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Abstract. An analogue of a spectral triple over SUq(2) is constructed for
which the usual assumption of bounded commutators with the Dirac operator
fails. An analytic expression analogous to that for the Hochschild class of the
Chern character for spectral triples yields a non-trivial twisted Hochschild 3-
cocycle. The problems arising from the unbounded commutators are overcome
by defining a residue functional using projections to cut down the Hilbert space.
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1. Introduction

This paper studies the homological dimension of the quantum group SUq(2) from
the perspective of Connes’ spectral triples. We use an analogue of a spectral
triple to construct, by a residue formula, a nontrivial Hochschild 3-cocycle. Thus
we obtain finer dimension information than is provided by the nontriviality of a
K -homology class, which is sensitive only to dimension modulo 2.

The position of quantum groups within noncommutative geometry has
been studied intensively over the last 15 years. In particular, Chakraborty and
Pal [ChP1] introduced a spectral triple for SUq(2), and this construction was
subsequently refined in [DLSSV] and generalised by Neshveyev and Tuset in [NT2]
to all compact Lie groups G . These spectral triples have analytic dimension dimG
and nontrivial K -homology class. However, when Connes computed the Chern
character for Chakraborty and Pal’s spectral triple [C1], he found that it had
cohomological dimension 1 in the sense that the degree dimSU(2) = 3 term in
the local index formula is a Hochschild coboundary. Analogous results for the
spectral triple from [DLSSV] were obtained in [DLSSV2].

Contrasting these ‘dimension drop’ results, Hadfield and the first author
[HK1, HK2] showed that SUq(2) is a twisted Calabi-Yau algebra of dimension 3
whose twist is the inverse of the modular automorphism for the Haar state on this
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compact quantum group, cf. Section 2. They also computed a cocycle representing
a generator of the nontrivial degree 3 Hochschild cohomology groups (which we
call the fundamental cocycle), and a dual degree 3 Hochschild cycle which we
denote dvol .

The starting point of the present paper is the concept of a ‘modular’ spectral
triple [CNNR]. These are analogous to ordinary spectral triples except for the use
of twisted traces. The examples considered in [CNNR] arise from KMS states of
circle actions on C∗ -algebras, and yield nontrivial KK -classes with 1-dimensional
Chern characters in twisted cyclic cohomology. In [KW] it was then shown that
they also can be used to obtain the fundamental cocycle of the standard Podleś
quantum 2-sphere.

Motivated by this, our construction here extends the modular spectral triple
on the Podleś sphere to all of SUq(2). This extension is not a modular spectral
triple, but as our main theorem shows, still captures the homological dimension 3:
we give a residue formula for a twisted Hochschild 3-cocycle which is a nonzero
multiple of the fundamental cocycle. This is obtained by analogy with Connes’
formula for the Hochschild class of the Chern character of spectral triples, [C,
Theorem 8, IV.2.γ ] and [BeF, CPRS1]. A natural question that arises is whether
our construction provides a representative of a nontrivial K -homology class.

The organisation of the paper is as follows. In Section 2 we recall the defini-
tions of SUq(2), the Haar state on SUq(2) and the associated GNS representation,
and finally the modular theory of the Haar state. In Section 3 we recall the ho-
mological constructions of [HK1, HK2], and prove some elementary results we will
need when we come to show that our residue cocycle does indeed recover the class
of the fundamental cocycle.

Section 4 contains all the key analytic results on meromorphic extensions
of certain functions that allow us to prove novel summability type results for
operators whose eigenvalues have mixed polynomial and exponential growth, see
Lemma 4.2.

Section 5 constructs an analogue of a spectral triple (A,H,D) over the
algebra A of polynomials in the standard generators of the C∗ -algebra SUq(2).
The key requirement of bounded commutators fails, and this ‘spectral triple’ fails
to be finitely summable in the usual sense (however, it is θ -summable). Using an
ultraviolet cutoff we can recover finite summability of the operator D on a subspace
of H with respect to a suitable twisted trace. However, our representation of A
does not restrict to this subspace, and so we are prevented from obtaining a genuine
spectral triple.

In Section 6 we define a residue functional τ . Heuristically, the value of τ
on an operator T is given by

τ(T ) = Ress=3Trace(∆−1PT (1 +D2)−s/2).

Here ∆ implements the modular automorphism of the Haar state, D is our Dirac
operator and P is a suitable projection that implements the cutoff. The existence,
first of the trace, and then the residue, are both nontrivial matters. Also, as
the referee has pointed out, there are other choices of projection which may be
employed, and we say more about this in our concluding remarks.
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The main properties of τ are described in Theorem 6.3, and in par-
ticular we show that the domain of τ contains the products of commutators
a0[D, a1][D, a2][D, a3] for ai ∈ A . In addition, τ is a twisted trace on a suit-
able subalgebra of the domain containing these products. The main result, The-
orem 6.5, proves that the map a0, . . . , a3 7→ τ(a0[D, a1][D, a2][D, a3]) is a twisted
Hochschild 3-cocycle, whose cohomology class is non-trivial and coincides with (a
multiple of) the fundamental class.
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2. Background on SUq(2)

The notations and conventions of [KS] will be used throughout for consistency.
We recall that A := O(SUq(2)), for q ∈ (0, 1), is the unital Hopf ∗-algebra with
generators a, b, c, d satisfying the relations

ab = qba, ac = qca, bd = qdb, cd = qdc, bc = cb

ad = 1 + qbc, da = 1 + q−1bc

and carrying the usual Hopf structure, as in e.g. [KS]. The involution is given by

a∗ = d, b∗ = −qc, c∗ = −q−1b, d∗ = a.

We choose to view A as being generated by a, b, c, d explicitly, rather than
just a, b , in order to make formulae more readable.

Proposition 2.1 ([KS, Proposition 4.4]). The set
{anbmcr, bmcrds | m, r, s ∈ N0, n ∈ N}

is a vector space basis of A. These monomials will be referred to as the polynomial
basis.

Recall that for each l ∈ 1
2
N0 , there is a unique (up to unitary equivalence)

irreducible corepresentation Vl of the coalgebra A of dimension 2l+1, and that A
is cosemisimple. That is, if we fix a vector space basis in each of the Vl and denote
by tli,j ∈ A the corresponding matrix coefficients, then we have the following
analogue of the Peter-Weyl theorem.

Theorem 2.2 ([KS, Theorem 4.13]). Let Il := {−l,−l + 1, . . . , l − 1, l}. Then
the set {tlr,s | l ∈ 1

2
N0, r, s ∈ Il} is a vector space basis of A.
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This will be referred to as the Peter-Weyl basis. With a suitable choice of
basis in V 1

2
, one has

a = t
1
2

− 1
2
,− 1

2

, b = t
1
2

− 1
2
, 1
2

, c = t
1
2
1
2
,− 1

2

, d = t
1
2
1
2
, 1
2

.

The expressions for the Peter-Weyl basis elements as linear combinations of the
polynomial basis elements can be found in [KS, Section 4.2.4].

The quantized universal enveloping algebra Uq(sl(2)) is a Hopf algebra
which is generated by k, k−1, e, f with relations

kk−1 = k−1k = 1, kek−1 = qe, kfk−1 = q−1f, [e, f ] =
k2 − k−2

q − q−1
.

Note that in [KS] this algebra is denoted by Ŭq(sl2) and U ext
q (sl2). The algebra

Uq(sl(2)) carries the following Hopf structure

∆(k) = k ⊗ k, ∆(e) = e⊗ k + k−1 ⊗ e, ∆(f) = f ⊗ k + k−1 ⊗ f
S(k) = k−1, S(e) = −qe, S(f) = −q−1f

ε(k) = 1, ε(e) = ε(f) = 0.

Adding the following involution

k∗ = k, e∗ = f, f ∗ = e,

we obtain a Hopf ∗-algebra which we denote by Uq(su(2)).

Theorem 2.3 ([KS, Theorem 4.21]). There exists a unique dual pairing 〈·, ·〉
of the Hopf algebras Uq(sl(2)) and A such that

〈k, a〉 = q−
1
2 , 〈k, d〉 = q

1
2 , 〈e, c〉 = 〈f, b〉 = 1

〈k, b〉 = 〈k, c〉 = 〈e, a〉 = 〈e, b〉 = 〈e, d〉 = 〈f, a〉 = 〈f, c〉 = 〈f, d〉 = 0.

This pairing is compatible with the ∗-structures on Uq(sl(2)) and A.

The dual pairing between the Hopf algebras 〈·, ·〉 : Uq(sl(2)) × A → C
defines left and right actions of Uq(sl(2)) on A . Using Sweedler notation (∆(α) =∑
α(1) ⊗ α(2) ) these actions are given by

g . α :=
∑

x(1)
〈
g, x(2)

〉
α / g :=

∑
x(2)

〈
g, x(1)

〉
, for all α ∈ A, g ∈ Uq(sl(2)).

The left and right actions make A a Uq(sl(2))-bimodule [KS, Proposition 1.16].

