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Abstract. An important object of study in harmonic analysis is the heat
equation. On a Euclidean space, the fundamental solution of the associated
semigroup is known as the heat kernel, which is also the law of Brownian motion.
Similar statements also hold in the case of a Lie group. By using the wrapping
map of Dooley and Wildberger, we show how to wrap a Brownian motion to a
compact Lie group from its Lie algebra (viewed as a Euclidean space) and find
the heat kernel.
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1. Introduction

The partial differential equation given on Rn by

∂tu(x, t) = 1
2
∆u(x, t), t ∈ R+, x ∈ Rn, (1)

where ∆ is the Laplacian, represents the dissipation of heat over a certain time.
The fundamental solution of the associated semigroup et∆/2 , known as the heat
kernel, pt is given by a unique, strongly continuous, contraction semigroup of
convolution operators which may be convolved with the initial data f(x) = u(0, x)
to give the solution to the Cauchy problem. The heat kernel may also be expressed
as the transition density of a Brownian motion, Bt . In summary:

u(x, t) = et∆/2f(x) (2)

= (pt ∗ f)(x) (3)

=

∫
Rn
pt(x− y)f(y)dy (4)

= E(f(Bt)) (5)

Similar statements hold when Rn is replaced by a Lie group.
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In this article we will demonstrate how these results may be transferred
from the Lie algebra (regarded as Rn ) to a compact Lie group using the so-called
wrapping map of Dooley and Wildberger. Additionally, we shall provide an ap-
proach that allows one to “wrap” a Brownian motion, and then find the heat kernel
by taking the “wrap” of the distribution of the process.

Results concerning Brownian motion and heat kernels on a compact Lie
group have been previously given by many authors (eg, [3], [14], [37] and [38] to
name but a few). Our method is quite different by using the wrapping map, which
can be viewed as a global version of the exponential map. As a result, our results
are in the spirit of the tangent space analysis advocated by Helgason ([19], [20]).

Finally, we will also discuss how our results may be extended and partic-
ularly to compact symmetric spaces and complex Lie groups, whose results will
comprise of the sequel.

2. Notation

Let G be a compact, connected, simply connected Lie group, g its Lie algebra, T
a maximal torus and t the Lie algebra of T . Let n be the dimension of G , and l
the dimension of T (also known as the rank of G).

Let gC = g⊗ C be the complexification of g , tC = t⊗ C be the complexi-
fication of t , and tC is a Cartan subalgebra of gC . Let B(·, ·) be the Killing form
on gC × gC , with g∗ and t∗ the respective duals of g and t with respect to the
Killing form.

We denote by Σ the set of roots of (gC, tC), and choose an ordering on
Σ, with Σ+ the set of positive roots, W the Weyl group, t∗+ the positive Weyl
chamber, and let ρ =

∑
α∈Σ+ α . Let k =

∣∣Σ+
∣∣ be the number of positive roots;

thus we have n = l+ 2k . We denote the set of integral weights by Λ ⊆ t∗ , and let
Λ+ = Λ ∩ t∗+ denote the set of positive integral weights.

We normalise Haar measures dg on G and dt on T to have total mass 1.
Lebesgue measure dX on g is normalised so that if U is a neighbourhood of 0 ∈ g
on which the exponential map is injective, then for f ∈ C∞(G):∫

U

f(expX)|j(X)|2dX =

∫
expU

f(g)dg :

where j(X) is is the analytic square root of the Jacobian of exp with j(0) = 1,
given by

j(X) =
∏
α∈Σ+

sinα(X)/2

α(X)/2

Every irreducible representation π ∈ Ĝ is associated to a unique highest
weight λ ∈ λ+ . If χπ = χλ is the character of this representation, the Kirillov’s
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character formula is given by

j(X)χλ(expX)

∫
Oλ+ρ

eiβ(X)dµλ+ρ(β), for all X ∈ g

where Oλ+ρ is the co-adjoint orbit through λ + ρ ∈ t∗+ , and µλ+ρ is the Liouville
measure on Oλ+ρ with total mass dλ = dπ = dimπ .

We will also define S(g) to be the set of Schwartz functions on g , and SG(g)
to be the set of G-invariant Schwartz functions on g .

