
the evaluation morphism

(evy :=) evgg’e): P(g,0) — (g,0), v+ (1)

endowed with the involutive automorphism §2(0) := P(0)|3E§;. It is denoted by

(g, 0).
Let (M,b) be a pointed symmetric space. The set

P(M,b) :={y € C([0,1], M): ~(0) = b}

carries a natural structure of a pointed reflection space, where the multiplication
on P(M,b) is defined pointwise and where the base point is given by the constant
curve const, with value b. We intend to turn P(M,b) into a pointed symmetric
space with Lie triple system

P(m) = {7 € C((0, 1],m): 4(0) = 0},

where the Lie bracket is defined pointwise.

Proposition 3.7.  Let (G,0,K) be a symmetric pair with quotient morphism
q: G = G/K andlet m: P(G) — P(G)/P(G?) be the quotient morphism given by
the symmetric pair (P(G,0), P(G?)). Then the map P(q): P(G) — P(G/K) de-
fined by P(q)(y) := q o~ factors over m, i.e., there is a unique map
o: P(G)/P(G°) — P(G/K) with ® om = P(q). Furthermore, ® is an iso-

morphism of pointed reflection spaces.

Proof.  Given any curves v;,7v, € P(G) with 79 = 7,0 for some 6 € P(G?) =
P(K), it is easy to see that P(q)(72) = P(q)(7), which shows that P(q) factors
over . To see that the induced map & is injective, we take any curves 7,7 €
P(G) with P(q)(71) = P(q)(72). Then the curve § := ~; 'y, € P(G) actually
lies in K, i.e., is an element of P(K) = P(G?), proving the injectivity of ®.
Since ¢ is a fiber bundle, the map P(q) is surjective by the path lifting property
of fiber bundles, entailing the surjectivity of ®. Finally, we check that ® is a
homomorphism: Given any curves 7,7, € P(G), we have

O(m(m) - 7(72) = @(r(n(oom) (co2) = go(nloomn) (ooy))
(gom)-(gorr) = @(r(1)) - P(7(12))- u
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Corollary 3.8.  For each pointed symmetric space (M,b), the reflection space
P(M,b) is Inn(U(P(M,b)))-transitive, where, to prevent confusion, U(P(M,b))
denotes the underlying reflection space of P(M,b) that is not pointed.

Proof. W.lo.g., we assume M to be connected. By homogeneity, it can
be identified with a quotient as in the preceding proposition. Since P(G) and
hence P(G)/P(G?) are connected, the symmetric space P(G)/P(G7) is
Inn(U(P(G)/P(G7)))-transitive.  Thus, also the reflection space P(G/K) is
Inn(U(P(G/K)))-transitive. |

Theorem 3.9. (1) Let (M,b) be a pointed symmetric space with Lie triple
system m. The pointed reflection space P(M,b) carries a unique structure
of a Banach manifold making it a pointed symmetric space with Lie triple
system P(m) such that

P(EXP(M,b))3 P(m) — P(M,b), v+~ EXp () 07
is its exponential map. This space P(M,b) is 1-connected.

(2) With regard to (1), the map ® of Proposition 3.7 becomes an isomorphism
of pointed symmetric spaces. In particular, we have ® o EXpp()/pgr)y =

P(Expg) -

Definition 3.10. The pointed symmetric space P(M,b) is called the path
(symmetric) space of (M,b).

Proof. W.lo.g., we assume M to be connected and hence homogeneous. By
Corollary 3.8, the reflection space P(M,b) is Inn(U(P(M,b)))-transitive. There-
fore, it is clear that there exists at most one structure of a Banach manifold
making P(M,b) a pointed symmetric space with exponential map P(Exp(,)):
Indeed, given two such structures, then for each v € P(M,b), there exists some
g € Inn(U(P(M,b))) with g(const,) = v, so that, considering a shareable® expo-
nential chart Qeonsy, = (P(Exp(Mﬁ))W)’l at consty, the map ¢, := @eonst, g+ 18
a shareable chart at ~.

With regard to the homogeneity of M, we consider the situation of (2),
i.e., of Proposition 3.7, and show that P(G/K) can be turned into a pointed
symmetric space with exponential map P(Expgr). It is clear that P(G/K)
inherits the structure of a pointed symmetric space via the map ®. Then the map
P o Expp () p(gey 18 its exponential map, so that we shall show that it is equal to
P(Expg/ ). Indeed, we have

P o EXpP(G)/P(GU) = ®omo eXPpa) ’P(g)— = P(q)o P(eXPG)‘P(g—)
= P(goexpgly.) = P(EXpG/K)'

By Proposition 2.6, the space P(G)/P(G?) is 1-connected, whence P(G/K) is
1-connected as well. [

5By a shareable chart, we mean a map that is a chart with respect to either manifold structure.
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Proposition 3.11.  Let (M,b) be a pointed symmetric space. Then the topology
of its path symmetric space P(M,b) coincides with the compact-open topology.

Proof. We denote by P(M,b)... the set of paths endowed with the compact-
open topology. The spaces P(M,b) and P(M,b)., have the same neighborhood
filter at consty, since the topology of P(m) is given also by the compact-open topol-
ogy. Since the symmetric space P(M,b) is connected and hence Inn(U(P(M,b)))-
transitive, it suffices to show that the symmetries around its points are also homeo-
morphisms of P(M,b).,. . For this, it suffices to check that the multiplication on
P(M,b) is a continuous map P(M,b)., x P(M,b)., — P(M,b).,. , but this is

true, since it can be identified with the continuous map

P(p): P(M x M, (b,b))co. = P(M;b)co, (71,72) = o (1,72),

where p denotes the multiplication map on M. |

Corollary 3.12.  The path space P(M,b) of a pointed symmetric space (M,b)
1s contractible.

Proof. The homotopy H: [0,1] x P(M,b) — P(M,b) can be defined as
H(s,v)(t) := v(st) (cf. [Bre93, VIL.6, Prop. 6.18]). ]

Let (M,b) be a pointed symmetric space with Lie triple system m. The
evaluation map

(evy :=) eng’b): P(M,b) — (M,b), v+ ~(1)
on its path space P(M,b) is a homomorphism of pointed reflection spaces that
satisfies

M
evg )OP(EXp(MJ))) = Exp(yp 0evy

with evaluation morphism
(evy :=) ev]: P(m) —» m, v~ (1),

so that it is a morphism of pointed symmetric spaces with Lts(eng’b)) = evl.
Its kernel Q(M,b) < P(M,b) is a symmetric subspace called the loop (sym-
metric) space of (M,b), whose Lie triple system is the kernel (m) < P(m) of
evi (cf. Proposition 2.4). The exponential map of Q(M,b) is Q(Exp(y,)) =
P(Exp(Mjb))@E%’b). By Proposition 3.11, the topology on Q(M,b) is given by the
compact-open topology. Therefore, for every pointed 1-connected symmetric space
(M, b), its loop space Q(M,b) is connected.

3.3. The period morphism of a symmetric Lie algebra. In this subsec-
tion, we collect useful definitions and results concerning the problem under which
conditions a (symmetric) Lie algebra is integrable, i.e., arises as the Lie algebra of
a (symmetric) Lie group. In Section 3.4, we shall apply these considerations to
solve the integration problem for Lie triple systems. It is a classical result that
a Lie algebra g is integrable if and only if its period group II(g) is discrete. We
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refer to [GNO3], where H. Glockner and K.-H. Neeb give a quite direct definition of
the period group of a Lie algebra. For our purposes, we have to refine the process
leading to this group by considering additional involutive automorphisms.

Remark 3.13. A symmetric Lie algebra (g, ) is integrable if and only if the
underlying Lie algebra g is integrable. Indeed, replacing a given Lie group G with
Lie algebra g by its universal covering group, the involutive automorphism 6 can
be uniquely integrated to an involutive automorphism o of G.