Our definition of the q -numbers is

[z]q :=
q−z − qz

q−1 − q
= Q(q−z − qz) for any z ∈ C,

where we abbreviated Q := (q−1− q)−1 ∈ (0,∞). The following lemma recalls the
explicit formulas for the action of the generators on the Peter-Weyl basis.



Krähmer, Rennie, and Senior 561

Lemma 2.4. For all n ∈ Z,

kn . tlr,s = qnstlr,s tlr,s / k
n = qnrtlr,s

e . tlr,s =
√[

l + 1
2

]2
q
−
[
s+ 1

2

]2
q
tlr,s+1 f . tlr,s =

√[
l + 1

2

]2
q
−
[
s− 1

2

]2
q
tlr,s−1.

Later we will use the notation

∂k := k . · , ∂e := e . · , ∂f := f . · ,

especially when we extend these operators from A to suitable completions. Also
observe that ∆(kn) = kn ⊗ kn for all n ∈ Z , hence kn . · and · / kn are algebra
automorphisms on A . They are not ∗-algebra automorphisms since for α ∈ A we
have (k . α)∗ = k−1 . α∗, (α / k)∗ = α∗ / k−1 . Finally, we introduce

∂H(tlr,s) = stlr,s,

and we note that formally ∂k = q∂H .

2.1. The GNS representation for the Haar state.

We denote by A := C∗(SUq(2)) the universal C∗ -completion of the ∗-
algebra A [KS, Section 4.3.4]. Let h be the Haar state of A whose values on basis
elements are

h(ajbncm) = h(djbncm) = δj,0δn,m(−1)m[m+ 1]−1q , h(tlr,s) = δl,0.

Let Hh denote the GNS space L2(A, h), where the inner product 〈x, y〉 =
h(x∗y) is conjugate linear in the first variable. The representation of A on Hh is
is induced by left multiplication in A . The set {tlr,s | l ∈ 1

2
N0, r, s ∈ Il} is an

orthogonal basis for Hh with〈
tlr,s, t

l′

r′,s′

〉
= δl,l′δr,r′δs,s′q

−2r[2l + 1]−1q .

2.2. Modular Theory. Following Woronowicz, we call the automorphism

ϑ(α) := k−2 . α / k−2, α ∈ A

the modular automorphism of A . The action of ϑ on the generators of A and the
Peter-Weyl basis is given by

ϑ(a) = q2a, ϑ(b) = b, ϑ(c) = c, ϑ(d) = q−2d, ϑ(tlr,s) = q−2(r+s)tlr,s.

The modular automorphism is a (non ∗-) algebra automorphism; more
precisely for any α ∈ A

ϑ(α)∗ = ϑ−1(α∗).

The Haar state is related to the modular automorphism by the following
proposition.

Proposition 2.5 ([KS, Proposition 4.15]). For α, β ∈ A, we have

h(αβ) = h(ϑ(β)α).
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In fact, h extends to a KMS state on A for the strongly continuous one-
parameter group ϑw , w ∈ R , of ∗-automorphisms of A which is given on the
generators by

ϑw(a) := q−2iwa , ϑw(b) := b , ϑw(c) := c , ϑw(d) := q2iwd .

We extend this to an action ϑ· : C×A → A by algebra (not ∗-) automor-
phisms that is defined on generators by

ϑz(a) := q−2iza , ϑz(b) := b , ϑz(c) := c , ϑz(d) := q2izd ,

so that the modular automorphism ϑ is ϑi .

We can implement ϑw in the GNS representation on Hh . To do this, we
define an unbounded linear operator ∆F on A ⊂ Hh by

∆F (tlr,s) := q2r+2stlr,s

and call this the full modular operator. Then we have

ϑw(x)ξ = ∆iw
F x∆−iwF ξ , for all x ∈ A and ξ ∈ Hh.

The subscript F denotes that this operator is associated to the full modular
automorphism ϑ . In addition, we define the left and the right modular operators
on A ⊂ Hh by

∆L(tlr,s) := q2stlr,s, ∆R(tlr,s) := q2rtlr,s,

so ∆F = ∆L∆R = ∆R∆L . Just as ∆F implements the modular automorphism
group, the left and right modular operators implement one-parameter groups of
automorphisms of A :

σL,w(tlr,s) = q2iwstlr,s = ∆iw
L t

l
r,s∆

−iw
L , σR,w(tlr,s) = q2iwrtlr,s = ∆iw

R t
l
r,s∆

−iw
R .

As with the full action, the left and right actions are periodic and hence
give rise to actions of T on A . These may be extended to a complex action on
the ∗-subalgebra A which we will denote σL,z and σR,z . In particular, we obtain
for z = i the algebra automorphisms

σL := k−2 . ·, σR := · / k−2,

ϑ = σLσR = σRσL, ϑ(α)ξ = ∆−1F α∆F ξ,

σL(tlr,s) = q−2stlr,s, σR(tlr,s) = q−2rtlr,s,

σL(α)ξ = ∆−1L α∆Lξ, σR(α)ξ = ∆−1R α∆Rξ.

The fixed point algebra for the left action on A is isomorphic to the standard
Podleś quantum 2–sphere O(S2

q ). We will denote its C∗ -completion by B . As the
left action is periodic, we may define a positive faithful expectation Φ: A→ B by

Φ(x) =
ln(q−2)

2π

∫ 2π/ ln(q−2)

0

σL,w(x)dw.
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More generally, given n ∈ Z and x ∈ A we define

Φn(x) =
ln(q−2)

2π

∫ 2π/ ln(q−2)

0

q−inwσL,w(x)dw.

Since σL,w is a strongly continuous action on A , the Φn are continuous
maps on A . Observe that Φ = Φ0 and

Φn(tlr,s) = δn,2st
l
r,s

Hence the Φn can be extended to bounded operators on the GNS space Hh , and
in fact the Φn are projections onto the spectral subspaces of the left circle action.
So we make explicit the decomposition of A into the left spectral subspaces by
defining

Bn := Φn(A) = {α ∈ A | σL,w(α) = q2inwα} and Hn := L2(Bn, h)

where h is the Haar state (restricted to Bn ). This leads to the following decom-
position for the GNS space

Hh =
∞⊕

n=−∞

Hn.

The commutation relations for the projections Φn and the operators ∂k , ∂e
and ∂f are found from the definitions on the Peter-Weyl basis to be

∂kΦn = Φn∂k = q
n
2 Φn ∂HΦn = Φn∂H =

n

2
Φn ∆LΦn = Φn∆L = qnΦn

∂eΦn = Φn+2∂e ∂fΦn = Φn−2∂f .

The left actions of e and f are twisted derivations in the sense that for
α, β ∈ A we have

∂e(αβ) = ∂e(α)∂k(β) + ∂−1k (α)∂e(β)

∂f (αβ) = ∂f (α)∂k(β) + ∂−1k (α)∂f (β) .

More generally, given α ∈ A and ξ ∈ Hh

∂e(αξ) = ∂e(α)∆
1
2
Lξ + σ

1
2
L(α)∂e(ξ) ∂f (αξ) = ∂f (α)∆

1
2
Lξ + σ

1
2
L(α)∂f (ξ) (1)

= ∂e(α)∆
1
2
Lξ + ∆

− 1
2

L α∆
1
2
L∂e(ξ) = ∂f (α)∆

1
2
Lξ + ∆

− 1
2

L α∆
1
2
L∂f (ξ).

See e.g. [BHMS] and the references therein for background on the generali-
sation of this setting in terms of Hopf-Galois extensions.

3. Twisted homology and cohomology

We recall that the algebra A is a ϑ−1 -twisted Calabi-Yau algebra of dimension 3,
see [HK2] and the references therein for this result and some background. Since the
centre of A consists only of the scalar multiples of 1A , this means in particular that
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the cochain complex C• := HomC(A⊗C•+1,C), with differential bϑ−1 : Cn → Cn+1

given by

(bϑ−1ϕ)(a0, . . . , an, an+1) =
n∑
i=0

(−1)nϕ(a0, . . . , aiai+1, . . . , an+1)

+ (−1)n+1ϕ(ϑ−1(an+1)a0, a1, . . . , an),

is exact in degrees n > 3 and has third cohomology H3(C, bϑ−1) ' C . An
explicit cocycle whose cohomology class generates H3(C, bϑ−1) can be constructed
using the following incarnation of the cup product ` in Hochschild cohomology:

Lemma 3.1. Let σ0, . . . , σ3 be automorphisms of A,
∫

: A → C be a σ0 ◦ϑ−1 ◦
σ−13 -twisted trace, that is, ∫

αβ =

∫
σ0(ϑ

−1(σ−13 (β)))α,

and ∂p : A → A, p = 1, 2, 3, be σp−1 -σp -twisted derivations, that is,

∂p(αβ) = σp−1(α)∂p(β) + ∂p(α)σp(β).

Then the functional defined via the cup product by(∫
` ∂1 ` ∂2 ` ∂3

)
(a0, a1, a2, a3) :=

∫
σ0(a0)∂1(a1)∂2(a2)∂3(a3)

is a ϑ−1 -twisted cocycle, bϑ−1(
∫
` ∂1 ` ∂2 ` ∂3) = 0.