3. The wrapping map

The wrapping map, Φ, was devised by Dooley and Wildberger in [10]. Φ is defined
by

〈Φ(ν), f〉 = 〈ν, jf̃〉 (6)

where f ∈ C∞(G), f̃ = f ◦ exp and j the analytic square root of the determinant
of the exponential map. We need to place some conditions on ν for Φ(ν) to be
well-defined - this is the case when ν is a distribution of compact support on g ,
or jν ∈ L1(g). We call Φ(ν) the wrap of ν . When ϕ is an G-invariant Schwartz
function, we have the following:

Theorem 3.1. ([10], Thm. 1) Let ϕ ∈ SG(g), then Φ(jϕ) is a G-invariant
C∞ function on G given on T by

Φ(jϕ)(exp H) =
∑
γ∈Γ

ϕ(H + γ) ∀H ∈ t. (7)

The principal result is the wrapping formula, given by

Theorem 3.2. ([10], Thm. 2) Let µ, ν be G-invariant distributions of compact
support on g or two G-invariant integrable functions, then

Φ(µ ∗ ν) = Φ(µ) ∗ Φ(ν) (8)

where the convolutions are in g and G, respectively.

Remark 3.3. Note that (8) implies the Duflo isomorphism for compact Lie
groups since the Ad-invariant distributions of support {0} in g are mapped by Φ
to central distributions of support {e} in G .

Remark 3.4. A version of (8) has more recently been given by Andler, Sahi
and Torossian ([1]) for all Lie groups which holds for germs of Ad-invariant hyper-
functions with support at the identity (we leave the precise details of the definition
of germs of Ad-invariant hyperfunctions to [1] and [22]). Their result was conjec-
tured by Kashiwara and Vergne ([22]), who proved it in the case where G is a
solvable group.
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This formula originated from the authors previous work on sums of adjoint
orbits ([11]). What (8) shows us is that problems of convolution of central mea-
sures or distributions on a (non-abelian) compact Lie group can be transferred to
Euclidean convolution of Ad-invariant distributions on g .

Thus, since the solution to the Cauchy problem for the heat equation can
be written as a convolution between the heat kernel and the initial data, we should
be able to wrap the heat kernel on g ∼= Rn to that on G , and transfer the corre-
sponding solution of the Cauchy problem.

Given the remarks in the Introduction, it is clearly of interest also to con-
sider whether there is a way to “wrap Brownian motion”, and thus obtain the heat
kernel on G . The main result of this paper will show how this is achieved

We will quickly recall the proof of Theorem 3.2 here, since it is instructive
in our computation of the heat kernel on G . Recall from section 2 the Kirillov
character formula states that the Fourier transform of the Liouville measure on
the integral co-adjoint orbit through λ + ρ ∈ Λ+ is j(X)χλ(expX). The proof
of Theorem 3.2 follows easily from this formula. We give the elementary proof:
Let π ∈ Ĝ have highest weight λ ∈ Λ+ , and let µ∧ denote the Euclidean Fourier
transform of µ with the convention

µ∧(ξ) =

∫
Rn
µ(x)eix·ξdx.

Then we have:

Lemma 3.5. Let µ be an Ad-invariant distribution of compact support on g.
Then the Fourier transform of Φ(µ) at π is a multiple cπIπ of the identity, where

cπ = (Φ(µ))∧(λ+ ρ) = µ∧(λ+ ρ).

Proof. By the definition of Φ, cπ is given by

cπ =
1

dπ
〈Φ(µ), χλ〉 =

1

dπ
〈µ, jχ̃λ〉.

By applying Kirillov’s character formula we have

cπ = 〈µ,
∫
G

eig(λ+ρ)(·)dg〉.

By the G-invariance of µ this is

cπ = 〈µ, ei(λ+ρ)(·)〉 = µ∧(λ+ ρ)

as required.
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Theorem 3.2 follows, since

(Φ(µ ∗ ν))∧(π) = (µ ∗ ν)∧(λ+ ρ)Iπ

= µ∧(λ+ ρ)ν∧(λ+ ρ)Iπ

= (Φ(µ))∧(λ+ ρ)(Φ(ν))∧(λ+ ρ)Iπ

= (Φ(µ) ∗ Φ(ν))∧(π)

4. The wrap of Brownian motion

We now give our main results on wrapping Brownian motion and heat kernels on
compact Lie groups. Firstly, we show how to wrap the Laplacian, the infinitesimal
generator of a Brownian motion and the heat semigroup. We will then give our
approach of how to “wrap Brownian motion”, and then by wrapping the heat
kernel on G we provide an easy way to determine the transition density of a
Brownian motion on G from that of g .

4.1. The wrap of the Laplacian.

From the Introduction, we note that one-half of the Laplacian

1

2
∆ =

1

2

n∑
i=1

∂2

∂x2
i

is the generator of associated heat semigroup et∆/2 on Rn and G . In the next
section, we will recall standard results regarding Brownian motion on Rn , where
one-half of the Laplacian is the infinitesimal generator of a Brownian motion on
Rn . Furthermore, one-half of the Laplacian on G is the infinitesimal generator of
Brownian motion on G .