Let (g,0) be a symmetric Banach-Lie algebra. The quotient g.q := g/3(g)
endowed with the involutive automorphism 6,4 that is induced by 6 can be
integrated to a 1-connected symmetric Lie group (Gaq, 0aa) (cf. [GNO3, p. 7]).

The central extension

0 —3(g,0) = (8,0) = (gad, 0aa) = 0,

can be pulled back via the evaluation morphism evy: P(gaq,0ad) — (8ad, faq) to a
central extension

0~ 3(9,6) < P(8,6) = P(8aa baa) — 0 (4)
where the symmetric Lie algebra ﬁ(g, 0) is defined as the Lie algebra
P(g) == {(, %) € P(gaa) x 9: 7(1) = 2 +3(0)}

endowed with the involutive automorphism P(f) := (P(baq) x 0)] B(g)- Restricting
(4) to the preimage Q(g) := Q(gad) X 3(g) of Q(gaq), we obtain a central extension

0= 5(8.0) = ©(g,0) = UGaa, 0aa) — 0, (5)
where Q(g, 6) is the Lie algebra ﬁ(g) endowed with the involutive automorphism
Q(0) = P(O)lag = (Aaa) X 0)l5q)

We claim that there exists an exact sequence
0= 3(g,0) = P(G,0) “®¥ P(Gaa, 00a) — 1 (6)
of symmetric Lie groups corresponding to (4), where ]3(G, o) is a suitablf 1-
connected Lie group P(G) endowed with a suitable involutive automorphism P(o)

and where the inclusion of 3(g) into P(G) is a topological embedding.® Indeed,
there is a central group extension

0= 3(g) = P(G) = P(Gua) — 1

SFollowing the notation of [GNO03], we use notations like P(G, o) and (presently) Q(G, o)
without assuming the existence of a symmetric Lie group (G, o) with Lie algebra (g,0).
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(cf. [GNO3, p. 7], due to [Est62]), so that we merely have to define P(c) as the
unique integral of P(#). The kernel of the smooth group homomorphism

ev{Fa7ed) OX(g,0) : P(G,0) = (Gad, Tad), g+ X(5.0)(9)(1) (7)
is a symmetric Lie subgroup Q(G,0) = (QG),Q(0)) = (AG), P(0)lg(e) <
P(G, o), whose Lie algebra is the kernel of the morphism

al 703 D
Vi oL(x(): P(8,0) = (8aas bua), (7,2) = 7(1) = = + 3(0)
of symmetric Lie algebras, i.e., the symmetric Lie algebra Q(g,@). Note that
P(G)/QUG) = Gaq, so that Q(G) is connected, G,q being 1-connected (cf. [GN03,
p. 8]). Since we have Q(G,0) = X(}?@)(Q(Gad)% the exact sequence (6) can be
restricted to the exact sequence

0= 3(g,0) = QG,0) = QGad, 00a) — 1, (8)

which corresponds to (5).
The Lie algebra Q(gaq,0aq) being integrable (to Q(Gaq, 0aq)), there is a 1-

connected symmetric Lie group Q(Gaq, 0aq) whose Lie algebra is €2(gag, 0aq). We
integrate the inclusion morphism

Q(gada ead) — Q(Qada ead) X 5(97 9) = Q(ga 9)7 T = (.1', O)

to a morphism

fao): UGuad, 0ad) — Q(G, o). (9)
Composing it with Q(G, 0) = Q(Gag,0aq) (cf. (8)) gives us a morphism

9Q(Gaq,004) - Q(Gad, Uad) f(g—’e)) Q(G, O') — Q(Gad, Uad)
satisfying L(qo(c.y,ou)) = 1d0(gaa,00q)» SO that it is a universal covering morphism
(cf. Remark 3.6). Since 3(g) is the kernel of Q(G,0) — Q(Gad,0ad), the ker-
nel 71 (2(Gaqa)) of Go(Gaa.0.0) 15 mapped by fg9) onto im(fge) N3(g). Endow-
ing the Lie group m(£2(Gaa)) with the involutive automorphism 7 (2(0.q)) =
(NZ(oad)|m(Q(Gad)) gives us a symmetric Lie group that we denote by 71 (2(Gaq, 0ad)) -

Definition 3.14.  The restriction per( g : m1(2(Gaa; 0aa)) — 3(8,0) of fige
is called the period morphism of (g,0) and its image Il(g) := im(peryy)) =
im(fg0)) N3(g) the period group (which is independent of §).

Remark 3.15.  Being #-invariant, the period group becomes a topological group
with involution?, which we denote by II(g,6) := (II(g), [1(4)) with I1(0) := 9|gg§;.
We denote the fixed point groups of the involutive automorphisms I1(#) and —II(6)
by TI(g), = I1(g)"™® C 3(g)y and II(g)- := II(g) "™ C 3(g)-, respectively. We

"To avoid confusion, we do not speak of a symmetric group, since this term is usually used
for the group of all bijections of a set.
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do not know if TI(g) necessarily has to be given by TI(g), @ II(g)_,® but we know
that

1 1
I(g)+ ® Mg)- = I(g) = SM(g)+ ® STl(g)-. (10)
Indeed, given any g € II(g), we have
+40 -0 1 1
g =" 5 ) , ¢ 5 9 ¢ 5e)+ @ 51l(g)-.

Remark 3.16.  The image im(f(y9)) of f(g0) is the connected normal integral
subgroup of Q(G) with Lie algebra Q(gaq) — Q(gad) X 3(g) = Q(g). It is actually
a Lie subgroup if and only if the period group II(g) is discrete (cf. [GN03] and also
[NeeO2b, Prop. 2.6]). This is equivalent to the discreteness of II(g), and II(g)-

(ct. (10)).

Remark 3.17.  Given a 1-connected Lie group G with Lie algebra g, the period
group is given by II(g) = ker(expg |;)) and is isomorphic to the fundamental
group m(Z(G)) of the center of G (cf. [GNO3, Prop. II1.8]).

3.4. Integrability Criterion for Lie triple systems. In this subsection, we
investigate the problem under which conditions a Lie triple system is integrable,
i.e., arises as the Lie triple system of a pointed symmetric space. Note that an
integrable Lie triple system can always be integrated to a 1-connected symmetric
space (cf. Remark 3.3), which is unique up to an isomorphism by the Integrability
Theorem. First, we show that a Lie triple system is integrable if and only if its
standard embedding is integrable. In a second step, we translate the classical result
that a Lie algebra g is integrable if and only if its period group Il(g) is discrete
into the language of symmetric spaces.

Lemma 3.18.  Let (M,b) be a pointed connected symmetric space. Then the
map
Der(M), — gl(TyM), &~ (v = V,€)

15 an embedding of Banach spaces.

Proof. Considering the embedding
Der(M) — T,M x gl(TyM), € — (£(b), v — V,€)

(cf. Section 2.5), the image of the closed subspace Der(M), lies in {0} x gl(T,M),
so that the assertion follows by restricting this map. ]

Proposition 3.19.  Let (M,b) be a pointed connected symmetric space. Then
the map
Der(M)+ — g[(Der(M)—)ﬂ 5 = [57 '”Der(M),

15 an embedding of Banach—Lie algebras.