Proof. This is a straightforward computation:(
bϑ−1

∫
` ∂1 ` ∂2 ` ∂3

)
(a0, a1, a2, a3, a4)

=

∫
σ0(a0a1)∂1(a2)∂2(a3)∂3(a4)−

∫
σ0(a0)∂1(a1a2)∂2(a3)∂3(a4)

+

∫
σ0(a0)∂1(a1)∂2(a2a3)∂3(a4)−

∫
σ0(a0)∂1(a1)∂2(a2)∂3(a3a4)

+

∫
σ0(ϑ

−1(a4)a0)∂1(a1)∂2(a2)∂3(a3)

= −
∫
σ0(a0)∂1(a1)∂2(a2)∂3(a3)σ3(a4) +

∫
σ0(ϑ

−1(a4))σ0(a0)∂1(a1)∂2(a2)∂3(a3)

= 0.

Less straightforward is that when applying the above result with

σ0 = σ1 = k−4 . · , σ2 = k−2 . · , σ3 = id,

∂1 = (k−4 . ·) ◦ ∂H , ∂2 = (k−3 . ·) ◦ ∂e, ∂3 = (k−1 . ·) ◦ ∂f
and a suitable twisted trace, one obtains a cohomologically nontrivial ϑ−1 -twisted
cocycle.
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Lemma 3.2 ([HK2, Corollary 3.8]). Define a linear functional
∫
[1]

: A → C by∫
[1]

anbmcr := δn,0δm,0δr,0,

∫
[1]

bmcrds := δm,0δr,0δs,0.

Then
∫
[1]

is a σ2
L ◦ ϑ−1 -twisted trace, and the cochain ϕ ∈ C3 given by

ϕ(a0, . . . , a3) =

∫
[1]

(
k−4 . (a0 ∂H(a1))

) (
k−3 . ∂e(a2)

) (
k−1 . ∂f (a3)

)
is a cocycle, bϑ−1ϕ = 0, whose cohomology class is nontrivial, ϕ /∈ im bϑ−1 .

Later, we will also have to consider the cocycles that are obtained by using
the (twisted) derivations ∂H , ∂e, ∂f in a different order. Explicitly, this is handled
by the following result.

Lemma 3.3. In the situation of Lemma 3.1, define

∂̃3 = σ1 ◦ σ−12 ◦ ∂3, ∂̃2 := ∂2 ◦ σ−12 ◦ σ3, ∂̂2 := σ0 ◦ σ−11 ◦ ∂2, ∂̂1 := ∂1 ◦ σ−11 ◦ σ2.

Then we have ∫
` ∂1 ` ∂2 ` ∂3 +

∫
` ∂1 ` ∂̃3 ` ∂̃2 = bϑ−1ψ132,∫

` ∂1 ` ∂2 ` ∂3 +

∫
` ∂̂2 ` ∂̂1 ` ∂3 = bϑ−1ψ213,

where

ψ132(a0, a1, a2) :=

∫
σ0(a0)∂1(a1)∂2(σ

−1
2 (∂3(a2))),

ψ213(a0, a1, a2) := −
∫
σ0(a0)∂1(σ

−1
1 (∂2(a1)))∂3(a2).

Proof. Straightforward computation.

Applying Lemma 3.3 repeatedly to the cocycle ϕ from Lemma 3.2 gives
cohomologous cocycles.

Corollary 3.4. The cocycle ϕ from Lemma 3.2 is cohomologous to each of

ϕ132(a0, a1, a2, a3) := −q−2
∫
[1]

(
k−4 . (a0 ∂H(a1))

) (
k−3 . ∂f (a2)

) (
k−1 . ∂e(a3)

)
,

ϕ213(a0, a1, a2, a3) := −
∫
[1]

(
k−4 . a0

) (
k−3 . ∂e(a1)

) (
k−2 . ∂H(a2)

) (
k−1 . ∂f (a3)

)
,

ϕ312(a0, a1, a2, a3) := q−2
∫
[1]

(
k−4 . a0

) (
k−3 . ∂f (a1)

) (
k−2 . ∂H(a2)

) (
k−1 . ∂e(a3)

)
,
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ϕ231(a0, a1, a2, a3) :=

∫
[1]

(
k−4 . a0

) (
k−3 . ∂e(a1)

) (
k−1 . ∂f (a2)

)
(∂H(a3))

and

ϕ321(a0, a1, a2, a3) := −q−2
∫
[1]

(
k−4 . a0

) (
k−3 . ∂f (a1)

) (
k−1 . ∂e(a2)

)
(∂H(a3)) .

Proof. To begin, one applies Lemma 3.3 to ϕ with

∂̃3 = (k−3 . ·) ◦ ∂f , ∂̃2 = (k−3 . ·) ◦ ∂e ◦ (k2 . ·),

∂̂2 = (k−3 . ·) ◦ ∂e, ∂̂1 := (k−4 . ·) ◦ ∂H(·) ◦ (k2 . ·) .

The formulae for these derivations can be simplified by commuting ∂e and k . to
obtain

∂̃3 = (k−3.·)◦∂f , ∂̃2 = q−2(k−1.·)◦∂e, ∂̂2 = (k−3.·)◦∂e, ∂̂1 := (k−2.·)◦∂H(·).

This gives ϕ132 and ϕ213 . Then we can apply Lemma 3.3 again to ϕ213 . Going
from ϕ213 to ϕ312 is easy, since it only involves exchanging e and f . Next we
obtain ϕ231 from ϕ213 by applying Lemma 3.3 with

σ0 = k−4 . ·, σ1 = σ2 = k−2 . ·, σ3 = id,

∂1 = (k−3 . ·) ◦ ∂e, ∂2 = (k−2 . ·) ◦ ∂H , ∂3 = (k−1 . ·) ◦ ∂f

which gives

∂̃3 = σ1 ◦ σ−12 ◦ ∂3 = ∂3 = (k−1 . ·) ◦ ∂f ,

∂̃2 = ∂2 ◦ σ−12 ◦ σ3 = (k−2 . ·) ◦ ∂H ◦ (k2 . ·) = ∂H .

The last cocycle is obtained analogously from ϕ312 .

A homologically nontrivial 3-cycle dvol in the (pre)dual chain complex
C• := A⊗C•+1 (with differential dual to bϑ−1 ) has been computed in [HK1, HK2]:

dvol := d⊗ a⊗ b⊗ c− d⊗ a⊗ c⊗ b+ q d⊗ c⊗ a⊗ b
− q2 d⊗ c⊗ b⊗ a+ q2 d⊗ b⊗ c⊗ a− q d⊗ b⊗ a⊗ c
+ c⊗ b⊗ a⊗ d− c⊗ b⊗ d⊗ a+ q c⊗ d⊗ b⊗ a (2)

− c⊗ d⊗ a⊗ b+ c⊗ a⊗ d⊗ b− q−1 c⊗ a⊗ b⊗ d
+ (q−1 − q) c⊗ b⊗ c⊗ b

With this normalisation, we have ϕ(dvol) = 1.
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4. Some meromorphic functions

In this section we demonstrate that certain functions have meromorphic continu-
ations. These functions arise in the residue formula for the Hochschild cocycle in
the next two sections. We require the following notation. For any l ∈ 1

2
N0 and

−(2l + 1) ≤ n ≤ (2l + 1) define

λl,n :=

√√√√(n
2

)2
+ qn

([
l +

1

2

]2
q

−
[n

2

]2
q

)
. (3)

We also define the finite sets

Jl :=

{
{0, 2, . . . , 2l − 1} l ∈ (N0 + 1

2
)

{1, 3, . . . , 2l − 1} l ∈ N
.

Finally, we remark that in this section we will use t as a real parameter
instead of a Peter-Weyl basis element.

Lemma 4.1. The formulas

z 7→ f1(z) :=
∞∑

2l=1

l∑
r=−l

∑
n∈Jl

q2l−2r

(1 + λ2l,n)z/2

z 7→ f2(z) :=
∞∑

2l=1

l∑
r=−l

∑
n∈Jl

q2l−n

(1 + λ2l,n)z/2

define holomorphic functions on Dom2 , where we abbreviate

Domt := {z ∈ C | Re(z) > t}, t ∈ R.

Proof. We will show that the sums converge uniformly on compacta. To begin
with, we take z = t ∈ (2,∞), and compute the summation over the r parameter
for f1 and f2 giving

f1(t) =
∞∑

2l=1

∑
n∈Jl

q2l[2l + 1]q
(1 + λ2l,n)t/2

, f2(t) =
∞∑

2l=1

∑
n∈Jl

(2l + 1)q2l−n

(1 + λ2l,n)t/2
. (4)

For l ∈ 1
2
N0 and n ∈ Jl we have the inequality[

l +
1

2

]2
q

−
[n

2

]2
q
≥ [2l]q

with equality attained for n = 2l − 1. This inequality implies

1 + λ2l,n ≥ 1 +
(n

2

)2
+ qn[2l]q ≥ 1 +

(n
2

)2
+ qn−2l+1. (5)
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Since the summands in Equation (4) are positive, we may invoke Tonelli’s
theorem to rearrange the order of summation

∞∑
2l=1

∑
n∈Jl

→
∞∑
n=0

∞∑
l=(n+1)/2

.

