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Abstract. Let S denote the oscillatory module over the complex symplectic
Lie algebra g = sp(VC, ω). Consider the g -module W =

∧•
(V∗)C ⊗ S of forms

with values in the oscillatory module. We prove that the associative commutant
algebra Endg(W) is generated by the image of a certain representation of the
ortho-symplectic Lie super algebra osp(1|2) and two distinguished projection
operators. The space W is then decomposed with respect to the joint action of
g and osp(1|2). This establishes a Howe type duality for sp(VC, ω) acting on
W.
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1. Introduction

Let (V, ω) be a real finite dimensional symplectic vector space. We denote the sym-
plectic group Sp(V, ω) by G, and its connected double cover, i.e., the metaplectic

group Mp(V, ω), by G̃. Further, let K denote the maximal compact subgroup

of G̃ and g the complexification of the Lie algebra of G. The complexification of
the Lie algebra of the metaplectic group G̃ is isomorphic to g and thus, we may
denote it by g as well.

There exists a distinguished faithful unitary representation of the metaplec-
tic group G̃ – the so called Segal-Shale-Weil or symplectic spinor representation.
(Let us note that also the names oscillatory or metaplectic representation are used
in the literature.) For a justification of the latter name, see Kostant [8]. Now,
let us consider the underlying Harish-Chandra (g, K)-module of the Segal-Shale-
Weil representation. When we think of this (g, K)-module as equipped with its
g-module structure only, we denote it by S and call it the oscillatory module. It
is known that S splits into two irreducible g-modules, S ' S+ ⊕ S−.

∗Supported by the grant GAČR 306-33/80397 of the Grant Agency of the Czech Repub-
lic. Supported also by the SFB 647 “Space–Time–Matter“ of the DFG and the Volkswagen
Foundation.

ISSN 0949–5932 / $2.50 c© Heldermann Verlag



1050 Krýsl

Further, let us set W =
∧•(V∗)C ⊗ S and denote the appropriate tensor

product representation of g on W by ρ. In this paper, we first decompose the
module W into irreducible g-modules. Next, we shall find generators of the
commutant algebra

Endg(W) = {T ∈ End(W) |Tρ(X) = ρ(X)T for all X ∈ g}

of the symplectic Lie algebra g acting on W. Let p± : S → S± be the unique
g-equivariant projections. These projections induce projection operators acting
on the whole space W in an obvious way. We denote them by p± as well. Further,
we shall introduce a representation σ : osp(1|2)→ End(W) of the complex ortho-
symplectic super Lie algebra osp(1|2) on the space W and prove that the image
of σ together with p+ and p− generate the commutant Endg(W). At the end, we
decompose the (g× osp(1|2))-module W into a direct sum⊕l

j=0[(E−jj ⊕ E+
jj)⊗Gj] ,

where E+
jj and E−jj are certain irreducible infinite dimensional highest weight g-

modules and Gj is a finite dimensional irreducible osp(1|2)-module. This estab-
lishes a Howe type duality for g acting on W. One may call this duality of type
2 : 1 because each irreducible osp(1|2)-module Gj from the decomposition above
is paired to two irreducible g-modules, namely to E+

jj and E−jj.
The basic tool used to obtain these results was the decomposition of the

g-module W into irreducible summands. This decomposition was achieved using
a theorem of Britten, Hooper, Lemire [1] on a decomposition of the tensor product
of an irreducible finite dimensional sp(VC, ω)-module and the oscillatory module
S. Let us remark that the so called Howe dualities are generalizations of classical
results of Schur and Weyl. Whereas Schur studied the case of GL(V) acting on the
k -fold product

⊗k V, Weyl (see, e.g., Weyl [15]) considered the SO(V)-module⊗k V, k ∈ N. See Howe [5] for a historical treatment on the cases studied by
Schur and Weyl and for their generalizations. In Howe [5], one can find several
applications of these dualities and also a classical version of our 2:1 or say, quantum
duality. Let us remark that a similar result to the one presented here was obtained
by Slupinski in [13]. In his paper, Slupinski considers the case of spinor valued
forms as a module over the appropriate spin group. Roughly speaking, he proves
that sl(2,C) is the Howe dual partner to the spin group. One may rephrase this
fact by saying that the situation studied in [13] is super symmetric to the one we
are interested in.

The motivation for our study of the Howe duality for forms with values in
the oscillatory module comes from differential geometry and mathematical physics.
See, e.g., Habermann, Habermann [4] or Krýsl [10] for applications and examples
in differential geometry. For applications of symplectic spinors in mathematical
physics, we refer an interested reader to Shale [12], who used them to quantize
Klein-Gordon fields, and to Kostant [8] for a use in geometric quantization of
Hamiltonian mechanics.

In the second section of the paper, we introduce basic notation, summarize
known facts on the oscillatory module and derive the decomposition of W =∧•(V∗)C ⊗ S into irreducible g-modules (Theorem 2.3). The generators of the
commutant Endg(W) are given in the third section (Theorem 3.7). In the fourth
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section, the representation σ : osp(1|2)→ End(W) is introduced and the fact that
it is a representation is proved (Theorem 4.1). In this section, the space W is also
decomposed into submodules with respect to the joint action of g and osp(1|2),
i.e., the Howe duality is proved (Theorem 4.5).