8Consider, for example, a Banach-Lie algebra b with period group II(h) = Z (cf. e.g. [GNO3,
Ex. VI.3]). Then the symmetric Lie algebra (g, ) defined by g := b x b and 6(h1, ha) := (ha, h1)
has period group II(g) = Z x Z, but leads to II(g)+ +II(g)- = (2Z x2Z)U((1+2Z) x (1+2Z)).
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Proof. Cf. [Loo69, p. 91] for the finite-dimensional case. Since the map is a
representation of a Banach-Lie algebra (cf. Section 2.4), it remains to show that
it is a closed embedding of Banach spaces. Considering the topological linear
isomorphism ev,: Der(M)_ — T,M, we have a topological linear isomorphism

(evp)s: gl(Der(M)_) — gl(TyM), A (v— evp(A(&))),
where &, := (evy) }(v). In the light of Lemma 3.18, it suffices to show that, for

each { € Der(M),, the isomorphism —(evy), maps [£, ]|perar). € gl(Der(M)_)
to V& € gl(TyM). Given any v € T, M, we have

—(evy)+([&; JIperan ) (v) = —evy([€,&]) = —evy (V& — Ve, € — Tor(€,&)),

where Tor denotes the torsion tensor (cf. [Klolla]). Since the affine connection
of a symmetric space is torsionfree and since £ € Der(M), entails £(b) = 0 and
hence Vg &, = 0, this expression simplifies to V,&. [ ]

Proposition 3.20.  Let (M,b) be a pointed connected symmetric space and
abbreviate m := Der(M)_ (motivated by the isomorphism evy: Der(M)_ — m).
The symmetric Lie algebra

g (M,b) =[mm]&m < Der(M), & Der(M)_

(cf. Section 2.5) is isomorphic to the standard embedding S(m) of m wvia the
1somorphism

O:mmjom = Sm)p®©Sm)_, &l =[G ladE
Proof.  Cf. [Loo69, p. 91] for the finite-dimensional case. The closed embedding
Der(M)y — gl(m), €= [&, J[m
(cf. Proposition 3.19) maps the subalgebra [m, m] onto the subalgebra

span{[z, y, ] € gl(m): z,y € m} < gl(m)

and hence the closure [m,m] onto the closure, which is S(m);. Therefore, the
partial map [m,m] — S(m); of ® is correctly defined and is an isomorphism of
Banach—Lie algebras. Thus it is clear that ® is a topological linear isomorphism.
To see that ® is a homomorphism of Lie algebras, it remains to consider the
restrictions of the Lie bracket on g'(M,b) to the sets [m, m] x m, m x [m, m| and
m x m, but then the proof is quite easy. [ |

Corollary 3.21.  Let (M,b) be a pointed symmetric space with Lie triple system
m. Then the standard embedding S(m) of m is integrable.

Proof.  Since the symmetric Lie algebra g'(M,b) is integrable (cf. Section 2.5
and Remark 3.13), the standard embedding S(m) is integrable as well. n
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Lemma 3.22.  Let (g,0) be an integrable symmetric Lie algebra. Then also the
Lie triple system g_ is integrable.

Proof.  Let (G, o) be a symmetric Lie group with Lie algebra (g, ), then G/G°
is a symmetric space with Lie triple system g_ . ]

Theorem 3.23. A Lie triple system m is integrable to a pointed symmetric
space if and only if its standard embedding S(m) is integrable to a (symmetric)
Lie group.

Proof. The theorem follows immediately by Corollary 3.21 and Lemma 3.22.
[

Corollary 3.24.  Fvery finite-dimensional Lie triple system is integrable.

Remark 3.25. Let m be a Lie triple system m with center 3(m). Then the
quotient Lie triple system m,q := m/3(m) is integrable. Indeed, since the center
3(S(m)) of the standard embedding coincides with 3(m) (cf. Section 2.2), the Lie
algebra S(m),q = S(m)/3(S(m)) is given by S(m),; & m,q. The Lie algebra
S(m)aq being integrable (cf. [GNO03]), the Lie triple system m,q is integrable, too,
by Lemma 3.22.

In the following, we refer to the way of defining the period morphism per g 4
and the period group Il(g) := im(per(,4) ) of a symmetric Lie algebra (g,0) as
presented in Section 3.3. We aim to apply those considerations to the standard
embedding S(m) of a Lie triple system m (or more generally to any symmetric
Lie algebra (g,6) with g_ = m and 3(g) = 3(g_)) in order to deduce similar terms
and results for Lie triple systems. By the way, we obtain a further proof (and
moreover a generalization) of Theorem 3.23.

Before we start with a Lie triple system, we firstly consider any symmetric
Lie algebra (g, #). The following proposition provides the decisive link to translate
the knowledge of Section 3.3 into the setting of Lie triple systems.

Proposition 3.26.  Let (g,0) be a symmetric Lie algebra. Then the ezact
sequences of morphisms of symmetric Lie groups defined in Section 3.3 can be
turned into exact sequences of morphisms of symmetric pairs that lead to the
following commutative diagram:

0

}
(3(9,0),3(9)+) =——=(5(9,0),3(9)+)
v A

O

1= (Q(G, 0), (P@)P)n@) > (P(G, 0), (P(G)P@)g) = (Gaa, 0aa, (G2i")o) = 1
¢ et \
1— (Q(Gadv Uad>> Q<Ggsd))(—> (P(Gad7 Uad)v P<Gg§d>> = (Gad7 Oad, (std)o) -1

/ /

1 1
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Proof.  Because of Q(G)%?) = P(G)P) N Q(G), we have
Q@)™ € (PE)P N AUG) € @)™,
so that (G, o), (13(@)13(0))0 N Q(G)) is indeed a symmetric pair. Thus, the

above diagram consists of morphisms of symmetric pairs and we need only prove
its exactness.
To see the exactness of the sequence

0= (3(8,60),3(9)4) = (P(G,0),(P(G)"))o) = (P(Gaa, 02a), P(GL)) = 1
R (11)
of symmetric pairs, we must check that we have 3(g), = (ﬁ(G)P("))O N 3(g)

and that the map (P(G)P( No — P(G7) is surjective (cf. Remark 2.10). The
former is clear by Proposition 2.7(2) and the connectedness of 3(g); admits only
one symmetric pair for 3(g,6). To see the latter, it suffices to check that the

morphism 13(9,9) — P(gaq,02a) maps ]3(g)+ onto P(gaa)+ = P((ga@)Jr) (cf.
p. 213), but this is clear, since we have (gaq)+ = 8+/3(g)+ and hence P(g); =

{(v.2) € P((gaa)+) x g+: (1) =2 +3(g)+}-
To see the exactness of the sequence

— (Q(G,0), (P(G)" )y NQ(G)) = (P(G,0), (P(G)"7))g) —
(Gad7 Oad, (Ggfid)o) —1

of symmetric pairs, we have to verify the exactness of the sequence
1= (P(G)P )0 nQ(G) = (P(G) ) — (Goi')o — 1

of Lie groups. The homomorphism (ﬁ(G)IS( No — (Grit)o 1s surjective, since it is
given by the composition of the surjective map (P(G)P(”)) — P(G73) (ctf. (11))
and the surjective evaluation map P(Gy3') — (G73')o. Its kernel is obviously
given by (ﬁ(G)ﬁ(U))O N Q(G), so that the sequence is exact.

It is clear that the sequence

1— (Q(Gadvo-ad)7Q(GZ§d)) — (P<Gad7aad)7 P(Gggld)) el% (Gadvo'ada (Gggd>0) —1

is exact, so that it remains to show the exactness of the sequence

0 (3(8,6).3(8)+) = (G, 0), (P(G)F) N AUG)) —
(UG, 7a), UGCT)) — 1

of symmetric pairs. Because of the connectedness of 3(g);, the same argu-
ment as above shows that, for this, we need only check that the map
(P(G)P)yNQG) — Q(GT4) is surjective. Since this map arises in the commu-
tative and exact diagram

1— (P(G)P@)y N QUG) = (P(G)P@))y — (GFg')o —1

\L lsurjective

QG P(G) — (G3")g — 1,

1

its surjectivity is obvious. [ |
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Corollary 3.27.  Applying the exact functor Sym (cf. Propostion 2.12) to the
diagram in Proposition 3.26 leads to the commutative and exact diagram

o o

3(0)/3()+ 3(0)/3()+

-~ ~ ~ Tad

0—=Q(G)/((P(G)P)y N Q(G)) P(G)/(P(G)F®))g — Gaa/ (GFi')o —0

Q(Gad>/Q(GZ§d)(—> P(Gad)/P(Gggd) - Gad/<GZ§d)0 —=0

(0]

o o

of pointed symmetric spaces, where all arising inclusion maps are topological em-
beddings.