Definition 4.1. (See [19]) Let G be an n-dimensional semisimple Lie group,
with Lie algebra g , and let {Xi}ni=1 be an orthonormal basis. We denote the
Laplacian on G by LG , which may be written as:

LG =
n∑
i=1

X2
i

Thus, to see how to wrap a Brownian motion and the heat kernel from g
to G , we will first need to see how the infinitesimial generator of the respective
process and semigroup - the Laplacian - on g and G are related by wrapping. We
will see that the Laplacian on g is not quite mapped to the Laplacian on G . More
precisely, we have:

Proposition 4.2. Let G be a compact connected Lie group with Lie algebra
g. Let LG be the Laplacian on G and Lg the Laplacian on g. Then for any
µ ∈ SG(g)

Φ
(
Lg(µ)

)
= (LG − ‖ρ‖2)

(
Φµ
)
.
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Firstly, we require the following:

Lemma 4.3. With the above notation, we have:

dimG

24
= ‖ρ‖2 = −j−1Lg j

Proof. dimG
24

= ‖ρ‖2 is Freudenthal and de Vries’ “strange formula”. For the
second equality we use the Kirillov character formula. Firstly, we need to find the
Fourier transform of j . Putting λ = 0 in the Kirillov character formula we have
that j∧(ξ) = µρ , where µρ is the Liouville measure on Oρ .

Let ∇α be the directional derivative in the direction of α , so that the
Laplacian is given by the gradient, that is ∆ = ∇α · ∇α . By the elementary
properties of the Fourier transform, we have

(∇αf)∧(λ) = i〈α, λ〉f∧(λ).

But j∧ is supported on the co-adjoint orbit through ρ , and so

(∇αj)
∧(ρ) = i〈α, ρ〉j∧(ρ).

Hence

(∆j)∧(ρ) = (∇α · ∇αj)
∧(ρ) = −

∑
α∈Σ+

〈α, ρ〉〈α, ρ〉j∧(ρ),

and thus
(∆j)∧(ρ) = −‖ρ‖2j∧(ρ)

to which the lemma follows.

Proof of Proposition 4.2: This is essentially equivalent to [20], Ch. V, Propo-
sition 5.1, where it is proved for a more general class of symmetric spaces. We will
give a proof of Proposition 4.2 for compact Lie groups using the wrapping map:
Let µ ∈ SG(g), then,〈

Φ(Lgµ), f
〉

=
〈
Lgµ, jf̃

〉
(by definition of the wrap)

=
〈
µ, Lg(jf̃)

〉
(since the Laplacian is a symmetric operator)

=
〈
µ, j j−1Lg(jf̃)

〉
=
〈
µ, j.Lexp−1

G f̃ + (Lgj)f̃
〉

(by [19] Ch. II, Thm. 3.15)

=
〈
µ, j.Lexp−1

G f̃
〉

+
〈
µ, j j−1(Lgj)f̃

〉
=
〈
µ, j.L̃Gf

〉
+
〈
µ,−j‖ρ‖2f̃

〉
(from Lemma 4.3)

=
〈
Φ(µ), LGf

〉
+
〈
Φ(µ),−‖ρ‖2f

〉
=
〈
LGΦ(µ), f

〉
+
〈
−‖ρ‖2Φ(µ), f

〉
(since the Laplacian is a symmetric operator)

=
〈
(LG − ‖ρ‖2)(Φ(µ)), f

〉
.
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Remark 4.4. LG − ‖ρ‖2 is also known as the shifted Laplacian. It has often
been observed that it is more appropriate in aspects of harmonic analysis. As an
example, it is shown in [20], Ch. V, §5 that Huyghen’s principle does not hold for
a compact Lie group, but does (in odd dimension) when the shifted Laplacian is
used. We will also refer to Brownian motion with a potential of ‖ρ‖2 as a shifted
Brownian motion in accordance with its generator, the shifted Laplacian.

4.2. The wrap of Brownian motion.

Proposition 4.2 shows that Φ
(
Lg(u)

)
= (LG − ‖ρ‖2)

(
Φu
)
. This formula

allows us to “wrap” the Laplacian from g , to the shifted one on G . However, the
actual mechanics of wrapping Brownian motion are not immediately obvious. In
this section, we will provide the approach to this.

We recall the definitions regarding Brownian motion and stochastic inte-
gration on Rn from [21], [25] and [33]. We use the standard notations regarding
probability spaces, filtrations and expectations from these sources. We briefly state
the following definitions for the purposes of notation.

Definition 4.5. A (standard) Brownian motion on R is a continuous stochastic
process (Bt)t≥0 such that for 0 ≤ s < t <∞ :

(i) For 0 ≤ s < t < ∞ , Bt − Bs is a normally distributed random variable
with mean 0 and variance t− s .