Combining the elementary inequality q2l[2l + 1]q ≤ q−1Q with Equation (5) gives
the inequalities

f1(t) ≤ q−1Q

∞∑
n=0

∞∑
l=n+1

2

1

(1 +
(
n
2

)2
+ qn−2l+1)t/2

,

f2(t) ≤
∞∑
n=0

∞∑
l=n+1

2

(2l + 1)q2l−n

(1 +
(
n
2

)2
+ qn−2l+1)t/2

.

We reparameterise the sums defining f1 and f2 using y = 2l − 1− n with
summation range y = 0 to y =∞ . This yields

f1(t) ≤ q−1Q
∞∑
n=0

∞∑
y=0

1

(1 +
(
n
2

)2
+ q−y)t/2

,

f2(t) ≤
∞∑
n=0

∞∑
y=0

(y + n+ 2)qy+1

(1 +
(
n
2

)2
+ q−y)t/2

. (6)

Next we employ the inequality α2 + β2 ≥ αβ , valid for any positive real
numbers α and β , to f1(t). This yields

f1(t) ≤ q−1Q
∞∑
n=0

∞∑
y=0

qyt/4
(

1 +
(n

2

)2)−t/4
<∞ for all t > 2.

For the function f2(t), we evaluate the sums over y on the right hand side
to obtain, for some positive constants C1 and C2 ,

f2(t) ≤
∞∑
n=0

∞∑
y=0

(y + n+ 2)qy+1(
1 +

(
n
2

)2)t/2 =
∞∑
n=0

C1 + C2n(
1 +

(
n
2

)2)t/2 .
This last sum is finite for all t > 2, and bounded uniformly for t ≥ 2+ ε for

any ε > 0. This establishes that f1, f2 are finite for all Re(z) > 2, and the sums
defining them converge uniformly on vertical strips, and so on compacta. Finally,
to show that f1, f2 are holomorphic in the half-plane Re(z) > 2, we invoke the
Weierstrass convergence theorem.

Lemma 4.2. For any positive reals x, y, w > 0, r ∈ N, and z ∈ Dom3 , define

G(z) :=
∞∑
n=1

∞∑
m=r

ewm

(x2n2 + y2ewm)z/2

Then we have:
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1. G is a holomorphic function on Dom3 ;

2. G has a meromorphic continuation to Dom2 with a simple pole at z = 3;

3. This continuation can be written as

G(z) =

√
π

2xyz−1
Γ( z−1

2
)

Γ( z
2
)

e−rw(z−3)/2

1− e−w(z−3)/2
− 1

2yz
e−rw(z−2)/2

1− e−w(z−2)/2
+ err(z)

where err is a holomorphic function on Dom2 that satisfies

|err(z)| ≤ 1

2yRe(z)

e−rw(Re(z)−2)/2

1− e−w(Re(z)−2)/2 .

Proof. Until further notice, we take z real and positive. Later we will extend
our results to complex z as in Lemma 4.1. Inserting the Mellin transform of
f(t) = e−(x

2n2+y2ewm)t gives

G(z) =
∞∑
n=1

∞∑
m=r

ewm

Γ( z
2
)

∫ ∞
0

t
z
2
−1e−tx

2n2

e−ty
2ewmdt.

For z real, all terms above are positive. Therefore we can apply Tonelli’s
theorem to exchange the order of integration with summation. Having done this,
we consider the sum

∑∞
n=1 e

−tx2n2
. The Poisson summation formula provides the

identity
∞∑
n=1

e−tx
2n2

=
1

2

(√
π

tx2

(
1 + 2

∞∑
n=1

e−
n2π2

tx2

)
− 1

)
.

Substituting this identity into the expression for G(z) we find

G(z) =
1

2

∞∑
m=r

ewm

(y2ewm)
z
2

(√
π

x

Γ( z−1
2

)

Γ( z
2
)

(y2ewm)
1
2 − 1

)
+

√
π

x

∞∑
n=1

∞∑
m=r

ewm

Γ( z
2
)

∫ ∞
0

t
z−1
2
−1e−

n2π2

tx2 e−ty
2ewmdt.

To explore the convergence of the double sum we denote

gn(s) :=

∫ ∞
0

t
z−1
2
−1e−

n2π2

tx2 e−tsdt.

Later we will set s = y2ewm > 0, so we consider only positive, real s , making
gn(s) a positive real function. Using [OS, Section 26:14] to evaluate this Laplace
transform gives

gn(s) = 2

(
nπ

x
√
s

) z−1
2

K z−1
2

(
2nπ
√
s

x

)
where u 7→ Kν(u) is the modified Bessel function of the second kind. For u > 0
and real ν > 1/2, uνKν(u) is positive, as both uν and Kν(u) are positive. Also,
the derivative (referring again to [OS]) is given by

∂

∂u
(uνKν(u)) = −uνKν−1(u) ≤ 0 for all u ≥ 0.
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Thus the function u 7→ uνKν(u) is positive and monotonically decreasing
for all u > 0. Hence for all ε > 0 we have the bound

ε

∞∑
n=1

(εn)νKν(εn) ≤
∫ ∞
0

uνKν(u)du. (7)

Evaluating the integral (using [OS, Chapter 51]) yields

∞∑
n=1

(εn)νKν(εn) ≤ 1

ε
2ν−1Γ(1

2
)Γ(ν + 1

2
).

If we now set s = y2erm , we obtain the bound

∞∑
n=1

∞∑
m=r

ewm

Γ( z
2
)

∫ ∞
0

t
z−1
2
−1e−

n2π2

tx2 e−ty
2ewmdt

≤ 2
∞∑
n=1

∞∑
m=r

ewm

Γ( z
2
)

(
nπ

xyewm/2

) z−1
2

K z−1
2

(
2nπyewm/2

x

)
.

Now estimating the sum over n on the right using Equation (7) gives us

2
∞∑
n=1

(
nπ

x
√
s

) z−1
2

K z−1
2

(
2nπ
√
s

x

)
= 2

(
1

2s

) z−1
2
∞∑
n=1

(
2nπ
√
s

x

) z−1
2

K z−1
2

(
2nπ
√
s

x

)

≤ 2

(
1

2s

) z−1
2 x

2π
√
s

2
z−1
2
−1Γ( z

2
)Γ(1

2
)

=
xΓ(1

2
)Γ( z

2
)

2π

1

sz/2
=
xΓ(1

2
)Γ( z

2
)

2π

1

yzezwm/2
.

Hence by summing the remaining geometric series in m we obtain the bound

∞∑
n=1

∞∑
m=r

ewm

Γ( z
2
)

∫ ∞
0

t
z−1
2
−1e−

n2π2

tx2 e−ty
2ewmdt ≤

Γ
(
z
2

)
Γ( z

2
)

xΓ(1
2
)

yz2π

∞∑
m=r

ewm

emwz/2

≤
xΓ(1

2
)

yz2π

e−rw(z−2)/2

1− e−w(z−2)/2
.

Evaluating the remaining geometric series in G(z) as above, we arrive at

G(z) =

√
π

2xyz−1
Γ( z−1

2
)

Γ( z
2
)

e−rw(z−3)/2

1− e−w(z−3)/2
− 1

2yz
e−rw(z−2)/2

1− e−w(z−2)/2
+ err(z) (8)

where

err(z) :=

√
π

x

∞∑
n=1

∞∑
m=r

ewm

Γ( z
2
)

∫ ∞
0

t
z−1
2
−1e−

n2π2

tx2 e−ty
2ewmdt,

err(z) ≤ 1

2yz
e−rw(z−2)/2

1− e−w(z−2)/2
.
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Thus the sum defining the function err converges for all z > 2, and this
convergence is uniform on compact intervals. Now we observe that for z ∈ C we
have |G(z)| ≤ G(|z|) and similarly |err(z)| ≤ err(|z|). Hence the sums defining
G converge uniformly on closed vertical strips in the half-plane Dom3 , and so on
compacta. Similarly the sums and integral defining err converge uniformly on
compact subsets of the half-plane Dom2 .

Hence the Weierstrass convergence theorem implies that err is holomorphic
on the half-plane Dom2 and that G is holomorphic on Dom3 . Moreover the
formula for G , Equation (8), provides a meromorphic continuation of G to the
half-plane Dom2 .

Lemma 4.3. The formula

f(z) :=
∞∑
n=0

∞∑
l=n+1

2

qn−2l

(1 + λ2l,n)z/2

defines a holomorphic function on Dom3 . Moreover f has a meromorphic contin-
uation to Dom2 , a simple pole at z = 3 with residue 4qQ−2/ ln(q−1).

Proof. First we write

1 + λ2l,n = 1 + n2

4
+ qn

([
l + 1

2

]2 − [n
2

]2)
= 1

4
n2 +Q2q−1qn−2l + Cn,l

where Cn,l is uniformly bounded in n, l , and is given by

Cn,l = 1 +Q2qn(q2l+1 − 2)− qn
[
n
2

]2
, |Cn,l| ≤ 1 + 3Q2.