Remark 3.28. The quotient 3(g)/3(g)+ can be identified with the pointed
symmetric space 3(g)—. Indeed, the multiplication map is given by z -y =
r—0(z)+0(y) =2z —y.

Corollary 3.29.  Applying the Lie functor Lts to the diagram in Corollary 3.27
leads to the commutative and exact diagram

of Lie triple systems. Note that all inclusion maps are topological embeddings.

Proof.  This follows by LtsoSym = £tso Lo F (cf. (3). ]

Now, let m be a Lie triple system. Consider some symmetric Lie algebra
(g,0) with g_ = m and 3(g) = 3(m), e.g. the standard embedding S(m) of m.
Note that 3(g,6) then stands for the symmetric Lie algebra (3(g), —id;g)) with

3(9)+ = {0} and 3(g)- = 3(m).
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The central extension
0—=3(m)—>m-—>myq —0

can be pulled back via the evaluation morphism ev;: P(m,q) — m,q to a central
extension R

0 — 3(m) = P(m) - P(m,q) — 0 (12)
with R

P(m) :={(y,2) € P(maq) x m: y(1) =z + 3(m)}.

Restricting it to the preimage Q(m) := Q(muq) x 3(m) of Q(m,q), we obtain a
central extension R

0— 3(m) = Q(m) = Q(m,q) — 0. (13)

Remark 3.30. The diagram in Corollary 3.29 simplifies to

0 0
3(m) 3(m)
0 Q(m)S P(m) Mad 0
0 — Q(Maq) > P(Myq) —2> Mg 0
0 0

This follows easily by the decompositions g = g, ® m, 3(g) = 0® 3(m) and
fgad = g+ D Myq.

We define the pointed symmetric space (Maq, bad) := Gada/(Geg®)o and note
that it is 1-connected (cf. Proposition 2.6) and that m,q is its Lie triple system (cf.
Remark 3.30). We shall frequently consider the Banach space 3(m) endowed with
its natural structure of a pointed symmetric space and note that Lts(3(m)) = 3(m).

Proposition 3.31.  Let m be a Lie triple system and (g,0) a symmetric Lie
algebra with g = m and 3(g) = 3(m). Then there exists an exact sequence

0 = 3(m) = P(M,b) X3 P(Moq, bag) — 0

of pointed symmetric spaces corresponding to (12), for a suitable pointed 1-con-
nected symmetric space P(M,b), where the inclusion of 3(m) into P(M,b) is a
topological embedding.”

9Following the notation of Section 3.3 and [GNO03], we use notations like P(M,b) and

~

(presently) Q(M,b) although there need not be a pointed symmetric space (M,b) with Lie
triple system m.



Krorz 229

Proof.  We put P(M,b) := ﬁ(G)/(ﬁ(G)ﬁ("))o, which is 1-connected by Propo-
sition 2.6. The exact sequence

0 = 3(8)/{0} = P(M.b) = P(Gaa)/P(G5) = 0

given in Corollary 3.27 corresponds to (12) by Remark 3.30. By Theorem 3.9(2), we
can replace the quotient P(Gaq)/P(Ge5?) by P(Maq,baa), since we have defined
(Mad, baa) as the quotient G.q/(G23')o. By Remark 3.28, we have 3(g)/{0} =
3(m), entailing the assertion. Note that the assertion that the inclusion is a
topological embedding also follows automatically in the light of Proposition 2.1
and Proposition 2.4. [ |

Let us consider the morphism
eviMattad) oy 0 P(M,b) = (Mo, baa), @+ Xm(2)(1)

of pointed symmetric spaces. Its kernel is a symmetric subspace @(M ,b) ﬁﬁ(]\/[ ,b)
whose Lie triple system is the kernel of the morphism

Mad

eVl o Lts(xm) : P(m) = Mag, (7,2) = 7(1) = 2 +3(m)

of Lie triple systems (cf. Proposition 2.4), i.e., is the Lie triple system Q(m) =
Q(m,q) x 3(m). Since we have Q(M,b) = (xm) (2 Maq, baq)), the exact sequence
of Proposition 3.31 can be restricted to the exact sequence

0 = 3(m) = Q(M,b) = (Mg, bag) — o, (14)

which corresponds to (13).

Remark 3.32. The commutative and exact diagram
0 0
3(m) ———3(m)

~

00— Q(M, b)) P(M,b) — (Mad, baa) —>0

evi

0O——= Q(Mad7 bad)(—> P(Mad7 bad) - (Mada bad) —0

Xm

o 0

of pointed symmetric spaces gives a good overview. It can be identified with
the diagram given in Corollary 3.27 (with 3(g)+ = {0}) and corresponds to the
diagram given in Remark 3.30.

Remark 3.33.  Being isomorphic to ﬁ(G)/((ﬁ(G)ﬁ(”))oﬂﬁ(G)), the symmetric
space Q(M,b) is connected, since Q(G) is connected.
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The Lie triple system (2(m,q) being integrable (to Q(Maq,baq)), there is
a pointed 1-connected symmetric space €2(M,q,baq) whose Lie triple system is
Q(m,q). We integrate the inclusion morphism

Q(mad) — Q(mad) X 5(‘(11) = Q(m)a T = (l’,O)

to a morphism

fm (Mad, bad) — Q(M b)
Composing it with Q(M, b) = Q(Maq, baq) (cf. (14)) gives us a morphism

-~

O (Myq,baq) Q(Madvbad) m Q(M, b) - Q(Madabad)

satisfying Lts(qo(a,, be)) = 1dam.q), S0 that it is a universal covering morphism
(cf. Remark 3.3). Since 3(m) is the kernel of Q(M,b) — Q(Maq, bag), the kernel of
4O(Moa,baa) 18 mapped by fo onto im(fm) N z(m).

Definition 3.34.  The restriction per,,: ker(go(,, b)) — 3(m) of fu is called
the period morphism of m. We denote its image by II(m) := im(per,) =
im(fm) N 3(m).

Lemma 3.35.  If we turn the morphism f(¢): Q(Gad,aad) — Q(G,O') of sym-
metric Lie groups (cf. (9)) into the morphism

Fra): (UGad, 7aa), (AGaa)™))e) = (UG, 0), (P(G)' )y N YUE))

of symmetric pairs, then Sym(fge)) can be identified with fu.

Proof. Applying the functor Sym leads to a morphism

~ ~

Sym(fig): UGaa)/(QAGat) )0 = QUG) /(PG D)o N QUG))

of pointed symmetric spaces. We identify Q(G)/((ﬁ(G)ﬁ("))oﬂﬁ(G)) with Q( ,b)
(cf. Remark 3.32) and we can identify the 1-connected space (Gaq)/(Q(Gaq )Q(Udd )o
(cf. Proposition 2.6) with Q(Mad,bad), since its Lie triple system is €(gaq)- =
Q(mad).

Because Lts(Sym(fig0))) = £ts(L(f(g,0))) is given by the inclusion mor-
phism

Ugad)— = Qgaa)- x 3(g)- = Q(g)—, =+ (2,0),

it coincides with Lts(f,), so that the assertion follows by uniqueness of integration.
[
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Remark 3.36. We obtain the following commutative diagram

~ frn
Q(Mad> bad)

e |

~ fg7 —~
UGad, 0 00 Q(G, o)

of smooth maps, where the maps ¢; with ¢+ = 1,2, 3 are the quotient maps given
by the corresponding symmetric pairs (cf. Remark 3.32 and Lemma 3.35). Note
that ¢, is given by the symmetric pair (3(g), —id;),{0}) and hence maps 3(g)
identically onto 3(m) (cf. also Remark 3.28).

Proposition 3.37. Let m be a Banach—Lie triple system. Considering some
symmetric Banach-Lie algebra (g,6) with g- = m and 3(g) = 3(m) (e.g. the
standard embedding S(m) of m ), the image II(m) of the period morphism per,, is
given by

H(m) = (im(fign)(PG)"7) NQ(G)) N3(o)
In particular, we have I1(g) C II(m).