2. Decomposition of W =
∧•(V∗)C ⊗ S

Let us suppose that g is a complex simple Lie algebra and let us choose a Cartan
subalgebra h of g and a set of positive roots Φ+. We denote the complex irreducible
highest weight g-module with a highest weight µ ∈ h∗ by L(µ). If µ happens to
be dominant and integral with respect to the choice (h,Φ+), we denote the module
L(µ) by F (µ), emphasizing the fact that the module L(µ) is finite dimensional.
For a dominant integral weight µ with respect to (h,Φ+), we denote the set of
weights of the irreducible representation F (µ) by Π(µ).

Now, let us restrict our attention to the studied symplectic case. Consider
a 2l dimensional real symplectic vector space (V, ω). Let V = L⊕ L′ be a direct
sum decomposition of the vector space V into two Lagrangian subspaces L and
L′. Further, let {ei}2l

i=1 be an adapted symplectic basis of (V, ω), i.e., {ei}2l
i=1 is a

symplectic basis of (V, ω) and {ei}li=1 ⊆ L and {ei}2l
i=l+1 ⊆ L′. Because the notion

of a symplectic basis is not unique, let us fix it now. We call a basis {ei}2l
i=1 of V

a symplectic basis of (V, ω) if for ωij = ω(ei, ej), we have

ωij = 1 if an only if i ≤ l and j = i+ l,

ωij = −1 if and only if i > l and j = i− l and

ωij = 0 in other cases.

The basis of V∗ dual to the basis {ei}2l
i=1 will be denoted by {εi}2l

i=1.

Let us denote the symplectic group Sp(V, ω) by G and the metaplectic

group by G̃. We shall denote the complex symplectic Lie algebra, i.e., the Lie
algebra sp(VC, ω), by g. The complexified symplectic form on VC will still be

denoted by ω . Because the complexification of the Lie algebra of G̃ is isomorphic
to g, we will identify them and denote both of them by g. If a Cartan subalgebra
h ⊆ g and a set of positive roots Φ+ are chosen, the set of fundamental weights
{$i}li=1 is uniquely determined. Now, we shall consider a basis {εi}li=1 of h∗

defined by the equations $i =
∑i

j=1 εj, i = 1, . . . , l. For µ =
∑l

i=1 µiεi, we shall
often denote L(µ) by L(µ1, . . . , µl), or even by L(µ1 . . . µl) only.

The Segal-Shale-Weil representation is a faithful unitary representation of
the metaplectic group G̃ on the complex vector space L2(L) of complex valued
square Lebesgue integrable functions defined on L. Because we would like to
omit problems caused by dealing with unbounded operators, we shall consider the
underlying Harish-Chandra (g, K)-module of the Segal-Shale-Weil representation.
When we consider this (g, K)-module with its g-module structure only, we denote
it by S and call it the oscillatory module. The appropriate representation will be
denoted by L. In particular, we have the Lie algebra homomorphism

L : g→ End(S) at our disposal.
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It is known that S splits into two irreducible g-modules, S ' S+ ⊕ S−.
Further, one can define a representation of g on the space C[z1, . . . , zl] of

polynomials such that C[z1, . . . , zl] ' S as g-modules. From now on, we shall
consider S in this polynomial realization. Let us notice that in this realization, S+

is isomorphic to the space of even polynomials in C[z1, . . . , zl] and S− to the space
of the odd ones. Moreover, one can prove that S+ ' L(λ0) and S− ' L(λ1), where
λ0 = −1

2
$l and λ1 = $l−1 − 3

2
$l. For more information on the Segal-Shale-Weil

representation, see Weil [14] and Kashiwara, Vergne [7]. For information on the
oscillatory module, see Britten, Hooper, Lemire [1].

In order to derive the studied type of Howe duality, we shall need the
symplectic Clifford multiplication VC × S → S which enables us to multiply
elements from the oscillatory module by elements from VC. It is given by the
following prescription

(ei.s)(x) =
∂s

∂xi
(x), (ei+l.s)(x) = ıxis(x), i = 1, . . . , l, (1)

where x =
∑l

i=1 x
iei ∈ L, s ∈ S, and it is extended linearly to the whole space

VC. The symplectic Clifford multiplication is basically the canonical quantization
prescription.

Now, for i = 0, 1 and a dominant integral weight λ =
∑l

j=1 λj$j ∈ h∗, let

us introduce a set T iλ ⊆ h∗ . A weight µ ∈ h∗ is an element of T iλ if and only if

the numbers dj, j = 1, . . . , l, defined by λ − µ =
∑l

j=1 djεj satisfy the following
conditions

1) dj + δl,jδ1,i ∈ N0 for j = 1, . . . , l,

2) 0 ≤ dj ≤ λj for j = 1, . . . , l − 1, 0 ≤ dl + δ1,i ≤ 2λl + 1 and

3)
∑l

j=1 dj is even.

In what follows, we will need a result on the decomposition of the tensor
product of a finite dimensional g-module with one of the modules L(λi), i = 0, 1,
into irreducible g-modules. This result was published in Britten, Hooper, Lemire
[1].