Now we reparametrise the summation by letting m = 2l − n , yielding

f(z) =
∞∑
n=0

∞∑
m=1

q−m

(1
4
n2 +Q2q−1q−m + Cn,m)z/2

where we understand Cn,m = Cn,l=(n+m)/2 . The function

z 7→
∞∑
m=1

q−m

(Q2q−1q−m + C0,m)z/2
=

∞∑
m=1

qm( z
2
−1)

(Q2q−1 + qmC0,m)z/2

has summands with absolute value bounded by Mqm( z
2
−1) , M > 0 constant, and

so by the Weierstrass convergence theorem is holomorphic for Re(z) > 2. Hence
for some holomorphic function holo on Dom2 we have

f(z) =
∞∑

n,m=1

q−m

(1
4
n2 +Q2q−1q−m + Cn,m)z/2

+ holo(z)

=
∞∑

n,m=1

q−m

(1
4
n2 +Q2q−1q−m)z/2

(
1 +

Cn,m
1
4
n2 +Q2q−1q−m

)−z/2
+ holo(z). (9)
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The strategy now is to perform a binomial expansion on(
1 +

Cn,m
1
4
n2 +Q2q−1q−m

)−z/2
ending up with a new sum of functions

∑
n,m,kDn,m,kH(z + 2k) where H is as in

Lemma 4.2. The binomial expansion requires the inequality

Cn,m
1
4
n2 +Q2q−1q−m

< 1

which holds for sufficiently large m . Recall that |Cn,m| ≤ 1 + 3Q2 =: C uniformly
in n, m , and so we may choose p ∈ N such that

q−p > qQ−2C =⇒ |Cn,m|
1
4
n2 +Q2q−1q−m

< 1 ∀n ≥ 1, m ≥ p.

Now, for any fixed p , sums of the form

∞∑
n=1

p−1∑
m=1

q−m

(1
4
n2 +Q2q−1q−m + Cn,m)z/2

can immediately be seen to be holomorphic for Re(z) > 2 as the sum can be
bounded by a constant multiple of the Riemann zeta function. Hence for such a
choice of p ∈ N and for some holomorphic function holo on Dom2 we have

f(z) =
∞∑
n=1

∞∑
m=p

q−m

(1
4
n2 +Q2q−1q−m)z/2

(
1 +

Cn,m
1
4
n2 +Q2q−1q−m

)−z/2
+ holo(z).

Now we perform the binomial expansion, separating the resulting infinite sum∑∞
k=0 into the k = 0 term and

∑∞
k=1 . This gives

f(z) =
∞∑
n=1

∞∑
m=p

q−m

(1
4
n2 +Q2q−1q−m)z/2

+
∞∑
k=1

(
− z

2

k

) ∞∑
n=1

∞∑
m=p

q−m(Cn,m)k

(1
4
n2 +Q2q−1q−m)

z+2k
2

+ holo(z)

= G(z) +
∞∑
k=1

(
− z

2

k

) ∞∑
n=1

∞∑
m=p

q−m(Cn,m)k

(1
4
n2 +Q2q−1q−m)

z+2k
2

+ holo(z),

where G is as in Lemma 4.2, with x = 1/2, y = q−1/2Q , w = ln(q−1) and r = p .
Our aim now is to show that f − G is a holomorphic function on Dom2 . We
need to show that the remaining summation converges to such a function. This
remaining sum is bounded by∣∣∣∣∣

∞∑
k=1

(
− z

2

k

) ∞∑
n=1

∞∑
m=p

q−m(Cn,m)k

(1
4
n2 +Q2q−1q−m)

z+2k
2

∣∣∣∣∣
≤

∞∑
k=1

∣∣∣∣( − z
2

k

)∣∣∣∣ Ck

∞∑
n=1

∞∑
m=p

q−m

(1
4
n2 +Q2q−1q−m)

Re(z)+2k
2

=
∞∑
k=1

∣∣∣∣( − z
2

k

)∣∣∣∣ Ckh(Re(z) + 2k).
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To estimate this sum of functions, we infer from Lemma 4.2 that there exists
a positive function M which is defined for Re(z) > 3 and such that

|h(z)| ≤M(z)
e−Re(z)rp/2

yRe(z)
= M(z)(q

1
2
(p+1)Q−1)Re(z).

Hence ∣∣∣∣∣
∞∑
k=1

(
− z

2

k

) ∞∑
n=1

∞∑
m=p

q−m(Cn,m)k

(1
4
n2 +Q2q−1q−m)

z+2k
2

∣∣∣∣∣
≤

∞∑
k=1

∣∣∣∣( − z
2

k

)∣∣∣∣CkM(z + 2k)(q
1
2
(p+1)Q−1)Re(z)+2k.

Recall that p was chosen such that q−p > qQ−2C . Also the function
z 7→M(z) is uniformly bounded for Re(z) ≥ 4. Hence, for all z with Re(z) ≥ 2,
the function k 7→M(z+2k) is uniformly bounded in k , by M say. It thus follows
that the sum

∞∑
k=1

∣∣∣∣( − z
2

k

)∣∣∣∣CkM(z + 2k)(q
1
2
(p+1)Q−1)Re(z)+2k ≤M

∞∑
k=1

∣∣∣∣( − z
2

k

)∣∣∣∣ (qp+1Q−2C)k

converges for Re(z) > 2, by comparing with the binomial expansion on the right
hand side. The convergence is again uniform on compacta, so invoking Weierstrass’
convergence theorem we conclude that f(z)−G(z) is holomorphic for Re(z) > 2.
Hence there exists a function holo which is defined and holomorphic for Re(z) > 2
such that

f(z) =

√
π

(q−
1
2Q)z−1

Γ( z−1
2

)

Γ( z
2
)

qp(z−3)/2

1− q(z−3)/2
+ holo(z)

So we see f(z) is holomorphic for Re(z) > 3, meromorphic for Re(z) > 2
and has a a simple pole at z = 3 with residue 4qQ−2/ ln(q−1).

5. An analogue of a spectral triple

We now introduce an analogue of a spectral triple over A . Let H := Hh ⊕Hh be
the Hilbert space given by two copies of the GNS space Hh = L2(A, h). We define

a grading on H by Γ =

(
1 0
0 −1

)
. For any operator ω on H we abbreviate

ω+ :=
1 + Γ

2
ω

1 + Γ

2
, ω− :=

1− Γ

2
ω

1− Γ

2
. (10)

The algebra A is represented on H by

α 7→
(
πh(α) 0

0 πh(α)

)
for α ∈ A . Here πh denotes the GNS representation by left multiplication on each
copy of the space. In the sequel we will omit the symbol πh . We now introduce
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some unbounded operators and projections

∆̂R =

(
∆R 0
0 ∆R

)
∆̂L =

(
q−1∆L 0

0 q∆L

)
Ψn =

(
Φn+1 0

0 Φn−1

)
on A⊕A ⊂ H and use them to define (on the same domain)

D =
1

2

∞∑
n=−∞

Ψn

(
n 0
0 −n

)
+ ∆̂

1
2
L

(
0 ∂e
∂f 0

)
.

Recall from Section 4 the numbers

λl,n :=

√√√√(n
2

)2
+ qn

([
l +

1

2

]2
q

−
[n

2

]2
q

)
, (11)

where l ∈ 1
2
N0 and −(2l + 1) ≤ n ≤ (2l + 1). Also recall that

Il := {−l,−l + 1, . . . , l − 1, l}.

We will see in the following Proposition that the commutators [D, α] of D
with algebra elements are not necessarily bounded, yet are unbounded in a very
controlled manner. Even though (A,H,D) thus fails to be a spectral triple, we will
still be able to construct an analytic expression for a residue Hochschild cocycle
from the commutators.

Proposition 5.1. The triple (A,H,D) has the following properties:

1. The unbounded operator D is essentially self-adjoint

2. The eigenvalues of D are {−(l + 1
2
), ±λl,2j−1 : l ∈ 1

2
N0, j ∈ Il\{−l}}. The

eigenvalue −(l+ 1
2
) has multiplicity 2 and ±λl,2j−1 has multiplicity 2(2l+1).

3. The commutator [D, α] is given by S̃(α) + T̃ (α)∆̂L , where the linear maps
S̃, T̃ : A → B(H) are given by

S̃(α) = ∂H(α)Γ T̃ (α) =

(
0 q−

1
2∂e(σ

− 1
2

L (α))

q
1
2∂f (σ

− 1
2

L (α)) 0

)
.