(ii) For 0 ≤ t0 < t1 < · · · < tn < ∞ , {Btk − Btk−1
, k = 1, . . . , n} is a set of

independent random variables.

Furthermore, an n-dimensional (standard) Brownian motion on Rn is a
continuous stochastic process

Bt = (B
(1)
t , . . . , B

(n)
t )

where each {B(i)
t }t≥0 is an independent Brownian motion.

Itô’s theory of stochastic integration provides us with the following formula:

Theorem 4.6. (Multidimensional Itô formula) ([5] Thm. 5.10) Let (Mt)t≥0

be a continuous local martingale with values in Rn . Suppose f is a C2 function
f : Rn × R+ → R. Then a.s. for each t > 0,

f(Mt, t)− f(Mt, 0) =
n∑
i=1

∫ t

0

∂f

∂xi
(Ms, s)dM

(i)
s +

∫ t

0

∂f

∂t
(Ms, s)ds

+
n∑
i=1

n∑
j=1

∫ t

0

∂2f

∂xi∂xj
(Ms, s)d〈M (i)

s ,M (j)
s 〉s

Stratonovich developed a stochastic integral that would “conform” to the
usual rules of calculus, known as the Stratonovich integral:
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Definition 4.7. Let B be a Brownian motion and X an L2 -martingale. The
Stratonovich integral, denoted by

∫ t
0
Xs ◦ dBs , is defined by∫ t

0

Xs ◦ dBs =

∫ t

0

XsdBs + 1
2
〈X,B〉t (9)

From these formula, we may construct Brownian motion, (ζt)t≥0 , on Rn as
the solution to the Stratonovich S.D.E.:

h(ζt) = h(0) +
n∑
i=1

∫ t

0

∂h

∂xi
(ζs) ◦ dB(i)

s , ζ0 = 0 (10)

or, equivalently as the Itô S.D.E.:

h(ζt) = h(0) +
n∑
i=1

∫ t

0

∂h

∂xi
(ζs)dB

(i)
s + 1

2

n∑
i=1

∫ t

0

∂2h

∂x2
i

(ζs)ds, ζ0 = 0 (11)

for any h ∈ C∞b (Rn). Thus, the Laplacian ∂2h
∂x2i

, is said to be the infinitesimal

generator of Brownian motion.

We now define Brownian motion on a semisimple Lie group:

Definition 4.8. Suppose G is a semisimple Lie group with Lie algebra g , and
X1, . . . , Xn are vector fields on G . If (Bt)t≥0 is an n-dimensional Brownian motion
on g and p ∈ G , then a G-valued stochastic process (ξt)t≥0 is said to be a solution
of

dξt =
n∑
i=1

Xi(ξt) ◦ dB(i)
t , ξ0 = p (12)

if for each f ∈ C∞(G) we have

f(ξt) = f(p) +
n∑
i=1

∫ t

0

(Xif)(ξs) ◦ dB(i)
s (13)

The solution of (13) is a Brownian motion on G , starting at p .

The above definition is often given ([36], [27]) for Brownian motion on
semisimple Lie groups. How this equation arises from the construction of Brow-
nian motion by “rolling without slipping” on Riemannian structure ([21]) on a
semisimple Lie group is given in [6], pp. 64-66. Converting Stratonovich to Itô
integrals in the corresponding integral equation (13) (see [27], Ch. 1) yields:

f(ξt) = f(e) +
n∑
i=1

∫ t

0

(Xif)(ξs)dB
(i)
s +

1

2

n∑
i=1

∫ t

0

(X2
i f)(ξs)ds (14)

(14) implies that the generator of Brownian motion on G is given by one
half of the Laplacian. This is the definition of a Brownian motion given in [34].
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We also refer the reader to [32] for a comparison of these two constructions.

Following from the Introduction, we have that

(Ptf)(g) = Eg(f(ξt)) = E(f(g · ξt))
and

(Ptf)(g) = E
(∫ t

0

(1
2
LGf)(g · ξs)ds

)
That is, the heat kernel is the law of Brownian motion, and is also the

fundamental solution of the heat semigroup. It also follows that the infinitesimal
generator of the heat semigroup is equal to the Laplacian on Cc(G). Furthermore,

P (g · ξt ∈ dh) = pt(g
−1h)dh

and therefore

Eg(f(ξt)) = E(f(g · ξt) =

∫
G

f(h)pt(g
−1h)dh

Additionally, we näıvely define “shifted Brownian motion” - corresponding
to the shifted Laplacian - on G as the solution to the S.D.E.:

f(ξt) = f(e) +
n∑
i=1

∫ t

0

(Xif)(ξs)dB
(i)
s + 1

2

n∑
i=1

∫ t

0

((X2
i − ‖ρ‖2)f)(ξs)ds, ξ0 = e.