Theorem 2.1. For i = 0, 1 and a dominant integral weight µ, we have

F (µ)⊗ L(λi) '
⊕

κ∈T iµ∩Π(µ)

L(λi + κ).

Proof. See Britten, Hooper, Lemire [1].

Let us remark that there is a misprint in the original article of Britten,
Hooper, Lemire [1].

For convenience, let us introduce a function sgn : {+,−} → {0, 1} given by
the prescription sgn(+) = 0 and sgn(−) = 1 and the g-modules

E±ij = L(1
2
, · · · , 1

2︸ ︷︷ ︸
j

,−1
2
, · · · ,−1

2︸ ︷︷ ︸
l−j−1

,−1 + 1
2
(−1)i+j+sgn(±)),
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where i = 0, . . . , l−1, j = 0, . . . , i and i = l, j = 0, . . . , l−1. For i = j = l, we set
E+
ll = L(1

2
· · · 1

2
) and E−ll = L(1

2
· · · 1

2
− 5

2
). For i = l+1, . . . , 2l and j = 0, . . . , 2l−i,

we assume E±ij = E±(2l−i)j. In order to write the results as short as possible, for
i = 0, . . . , l, let us set mi = i and for i = l + 1, . . . , 2l, mi = 2l − i. With these
conventions, we define

Ξ = {(i, j) | i = 0, . . . , 2l, j = 0, . . . ,mi}

and consider E±ij = 0 for (i, j) ∈ Z2 \ Ξ. Finally, we set Eij = E+
ij ⊕ E−ij. Now, let

us derive the next

Lemma 2.2. For r = 1, . . . , l, we have

Π($r) ⊇ {
r∑
s=1

±εis | 1 ≤ i1 < . . . < ir ≤ l}.

Proof. It is not hard to see (see, e.g., Corollary 5.1.11. pp. 237 and Theorem
5.1.8. (3) pp. 236 in Goodman, Wallach [3]) that for r = 1, . . . , l, the g-module
F ($r) is isomorphic to the C-linear span of isotropic r -vectors in VC (i.e., of
the multi-vectors w = u1 ∧ . . . ∧ ur, where ω(ui, uj) = 0 for i, j = 1, . . . , r), on
which g acts via the linear extension of the dual to the defining representation of
g ⊆ End(VC) on VC. Second, it is easy to realize that one can choose the Cartan
subalgebra h of g and the set of positive roots Φ+ in a way that the following is
true. For i = 1, . . . , l, the basis vector ei ∈ VC is a weight vector of weight εi and
the vector ei+l is a weight vector of weight −εi, both for the defining representation
of g on VC. Using this fact, the result follows.

Now, we define the module W, which we have mentioned in the Introduc-
tion. As a vector space

W =
•∧

(V∗)C ⊗ S.

The representation ρ : g→ End(W) of g on W is defined by the prescription

ρ(X)(α⊗ s) = Xα⊗ L(X)s,

where X ∈ g, α ∈
∧i(V∗)C, s ∈ S and i = 0, . . . , 2l. In the prescription above,

the symbol Xα refers to the action of X ∈ g ⊆ End(VC) on
∧i(V∗)C , i.e., to

the representation dual to the defining one and extended to the exterior i-forms
linearly.

Now, we can state the decomposition theorem. Its proof is based on a direct
use of Theorem 2.1 and Lemma 2.2.

Theorem 2.3. For i = 0, . . . , 2l, the following decomposition into irreducible
g-modules

i∧
(V∗)C ⊗ S± '

mi⊕
j=0

E±ij holds.
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Proof. Using Theorem 5.1.8. pp. 236 and Corollary 5.1.9. pp. 237 in
Goodman, Wallach [3], we get for i = 2k, k ∈ N0,

i∧
(V∗)C ⊗ S± = (F ($0)⊕ F ($2)⊕ . . .⊕ F ($i))⊗ S±, (2)

where $0 = 0 and F ($0) ' C denotes the trivial g-module.

Using the cited theorems in Goodman, Wallach [3] again, we obtain for
i = 2k + 1, k ∈ N0,

i∧
(V∗)C ⊗ S± = (F ($1)⊕ F ($3)⊕ . . .⊕ F ($i))⊗ S±. (3)

We shall consider the mentioned tensor products for i = 0, . . . , l only,
because the result for i = l + 1, . . . , 2l, follows from the one for i = 0, . . . , l
immediately due to the g-isomorphism

∧i(V∗)C ⊗ S± '
∧2l−i(V∗)C ⊗ S± and the

definition of E±ij. Let us consider the tensor products by S+ and S− separately.

1) First, let us consider the tensor product
∧i(V∗)C ⊗ S+. Using Lemma 2.2

and Theorem 2.1, we easily compute that for j = 1, . . . , l, T 0
$j

= {ε1 + . . .+
εj, ε1 + . . .+ εj−1 − εl} ⊆ Π($j) and thus,

F ($j)⊗ S+ = L(1
2
, . . . , 1

2︸ ︷︷ ︸
j

,−1
2
, . . . ,−1

2︸ ︷︷ ︸
l−j

)⊕ L(1
2
, . . . , 1

2︸ ︷︷ ︸
j−1

,−1
2
, . . . ,−1

2︸ ︷︷ ︸
l−j

,−3
2
),

where the relation $j =
∑j

i=1 εi was used. Adding up these terms according
to (2) and (3), we obtain the statement of the theorem for both of the cases
i is odd and i is even.