Proof. The set{(
0
tlr,l

)
,

(
tlr,−l

0

)
,

(
tlr,s

C l
s,± t

l
r,s−1

)
: l ∈ 1

2
N0, r ∈ Il, s ∈ Il\{−l}

}
,

where C l
s,± =

±λl,2s−1 − (s− 1
2
)

qs−
1
2

√[
l + 1

2

]2
q
−
[
s− 1

2

]2
q

is an orthogonal basis for H comprised of eigenvectors of D . The correspond-
ing eigenvalues are −(l + 1

2
),−(l + 1

2
) and ±λl,2s−1 respectively. This spectral

representation establishes that D is essentially self-adjoint.
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Next, the commutator of D with a homogeneous algebra element α =
Φp(α), for some p ∈ Z , is computed directly. It is sufficient to consider just this
case, because A consists of finite linear combinations of homogeneous elements
(the generators are homogeneous). For such an element α we have

[D, α] =
1

2

∞∑
n=−∞

Ψnα

(
n 0
0 −n

)
+ ∆̂

1
2
L

(
0 ∂e
∂f 0

)
α

− 1

2

∞∑
n=−∞

αΨn

(
n 0
0 −n

)
− α∆̂

1
2
L

(
0 ∂e
∂f 0

)
.

It follows from the definition of the projections Φn , now regarded as a linear
operator on Hh , that αΦn = Φn+pα for any n ∈ Z . Using this, together with the
definition of the derivations ∂e and ∂f in Equation 1, the commutator simplifies
to

[D, α]

=
1

2
α

∞∑
n=−∞

Ψn

((
n+ p 0

0 −n− p

)
−
(
n 0
0 −n

))

+∆̂
1
2
L

(
0 (∂e(α)∆

1
2
L + σ

1
2
L(α)∂e)

(∂f (α)∆
1
2
L + σ

1
2
L(α)∂f ) 0

)

−α∆̂
1
2
L

(
0 ∂e
∂f 0

)
.

Since σ
1
2
L(α) = ∆̂

− 1
2

L α∆̂
1
2
L as operators on A ⊕ A ⊂ H , the last expression

for the commutator simplifies to

∆̂
1
2
L

(
0 σ

1
2
L(α)∂e

σ
1
2
L(α)∂f 0

)
= α∆̂

1
2
L

(
0 ∂e
∂f 0

)
,

and hence

[D, α] =
p

2
α

(
1 0
0 −1

)
+ ∆̂

1
2
L

(
0 ∂e(α)∆

1
2
L

∂f (α)∆
1
2
L 0

)

= ∂H(α)Γ +

(
0 q−

1
2∂e(σ

− 1
2

L (α))

q
1
2∂f (σ

− 1
2

L (α)) 0

)
∆̂L.

6. The residue Hochschild cocycle

The main step in the definition of the residue cocycle is the construction of a
functional that plays the role of an integral. In the situations considered in the
literature thus far, [C, BeF, GVF, CNNR, CPRS1, KW], functionals of the form

T 7→ τ(T (1 +D2)−z/2)
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were used, where z ∈ C and τ is a faithful normal semifinite trace, or at worst a
weight, on a von Neumann algebra containing the algebra of interest. Often, the
von Neumann algebra is just B(H), and the functional τ is the operator trace.

In this example, we need to apply our functional to products of commutators
[D, α] ∼ ∆̂L with α ∈ A , so it has to be defined on an algebra of unbounded
operators. We will deal with this using a cutoff that is defined by the projections

Lm := L̃m ⊕ L̃m, L̃m(tlr,s) :=

{
tlr,s l ≤ m

0 otherwise

and

P1 =
∞∑
n=0

Ψn, P2

(
tlr,s
0

)
= (1− δs,−l)

(
tlr,s
0

)
, P2

(
0
tlr,s

)
= (1− δs,l)

(
0
tlr,s

)
.

Observe P2 is the projection onto

(
ker

(
0 ∂e
∂f 0

))⊥
, and that the pro-

jections Lm converge strongly to the identity in B(H).

For w ∈ R+ we now define a functional Υw on positive operators ρ ∈ B(H)
in the following way:

Υw(ρ) := sup
m∈N

Tr
(
P1P2Lm(1 +D2)−w/4∆̂

− 1
2

F ρ∆̂
− 1

2
F (1 +D2)−w/4P1P2Lm

)
,

where ∆̂F = ∆̂R∆̂L and Tr is the operator trace on B(H). This expression
continues to make sense for possibly unbounded positive operators defined on and
preserving the subspace A⊕A ⊂ H .

Lemma 6.1. For each w ∈ R+ the functional Υw is positive and normal on
B(H)+ . It is faithful and semifinite on P1P2B(H)+P1P2 .

Proof. We will compute the operator trace using the Peter-Weyl basis{(
tlr,s
0

)
,

(
0
tlr,s

)}
for H . The operators (1+D2), ∆̂F , P1 , P2 and Lm are all positive and diagonal in
this basis. By using the definition of the operator trace, the value of the operators
∆̂−1F and (1 + D2)−w/4 on this basis, and the symmetry property for self-adjoint
operators, we compute Υw(ρ) for ρ ∈ B(H)+ (or even ρ ≥ 0 and affiliated to
B(H)) by

Tr
(
P1P2Lm(1 +D2)−w/4∆̂

− 1
2

F ρ∆̂
− 1

2
F (1 +D2)−w/4P1P2Lm

)
=

=
∞∑

2l=0

l∑
r=−l

l∑
s=−l

q−2r−(2s−1)

(1 + λ2l,2s−1)
w/2

〈
P+
1 P

+
2 Lmt

l
r,s, ρ

+P+
1 P

+
2 Lmt

l
r,s

〉〈
tlr,s, t

l
r,s

〉
+
∞∑

2l=0

l∑
r=−l

l∑
s=−l

q−2r−(2s+1)

(1 + λ2l,2s+1)
w/2

〈
P−1 P

−
2 Lmt

l
r,s, ρ

−P−1 P
−
2 Lmt

l
r,s

〉〈
tlr,s, t

l
r,s

〉 ,
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where ρ+ and ρ− are as in Equation (10). Now,

P+
1 P

+
2 Lmt

l
r,s =

{
tlr,s

1
2
≤ s ≤ l, 1

2
≤ l ≤ m

0 otherwise

P−1 P
−
2 Lmt

l
r,s =

{
tlr,s −1

2
≤ s ≤ l − 1, 1

2
≤ l ≤ m

0 otherwise.

So if we set n = 2s± 1 and recall the sets

Jl :=

{
{0, 2, . . . , 2l − 1} l ∈ (N0 + 1

2
)

{1, 3, . . . , 2l − 1} l ∈ N

we may express the trace as

Tr
(
P1P2Lm(1 +D2)−w/4∆̂

− 1
2

F ρ∆̂
− 1

2
F (1 +D2)−w/4P1P2Lm

)
=

=
2k∑

2l=1

l∑
r=−l

∑
n∈Jl

q−2r−n

(1 + λ2l,n)w/2


〈
tl
r,n+1

2

, ρ+tl
r,n+1

2

〉
〈
tl
r,n+1

2

, tl
r,n+1

2

〉 +

〈
tl
r,n−1

2

, ρ−tl
r,n−1

2

〉
〈
tl
r,n−1

2

, tl
r,n−1

2

〉
 . (12)

This shows that Υw is a supremum of a sum of positive vector states and so
automatically positive and normal. To see that it is faithful on P1P2B(H)+P1P2

we observe that the operator trace is faithful and that P1P2∆̂
−1/2
F (1 + D2)−w/4

is injective on P1P2H . The semifiniteness comes from the fact that finite rank
operators are in the domain of Υw .

We extend Υw to an unbounded positive normal linear functional on B(H)
as usual. In fact, we extend it also to unbounded operators ρ defined on and
preserving A⊕A by decomposing LkωLk for each k into a linear combination of
positive bounded operators.

If for an operator ρ (not necessarily bounded) the function w 7→ Υw(ρ) has
a meromorphic continuation to Dom3−δ for some δ > 0, then we define

τ(ρ) := Resz=3Υz(ρ). (13)

Lemma 6.2. The functional τ is defined on the positive operator c∗c, and
τ(c∗c) = 0. Indeed, for all m ≥ 1,

τ

((
(c∗c)m 0

0 0

))
= τ

((
0 0
0 (c∗c)m

))
= 0.

Proof. The action of the operator c = c+ + c− may be described using the
Clebsch-Gordan coefficients (see for example [DLSSV], [KS]): we have

c+tlr,s = cl+rs t
l+ 1

2

r+ 1
2
,s− 1

2

c−tlr,s = cl−rs t
l− 1

2

r+ 1
2
,s− 1

2

,
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where

cl+rs = q(r+s)/2
([l + r + 1]q[l − s+ 1]q)

1/2

[2l + 1]q
, cl−rs = −q(r+s)/2 ([l − r]q[l + s]q)

1/2

[2l + 1]q
.