Proof. With the aid of the diagram in Remark 3.36, we obtain
I(m) = im(fn)N3(m) = gs3(im(fge)) N3(m).

Identifying the map 3(m) < Q(M, b) with 3(g)/{0} = Q(G)/((P(G)P@)ynQU(G))
(cf. Remark 3.32) leads to

I(m) = (im(fie0)((P(G)F)NQEG)))N3(8) 2 im(fge)N3(e) = H(g). =

Corollary 3.38.  The subset II(m) C 3(m) is a subgroup.

Proof. = The product im(f(g,g))((ﬁ(G)ﬁ("))g N Q(G)) of subgroups of Q(G) is
itself a subgroup, since im(f(4)) < Q(G) is normal (cf. Remark 3.16). Thus, its
intersection with 3(g) is a subgroup of 3(g). n

Definition 3.39.  The image II(m) of the period morphism per,, is called the
period group of m.

Remark 3.40. Recall that, in Definition 3.34, the subset II(m) C 3(m) was
defined independently of the choice of (g,f0). Hence, also its group structure is
independent of (g,#), although the formula in Proposition 3.37 depends on (g, ).
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Remark 3.41. Although the period morphism of m is defined in a similar
way as the period morphism per g, gy : 71(€2(Gad; 0aa)) — 3(g,0) in Section 3.3, the
following subtlety arises: It is not possible to turn the period morphism per g
into a morphism of symmetric pairs that, applying the functor Sym, leads to the
period morphism per,,. The contrary would be nice, because then the period
groups II(g) and II(m) would coincide. However, we shall see in Example 3.56
that the case II(g) C II(m) can occur.

Proposition 3.42 (Functoriality of the period group). Let A:m — m be a

morphism of Lie triple systems with A(3(m)) C 3(m). In view of the diagrams
gwen in Remark 3.32, the morphism A induces a commutative diagram as follows:

r\

I

I

I

I

I

v o
M b)_ - ><]\4ad7bad)

[l
9(Myq:baq) Q( _ad> Bad) ==1T = Q(Mada Bad)L T = P( _ada Bad) = > (Mada Bad)
Q(Mada bad) - Q(Mad7 bad)c—) P(Mad7 bad) s (Mad7 bad)

In particular, we then have A(Il(m)) C II(m).

Proof.  Cf. [GNO03, Lem. II1.3] for the Lie algebra case. We shall refer to the
different parts of the diagram by calling them cubes and faces of cubes. Since
A:m — m maps 3(m) into 3(m), it induces a morphism A,q: m,q — M,q and
hence morphisms P(Auq): P(Maq) — P(faq) and P(A): P(m) — P(@), which
can be integrated to respective morphisms of pointed symmetric spaces. This gives
us the rightmost cube, which is commutative, since it is easy to check that the
corresponding cube on the level of Lie triple systems is commutative.

By restricting the morphisms to the respective kernels, we obtain the three
cubes on the right. Note that the induced morphism 3(m) — 3(m) coincides
with the suitable restriction of A, since Exp,., = id;m) and since the cor-
responding assertion on the level of Lie triple systems holds. The morphism
Q( Mg, bag) — QU Maq, bag) induces a morphism Q(Maq, bag) — Q(Maq, bag) of the
universal covering spaces, which can be restricted to the kernels of the covering
morphisms. We obtain the two cubes on the left. The common face between these
cubes is indeed commutative (and hence also the topmost face is), since it is easy
to see that the corresponding diagram on the level of Lie triple systems is so. =
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Corollary 3.43.  We have:

(1) If A: m — m is a morphism of Lie triple systems with A(3(m)) C 3(m) for
which the induced map ker(qo(n,qgbe)) — KeT(Ga(ir, b)) 8 surjective, then
A(I(m)) = II(m).

(2) If A: m — m is a surjective morphism of Lie triple systems with A(3(m)) =
3(m) and ker(A) C 3(m), then A(Il(m)) = II(m).

Proof.  Cf. [GNO03, Cor. III.4] for the Lie algebra case.

(1) This follows immediately by Proposition 3.42.

(2) The induced morphism A,q: m,q — M,q is not only surjective, but also
injective and hence an isomorphism, since we have A~1(3(m)) = 3(m) + ker(A) =
3(m). Therefore, also the induced map (Mg, baq) — (Mad, baq) is an isomorphism.
The assertion follows from (1). [

Remark 3.44. We can consider II: m — II(m) as a covariant functor from the
category of Lie triple systems where the morphisms are required to map center to
center to the category of abelian topological groups.

Remark 3.45.  Given the direct product m; x my of two Lie triple systems, one
observes that IT(m; x my) = II(my) x II(my) by following the construction of the
period group.

Lemma 3.46.  The image im(fy) of fu is the connected integral subspace of
Q(M,b) (and hence of P(M,b)) with Lie triple system

Qmag) — Qmag) x 3(m) = Q(m) C P(m).
Proof. In the light of Proposition 2.1, the assertion follows by

m(fw) = fu((im(Expgy 5.0))) = (Expay, (im(Lts(fn)))
= <EXPQ(M,b)(Q(mad) X {0})> (]

Lemma 3.47.  The integral subspace im(f) < Q(M,b) is actually a symmetric
subspace if and only if the period group TI(m) is discrete.

Proof. By Proposition 2.3, im( f,,) is a symmetric subspace if and only if there
exists a O-neighborhood W' C 3(m) such that im(f) N Expg ) (W) = {0}. Since
the symmetric space 3(m) is a symmetric subspace of (M, b) with Lie algebra
3(m) = Q(m) (cf. (14)), we have Expg a4y (W) = Expym)(W) = W. Together
with im(f) N W = im(fn) N3(m) N W = II(m) N W, we obtain the assertion. =

Theorem 3.48 (Integrability Criterion for Lie triple systems). Let m be a
Banach—Lie triple system. Considering some symmetric Banach—Lie algebra (g, 0)
with g- = m and 3(g) = 3(m) (e.g. the standard embedding S(m) of m), the
following are equivalent:
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The Lie triple system m is integrable to a pointed symmetric space.

(a
(

b) The Lie algebra g is integrable to a Lie group.

)
)

(¢) The period group TI(m) is discrete.
)

(d) The period group T1(g) is discrete.

Proof.  The equivalence (b)<>(d) holds by [GN03, Th. II1.7]. The implications
(b)=(a) and (c)=-(d) follow by Lemma 3.22 (and Remark 3.13) and Proposi-
tion 3.37, respectively. It remains to show the implication (a)=-(c). For this, let
(M, b) be a pointed symmetric space with Lie triple system m. By the Integra-
bility Theorem, we can integrate the natural morphism P(m) — m, (y,2) —
of Lie triple systems to a morphism p: ﬁ(M ,b) — (M, b) of pointed symmetric
spaces. By Proposition 2.4, its kernel ker(p) < ]3(M ,b) is a symmetric subspace
with Lie triple system

Lts(ker(p)) = ker(Lts(p)) = Q(maa) — Q(maq) x 3(m) = Q(m) C P(m).

Therefore, the basic connected component (ker(p))o coincides with im(f,) by
Lemma 3.46 and Proposition 2.1, so that (c) follows by Lemma 3.47. n

Remark 3.49. We shall see that the period group of a finite-dimensional Lie
triple system is trivial (cf. Remark 3.60).

Remark 3.50. For later purposes, we need to know that the kernel ker(p)
of the morphism p: P(M,b) — (M,b) (cf. the proof) is connected if M is 1-
connected. To see this, let (G,0) be a l-connected symmetric Lie group with
Lie algebra (g,6). Let p(ge): P(G,0) — (G, o) be the morphism of symmetric
Lie groups with L(p(e)): P(g,0) — (g,0), (v,x) — . It is surjective, since G
is connected and L(p(g)) is surjective. Thus we have G = ﬁ(G)/ker(p(gyg)) (cf.
[GNO3, Th. I1.2]), so that ker(pg)) is connected, the group G being 1-connected
(ct. [GNO3, p. 10)).