2) Now, let us consider the tensor product
∧i(V∗)C⊗S−. Using Lemma 2.2, we

easily compute that for j = 1, . . . , l − 1, we have T 1
$j

= {ε1 + . . . + εj, ε1 +

. . .+ εj−1 + εl} ⊆ Π($j) and T 1
$l

= {ε1 + . . .+ εl, ε1 + . . .+ εl−1− εl} ⊆ Π($l).
Therefore using Theorem 2.1, we get

F ($j)⊗ S− = L(1
2
, . . . , 1

2︸ ︷︷ ︸
j−1

,−1
2
, . . . ,−1

2︸ ︷︷ ︸
l−j+1

)⊕ L(1
2
, . . . , 1

2︸ ︷︷ ︸
j

,−1
2
, . . . ,−1

2︸ ︷︷ ︸
l−j−1

,−3
2
)

for j = 1, . . . , l − 1. For j = l, we obtain F ($l) ⊗ S− = L(1
2
. . . 1

2
− 1

2
) ⊕

L(1
2
. . . 1

2
− 5

2
) using Theorem 2.1 again. Adding up these terms according to

(2) and (3), we obtain the statement of the theorem for both cases i is odd
and i is even.

From now on, we shall consider E±ij ⊆
∧i(V∗)C ⊗ S±, (i, j) ∈ Ξ.

Remark 2.4. Due to Theorem 2.3 and the definitions of E±ij , we know that for

i = 0, . . . , 2l, the g-module
∧i(V∗)C ⊗ S is multiplicity-free.
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3. The commutant algebra Endg(W)

We shall prove that the associative commutant algebra Endg(W) is generated by
the below introduced elements – a ”raising” operator, a ”lowering” operator and
two projections.

For i = 0, . . . , 2l and α⊗ s = α⊗ (s+, s−) ∈
∧i(V∗)C ⊗ (S+ ⊕ S−), we set

F+ :
i∧

(V∗)C ⊗ S→
i+1∧

(V∗)C ⊗ S, F+(α⊗ s) =
ı

2

2l∑
j=1

εj ∧ α⊗ ej.s,

F− :
i∧

(V∗)C ⊗ S→
i−1∧

(V∗)C ⊗ S, F−(α⊗ s) = 1
2

2l∑
j,k=1

ωjkιejα⊗ ek.s and

p± :
i∧

(V∗)C ⊗ S→
i∧

(V∗)C ⊗ S, p±(α⊗ s) = α⊗ s±
and extend them linearly to the whole space W. Next, we consider the operator
H defined by the formula

H = 2(F+F− + F−F+).

The values of the operator H are determined in the next

Lemma 3.1. Let (V, ω) be a symplectic vector space of dimension 2l. Then for
i = 0, . . . , 2l, we have

H|∧i(V∗)C⊗S = 1
2
(i− l)Id|∧i(V∗)C⊗S.

Proof. The proof is straightforward, see Krýsl [9]. �

Lemma 3.2. The maps F±, p± and H are g-equivariant with respect to the
representation ρ of g on W.

Proof. The operators p± are clearly g-equivariant. The g-equivariance of F±

and H can be checked straightforwardly. See Krýsl [9] for a proof.

Definition 3.3. Let us denote the associative algebra generated by F± and p±

by C .

Let us recall the definition of the commutant algebra

Endg(W) = {T ∈ End(W) |Tρ(X) = ρ(X)T for all X ∈ g}.

Due to the previous lemma, we already know that C ⊆ Endg(W). Now, we shall
prove that C exhausts the whole commutant Endg(W). For convenience, let us set
Ξ− = Ξ \ {(i, 2l − i) | i = l, . . . , 2l} and Ξ+ = Ξ \ {(i, i) | i = 0, . . . , l}.

Lemma 3.4. For each (i, j) ∈ Ξ, we have

F+

|E±ij
: E±ij

∼→ E∓i+1,j if (i, j) ∈ Ξ− and

F−|E±ij
: E±ij

∼→ E∓i−1,j if (i, j) ∈ Ξ+.
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Proof. First, for (i, j) ∈ Ξ, we prove that

F−F+
|Eij =

{
1
4

(
1+i−j

2

)
Id|Eij if i+ j is odd

1
4

(
i+j
2
− l
)

Id|Eij if i+ j is even.
(4)

Let us fix an integer j ∈ {0, . . . , l} and proceed by the induction on the form
degree i.

I. For i = j and φ ∈ Eii, let us compute F−F+φ = (1
2
H − F+F−)φ =

1
4
(i − l)φ − F+F−φ due to the definition of H and Lemma 3.1. We have
F−|Eii = 0 because F− is g-equivariant (Lemma 3.2), lowers the form degree

by one and there is no summand isomorphic to E+
ii or E−ii in

∧i−1(V∗)C ⊗ S
(see Theorem 2.3). Summing up, we have F−F+φ = 1

4
(i− l)φ according to

(4).