Using this description of c to compute the action of c∗c , we find

(c∗c)tlr,s = qr+s−1
(

[l + r + 1]q[l − s+ 1]q
[2l + 1]q[2l + 2]q

+
[l − r]q[l + s]q
[2l]q[2l + 1]q

)
tlr,s

− qr+s−1
(

([l + r + 1]q[l − r + 1]q[l + s+ 1]q[l − s+ 1]q)
1
2

[2l + 1]q[2l + 2]q
tl+1
r,s

+
([l + r]q[l − r]q[l + s]q[l − s]q)

1
2

[2l]q[2l + 1]q
tl−1r,s

)

Let εw = Q(1− q2w), so that [w]q = q−wεw . Then the above expression can
be written as

(c∗c)tlr,s = q2l
(
q2s

εl+r+1εl−s+1

ε2l+1ε2l+2

+ q2r
εl−rεl+s
ε2lε2l+1

)
tlr,s

− q2l+r+s
(

(εl+r+1εl−r+1εl+s+1εl−s+1)
1
2

ε2l+1ε2l+2

tl+1
r,s +

(εl+rεl−rεl+sεl−s)
1
2

ε2lε2l+1

tl−1r,s

)
.

Define the scalars C1(l, r, s) and C2(l, r, s) to be

C1(l, r, s) :=
εl+r+1εl−s+1

ε2l+1ε2l+2

C2(l, r, s) :=
εl−rεl+s
ε2lε2l+1

.

The definition of εw implies that C1 and C2 are uniformly bounded for all l, r, s
appearing in the formula for Υz(c

∗c). As in the proof of Lemma 6.1 we compute
for z ∈ R

Tr

(
P1P2Lp(1 +D2)−z/4∆̂

− 1
2

F

(
c∗c 0
0 0

)
∆̂
− 1

2
F (1 +D2)−z/4P1P2Lp

)
=

2p∑
2l=1

l∑
r=−l

∑
n∈Jl

q−2r−n

(1 + λ2l,n)z/2
(
q2l+n+1C1(l, r,

n+1
2

) + q2l+2rC2(l, r,
n+1
2

)
)
,

Tr

(
P1P2Lp(1 +D2)−z/4∆̂

− 1
2

F

(
0 0
0 c∗c

)
∆̂
− 1

2
F (1 +D2)−z/4P1P2Lp

)
=

2p∑
2l=1

l∑
r=−l

∑
n∈Jl

q−2r−n

(1 + λ2l,n)z/2
(
q2l+n+1C1(l, r,

n−1
2

) + q2l+2rC2(l, r,
n−1
2

)
)
.

The uniform boundedness of C1 and C2 , together with Lemma 4.1, demon-
strate that the limits as p→∞ of the two sums above exist for z > 2. Hence

z 7→ Υz

((
c∗c 0
0 0

))
, z 7→ Υz

((
0 0
0 c∗c

))
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are well-defined functions for z > 2. Indeed the arguments of Lemma 4.1, together
with the Weierstrass convergence theorem, show that these functions extend to
holomorphic functions on Dom2 . In particular, these functions are holomorphic
at z = 3 and hence

τ

((
c∗c 0
0 0

))
= τ

((
0 0
0 c∗c

))
= 0.

By linearity it follows that τ(c∗c) = 0 also. Using the normality of c , for
any operator X we have the operator inequality

X∗(c∗c)mX ≤ ‖c∗c‖m−1X∗c∗cX,

and so for z > 2 real, we have Υz((c
∗c)m) ≤ ‖c‖2m−2Υz(c

∗c). Thus for z > 2, the
sum defining Υz((c

∗c)m) converges. Once more invoking the Weierstrass conver-
gence theorem shows that z 7→ Υz((c

∗c)m) extends to a holomorphic function for
Re(z) > 2. Similar estimates now show that

τ

((
(c∗c)m 0

0 0

))
= τ

((
0 0
0 (c∗c)m

))
= 0.

Theorem 6.3. Let α ∈ A and X, Y be any closed linear operators on Hh

which are defined on and preserve A. Then we have the following well-defined
evaluations of τ :

1. τ

((
0 X
0 0

))
= τ

((
0 0
Y 0

))
= 0

2. τ(αΓ) = 0

3. τ

(
∆̂2
L

(
α 0
0 0

))
= τ

(
∆̂2
L

(
0 0
0 α

))
= R

∫
[1]
α

where
∫
[1]

: A → C is the functional defined in Lemma 3.2 and

R := 4(q−1 − q)/ ln(q−1).

Proof. Throughout this proof we assume without loss of generality that any
element of A is homogeneous with respect to both the left and right actions
(that is σL(α) = qpα , σR(α) = qp

′
α for some p, p′ ). This is because finite linear

combinations of homogeneous elements span A (cf. Theorem 2.2).

Indeed, if α ∈ A is homogeneous of a non-zero degree for either the left
or right action, then 〈tlr,s, α tlr,s〉 = 0 and so for any linear operator C that is
diagonal in the Peter-Weyl basis, Υw(Cα) = 0 for all w ∈ R+ . Hence, we need
only consider those elements of A that are homogeneous of degree zero for the
left and right actions. A convenient spanning set for these algebra elements is
{1A, (c∗c)m : m ∈ N} .
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1. By definition of Υs we have

Υw

((
0 X
0 0

))
= Υw

((
0 0
Y 0

))
= 0

for all w > 0.

2. Lemma 6.2 has established that for all m ≥ 1,

τ

((
(c∗c)m 0

0 0

))
= τ

((
0 0
0 (c∗c)m

))
= 0.

By linearity we can extend this to conclude that τ((c∗c)mΓ) = 0. Finally, for z
large and real we compute Υz(Γ) using the proof of Lemma 6.1. Now

Tr
(
P1P2Lp(1 +D2)−z/4∆̂

− 1
2

F Γ∆̂
− 1

2
F (1 +D2)−z/4P1P2Lp

)
=

2p∑
2l=1

l∑
r=−l

∑
n∈Jl

q−2r−n

(1 + λ2l,n)z/2
−

2k∑
2l=1

l∑
r=−l

∑
n∈Jl

q−2r−n

(1 + λ2l,n)z/2
,

and for each p the summands above are finite and hence subtract to give zero.
Hence Υz(Γ) = 0 for all z and so τ(Γ) = 0.

3. For z large and real, the evaluation of Υz as sums of positive real
numbers (as in the proof of Lemma 6.1) implies the numerical inequality

Υz(∆̂
2
L(c∗c)m) ≤ Υz((c

∗c)m).

This is because the introduction of ∆̂2
L multiplies each summand by q2n ≤ 1

(cf. Equation (12)). Lemma 6.2 demonstrates that Υz((c
∗c)m) extends to a

function that is holomorphic in a neighbourhood of z = 3, and together with
the Weierstrass convergence theorem the result follows.

Finally we analyse Υz

(
∆̂2
L

(
1 0
0 0

))
and Υz

(
∆̂2
L

(
0 0
0 1

))
. Again

using the proof of Lemma 6.1 we find

Tr

(
P1P2Lp(1 +D2)−z/4∆̂

− 1
2

F ∆̂2
L

(
1 0
0 0

)
∆̂
− 1

2
F (1 +D2)−z/4P1P2Lp

)
= Tr

(
P1P2Lp(1 +D2)−z/4∆̂

− 1
2

F ∆̂2
L

(
0 0
0 1

)
∆̂
− 1

2
F (1 +D2)−z/4P1P2Lp

)
=

2p∑
2l=1

l∑
r=−l

∑
n∈Jl

q−2r+n

(1 + λ2l,n)z/2

= Qq−1
2p∑

2l=1

∑
n∈Jl

qn−2l

(1 + λ2l,n)z/2
−Qq

2p∑
2l=1

∑
n∈Jl

qn+2l

(1 + λ2l,n)z/2

For z real, the sum
∑2k

2l=1

∑
n∈Jl q

n+2l/(1 + λ2l,n)z/2 is bounded above by
f2(z) from Lemma 4.1 for all p . By the Weierstrass convergence theorem we
conclude that as p → ∞ , this sum converges to a function with a holomorphic
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extension about z = 3. Next, when considering the sum
∑2k

2l=1

∑
n∈Jl q

n−2l/(1 +

λ2l,n)z/2 , observe by rearranging the order of summation

2k∑
2l=1

∑
n∈Jl

→
2k∑
n=0

k∑
l=(n+1)/2

,

that Lemma 4.3 proves that the sum has a limit as k →∞ and the corresponding
function of z extends to a meromorphic function with a simple pole at z = 3. The
residue at z = 3 is 4qQ−2/ ln(q−1) and from the definition of τ we conclude that
for R = 4(q−1 − q)/ ln(q−1),

τ

(
∆̂2
L

(
1 0
0 0

))
= τ

(
∆̂2
L

(
0 0
0 1

))
= R.

Finally, we compare the definition of R
∫
[1]

in Lemma 3.2 to the evaluation

of τ on A derived here and observe that they agree on A .

Lemma 6.4. Given any matrix M ∈M2(A) and any α ∈ A we have

τ(M∆̂2
Lα) = τ(ϑ−1(α)M∆̂2

L).

Proof. From Lemma 3.2, the linear functional
∫
[1]

is a σ2
L ◦ ϑ−1 -twisted trace.

That is, given any α, β ∈ A∫
[1]

αβ =

∫
[1]

σ2
L(ϑ−1(β))α.