(15)
where

(
Xi

)n
i=1

is an orthonormal basis of the Lie algebra.

However, there is a problem with this definition: ξt is generated by LG −
‖ρ‖2 and is thus Markov, but with killing, which is contrary to it being a solution
of (15). We thus define ξt by starting with a standard Brownian motion, ξ̃t on
G , and “killing” the process by applying the Feynman-Kač Theorem to obtain
shifted Brownian motion on the Lie group. Note that this also involves enlarging
the probability space from Ω to Ω× [0, T ] , equipped with the appropriate product
measure, P .

By writing shifted Brownian motion as a solution to an SDE we have:

Lemma 4.9. Suppose (ξ̃t)t≥0 is the solution on the filtered probability space
(Ω× [0, T ],F ,Ft, P̃ ) to the SDE

f(ξ̃t) = f(e) +
n∑
i=1

∫ t

0

(Xif)(ξ̃s)dB
(i)
s + 1

2

n∑
i=1

∫ t

0

(X2
i f)(ξ̃s)ds

Consider a new measure of the form

Pt = e−CtP̃t

where Pt and P̃t are the respective distributions of ξt and ξ̃t with ξ0 = ξ̃0 = e,
C > 0 is a constant, and t ∈ [0, T ]. Then (ξt)t≥0 is the solution on the filtered
probability space (Ω× [0, T ],F ,Ft, P ) to the SDE

f(ξt) = f(e) +
n∑
i=1

∫ t

0

(Xif)(ξs)dB
(i)
s + 1

2

n∑
i=1

∫ t

0

((X2
i − C)f)(ξs)ds.
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Definition 4.10. We refer to the solution of

f(ξt) = f(e) +
n∑
i=1

∫ t

0

(Xif)(ξs)dB
(i)
s + 1

2

n∑
i=1

∫ t

0

((X2
i − C)f)(ξs)ds.

on the filtered probability space (Ω×[0, T ],F ,Ft, P ) as a shifted Brownian motion.

We now define what it means to wrap Brownian motion. We would also
like to thank the anonymous referee who provided the approach below to wrapping
Brownian motion.

Let νt be the distribution of a Brownian motion ζt on g with ζ0 = 0,
and let µt = Φ(νt) be its wrap on G . By Theorem 3.2, µt forms a convolution
semigroup on G and so is the distribution of a G-invariant Lévy process ξt in G
with ξ0 = e . Its generator A at e is given by

Af(e) = lim
t→0

[〈µt, f〉 − f(e)]/t

Let Lg and LG be the respective Laplacians on g and G . Then for
f ∈ C∞c (G),

〈µt, f〉 − f(e) = 〈νt, jf̃〉 − jf̃(0)∫ t

0

〈νs, 1
2
Lg(jf̃)〉ds (as 1

2
Lg is the generator of ζt)∫ t

0

〈1
2
Lgνs, jf̃〉ds (as 1

2
Lg is a symmetric operator)∫ t

0

〈1
2
(LG − ‖ρ‖2)µs, f〉ds (by Proposition 4.2)∫ t

0

〈µs, 1
2
(LG − ‖ρ‖2)f〉ds

Dividing by t and then letting t→ 0 yields Af(e) = 1
2
(LG−‖ρ‖2)f(e). By

the left invariance, Af = 1
2
(LG − ‖ρ‖2)f on G . This shows that ξt is the shifted

Brownian motion in G described above.

4.3. The wrap of the heat kernel.

Let pt(x) be the heat kernel on Rn given by

pt(x) = (2πt)−n/2e−
‖x‖2
2t , t ∈ R+, x ∈ Rn. (16)

and qt(g) is the heat kernel on G be given by

qt(g) =
∑
λ∈Λ+

dλχλ(g)e−c(λ)t/2, t ∈ R+, g ∈ G. (17)
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where c(λ) = ‖λ+ ρ‖2 − ‖ρ‖2 (see [24], Prop. 5.28).

We now derive the heat kernel on G by calculating Φ(pt). Firstly, we
consider a formula for the wrap of G-invariant Schwartz functions:

Proposition 4.11. Let µ ∈ S(g) be G-invariant, and µ̂ its (Euclidean) Fourier
transform. Then Φ(µ) ∈ C∞G (G) is given on T by

Φ(µ)(t) =
∑
λ∈Λ+

dλ µ̂(λ+ ρ)χλ(t), ∀t ∈ T.