II. Now, let us suppose the statement is true for (i, j) ∈ Ξ, i + j odd. For
(i + 1, j) ∈ Ξ and φ ∈ Ei+1,j, let us compute F−F+φ = 1

2
Hφ − F+F−φ =

1
4
(i + 1 − l)φ − F+F−φ due to the definition of H and Lemma 3.1. Using

the induction hypothesis, we have F−F+
|Eij = 1

4
(1+i−j

2
)Id|Eij . Thus, F+

|Eij is

injective. Because F+ is g-equivariant, raises the form degree by one and
there is no other summand in

∧i+1(V∗)C ⊗ S isomorphic to Eij than Ei+1,j,
we see that F+

|Eij : Eij → Ei+1,j. Because of the proved injectivity, F+
|Eij is

actually an isomorphism. Thus, there exists φ̃ ∈ Eij such that φ = F+φ̃.

We may write F+F−φ = F+F−(F+φ̃) = F+(F−F+φ̃) = 1
4
(1+i−j

2
)F+φ̃ =

1
4
(1+i−j

2
)φ by the induction hypothesis. Substituting this relation into the

already derived F−F+φ = 1
4
(i + 1 − l)φ − F+F−φ, we get F−F+φ =

1
4
(i+ 1− l)φ− 1

4
(1+i−j

2
)φ = 1

4
( i+1+j

2
− l)φ according to the formula (4).

Now, let us suppose the statement is true for (i, j) ∈ Ξ, i + j even. For
(i + 1, j) ∈ Ξ and φ ∈ Ei+1,j, we compute F−F+φ = 1

2
Hφ − F+F−φ =

1
4
(i+ 1− l)φ−F+F−φ due to the definition of H and Lemma 3.1. Similarly

to the case i+ j is odd, we get the existence of φ̃ ∈ Eij such that φ = F+φ̃.

Using the induction hypothesis, we may write F+F−φ = F+F−(F+φ̃) =

F+(F−F+φ̃) = 1
4
( i+j

2
− l)F+φ̃ = 1

4
( i+j

2
− l)φ. Substituting this expression

into the computation above, we get F−F+φ = 1
4
(i+ 1− l)φ− 1

4
( i+j

2
− l)φ =

1
4
(1+(i+1)−j

2
)φ. Thus, the formula follows.

Using the derived formula (4), we see that F−F+
|Eij is injective if and only

if i + j 6= 2l and j 6= i + 1, i.e., (i, j) ∈ Ξ−, the second condition being empty.
Especially, F+ is injective for (i, j) ∈ Ξ−. Thus, F+ is an isomorphism on Eij,
(i, j) ∈ Ξ− . From this, we may further conclude that F− is injective on the image
of F+, i.e., it is an isomorphism on Eij for (i, j) ∈ Ξ+.

Remark 3.5. It is easy to see that F− is zero when restricted to E±ii , i =
0, . . . , l. Namely, we know that F− lowers the form degree by one, it is g-
equivariant and there is no submodule of the module

∧i−1(V∗)C ⊗ S isomorphic
to E+

ii or to E−ii (see Theorem 2.3). A similar discussion can be made for F+

restricted to Eimi , i = l, . . . , 2l.
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For (i, j) ∈ Ξ, let us denote the unique g-equivariant projections from the
space W onto the submodules E±ij by S±ij , i.e.,

S±ij :
•∧

(V∗)C ⊗ S± → E±ij ⊆
i∧

(V∗)C ⊗ S±.

Lemma 3.6. For each (i, j) ∈ Ξ, the projections S±ij ∈ C.

Proof. For i = 0, . . . , 2l, let us define the projection operators
S±i :

∧•(V∗)C ⊗ S± →
∧i(V∗)C ⊗ S±

by the formula

S±i =

(
2l∏

j=0,j 6=i

2H − j + l

i− j

)
p±.

Using Lemma 3.1, we see that the image of each S±i is the prescribed space and
the normalization is correct, i.e., that the formula defines a projection. Recall that
due to its definition, H can be expressed using the operators F+ and F− only
and thus, for i = 0, . . . , 2l, S±i ∈ C . Further, let us fix an integer i ∈ {0, . . . , 2l}.
We prove that for each j, such that (i, j) ∈ Ξ, the projection S±ij ∈ C. We proceed
by induction on j .

I. For j = 0, we define S ′′i0 = (F+)i(F−)i. Using the fact that applying F− (or
F+ ) lowers (or raises) the form degree by 1, we see that S ′′i0 :

∧i(V∗)C⊗S± →
E±i0 . Using the Schur lemma for complex irreducible highest weight modules
(see Dixmier [2]), we conclude that there exists a complex number λi0 ∈ C
such that S ′′i0|E±i0

= λi0Id|E±i0 . Due to Lemma 3.4, we know that λi0 6= 0. Thus,

S±i0 = 1
λi0
S ′′i0 ◦S±i . Because the operators F+, F−, p+ and p− were used only,

we get S±i0 ∈ C.