By Example 2.11, we have an exact sequence

1 — (ker(pg0))s P(0) lkertoyg o)+ (P(G) @) N ker(peay)) <
(ﬁ(G7 U)v (ﬁ(G>P(0))0) — <G707 <G0>0) —1 (15)

of symmetric pairs: Indeed, to see that p(g’9)<(ﬁ(G)ﬁ(U)>0) = (G7)p, it suffices to
verify the surjectivity of P(g)y — g+ (cf. p. 213), which is clear, since (gaq)+ = g+
entails P(g); = {(7,2) € P(g+) x g+: 7(1) =}

Applying the functor Sym to (15) leads to the exact sequence

~

0 — ker(pa)/ (P(G)T))g Nker(pa)) = P(G)/(P(G)T))y = G/(G7)y — o

of pointed symmetric spaces where the injection is a topological embedding (cf.
Proposition 2.12).
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Since G/(G?)y is l-connected with Lts(G/(G") ) = g = m, it can be

identified with (M,b). With P(M b) = P(G)/(P(G)P(") (cf. Proposition 3.31),
the morphisms Sym(p(q, 9)) and p can be identified, since Lts(Sym(pe))) =
Lts(L(p(g )) = Lts( ) (cf. (3)). Consequently, the kernel ker(p) is isomorphic to

ker(p(gﬂ))/(( P(G)P), ker(p(g,0))) and is hence connected, the kernel ker(p(g¢))
being connected.

For some purposes, a generalization of Proposition 3.37 is useful that applies
for symmetric Lie algebras (g, #) that not necessarily satisfy 3(g) = 3(m).

Proposition 3.51.  Let m be a Lie triple system. Given a symmetric Lie algebra
(g,0) with g— =m (so that 3(g)- C 3(m), cf. Section 2.4). Then the group I1(g)—
(cf. Remark 3.15) is a subset of the period group II(m).

Proof.  We have gaa = g4+/3(9)+ ® m/3(g)—, so that (gaa)- = m/3(g)-. The
natural map (gaq)- — Mg = m/3(m) leads to a morphism Q((gaq)-) — Q(Maq)

as well as to one from Q(g)_ = Q((gaa)_) x 3(g)_ to Q(m) = Q(m,q) X 3(m). We
claim that they can be integrated to morphisms

911 QGaa)/(UGaa) "))y — QMg baa)
and ~ R R
921 UG/ (P(G)" )y NQUG)) — UM, b),

respectively. The former integration works by the Integrability Theorem and
Proposition 2.6. To show the existence of g, we first consider the natural mor-
phism from

P(g)- = {(7,2) € P((gaa)-) ¥ g-: (1) = = +3(g)_}
to N
P(m) = {(7,2) € P(myq) x m: y(1) = x + 3(m)}
as well as the morphism (g,q)- — M,q. They can be integrated to morphisms

~

g5: P(G)/(P(G)P @)y = P(M,b) and g4 Goa/(GZ)o = (Maa, baa),

respectively, by the Integrability Theorem and Proposition 2.6. We obtain the
diagram

@(M, b)C ﬁ(M, b)%’(Madabad)ﬁo

ng o

0—=Q(G)/((P(G)F))y N Q(G))— P(G)/(P(G)P))g — Gaa/ (GFi")o —0

where the exact sequences are taken from the diagrams in Corollary 3.27 and
Remark 3.32. It is commutative, since the corresponding diagram on the level of
Lie triple systems is commutative. Thus g3 restricts to the wanted morphism g-.
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We have fn 0 g1 = g2 0 Sym(fg0)), since the corresponding morphisms

LtS(f © 91): Q((Gaa)—) = Qmaq) = Q(m)

and
Lts(g2 0 Sym(fg0)): 2(gaa)-) = Qg)- — Q(m)
are equal.
We obtain the commutative diagram
/5@})
3(0)/3(9) = 5(a)-
o
3(9,0)
O Mad, bag) n (M, b)
~ ~ SNZ( ) Sym(f(g,&)) ~ ~ ﬁ( ) ~
Q(Gaa) /(UGaa)™ 7)o = QG)/((P(G)™7)e NQG))
~ fia.0) ~
Q(Gad, Uad) Q(G, 0')

where ¢: 3(g)- < 3(m) is the inclusion morphism and where the maps ¢; with
1 = 1,2,3 are the quotient maps given by the corresponding symmetric pairs.
(Note that the commutativity of the part of the diagram containing ¢ and g
follows by the corresponding commutative diagram for the level of Lie triple
systems. )

Similarly as in the proof of Proposition 3.37, we have

(toq)(T(g)) S (g20¢s)(im(fige))) N3(m) C im(fm)3(m) = M(m).

From II(g) ®Il(g)- < TI(g) (cf. Remark 3.15), we deduce that II(g)_ < ¢;(Il(g)),
entailing that II(g)_ C II(m). ]

Let G be a Banach—-Lie group with Lie algebra g and let = € 3(g) and
y € g. Then exp(z) is in the center Z(G) of G, so that exp(z+y) = exp(z) exp(y)
can be observed by the Trotter Product Formula (cf. [Nee04, Th. IV.2]). In partic-
ular, the restriction exp ;) of the exponential map is a smooth homomorphism of
Lie groups. An analogous statement for symmetric spaces is given by the following
lemma:

Lemma 3.52.  Let (M,b) be a pointed symmetric space with Lie triple system
m. Then, for all x € 3(m) and y € m, we have

EXp(M,b)(Qx —y) = EXP(M,b) (z) - EXP(M,b) (y).
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In particular, the restriction EXp ) sy of the exponential map is a morphism
of pointed symmetric spaces.

Proof. W.lo.g., we assume M to be connected, so that we can identify it with
the quotient G'(M,b)/G'(M,b), of the symmetric pair (G'(M,b),d’,G'(M,b))
(cf. Section 2.5). Considering the exponential maps exp: g'(M,b) — G'(M,b) and
Exp: ¢/(M,b)- — G'(M,b)/G'(M,b),, we have Exp = q o exp|ymp_ (cf. (2))
with the quotient map ¢: G'(M,b) — G'(M,b)/G' (M, b),.

The symmetric Lie algebra g'(M, b) can be identified with the standard em-
bedding of g'(M,b)_ (cf. Proposition 3.20), so that its center 3(g'(M, b)) coincides
with 3(g’'(M,b)-) (cf. Section 2.4). Therefore, given any x € 3(¢'(M,b)-) and
y € g/(M,b)_, we have exp(2z — y) = exp(2z)exp(—y). Because of o’ o exp =
expoL(c’) and L(0')|gmp). = —idgup)_, we have o'(exp(z)) = exp(—z) =
(exp(z))™! and o’ (exp(—y)) = exp(y), so that we obtain

Exp(2z —y) = q(exp(z) exp(z) exp(—y)) = q(exp(x)o’(exp(z)) o’ (exp(y)))

= Exp(z) - Exp(y). m

Proposition 3.53.  Let (M,b) be a pointed 1-connected symmetric space with
Lie triple system m. Then the period group is given by II(m) = ker(Exp s [;tm)) -

Proof. As in the proof of Theorem 3.48, let p: P(M,b) — (M,b) be the
morphism of pointed symmetric spaces with Lts(p): P(m) — m, (v,z) — z.
Denoting by ¢: 3(m) — ﬁ(]\/[ ,b) the inclusion morphism given in the diagram of
Remark 3.32, we claim that Exp ;s sam) = pot. To see this, it suffices to show
that Lts(Exp(pp) [3m)) = Lts(p o), ie., that (idw)|;m) = Lts(p) o Lts(¢), but the
latter is true, since Lts(:) is the inclusion morphism 3(m) < P(m) given in the
diagram of Remark 3.30.