Proof. From Lemma 3.5 we have that

Φ∧(µ)(πλ) = µ̂(λ+ ρ)Iπλ

and we invert the Fourier transform to obtain

Φ(µ)(t) =
∑
λ∈Λ+

dλ µ̂(λ+ ρ)χλ(t), ∀t ∈ T. (18)

as required.

Let (ξt)t≥0 be wrapped Brownian motion from section 4.2. Then the ex-
pectation of (ξt)t≥0 is the shifted heat kernel:

EP̃ (ξt) = qρt (g) =
∑
λ∈Λ+

dλχλ(g)e−‖λ+ρ‖2t/2, t ∈ R+, g ∈ G. (19)

This expectation is taken with respect to the measure P̃ . By applying
Lemma 4.9 (with C = 1

2
‖ρ‖2 ) we get

Proposition 4.12. The expectation of (ξt)t≥0 under P , is

EP (ξt) =
∑
λ∈Λ+

dλχλ(g)e−(‖λ+ρ‖2−‖ρ‖2)t/2, t ∈ R+, g ∈ G.

Proof. Taking expectations under P̃ yields

EP (ξt) = EP (e‖ρ‖
2t/2ξt) = e‖ρ‖

2t/2EP̃ (ξt)

= e‖ρ‖
2t/2qρt (g) = qt(g)

=
∑
λ∈Λ+

dλχλ(g)e−(‖λ+ρ‖2−‖ρ‖2)t/2, t ∈ R+, g ∈ G.

as required.

The shifted heat kernel on G may be calculated by wrapping the heat kernel
on g using Proposition 4.11 and Theorem 3.1. This in turn recovers the formulae
of Sugiura ([35]) and Eskin ([14]) for the heat kernel on a compact Lie group. We
also note that our expressions for the heat kernel can also been seen in [37] and
[7], which use the Poisson summation formula.
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Theorem 4.13. Let pt(x) = (2πt)−n/2e−
‖x‖2
2t , t ∈ R+, x ∈ g be the heat kernel

on g. Then Φ(pt) is the shifted heat kernel on G (given on T ), given by

Φ(pt)(expH) =
∑
λ∈Λ+

dλ e
−‖λ+ρ‖2tχλ(expH) (20)

= (2πt)−n/2
∑
γ∈Γ

e
−‖H+γ‖2

2t
1

j(H + γ)
(21)

for all H ∈ t.

Proof. Setting µ = pt in Proposition 4.11 gives us our result for wrapping the
heat kernel:

p̂t(ξ) = e−‖ξ‖
2t/2

and therefore
Φ∧(pt)(πλ) = e−‖λ+ρ‖2t/2.

Thus by Proposition 4.11 we have

Φ(pt)(expH) =
∑
λ∈Λ+

dλ e
−‖λ+ρ‖2tχλ(expH), ∀H ∈ t.

giving (20), which is the heat kernel corresponding to the shifted Laplacian.

By Theorem 3.1 we may wrap the heat kernel pt by putting

Φ(pt)(expH) = Φ(j(pt
1
j
))(expH) = (2πt)−n/2

∑
γ∈Γ

e
−‖H+γ‖2

2t
1

j(H + γ)

which yields (21). This is valid for the regular points of G . It is also valid for the
singular points since (20) is C∞ , and therefore (21) is also C∞ since it is clearly
C∞ on the regular elements, and is thus C∞ at the singular points by analytic
continuation.

Proposition 4.11 also allows us to prove Proposition 4.2 by considering the
Laplacian as a distribution supported at the identity, acting by convolution. Write
the Laplacian on g as a Fourier multiplier:

L̂gf(ξ) = −‖ξ‖2f̂(ξ)

Now, Φ∧(µ) = µ̂(λ+ ρ), so by taking µ̂(ξ) = −‖ξ‖2 ,

Φ(Lg)(t) = −
∑
λ∈Λ+

dλ ‖λ+ ρ‖2χλ(t), ∀t ∈ T. (22)

which is the shifted Laplacian on a compact Lie group, given by a distribution
supported at the identity. However, the Laplacian as a distribution supported at
the identity is given by

(LG)(t) = −
∑
λ∈Λ+

(‖λ+ ρ‖2 − ‖ρ‖2)χλ(t) (23)
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The discrepancy between (22) and (23) yields the following (c.f. Proposition
4.2):

Φ
(
Lg

)
= (LG − ‖ρ‖2)

(
Φ
)

Remarks: The heat kernel on a compact Lie group has been previously derived
by Arede [3] and Watanabe [38], although their methods are quite different from
ours. We briefly summarise their results here:

In [3], the formula for the heat kernel on a compact Lie group is given by

qt(expH) = (2πt)−d/2j(H)−1e
‖H‖2
2t

+‖ρ‖2t/2E(χτ>t) (24)

where χτ>t is the indicator function of the first exit time of the so-called “Brownian
Bridge” from the fundamental domain. Arede’s proof involves the Elworthy-
Truman “Elementary Formula”. The heat kernel for the group SU(2) is then
given as

qt(g) = (2πt)−3/2
∑
j∈Z

4
√

2jπ + |λ|
2
√

2 sin
[
(4
√

2jπ + |λ|)(2
√

2)
]e|4√2jπ+λ|2/2tet/16 (25)

where λ ∈ R is such that |λ| = d(g, e) and |λ| < 2
√

2π .