II. Let us suppose that for k = 0, . . . , j, the operators S±ik can be written as lin-
ear combinations of compositions of the operators F± and p±. Now, we shall
use the operators S±i0, . . . , S

±
ij in order to define the operator S±i,j+1. Let us

take an element ξ ∈
∧i(V∗)C⊗S± and define ζ := S ′i,j+1ξ := ξ−

∑j
k=0 S

±
ikξ ∈⊕mi

k=j+1 E
±
ik. Now, form an element ζ ′ := S ′′i,j+1ζ := (F+)i−j−1(F−)i−j−1ζ. In

the same way as in item I., we conclude that ζ ′ ∈ E±i,j+1. Let us define

S
′′′
i,j+1 = S

′′
i,j+1 ◦ S ′i,j+1. Using the Schur lemma for S

′′′

i,j+1|E±i,j+1

: E±i,j+1 →
E±i,j+1, we conclude that there is a complex number λi,j+1 ∈ C such that

S
′′′

i,j+1|E±i,j+1

= λi,j+1Id|E±i,j+1
. Due to Lemma 3.4, we know that λi,j+1 6= 0.

Thus, S±i,j+1 = 1
λi,j+1

S ′′′i,j+1 ◦ S±i . Going through the construction back, we

see that for constructing the operator S±i,j+1, only the operators F± and p±

were used.

Now we prove that the algebra C exhausts the whole commutant Endg(W).

Theorem 3.7. We have
Endg(W) = C.
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Proof. Due to Lemma 3.2, we know that C ⊆ Endg(W). We prove the opposite
inclusion. For T ∈ Endg(W), we may write T =

⊕
(i,j),(r,s)∈Ξ(S+

ij+S−ij )T (S+
rs+S

−
rs).

For fixed (i, j) and (r, s), let us consider the operator A = S+
ijTS

−
rs : W → E+

ij.
Due to Theorem 2.3, the operator is non-zero ony if j = s and there is a k ∈ Z such
that i− r = 2k + 1. Suppose k ≥ 0. Due to the Schur lemma, A does not change
if we replace the operator T, occurring in the middle of the expression for A, by a
complex multiple of (F+)2k+1 (Lemma 3.4). Thus, we have A = cS+

ij (F
+)2k+1S−rs

for a complex number c ∈ C. Because S+
ij , S

−
rs ∈ C (Lemma 3.6), we see that

A ∈ C. Similarly, one can proceed in the case k < 0 and also when treating the
remaining operators S+

ijTS
+
rs, S

−
ijTS

−
rs and S−ijTS

+
rs.

4. Howe duality for sp(VC, ω) acting on W

We start this section by introducing a representation of the complex ortho-symplectic
super Lie algebra g′ = osp(1|2) on the vector space W. The super Lie bracket of
two Z2 -homogeneous elements u, v ∈ g′ = g′0 ⊕ g′1 will be denoted by [u, v] if and
only if at least one of them is an element of the even part g′0. In the other cases,
we will denote it by {u, v}. Further, there exists a basis {h, e+, e−, f+, f−} of g′

such that the set {e+, h, e−} spans the even part g′0, the set {f+, f−} spans the
odd part g′1 and the only non-zero relations among the basis elements are

[h, e±] = ±e± [e+, e−] = 2h (5)

[h, f±] = ±1
2
f± {f+, f−} = 1

2
h (6)

[e±, f∓] = −f± {f±, f±} = ±1
2
e±. (7)

For i = 0, . . . , 2l, let us introduce operators E± :
∧i(V∗)C ⊗ S →

∧i±2(V∗)C ⊗ S
by the prescription

E± = ±2{F±, F±},

where { , } denotes the anti-commutator in the associative algebra End(W).

The representation σ : osp(1|2)→ End(W) is defined by

σ(e±) = E±, σ(f±) = F± and σ(h) = H

and it is extended linearly to the whole algebra g′ = osp(1|2). Let us set W0 =
(
⊕l

i=0

∧2i(V∗)C)⊗S and W1 = (
⊕l−1

i=0

∧2i+1(V∗)C)⊗S. The vector space End(W)
will be considered with the super Lie algebra structure inherited from the super
vector space structure W = W0⊕W1. We write End(W) = End0(W)⊕End1(W).

Theorem 4.1. The mapping

σ : osp(1|2)→ End(W)

is a super Lie algebra representation.

Proof. First, it is easy to see that σ(g′i) ⊆ Endi(W), i = 0, 1. Second, we
shall check that the operators σ(e±), σ(h) and σ(f±) satisfy the appropriate
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commutation and anti-commutation relations – namely the ones written in the
rows (5), (6), and (7) above. For i = 0, . . . , 2l and α⊗ s ∈

∧i(V∗)C ⊗ S, we have

[H,F+](α⊗ s) = HF+(α⊗ s)− F+H(α⊗ s)

= H(
ı

2

2l∑
j=1

εj ∧ α⊗ ej.s)− F+ 1
2
(i− l)(α⊗ s)

=
2l∑
j=1

[
1
2

ı

2
(i+ 1− l)εj ∧ α⊗ ej.s−

ı

2
1
2
(i− l)εj ∧ α⊗ ej.s

]
=

ı

4

2l∑
j=1

εj ∧ α⊗ ej.s = 1
2
F+(α⊗ s).