The kernel ker(p o ¢) of Expp [ym) is given by ker(p) N 3(m). Since
ker(p) is connected (cf. Remark 3.50), we have ker(p) = im(f) (cf. the proof of
Theorem 3.48), so that we obtain

[M(m) = im(fn) N3(m) = ker(p) N3z(m) = ker(Expp ) [5(m))- [

Corollary 3.54.  Considering some 1-connected symmetric Lie group (G,o
whose Lie algebra (g,0) satisfies g = m and 3(g) = 3(m), we have I(m) =

(expg |(g)) " ((G7)o)

Proof. By the Integrability Theorem and Proposition 2.6, we can identify
(M,b) with G/(G7)g, since we have Lts(G/(G?)g) = g— = m. The exponential
map Expg gey, is given by g o expg [m with the quotient map q: G — G/(G7)o,
so that we obtain

[I(m) = ker(EXpG/(GU)O ’3(9)) = (expg |3(g))_1((GU)O)- u

Example 3.55 (Period group of a loop triple system).  Let (M,b) be a pointed
2-connected symmetric space with Lie triple system m, i.e., M is connected
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and its homotopy groups m (M) and my(M) are trivial. Then the loop space
Q(M,b) is 1-connected (cf. [Bre93, Cor. VII.4.4]), so that the period group of the
loop triple system €2(m) of m is given by II(Q(m)) = ker(Expg ) l50@m))) (cf.
Proposition 3.53). Since the Lie triple bracket on 2(m) is defined pointwise and
since for each x € m and t € [0, 1], there exists a loop v € Q(m) with () = x,
the center 3(€2(m)) is given by (3(m)). Therefore, we obtain

H(Q2(m)) = ker(QExpary)lopm)) = Qker(Expary) lm)) = QI1(m))

(cf. Proposition 3.53). By Theorem 3.48, the period group II(m) is discrete. Hence
it follows that II1(Q2(m)) = {0}.

We now construct an example of a Lie triple system with one-dimensional
center and period group isomorphic to Z.

Example 3.56. Let (H,I) be an infinite-dimensional'® complex Hilbert space
H with a conjugation I, i.e., an antilinear isometry satisfying I? = idy. The
unitary group U(H) := {g € GL(H): g* = g~'} (where GL(H) is related
to C) is a real Lie subgroup of GL(H) and can be endowed with the invo-
lutive automorphism o: U(H) — U(H), g — Igl. Its Lie algebra u(H) :=
{X € B(H): X* = —X} of skew-hermitian operators is endowed with the involu-
tive automorphism L(o): u(H) - u(H), X — IXI.

Considering the real form Hg := {v € H: I(v) = v} of the complex Hilbert
space H, there is a canonical closed embedding e: B(Hg) — B(H), X — X¢
satisfying Xc|lm, = X and (Xclimy)(iv) = iX(v) (for all v € Hg), whose
image is im(e) = {X € B(H): XI = IX} and that maps GL(Hg) onto
{g € GL(H): gI = Ig}.

Then the fixed point group U(H)? is given by

U(H)” = U(H)Ne(GL(Hg)) = e(O(Hr)) = O(Hg)
={g € GL(Hr): 9" =¢7'}

and its Lie algebra u(H), by

1%

uw(H), = w(H)Nim(e) = e(o(Hg)) = o(Hg):={X € B(Hg): X" = -X}.

Further we have
w(H). = u(H)Niim(e) = ie(Sym(Hg))

with Sym(Hg) := {X € B(Hg): X" = X}.

It is well known that the center 3(u(H)) of the Lie algebra u(H) is given by
Riidy . We claim that it coincides with the center 3(u(H)_) of the Lie triple system
u(H)_. From 3(u(H)) = Riidy C u(H)_, we deduce that Riidy = 3(u(H))_- C
3(u(H)_) (cf. Section 2.4), so that it remains to show that Riidy 2 3(u(H)-).

Given any ie(X) € 3(uw(H)_) (with X € Sym(Hg)), we have
[[ie(X),ie(Y)],ie(Z)] = 0 for all Y,Z € Sym(Hg), entailing [[X,Y],Z] = 0 in

10The infinite-dimensionality is not required until Kuiper’s Theorem is applied.
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the Lie algebra B(Hg). For each v € Hg\{0}, we define T,, € Sym(Hg) by
T,(x®y) := @0 with respect to the decomposition Hg = Rv@® v’ and note that
T? = T,. Because of

[A, T,)(v) = A(v) — T,(A(v)) for all A€ B(Hg), (16)
we have
[[Xv Tv]7 TUKU) = [Xa Tv](v) - Tv([Xa Tv] (U))

- TU(X(U)> - T’U(X(U)) + (TvTvX>(U)
— T,(X(v)),

and hence X (v) = T,(X(v)) € Rv. Thus, every vector v € Hg is an eigenvector
of X, so that we have X = \idy, for some A\ € R by a simple argument of linear
algebra. It follows that ie(X) = Niidy, i.e., Riidy D 3(u(H)-).

Knowing now that

= X(v)
~ X()

3(u(H)) = Riidyg = 3(u(H)-)

and taking into account that U(H) is l-connected (actually contractible) by
Kuiper’s Theorem (cf. [Nee02c¢]), we can apply Corollary 3.54 and obtain

(u(H)-) = (expuem) lswrmy) " (UH) o) = (expy [riian) " (U(H)?),

Y

since U(H)? = O(Hg) is connected (by Kuiper’s Theorem). Since expyy
is a restriction of the exponential map of GL(H) that is given by
exp: B(H) — GL(H), X — > %t (cf. [NeeO4, Prop. IV.9]), we have
exp(tiidy) = e'idy for all ¢ € R. The condition e”idy € U(H)’ with
U(H)? = U(H) Ne(GL(Hg)) is satisfied if and only if eidy I = Ie"idy, i.e.,
Ie~%idy = Ie®idy. This is equivalent to 1 = 2 so that the period group of
u(H)_ is given by
Hu(H).) = Zriidy = Z.

To compare this with the period group of u(H), we compute

H(uw(H)) = ker(expyylria,) = {tiidy € Riidy: e’ =1}
= Z2miidy = 2Mu(H).) = Z

(cf. Remark 3.17).
3.5. Constructing non-integrable quotients. In this subsection, we con-

struct non-integrable Lie triple systems by finding suitable quotients of integrable
Lie triple systems with non-trivial period group.

Lemma 3.57. Let m be a Lie triple system, n < m a closed ideal and
q: m — m/n the corresponding quotient morphism. Then the following are equiv-
alent:

(a) The subgroup q(II(m)) < m/n is not discrete.
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(b) There exist sequences (Tp)nen @ II(m)\n and (Yn)nen 0 n  with
lim, o0 22, — Yy =0 n m.

Proof.  Because of 2(II(m)\n) —n = (2II(m)+n)\n, Condition (b) is equivalent
to the existence of a sequence (z,)nen in (2II(m) +n)\n with lim, o 2, = 0. The
image of such a sequence (2, )nen under ¢ is a null sequence lying in ¢(2I1(m))\{0}.
Conversely, by Michael’s Selection Theorem (cf. [Mich6] and also [BG52)), every
null sequence lying in ¢(2II(m))\{0} can be obtained as the image of such a
sequence (z,)nen. Thus, Condition (b) is equivalent to the existence of a sequence
(Wn)nen in 2¢(IT(m))\{0} with lim,, o w, = 0, hence to Condition (a). ]

Theorem 3.58 (Integrability Criterion for quotients).  Let (M,b) be a pointed
1-connected symmetric space with Lie triple system m. Let n<m be a closed ideal
and q: m — m/n the corresponding quotient morphism. The conditions

(a) The quotient m/n is integrable.

(b) The normal integral subspace N := (Expy;(n)) I M is a closed symmetric
subspace.

are equivalent and imply the condition

(¢) The subgroup q(II(m)) < m/n is discrete.

Proof.  (a)=-(b): Let (Q,bg) be a pointed 1-connected symmetric space with
Lts(Q,bg) = m/n. If we consider the unique morphism ¢: (M,b) — (Q,bg)
for which Lts(¢): m — m/n is the quotient morphism, then ker(q) is a closed
symmetric subspace of M with Lts(ker(q)) = n (cf. Proposition 2.4). It follows
that its basic connected component (ker(q))o coincides with N, so that N is a
symmetric subspace by uniqueness (cf. Proposition 2.1). Further, N is closed in
M, since (ker(q))o is an open and hence closed subspace of ker(q) (cf. Section 2.3).