Now we separate the matrix M = Md +Mo into diagonal and off-diagonal
matrices respectively. Then by Theorem 6.3, τ(Md∆̂

2
Lα) and τ(Mo∆̂

2
Lα) are both

well-defined, so by linearity

τ(M∆̂2
Lα) = τ(Md∆̂

2
Lα) + τ(Mo∆̂

2
Lα) = τ(Md∆̂

2
Lα) + 0.

Since Md is diagonal, we may write

Md∆̂
2
L = ∆̂2

Lσ
2
L(Md)

where σL acts componentwise on the matrix. Using the value of τ(∆̂2
Lσ

2
L(Md)α)

from Theorem 6.3, we have

τ(M∆̂2
Lα) = τ(∆̂2

Lσ
2
L(Md)α) = R

∫
[1]

σ2
L(M+

d )α +R

∫
[1]

σ2
L(M−

d )α

= R

∫
[1]

σ2
L(ϑ−1(α))σ2

L(M+
d ) +R

∫
[1]

σ2
L(ϑ−1(α))σ2

L(M−
d ),

by the twisted trace property of
∫
[1]

. Recombining these two terms yields

τ(∆̂2
Lσ

2
L(Md)α) = τ(∆̂2

Lσ
2
L(ϑ−1(α))σ2

L(Md)) = τ(ϑ−1(α)∆̂2
Lσ

2
L(Md)) = τ(ϑ−1(α)Md∆̂

2
L).

Now, τ(ϑ−1(α)Mo∆̂
2
L) is well defined and has value zero, so we can write

τ(M∆̂2
Lα) = τ(ϑ−1(α)Md∆̂

2
L) + τ(ϑ−1(α)Mo∆̂

2
L) = τ(ϑ−1(α)M∆̂2

L).
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Theorem 6.5. Given any a0, . . . , a3 ∈ A, the map

φres : a0, . . . , a3 7→ τ(a0[D, a1][D, a2][D, a3])
is a ϑ−1 -twisted Hochschild 3-cocycle, whose cohomology class is non-trivial. The
cocycle φres has non-zero pairing with the ϑ−1 -twisted 3-cycle dvol defined in (2),
giving

〈φres, dvol〉 = 3R(q−1 + q) = 4!
q−1 + q

2

q−1 − q
ln(q−1)

.

The cocycle may be written as

φres = q2R(ϕ+ ϕ213 + ϕ231) +R(ϕ132 + ϕ312 + ϕ321)

where ϕ and ϕijk are the cocycles described in Lemma 3.2 and Corollary 3.4.

Proof. First consider πD(a0, a1, a2, a3) = a0[D, a1][D, a2][D, a3] as an un-
bounded operator on A⊕A ⊂ H . Using the equality [D, α] = S̃(α)+ T̃ (α)∆̂L , we
see that πD(a0, a1, a2, a3) can be expanded into 8 terms. Recall that by Theorem
6.3 the functional τ vanishes on off-diagonal operators. Four of the eight terms
in the expansion of πD(a0, a1, a2, a3) are off-diagonal since, for all α ∈ A , S̃(α) is
diagonal and T̃ (α) is off-diagonal. Thus

τ
(
a0

(
T̃ (a1)∆̂LS̃(a2)S̃(a3) + S̃(a1)T̃ (a2)∆̂LS̃(a3)

+S̃(a1)S̃(a2)T̃ (a3)∆̂L + T̃ (a1)∆̂LT̃ (a2)∆̂LT̃ (a3)∆̂L

))
= 0.

Therefore, φres(a0, a1, a2, a3) reduces to

φres(a0, a1, a2, a3) = τ
(
a0

(
S̃(a1)S̃(a2)S̃(a3) + S̃(a1)T̃ (a2)∆̂LT̃ (a3)∆̂L

+T̃ (a1)∆̂LS̃(a2)T̃ (a3)∆̂L + T̃ (a1)∆̂LT̃ (a2)∆̂LS̃(a3)
))

. (14)

From Proposition 5.1 it follows that

a0S̃(a1)S̃(a2)S̃(a3) = a0∂H(a1)∂H(a2)∂H(a3)Γ

and recall that from Theorem 6.3 we know τ(αΓ) = 0 for all α ∈ A . Since
a0∂H(a1)∂H(a2)∂H(a3) ∈ A we have

τ(a0S̃(a1)S̃(a2)S̃(a3)) = 0.

We now move all the ∆̂L ’s to the right in the remaining terms in Equation
(14). For α ∈ A , we use ∆̂LS̃(α) = S̃(σ−1L (α))∆̂L , and

∆̂LT̃ (α) =

(
0 q−1∆Lq

− 1
2∂e(σ

− 1
2

L (α))

q∆Lq
1
2∂f (σ

− 1
2

L (α)) 0

)

=

(
0 q−2q−

1
2σ−1L (∂e(σ

− 1
2

L (α)))

q2q
1
2σ−1L (∂f (σ

− 1
2

L (α))) 0

)
∆̂L

=

(
0 q−

1
2∂e(σ

− 3
2

L (α))

q
1
2∂f (σ

− 3
2

L (α)) 0

)
∆̂L

= T̃ (σ−1L (α))∆̂L.
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This yields

φres(a0, a1, a2, a3) = τ
(
a0

(
S̃(a1)T̃ (a2)T̃ (σ−1L (a3))

+T̃ (a1)S̃(σ−1L (a2))T̃ (σ−1L (a3)) + T̃ (a1)T̃ (σ−1L (a2))S̃(σ−2L (a3))
)

∆̂2
L

)
.

In this form Theorem 6.3 tells us that φres is a well defined, multilinear
functional on A⊗4 . In order to demonstrate that this cochain is indeed a twisted
Hochschild cocycle, it remains only to show that the boundary operator maps the
cochain to zero. This result follows from the Leibniz property of the commutators
together with Lemma 6.4. Explicitly,

(bϑ
−1

3 φres)(a0, . . . , a4) = τ(a0a1[D, a2][D, a3][D, a4])− τ(a0[D, a1a2][D, a3][D, a4])
+τ(a0[D, a1][D, a2a3][D, a4])
−τ(a0[D, a1][D, a2][D, a3a4])
+τ(ϑ−1(a4)a0[D, a1][D, a2][D, a3])

= −τ(a0[D, a1][D, a2][D, a3]a4)
+τ(ϑ−1(a4)a0[D, a1][D, a2][D, a3])

= 0,

where the last equality follows from Lemma 6.4.

In order to identify φres , we use Proposition 5.1 to write, for a0, . . . , a3 ∈ A ,

a0

(
S̃(a1)T̃ (a2)T̃ (σ−1L (a3)) + T̃ (a1)S̃(σ−1L (a2))T̃ (σ−1L (a3))

+T̃ (a1)T̃ (σ−1L (a2))S̃(σ−2L (a3))
)

=

(
π1(a0, . . . , a3) 0

0 π2(a0, . . . , a3)

)
for some multi-linear maps π1, π2 : A⊗4 → A . Again using Proposition 5.1, we
have

π1(a0, . . . , a3)

= a0∂H(a1)∂e(σ
− 1

2
L (a2))∂f (σ

− 3
2

L (a3))− a0∂e(σ
− 1

2
L (a1))∂H(σ−1L (a2))∂f (σ

− 3
2

L (a3))

+a0∂e(σ
− 1

2
L (a1))∂f (σ

− 3
2

L (a2))∂H(σ−2L (a3)),

and

π2(a0, . . . , a3)

= −a0∂H(a1)∂f (σ
− 1

2
L (a2))∂e(σ

− 3
2

L (a3)) + a0∂f (σ
− 1

2
L (a1))∂H(σ−1L (a2))∂e(σ

− 3
2

L (a3))

−a0∂f (σ
− 1

2
L (a1))∂e(σ

− 3
2

L (a2))∂H(σ−2L (a3)).

Then by Theorem 6.3, and the σL invariance of
∫
[1]

, we have

φres(a0, a1, a2, a3) = R

∫
[1]

π1(a0, . . . , a3) +R

∫
[1]

π2(a0, . . . , a3). (15)
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Comparing Equations (15), (15), (15) with the expressions for the cocycles
identified in Lemma 3.2 and Corollary 3.4 we find

φres = q2R(ϕ+ ϕ213 + ϕ231) +R(ϕ132 + ϕ312 + ϕ321).

The evaluation of this cocycle on the cycle dvol (see Equation (2)) is a straight-
forward computation using the explicit expressions obtained. The result is

〈φres, dvol〉 = 3R(q−1 + q).

Concluding remark. Recall that our residue functional τ was defined,
via the functional Υw , using the ultraviolet cutoff projection P1P2 . There are
other choices of cutoff projection that could be used to define a residue functional,
and we thank the referee for their remarks on this point.

Indeed, the operator D restricted to Ψ0H coincides with the Dirac operator
used in [KW]. Employing the cutoff projection Ψ0 yields a new residue functional
τ ′ . Following the computations contained in [KW], τ ′ coincides with a multiple
of the functional τ on products a0[D, a1][D, a2][D, a3] , albeit taking the residue in
Equation (13) at w = 2 not w = 3. Our aim was, however, to attempt to reconcile
the spectral and homological dimensions. Whether or not this is a fruitful strategy
in a more general context has to be tested on further examples.
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