Thus, we got the (+)-version of the first equation written in the row (6) as
required. Similarly, one can prove the (−)-version of the first equation written
in that row. The second relation written in the row (7) and the second relation in
the row (6) follow from the definitions of E± and H, respectively. The remaining
relations, i.e., the ones in the row (5) and the first relation in the row (7), can
be proved just using the already derived ones and expanding the commutator and
anti-commutator of compositions of endomorphisms. We shall show explicitly,
how to prove the first relation in the row (7) only. Using the definitions of
the considered mappings only, we may write [E+, F−] = [2{F+, F+}, F−] =
4[F+F+, F−] = 4(F+F+F− − F−F+F+) = 4[F+(−F−F+ + 1

2
H) − F−F+F+] =

4(F−F+F− − 1
2
HF+ + 1

2
F+H − F−F+F+) = 2[F+, H] = −F+.

Summing up, we have the following

Corollary 4.2. The representation σ : osp(1|2)→ End(W) maps the super Lie
algebra osp(1|2) into the commutant algebra Endg(W).

Proof. Follows from Lemma 3.2 and Theorem 4.1 immediately.

Now we define a family {σj}lj=0 of finite dimensional irreducible repre-
sentations of the (complex) ortho-symplectic super Lie algebra g′ = osp(1|2). For
j = 0, . . . , l, let Gj denote a complex vector space of dimension 2l−2j+1, and let
us consider a basis {fi}2l−j

i=j of Gj. The super vector space structure on Gj is defined
as follows. For j = 0, . . . , l, we set (Gj)0 = Span({fi | i ∈ {j, . . . , 2l − j} ∩ 2N0})
and (Gj)1 = Span({fi | i ∈ {j, . . . , 2l− j} ∩ (2N0 + 1)}). For convenience, we sup-
pose fk = 0 for k ∈ Z \ {j, . . . , 2l− j}. We will not denote the dependence of the
basis elements on the number j explicitly. As a short hand, for each (i, j) ∈ Ξ,
we introduce the rational numbers

A(l, i, j) =
(−1)i−j + 1

16
(i− j) +

(−1)i−j+1 + 1

16
(i+ j − 2l − 1).

Finally, for j = 0, . . . , l, let us define the mentioned representations σj : osp(1|2)→
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End(Gj) by the formulas

σj(f
+)(fi) = A(l, i+ 1, j)fi+1, i = j, . . . , 2l − j

σj(f
−)(fi) = fi−1, i = j, . . . , 2l − j
σj(h) = 2{σj(f+), σj(f

−)}
σj(e

±) = ±2{σj(f±), σj(f
±)}.

We prove the following

Lemma 4.3. For j = 0, . . . , l, the mapping σj : osp(1|2) → End(Gj) is an
irreducible representation of the super Lie algebra osp(1|2).

Proof. First, we prove that for j = 0, . . . , l, the mapping σj is a representation
of the super Lie algebra osp(1|2). It is easy to see that whereas the even part of
g′ acts by transforming the even part of Gj into itself and the odd part into itself
as well, the odd part of g′ acts by interchanging the mentioned two parts of Gj.
Now we check whether the relations a the rows (5), (6) and (7) are preserved by
the mapping σj, j = 0, . . . , l. The second relation in the row (7) and the second
relation in (6) are satisfied due to the definitions of σj(e

±) and σj(h), respectively.
Let us start proving the (+)-version of the first relation written in the row (6).
For i = j, . . . , 2l − j, we may write

[σj(h)σj(f
+) − σj(f

+)σj(h)]fi =

= 2[(σj(f
+)σj(f

−) + σj(f
−)σj(f

+))σj(f
+)

−σj(f+)(σj(f
+)σj(f

−) + σj(f
−)σj(f

+))]fi

= 2[σj(f
−)σj(f

+)σj(f
+)− σj(f+)σj(f

+)σj(f
−)]fi

= 2[A(l, i+ 1, j)σj(f
−)σj(f

+)fi+1 − σj(f+)σj(f
+)fi−1]

= 2[A(l, i+ 2, j)A(l, i+ 1, j)− A(l, i, j)A(l, i+ 1, j)]fi+1

= 2A(l, i+ 1, j)[A(l, i+ 2, j)− A(l, i, j)]fi+1

= 1
2
A(l, i+ 1, j)fi+1 = 1

2
σj(f

+)fi.

The (−)-version of this relation can be proved in a similar way. To check
the relations written in the row (5) and the first relation in the row (7), it is
sufficient to use the already derived relations and expand the commutator and
anti-commutator of compositions of endomorphisms only.

To prove the irreducibility of the representations σj, one proceeds exactly
as in the sl(2,C) case and its finite dimensional irreducible representations. See,
e.g., Samelson [11].

Now we prove a technical

Lemma 4.4. For each k ∈ N0 and i = 0, . . . , 2l, we have

(F−)kF+ =

(−1)kF+(F−)k +

[
(−1)k + 1

16
k +

(−1)k+1 + 1

16
(2i− 2l − k + 1)

]
(F−)k−1

when acting on
∧i(V∗)C ⊗ S.
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Proof. We will suppose the operators act on the space
∧i(V∗)C ⊗ S without

writing it explicitly and proceed by induction on k .