(b)=-(a): By Theorem 2.5, M/N carries the structure of a pointed sym-
metric space with Lie triple system m/n.

(b)=(c): To reach a contradiction, suppose that ¢(II(m)) is not discrete.
By Lemma 3.57, there then exist sequences (z,)neny in II(m)\n and (y,)nen in
n with lim, . 22, — ¥, = 0 in m. By Proposition 2.2, there is an open 0-
neighborhood V' C m such that Exp,, |v is a diffeomorphism onto an open
subset of M and Exp ;) (VNn) = Exp(y,) (V)N N. The sequence (z,)nen with
Zp = 2x, — Yy, satisfies z, ¢ n (for all n € N), since z,, ¢ n, but y, € n. On the
other hand, because of z,, € II(m), we have

Expp(2n) = Expagp(Tn) - Expory(yn) € b-N = N

by Lemma 3.52 and Proposition 3.53. From lim,,_,, 2, = 0, we deduce that there
exists an ng € N with z,, € V', so that

EXp(M,b)(ZnO) S Exp(MJ))(V)ﬂN = EXp(M,b)(an)

Hence it follows that z,, € n, which leads to a contradiction. n
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Example 3.59. Let m be an integrable Lie triple system with non-trivial period
group II(m) # {0} (cf.,, e.g., Example 3.56). Considering some closed ideal n <m
with nN1II(m) # {0} (e.g. n:=m or n:= 3(m)), we shall show that the quotient
(m x m)/{(x,v/2z) €m xm: x € n} is not integrable by Theorem 3.58.!

Given some d € (n N II(m))\{0}, we have

Imxm) = (m) x [I(m) D (d) x (d) = Zd x Zd (17)

(cf. Remark 3.45). Let ¢: m xm — (m x m)/{(z,v/2z) € m x m: 2 € n} be the
quotient morphism. If ¢(II(m x m)) was discrete, then its preimage

(Il(m x m) + {(z, V2r)emxm: z € n}) N (Rd x {0})
under the injective restriction q|(RdX{0}) would be discrete, too. The subset
((Zd x Zd) + R(d,v/2d)) N (Rd x {0})

(cf. (17)) would then be discrete, which would contradict the non-discreteness of
(Z x Z) +R(1,v/2)) N (R x {0}), the former set arising as the image of the latter
under the topological embedding R x R < m x m, (z,y) — (xd, yd).

Remark 3.60. The period group of a finite-dimensional Lie triple system is
trivial, because otherwise Example 3.59 would give us a non-integrable finite-
dimensional Lie triple system (contradicting Corollary 3.24).

3.6. From non-integrable Lie algebras to non-integrable Lie triple sys-
tems. Given a Banach—Lie algebra g, we turn it into a Lie triple system g* by
equipping it with the triple bracket [z,y, z| := }L[[x, y], z]. This is motivated by the
following fact: A Banach—Lie group G (with Lie algebra g) can be considered as
a symmetric space (denoted by GT) with multiplication g - h := gh™'g ([Nee02a,
Ex. 3.9]), whose Lie triple system Lts(G™) is given by g* (cf. arguments of [Loo69,
p. 81]). The exponential maps exp, and Expg+ coincide (cf. [Loo69, p. 88] or
[NeeO2a, Ex. 3.9]).

Endowing g x g with the flip involution 0: g x g — g x g, (z,y) — (y, )
leads to the Lie triple system (g x g)_ = {(z, —x) € g X g}, which is isomorphic
to g via the isomorphism ®: (g x g)_ — g*, (v, —z) — 2z.

Lemma 3.61.  Given a Banach—Lie algebra g, we have 2I1(g) C II(g™).

Proof.  From Proposition 3.51, we know that II(g x g)—- C II((g x g)_). Via
the isomorphism @, we deduce that ®(II(g x g)_) C II(g"). Since II(g x g)_ =
{(z,—z) € II(g) x II(g)} (cf. Remark 3.45) is mapped by ® to 2II(g), we obtain
the assertion. [

Proposition 3.62. A Banach—Lie algebra g is integrable if and only if the Lie
triple system g* is integrable.

Of course, v/2 can be replaced by any other irrational number.
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Proof. If g is integrable to a Lie group G, then g is integrable to G™.
Conversely, let g™ be integrable. Then, by the Integrability Criterion, the period
group II(g") is discrete, so that also the subset 2I1(g) is discrete. Thus the period
group II(g) is discrete, so that g is integrable. [

Remark 3.63. Given an integrable Banach-Lie algebra g, we moreover know
that TI(g) C II(g"). Indeed, let G be a l-connected Lie group with L(G) = g.
Observing that

3(07) = {zeg™: [z,y] €3(g) for all y € g},

we see that 3(g) C 3(g7). By Remark 3.17 and Proposition 3.53, we thus obtain

II(g) = ker(expg |5q5) € ker(Expg+ ;o+) = I(g"),

since the exponential maps exp, and Expq: coincide.

3.7. Integrability of complexifications of real Banach—Lie algebras. In
this subsection, where also complex Banach—Lie algebras are considered, we shall
frequently speak of real Banach-Lie algebras (which were simply called Banach-Lie
algebras in earlier sections).

Theorem 3.64. Let g be a real Banach—Lie algebra and gc = g @ ig its
complezification. Then the following are equivalent:

(a) The complex Lie algebra gc is integrable.

(b) The real Lie algebra g and the (real) Lie triple system ig both are integrable.

Proof. Noting that a complex Lie algebra is integrable if and only if its
underlying real Lie algebra is integrable (cf. [Bou89b, Prop. 5 in II1.6.3]), we
consider gc simply as a real Lie algebra, endow it with the complex conjugation
and note that ig = (gc)_.

(a)=-(b): Being a real subalgebra of the integrable Lie algebra gc, the Lie
algebra g is integrable. By Lemma 3.22, ig is integrable, since gc¢ is so.

(b)=(a): To see that g¢ is integrable, we shall verify the discreteness
of the period group Il(gc) by checking that II(gc)y and II(gc)- are discrete
(cf. Remark 3.16). From Il(gc)- € II((gc)-) (cf. Proposition 3.51), we deduce
that II(gc)- is discrete, since II((gc)—) is discrete by the Integrability Crite-
rion. To show the discreteness of II(gc)y, we consider the quotient morphism
q: 9c — 9 @ igaq induced by the ideal i3(g) < gc. It is easy to see that
3(gc) = 3(9) ®i3(g) and 3(g @ igaa) = 3(g), so that ¢ maps center onto cen-
ter. Since we further have ker(q) = i3(g) C 3(gc), Corollary 3.43(2) applies and
entails that ¢(II(gc)) = (g @ igaq). Together with II(gc)y @ (ge)- C I(gc)
(cf. Remark 3.15), this leads to

M(gc)+ = q(Il(gc)s ®(gc)-) S (g @ igaa)-
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It suffices to show that g ig.q is integrable, since this implies the discreteness of
II(g @ igaa) and hence of II(gc)y . With regard to the injective morphism

9D igad = 8 X (Jad D i0aa), =+ 1y — (2, (x +3(9)) + i),

it suffices to check that g.q@®iga.q is integrable, keeping in mind that g is integrable
by assumption. For this, we again inject g.q @ iga.q into gl(g) ®igl(g) via the map
induced by

g @ig — gl(g) @ igl(g), = +iy — [z, ] +ily, ]

and show that gl(g) @ igl(g) is integrable. In fact, we observe that gl(g) @ igl(g)
is the Lie algebra of the general linear group GL(gc) where gc is considered as a
complex Lie algebra. [ |

This theorem applies to the complexification of real Banach—Lie groups (cf.

[GNO3, Th. IV.7]).
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