This is similar to the formula given in [38] for the group SU(2), but with
different normalisations. Watanabe’s formula is:

qt(expH) = (2πt)−3/2 exp

{
1

4
t

}∑
n∈Z

e
(H+n)2

2t

H+n
2

sin
(
H+n

2

) , H ∈ R (26)

Watanabe exploits the fact that the Laplace transform of the Lévy stochas-
tic area process is j−1 . Both Arede’s and Watanabe’s work can be derived from a
general formula on Riemannian manifolds known as the Minakushisudarum-Pleijel
expansion, which we will examine in the sequel to this paper.

4.4. Remarks on other processes.

In this section we show how the wrapping map can be used to transfer other
stochastic processes from g to G . We firstly consider the results of Kingman on
spherically symmetric random walks ([23]) and show in the case of R3 how the
wrapping map naturally transfers these to random walks on the conjugacy classes
of SU(2). We then use the wrapping map to deduce certain recent results of Liao
([26]) on the distribution of G-invariant Lévy process.

We now consider spherically symmetric random walks studied by Kingman
[23]: take two independent random variables X and Y in R3 , with lengths |X|
and |Y | , but with their direction uniformly distributed. The sum Z = X + Y
is uniformly distributed in terms of its direction, but its length |Z| is a random
number in the range |X − Y | ≤ |Z| ≤ |X + Y | .
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In general, if the probability distributions of |X| and |Y | are µX , µY ∈
M1(R+) (respectively), then |Z| is a random variable with probability distribu-
tion µZ depending on µX and µY , with µZ = µX ∗ µY . This is precisely the
situation relating to the sums of adjoint orbits considered in [11].

Remark: The structures of Adjoint obits on g , and conjugacy classes in
G form structures known as hypergroups under the operation of convolution - the
reader is referred to [39] for further details. The wrapping map forms an algebra
isomorphism between these two structures.

We now consider the wrapping map. From the wrapping formula we have
that

Φ(µ ∗g ν) = Φ(µ) ∗G Φ(ν) (27)

Recall that the Adjoint orbits in g are mapped to conjugacy classes in G
by the relation Ci = expOi via the formula exp Ad(g)X = g−1 expXg . As a
consequence of (27) we have:

Proposition 4.14. Suppose X and Y are spherically symmetric random walks
in R3 , with the probability distributions of |X| and |Y | being µX and µY (respec-
tively), then the distribution of the wrap of |X + Y | on SU(2) is

Φ(µX ∗ µY ) = Φ(µX) ∗ Φ(µY ) (28)

Also recall from Lemma 3.5 that Φ(µ)∧(πλ) = µ∧(λ+ ρ)Iλ .

Following the introduction in [23], the characteristic function of a spherically
symmetric random walk on Rn is given by

φX(t) = E(eitX) = E(eitX cos θ)

where t = ‖t‖ , and θ is the angle between the vectors t and X . It is then shown
by Kingman that

E(eix cos θ) =
J(n/2)−1(x)

(x/2)(n/2)−1
((n/2)− 1)!

where Jλ(·) is the Bessel function of the first kind of order λ , given by

J(n/2)−1(λx)

(λx/2)(n/2)−1
=

∫
Sn−1

eiλ〈x,ω〉dω. (29)

Here, the Riemannian measure dω has mass ((n/2)− 1)!. Note that 29 is
the Kirillov character formula for a compact Lie group, given in terms of gener-
alised Bessel functions.

Let n = 2(1 + s) and let Λs(x) = Js(x)s!(x/2)−s . We have

φX(t) = E(Λs(tX))
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Since we are considering independent, spherically symmetric random vec-
tors, we will use the radial characteristic function

ΨX(t) = E(Λs(tX))

which in the case of R3 is

ΨX(t) =

∫ ∞
0

µX(x)Λs(tx)dx

=

∫ ∞
0

µX(x)

∫
S2

eit(x,ω)dω dx

=

∫ ∞
0

µX(x)eit(x)dx

so that we have
ΨX(λ+ ρ) = µ∧X(λ+ ρ) = Φ∧(µX)(π) (30)

(30) may then be inverted to obtain the transition density of the random
walk on SU(2). We now generalise some of our results on Brownian motion to
other processes using the above results. In this section we will consider Lévy
processes:

Definition 4.15. A Lévy process, gt , is a stochastic process with independent
and stationary increments, which has right continuous paths with left hand limits.