I. For k = 0, the lemma holds obviously.

II. a. We suppose the lemma holds for an even integer k ∈ N0. We have

(F−)k+1F+ = F−(F−)kF+

= F−[F+(F−)k +
k

16
((−1)k + 1)(F−)k−1]

= −(F+)(F−)k+1 + 1
2
H(F−)k + 2

k

16
(F−)k

= −F+(F−)k+1 +
1

4
(i− k − l)(F−)k +

k

8
(F−)k

= −F+(F−)k+1 +
2

16
(2i− 2l − (k + 1) + 1)(F−)k,

where we have used the induction hypothesis, definition of H and
Lemma 3.1 on the values of H. The last written expression coincides
with the one in the statement of the lemma for k + 1 is odd.

b. Now, suppose k is odd. We have

(F−)k+1F+ = F−(F−)kF+

= F−[−F+(F−)k +
(−1)k+1 + 1

16
(2i− 2l − k + 1)(F−)k]

= F+(F−)k+1 − 1
2
H(F−)k +

1

8
(2i− 2l − k + 1)(F−)k

= F+(F−)k+1 − 1

8
(2i− 2k − 2l)(F−)k +

+
1

8
(2i− 2l − k + 1)(F−)k = F+(F−)k+1 +

2

16
(k + 1)(F−)k,

where we have used the same tools as in the previous item.

Now, let us define a family {ρ±j }lj=0 of representations ρ±j : g→ End(E±jj) of
the Lie algebra g = sp(VC, ω) acting on the vector spaces E±jj by the prescription

ρj(X)v = ρ(X)v,

where X ∈ g and v ∈ E±jj.
Further, let us introduce a mapping Sgn : {+,−} × N0 → {+,−} given

by the prescription Sgn(±, 2k) = ± and Sgn(±, 2k + 1) = ∓, k ∈ Z. Now, for

(i, j) ∈ Ξ, we define ψ±ij : E±ij → ESgn(±,i−j)
jj ⊗Gj by the formula

ψ±ijv = (F−)i−jv ⊗ fi,

v ∈ E±ij. Finally, we set ψ =
⊕

(i,j)∈Ξ(ψ+
ij ⊕ ψ−ij). In particular,

ψ :
⊕

(i,j)∈Ξ(E+
ij ⊕ E−ij)→

⊕l
j=0[(E+

jj ⊕ E−jj)⊗Gj] .

Now, consider W =
∧•(V∗)C ⊗ S with the action ρ⊗ σ and the space⊕l

j=0[(E+
jj ⊕ E−jj)⊗Gj]

with the action
⊕l

j=0[(ρ+
j ⊕ ρ−j ) ⊗ σj] – both of the algebra g × g′. In the next

theorem, the aforementioned Howe duality is stated.
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Theorem 4.5. The following (sp(VC, ω)× osp(1|2))-module isomorphism

W '
l⊕

j=0

[(E+
jj ⊕ E−jj)⊗Gj] holds.

Proof. Due to Theorem 2.3, we know that W is isomorphic to⊕
(i,j)∈Ξ(E+

ij ⊕ E−ij)
as a g-module. Further, it is evident that ψ is a vector space isomorphism. We

prove that for each (i, j) ∈ Ξ, the mapping ψ±ij : E±ij → ESgn(±,i−j)
jj ⊗Gj is (g×g′)-

equivariant. The g-equivariance follows easily because F− in the definition of ψ±ij
commutes with the representation ρ of g (Lemma 3.2).

We shall prove the g′ -equivariance. For each (i, j) ∈ Ξ and v ∈ E±ij, we
may write ψ±ijσ(f−)v = ψ±ijF

−v = (F−)i−1−jF−v⊗fi−1 = (F−)i−jv⊗fi−1. On the
other hand, we have

σj(f
−)(ψ±ijv) = σj(f

−)((F−)i−jv ⊗ fi) = (F−)i−jv ⊗ fi−1 .

Now, we check the g′ -equivariance for f+. Using Lemma 4.4, we compute
ψ±ijσ(f+)v = ψ±ijF

+v = (F−)i+1−jF+v ⊗ fi+1 =
[(−1)i+1−jF+(F−)i+1−jv + A(l, i+ 1, j)(F−)i−jv]⊗ fi+1 =

A(l, i+ 1, j)(F−)i−jv ⊗ fi+1 ,

where we have used the fact that (F−)i+1−jv = 0 implied by v ∈ E±ij (see
Remark 3.5). On the other hand, we have σj(f

+)ψ±ijv = σj(f
+)((F−)i−jv ⊗ fi) =

(F−)i−jv⊗A(l, i+ 1, j)fi+1. Thus, the equivariance with respect to f+ is proved.
Because the operators H, E+ and E− are linear combinations of compositions of
the operators F+ and F−, the g′ -equivariance of ψ±ij follows.

Remark 4.6. Due to the fact that the category of Harish-Chandra modules is a
full subcategory of the category of U(g)-modules and due to some basic properties
of minimal globalization functors, the results of the paper have their appropriate
minimal globalization counterparts. See Kashiwara, Schmid [6].
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