This definition includes both discrete and continuous processes. For further
details on Lévy processes on Lie groups, the reader is referred to [26] and [27]. We
will assume these processes to start at the identity e in G .

In analogy with the case of where the Laplacian is the generator of Brownian
motion and heat transition semigroup, it is also well known that Lévy processes
have a Feller transition semigroup, etL/2 , with generator L that gives rise to a
unique semigroup of convolution operators Pt which may be convolved with the
initial data f(x) = u(0, x) to give the transition density:

u(x, t) = etL/2f(x)

= Ptf(x)

= (pt ∗ f)(x)

=

∫
G

pt(x
−1y)f(y)dy.

Similarly, for any f ∈ C∞(G) the distribution of gt is completely deter-
mined by its generator, L , given by

Lf(g) = lim
s→0

Psf(g)− f(g)

s

We now to restrict ourselves to the case of G-invariant Lévy processes,
which have been recently studied in [26]:
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Definition 4.16. A Lévy process, gt , is said to be G-invariant if its distribu-
tion ut is G-invariant.

The G-invariance ensures a sufficiently “nice” expression of the transition
density in terms of characters of G . Let ψλ = χλ/dλ be the normalised character.
We now have the following:

Theorem 4.17. ([26] Thm. 4) Let G be a compact connected Lie group and
let gt be a G-invariant, non-degenerate Lévy process in G. Then

(i) For t > 0, the distribution ut of gt has a density pt ∈ L2(G) given by

pt(g) =
∑
λ∈Λ+

dλaλ(t)χλ(g) g ∈ G

where aλ(t) = ut(ψ̄λ) = etL(ψ̄λ)(e) , and the series converges absolutely and
uniformly for (g, t) ∈ G× R+ , and

|aλ(t)| = exp

{
−
[
θλ +

∫
(1− Reψλ)dΠ

]
t

}
with θλ = −

∑n
i,j=1 aijXiXjψ̄λ(e) > 0, and Π the Lévy measure.

(ii) Let

θ = inf

{[
θλ +

∫
(1− Reψλ)dΠ

]
; λ ∈ Λ+

}
then θ > 0 for some λ ∈ Λ+ , and

‖pt − 1‖∞ ≤ Ce−θt, ce−θt ≤ ‖pt − 1‖2 ≤ Ce−θt

(iii) If G is semisimple and the Lévy measure has finite first moment, then

aλ(t) = exp

{
−
[
θλ +

∫
(1− Reψλ)dΠ

]
t

}
In general, the wrap of L is difficult to determine. Even if we consider

the case where L is just a differential operator, the coefficients of L may not
be constant (and potentially very badly behaved), and thus explicit forms of the
Duflo isomorphism may be hard to calculate. Applying the Feynman-Kač type
transformation is complicated by the presence of these terms. However, we are
able to recover the first formula in Theorem 4.17 (i) - in law - by wrapping:

Proposition 4.18. Suppose γt is a G-invariant Lévy process in g, with dis-
tribution ht = E(γt). Then the distribution of the wrapped Lévy process Φ(ht) is
given by

Φ(ht)(x) =
∑
λ∈Λ+

dλ ĥt(λ+ ρ)χλ(x), ∀x ∈ T, t ∈ R+.

Proof. This follows from (30) and Lemma 3.5, that Φ∧ht(λ + ρ) = ĥt(λ + ρ)
and Proposition 4.11.
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5. Further directions

In the sequel, we will examine wrapping Brownian motion and heat kernels for the
cases of compact and non-compact symmetric spaces. The wrapping formula needs
some modification to hold for these more general spaces. This involves “twisting”
the convolution product on the tangent space by a certain function e , which orig-
inates in the work of Rouvière [30]. See also [8].

Ultimately, this leads us to give a concise explanation as to why the “sum
over classical paths” (as it is known in the physics literature) does not hold for
general compact symmetric spaces ([4], [12]).

We will also that we have been able to extend our methods on wrapping
Brownian motion and heat kernels to some spaces where we know the wrapping
formula holds. A nice example are the complex Lie groups. Instead of having to
deal with a maximal torus Tn , as in the case of a compact Lie group, the subgroup
corresponding to the Cartan subalgebra is (R+)n , so instead of summing over a
lattice, we just “bend” the heat kernel from g to G . This recovers a formula of
Gangolli [18].
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